1
|
Delvadiya RS, Patel UD, Tank MR, Patel HB, Patel SS, Trangadia BJ. Long-term tributyltin exposure alters behavior, oocyte maturation, and histomorphology of the ovary due to oxidative stress in adult zebrafish. Reprod Toxicol 2024; 126:108600. [PMID: 38670349 DOI: 10.1016/j.reprotox.2024.108600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Tributyltin (TBT), an organotin endocrine-disrupting substance, is recognized as one of the important toxic environmental pollutants. The present study was carried out to investigate the toxic effects of TBT on behavior and the ovary of adult zebrafish with a focus on oxidative stress markers and oocyte maturation. Adult zebrafish were exposed to three different concentrations (125, 250, and 500 ng/L of water) of TBT for 28 days. TBT exposure produced a concentration-dependent negative effect on the body weight and behavior (anxiety-like symptoms) of adult zebrafish. Alterations in the activity of superoxide dismutase (SOD) and catalase (CAT), the total antioxidant capacity of ovarian tissue by the highest exposure level of TBT resulted in lipid peroxidation as indicated by increased malondialdehyde (MDA) level. The numbers of early-vitellogenic oocytes were significantly increased in zebrafish exposed to TBT as low as 125 ng/L. However, the numbers and size of fully-grown (mature) oocytes were significantly reduced in the highest exposure group only. Correlation between the MDA level and pre-vitellogenic oocytes in the 500 ng/L group indicated that lipid peroxidation prevented the maturation of pre-vitellogenic oocytes. TBT exposure produced significant histological changes in the ovary as evidenced by disturbed maturation of oocytes. In conclusion, TBT adversely affected the maturation of oocytes in zebrafish ovary through oxidative stress-mediated mechanisms.
Collapse
Affiliation(s)
- Rajkumar S Delvadiya
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, India
| | - Urvesh D Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, India.
| | - Mihir R Tank
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, India
| | - Harshad B Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, India
| | - Swati S Patel
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, India
| | - Bhavesh J Trangadia
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, India
| |
Collapse
|
2
|
Beyer J, Song Y, Tollefsen KE, Berge JA, Tveiten L, Helland A, Øxnevad S, Schøyen M. The ecotoxicology of marine tributyltin (TBT) hotspots: A review. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105689. [PMID: 35777303 DOI: 10.1016/j.marenvres.2022.105689] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Tributyltin (TBT) was widely used as a highly efficient biocide in antifouling paints for ship and boat hulls. Eventually, TBT containing paints became globally banned when TBT was found to cause widespread contamination and non-target adverse effects in sensitive species, with induced pseudohermaphroditism in female neogastropods (imposex) being the best-known example. In this review, we address the history and the status of knowledge regarding TBT pollution and marine TBT hotspots, with a special emphasis on the Norwegian coastline. The review also presents a brief update on knowledge of TBT toxicity in various marine species and humans, highlighting the current understanding of toxicity mechanisms relevant for causing endocrine disruption in marine species. Despite observations of reduced TBT sediment concentrations in many marine sediments over the recent decades, contaminant hotspots are still prevalent worldwide. Consequently, efforts to monitor TBT levels and assessment of potential effects in sentinel species being potentially susceptible to TBT in these locations are still highly warranted.
Collapse
Affiliation(s)
- Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway.
| | - You Song
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - John Arthur Berge
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Lise Tveiten
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | | | - Sigurd Øxnevad
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Merete Schøyen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| |
Collapse
|
3
|
Bandara KRV, Chinthaka SDM, Yasawardene SG, Manage PM. Modified, optimized method of determination of Tributyltin (TBT) contamination in coastal water, sediment and biota in Sri Lanka. MARINE POLLUTION BULLETIN 2021; 166:112202. [PMID: 33677333 DOI: 10.1016/j.marpolbul.2021.112202] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Tributyltin (TBT) is a toxic organotin compound that belongs to the group of Persistent Organic Pollutants (POPs) and it is documented to cause severe sexual disorders development in aquatic fauna. According to the present study, The TBT concentration in coastal water ranged from 303 ± 7.4 ngL-1 to 25 ± 4.2 ngL-1 wherein sediment was from 107 ± 4.1 ngKg-1 to 17 ± 1.4 ngKg-1. TBT in Perna viridis was found to range from 4 ± 1.2 ngKg-1 to 42 ± 2.2 ngKg-1 wet weight and in ascending order of the body weight. The highest TBT level in water and sediment was found in the Colombo port where the highest level of TBT in P. viridis (42 ± 2.2 ngKg-1) was recorded from the Dikkowita fishery harbor. A positive correlation between the number of male P. viridis and TBT level (p < 0.05) suggests possible reproductive impairment in aquatic animals exposed continuously to a high concentration of TBT.
Collapse
Affiliation(s)
- K R V Bandara
- Centre for Water Quality and Algae Research, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka; Faculty of Graduate Studies, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - S D M Chinthaka
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - S G Yasawardene
- Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Pathmalal M Manage
- Centre for Water Quality and Algae Research, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka; Faculty of Graduate Studies, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka.
| |
Collapse
|
4
|
Sobrino S, Navarro M, Fernández-Baeza J, Sánchez-Barba LF, Lara-Sánchez A, Garcés A, Castro-Osma JA, Rodríguez AM. Efficient Production of Poly(Cyclohexene Carbonate) via ROCOP of Cyclohexene Oxide and CO 2 Mediated by NNO-Scorpionate Zinc Complexes. Polymers (Basel) 2020; 12:polym12092148. [PMID: 32967153 PMCID: PMC7569798 DOI: 10.3390/polym12092148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
New mono- and dinuclear chiral alkoxide/thioalkoxide NNO-scorpinate zinc complexes were easily synthesized in very high yields, and characterized by spectroscopic methods. X-ray diffraction analysis unambiguously confirmed the different nuclearity of the new complexes as well as the variety of coordination modes of the scorpionate ligands. Scorpionate zinc complexes 2, 4 and 6 were assessed as catalysts for polycarbonate production from epoxide and carbon dioxide with no need for a co-catalyst or activator under mild conditions. Interestingly, at 70 °C, 10 bar of CO2 pressure and 1 mol % of loading, the dinuclear thioaryloxide [Zn(bpzaepe)2{Zn(SAr)2}] (4) behaves as an efficient and selective one-component initiator for the synthesis of poly(cyclohexene carbonate) via ring-opening copolymerization of cyclohexene oxide (CHO) and CO2, affording polycarbonate materials with narrow dispersity values.
Collapse
Affiliation(s)
- Sonia Sobrino
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, Campus Universitario, 13071 Ciudad Real, Spain; (S.S.); (J.F.-B.); (A.L.-S.); (J.A.C.-O.); (A.M.R.)
| | - Marta Navarro
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, 28933 Madrid, Spain; (M.N.); (A.G.)
| | - Juan Fernández-Baeza
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, Campus Universitario, 13071 Ciudad Real, Spain; (S.S.); (J.F.-B.); (A.L.-S.); (J.A.C.-O.); (A.M.R.)
| | - Luis F. Sánchez-Barba
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, 28933 Madrid, Spain; (M.N.); (A.G.)
- Correspondence: ; Tel.: +34-91-488-8504
| | - Agustín Lara-Sánchez
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, Campus Universitario, 13071 Ciudad Real, Spain; (S.S.); (J.F.-B.); (A.L.-S.); (J.A.C.-O.); (A.M.R.)
| | - Andrés Garcés
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, 28933 Madrid, Spain; (M.N.); (A.G.)
| | - José A. Castro-Osma
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, Campus Universitario, 13071 Ciudad Real, Spain; (S.S.); (J.F.-B.); (A.L.-S.); (J.A.C.-O.); (A.M.R.)
| | - Ana M. Rodríguez
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, Campus Universitario, 13071 Ciudad Real, Spain; (S.S.); (J.F.-B.); (A.L.-S.); (J.A.C.-O.); (A.M.R.)
| |
Collapse
|
5
|
Ram S, Sharma AK, Chauhan AS, Das P. Palladium-catalyzed ortho-halogen-induced deoxygenative approach of alkyl aryl ketones to 2-vinylbenzoic acids. Chem Commun (Camb) 2020; 56:10674-10677. [PMID: 32785319 DOI: 10.1039/d0cc02941f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 2-vinylbenzoic acids have wide applications in the field of polymer chemistry and are key precursors for the synthesis of important bioactive molecules. Herein, an ortho-halogen-induced deoxygenative approach for the generation of 2-vinylbenzoic acids from alkyl aryl ketones by palladium catalysis is discovered and explored. This approach requires no base or stoichiometric additives and can be carried out through a simple one-step process. Furthermore, the present reaction is scalable up to one-gram scale. The commercially available palladium on carbon (5 wt%) was used as a heterogeneous catalyst and showed excellent recyclability (<5 times) without significant loss in catalytic activity. Pleasingly, under our optimized conditions, the alpha alkyl substituted 2-iodoacetophenones exhibit good diastereoselectivity and predominantly (E)-2-vinylbenzoic acids were obtained with good to excellent yields.
Collapse
Affiliation(s)
- Shankar Ram
- Natural Product Chemistry & Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
| | | | | | | |
Collapse
|
6
|
|
7
|
Sobrino S, Navarro M, Fernández-Baeza J, Sánchez-Barba LF, Garcés A, Lara-Sánchez A, Castro-Osma JA. Efficient CO2 fixation into cyclic carbonates catalyzed by NNO-scorpionate zinc complexes. Dalton Trans 2019; 48:10733-10742. [DOI: 10.1039/c9dt01844a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chiral bifunctional and bicomponent NNO-scorpionate zinc-based catalysts have been developed for the fixation of CO2 into cyclic carbonates with broad substrate scope and functional group tolerance under mild and solvent-free conditions.
Collapse
Affiliation(s)
- Sonia Sobrino
- Universidad de Castilla-La Mancha
- Departamento de Química Inorgánica
- Orgánica y Bioquímica
- Centro de Innovación en Química Avanzada (ORFEO-CINQA) Campus Universitario
- 13071-Ciudad Real
| | - Marta Navarro
- Universidad Rey Juan Carlos
- Departamento de Biología y Geología
- Física y Química Inorgánica
- Móstoles-28933-Madrid
- Spain
| | - Juan Fernández-Baeza
- Universidad de Castilla-La Mancha
- Departamento de Química Inorgánica
- Orgánica y Bioquímica
- Centro de Innovación en Química Avanzada (ORFEO-CINQA) Campus Universitario
- 13071-Ciudad Real
| | - Luis F. Sánchez-Barba
- Universidad Rey Juan Carlos
- Departamento de Biología y Geología
- Física y Química Inorgánica
- Móstoles-28933-Madrid
- Spain
| | - Andrés Garcés
- Universidad Rey Juan Carlos
- Departamento de Biología y Geología
- Física y Química Inorgánica
- Móstoles-28933-Madrid
- Spain
| | - Agustín Lara-Sánchez
- Universidad de Castilla-La Mancha
- Departamento de Química Inorgánica
- Orgánica y Bioquímica
- Centro de Innovación en Química Avanzada (ORFEO-CINQA) Campus Universitario
- 13071-Ciudad Real
| | - José A. Castro-Osma
- Universidad de Castilla-La Mancha
- Departamento de Química Inorgańica
- Orgańica y Bioquímica
- Centro de Innovación en Química Avanzada (ORFEO–CINQA)
- Facultad de Farmacia
| |
Collapse
|
8
|
Ximenes CF, Rodrigues SML, Podratz PL, Merlo E, de Araújo JFP, Rodrigues LCM, Coitinho JB, Vassallo DV, Graceli JB, Stefanon I. Tributyltin chloride disrupts aortic vascular reactivity and increases reactive oxygen species production in female rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24509-24520. [PMID: 28900851 DOI: 10.1007/s11356-017-0061-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Organotin compounds, such as tributyltin (TBT), are environment contaminants that induce bioaccumulation and have potential toxic effects on marine species and mammals. TBT have been banned by the International Maritime Organization in 2003. However, the assessment of butyltin and metal contents in marine sediments has demonstrated high residual levels of TBT in some cases exceeding 7000 ng Sn g-1. The acceptable daily intake (ADI) level for TBT established by the World Health Organization is 0.5 μg/kg bw/day is based on genotoxicity, reproduction, teratogenicity, immunotoxicity, and mainly neurotoxicity. However, their effect on the cardiovascular system is not well understood. In this study, female rats were exposed to 0.5 μg/kg/day of TBT for 15 days with the goal of understanding the effect of TBT on vascular function. Female Wistar rats were treated daily by gavage and divided into control (n = 10) and TBT (n = 10) groups. The aortic rings were incubated with phenylephrine in both the presence and absence of endothelium. The phenylephrine concentration-response curves were generated by exposing endothelium-intact samples to NG-nitro-L-arginine methyl ester (L-NAME), apocynin, superoxide dismutase (SOD), catalase, tiron, and allopurinol. Acetylcholine (ACh) and sodium nitroprusside (SNP) were used to evaluate the relaxation response. Exposure to TBT reduced serum 17β-estradiol E2 levels and increased vascular reactivity. After incubation with L-NAME, the vascular reactivity to phenylephrine was significantly higher. Apocynin, SOD, catalase, and tiron decreased the vascular reactivity to phenylephrine to a significantly greater extent in TBT-treated rats than in the control rat. The relaxation induced by ACh and SNP was significantly reduced in TBT rats. Exposure to TBT induced aortic wall atrophy and increased superoxide anion production and collagen deposition. These results provide evidence that exposing rats to the current ADI for TBT (0.5 μg/kg) for 15 days induced vascular dysfunction due to oxidative stress and morphological damage and should be considered an important cardiovascular risk factor.
Collapse
Affiliation(s)
- Carolina Falcão Ximenes
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 29042-755, Brazil
| | - Samya Mere Lima Rodrigues
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 29042-755, Brazil
| | - Priscila Lang Podratz
- Department of Morphology/CCS, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 290440-090, Brazil
| | - Eduardo Merlo
- Department of Morphology/CCS, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 290440-090, Brazil
| | - Julia Fernandez Puñal de Araújo
- Department of Morphology/CCS, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 290440-090, Brazil
| | - Lívia Carla Melo Rodrigues
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 29042-755, Brazil
| | - Juliana Barbosa Coitinho
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 29042-755, Brazil
| | - Dalton Valentim Vassallo
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 29042-755, Brazil
| | - Jones Bernardes Graceli
- Department of Morphology/CCS, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 290440-090, Brazil.
| | - Ivanita Stefanon
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 29042-755, Brazil.
| |
Collapse
|
9
|
Mattos Y, Stotz WB, Romero MS, Bravo M, Fillmann G, Castro ÍB. Butyltin contamination in Northern Chilean coast: Is there a potential risk for consumers? THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:209-217. [PMID: 28384577 DOI: 10.1016/j.scitotenv.2017.03.264] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 05/24/2023]
Abstract
Imposex is the superimposition of non-functional male sex organs in gastropod females. This syndrome is a hormonal imbalance induced by tributyltin (TBT) which have been used in antifouling paints formulation. The present study aimed to perform an integrated environmental assessment of imposex and butyltin (BT) contamination using surface sediments and tissues of Thaisella chocolata (an edible gastropod) from northern Chile. The results showed imposex incidence in 11 out of 12 sites. In the most contaminated sites, which are areas under the influence of maritime activities, and also used for fishing and aquaculture, RPLI were over 60 and VDSI over 4 (high incidence of sterile females). Exceptionally high contamination levels and evidences of fresh inputs of tributyltin (TBT) were detected along the studied area. TBT levels above 300 and 90ngSng-1, respectively, were recorded in sediments and edible gastropod tissues of 6 sites. Thus, a daily ingestion of 90 to 173g of T. chocolata foot (4 to 8 organisms) from the most contaminated sites will certainly lead to the consumption of BT exceeding the tolerable daily intake recommended by European Food Safety Authority. It is reasonable to consider that human risk is even higher if daily consumption of additional seafood is considered. Moreover, some contaminated sites were located within the marine reserve "Isla Grande Atacama", indicating that even marine protected areas are under the influence of TBT contamination. These findings suggest that current levels of TBT in the studied area are sufficient to induce harmful effects on the environment and constitutes a potential threat to seafood consumers. Thus, national regulatory actions toward environmental protection and food safety of local populations are still mandatory, even after 8years of the TBT global ban by IMO.
Collapse
Affiliation(s)
- Yasna Mattos
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
| | - Wolfgang B Stotz
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
| | - María Soledad Romero
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
| | - Manuel Bravo
- Instituto de Química, Pontifícia Universidad Católica de Valparaíso, Av. Brasil 2950, Valparaíso, Chile
| | - Gilberto Fillmann
- Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96203-900, Brazil
| | - Ítalo B Castro
- Departamento de Ciências do Mar, Universidade Federal de São Paulo - UNIFESP, Av. Almirante Saldanha da Gama, 89, Santos, SP 11030-400, Brazil.
| |
Collapse
|
10
|
Lin TH, Cai YR, Chang W, Hu CH, Lee TY, Datta A, Hsiao HC, Lin CH, Huang JH. Synthesis and characterization of multidentate ethylene bridged pyrrole- and ketoamine-morpholine aluminum compounds. Structure, theoretical calculation and catalytic study. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Vogeler S, Bean TP, Lyons BP, Galloway TS. Dynamics of nuclear receptor gene expression during Pacific oyster development. BMC DEVELOPMENTAL BIOLOGY 2016; 16:33. [PMID: 27680968 PMCID: PMC5041327 DOI: 10.1186/s12861-016-0129-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 08/11/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Nuclear receptors are a highly conserved set of ligand binding transcription factors, with essential roles regulating aspects of vertebrate and invertebrate biology alike. Current understanding of nuclear receptor regulated gene expression in invertebrates remains sparse, limiting our ability to elucidate gene function and the conservation of developmental processes across phyla. Here, we studied nuclear receptor expression in the early life stages of the Pacific oyster, Crassostrea gigas, to identify at which specific key stages nuclear receptors are expressed RESULTS: We used quantitative RT-PCR to determine the expression profiles of 34 nuclear receptors, revealing three developmental key stages, during which nuclear receptor expression is dynamically regulated: embryogenesis, mid development from gastrulation to trochophore larva, and late larval development prior to metamorphosis. Clustering of nuclear receptor expression patterns demonstrated that transcriptional regulation was not directly related to gene phylogeny, suggesting closely related genes may have distinct functions. Expression of gene homologs of vertebrate retinoid receptors suggests participation in organogenesis and shell-formation, as they are highly expressed at the gastrulation and trochophore larval initial shell formation stages. The ecdysone receptor homolog showed high expression just before larval settlement, suggesting a potential role in metamorphosis. CONCLUSION Throughout early oyster development nuclear receptors exhibited highly dynamic expression profiles, which were not confined by gene phylogeny. These results provide fundamental information on the presence of nuclear receptors during key developmental stages, which aids elucidation of their function in the developmental process. This understanding is essential as ligand sensing nuclear receptors can be disrupted by xenobiotics, a mode of action through which anthropogenic environmental pollutants have been found to mediate effects.
Collapse
Affiliation(s)
- Susanne Vogeler
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tim P. Bean
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Brett P. Lyons
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tamara S. Galloway
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| |
Collapse
|
12
|
Martínez J, Castro-Osma JA, Lara-Sánchez A, Otero A, Fernández-Baeza J, Tejeda J, Sánchez-Barba LF, Rodríguez-Diéguez A. Ring-opening copolymerisation of cyclohexene oxide and carbon dioxide catalysed by scorpionate zinc complexes. Polym Chem 2016. [DOI: 10.1039/c6py01559j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New bimetallic heteroscorpionate zinc complexes have been developed and used as efficient catalysts for the synthesis of poly(cyclohexene carbonate).
Collapse
Affiliation(s)
- Javier Martínez
- Universidad de Castilla-La Mancha
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA
- 13071-Ciudad Real
| | - José A. Castro-Osma
- Universidad de Castilla-La Mancha
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA
- 13071-Ciudad Real
| | - Agustín Lara-Sánchez
- Universidad de Castilla-La Mancha
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA
- 13071-Ciudad Real
| | - Antonio Otero
- Universidad de Castilla-La Mancha
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA
- 13071-Ciudad Real
| | - Juan Fernández-Baeza
- Universidad de Castilla-La Mancha
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA
- 13071-Ciudad Real
| | - Juan Tejeda
- Universidad de Castilla-La Mancha
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA
- 13071-Ciudad Real
| | - Luis F. Sánchez-Barba
- Departamento de Biología y Geología
- Física y Química Inorgánica
- Universidad Rey Juan Carlos
- Móstoles
- Spain
| | | |
Collapse
|
13
|
Triorganotin compounds - ligands for “rexinoid” inducible transcription factors: Biological effects. Toxicol Lett 2015; 234:50-8. [DOI: 10.1016/j.toxlet.2015.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 11/18/2022]
|
14
|
Zabka M, Pavela R, Prokinova E. Antifungal activity and chemical composition of twenty essential oils against significant indoor and outdoor toxigenic and aeroallergenic fungi. CHEMOSPHERE 2014; 112:443-8. [PMID: 25048938 DOI: 10.1016/j.chemosphere.2014.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/02/2014] [Accepted: 05/04/2014] [Indexed: 05/18/2023]
Abstract
Health affecting, loss-inducing or otherwise harmful fungal pathogens (molds) pose a serious challenge in many areas of human activities. On the contrary, frequent use of synthetic fungicides is undesirable in some cases and may be equally problematic. Moreover, the ever more increasing fungal resistance against commercial synthetic fungicides justifies development of rising efforts to seek new effective, while environmentally friendly alternatives. Botanical fungicides based on Essential oils (EOs) undoubtedly provide such an alternative. The study explores the efficacy of 20 EOs against Alternaria alternata, Stachybotrys chartarum, Cladosporium cladosporioides and Aspergillus niger, related to abundance of majority active substances. Minimum inhibitory concentration (MIC100 and MIC50) was evaluated. GC-MS analysis revealed high abundance of highly effective phenolic compounds whose different molecular structures correlates with differences in EOs efficacy. The efficacy of some EOs, observed in our study, can be similar to the levels of some synthetic fungicides used in medicine and agriculture e.g. sometimes problematic azole-based formulations. Thanks to the EOs environmental safety and natural origin, they offer the potential to become an alternative where the use of synthetic fungicides is impossible for various reasons.
Collapse
Affiliation(s)
- Martin Zabka
- Crop Research Institute, Drnovska 507, Prague 161 06, Czech Republic.
| | - Roman Pavela
- Crop Research Institute, Drnovska 507, Prague 161 06, Czech Republic
| | - Evzenie Prokinova
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Kamycka 129, Prague 160 00, Czech Republic
| |
Collapse
|
15
|
Celada LJ, Whalen MM. Effects of butyltins on mitogen-activated-protein kinase kinase kinase and Ras activity in human natural killer cells. J Appl Toxicol 2014; 34:1002-11. [PMID: 24038145 PMCID: PMC3868639 DOI: 10.1002/jat.2921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/10/2013] [Accepted: 07/21/2013] [Indexed: 01/05/2023]
Abstract
Butyltins (BTs) contaminate the environment and are found in human blood. BTs, tributyltin (TBT) and dibutyltin (DBT) diminish the cytotoxic function and levels of key proteins of human natural killer (NK) cells. NK cells are an initial immune defense against tumors, virally infected cells and antibody-coated cells and thus critical to human health. The signaling pathways that regulate NK cell functions include mitogen-activated protein kinases (MAPKs). Studies have shown that exposure to BTs leads to activation of specific MAPKs and MAPK kinases (MAP2Ks) in human NK cells. MAP2K kinases (MAP3Ks) are upstream activators of MAP2Ks, which then activate MAPKs. The current study examined if BT-induced activation of MAP3Ks was responsible for MAP2K and thus, MAPK activation. This study examines the effects of TBT and DBT on the total levels of two MAP3Ks, c-Raf and ASK1, as well as activating and inhibitory phosphorylation sites on these MAP3Ks. In addition, the immediate upstream activator of c-Raf, Ras, was examined for BT-induced alterations. Our results show significant activation of the MAP3K, c-Raf, in human NK cells within 10 min of TBT exposure and the MAP3K, ASK1, after 1 h exposures to TBT. In addition, our results suggest that both TBT and DBT affect the regulation of c-Raf.
Collapse
Affiliation(s)
- Lindsay J Celada
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | | |
Collapse
|
16
|
Zhang J, Zuo Z, Zhu W, Sun P, Wang C. Sex-different effects of tributyltin on brain aromatase, estrogen receptor and retinoid X receptor gene expression in rockfish (Sebastiscus marmoratus). MARINE ENVIRONMENTAL RESEARCH 2013; 90:113-118. [PMID: 23850073 DOI: 10.1016/j.marenvres.2013.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/12/2013] [Accepted: 06/22/2013] [Indexed: 06/02/2023]
Abstract
Since the brain plays important roles in reproduction, the brain aromatase (Cyp19b), estrogen receptor (ER), retinoid X receptor (RXR) α and peroxisome proliferator-activated receptor γ were examined in rockfish after TBT exposure (1, 10, and 100 ng L(-1)). The results showed that the Cyp19b expression was elevated in the male rockfish, while no effect was produced in the females. Inconsistently, serum testosterone and 17β-estradiol showed no change in the males, while an increase of testosterone and a decrease of 17β-estradiol were observed in the females. TBT affected the ER expression in the males depending on the concentrations, however, no change was observed in the females. In addition, TBT elevated the RXRα expression in the males but produced an opposite effect in the females. In conclusion, TBT might have had sex-different effects on the brain Cyp19b, ER and RXR expression in rockfish, indicating a complex endocrine disrupting effect of TBT.
Collapse
Affiliation(s)
- Jiliang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, PR China
| | | | | | | | | |
Collapse
|
17
|
Organotins: A review of their reproductive toxicity, biochemistry, and environmental fate. Reprod Toxicol 2013; 36:40-52. [DOI: 10.1016/j.reprotox.2012.11.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 11/05/2012] [Accepted: 11/23/2012] [Indexed: 01/10/2023]
|
18
|
Pascoal S, Carvalho G, Vasieva O, Hughes R, Cossins A, Fang Y, Ashelford K, Olohan L, Barroso C, Mendo S, Creer S. Transcriptomics and in vivo tests reveal novel mechanisms underlying endocrine disruption in an ecological sentinel, Nucella lapillus. Mol Ecol 2012. [PMID: 23205577 DOI: 10.1111/mec.12137] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anthropogenic endocrine disruptors now contaminate all environments globally, with concomitant deleterious effects across diverse taxa. While most studies on endocrine disruption (ED) have focused on vertebrates, the superimposition of male sexual characteristics in the female dogwhelk, Nucella lapillus (imposex), caused by organotins, provides one of the most clearcut ecological examples of anthropogenically induced ED in aquatic ecosystems. To identify the underpinning mechanisms of imposex for this 'nonmodel' species, we combined Roche 454 pyrosequencing with custom oligoarray fabrication inexpensively to both generate gene models and identify those responding to chronic tributyltin (TBT) treatment. The results supported the involvement of steroid, neuroendocrine peptide hormone dysfunction and retinoid mechanisms, but suggested additionally the involvement of putative peroxisome proliferator-activated receptor (PPAR) pathways. Application of rosiglitazone, a well-known vertebrate PPARγ ligand, to dogwhelks induced imposex in the absence of TBT. Thus, while TBT-induced imposex is linked to the induction of many genes and has a complex phenotype, it is likely also to be driven by PPAR-responsive pathways, hitherto not described in invertebrates. Our findings provide further evidence for a common signalling pathway between invertebrate and vertebrate species that has previously been overlooked in the study of endocrine disruption.
Collapse
Affiliation(s)
- Sonia Pascoal
- Molecular Ecology and Fisheries Genetics Laboratory, Environment Centre Wales, School of Biological Sciences, Bangor University, Gwynedd, LL57 2UW, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Luo J, Wang R, Huang Z, Yang J, Yao X, Chen H, Zheng W. Synthesis of Stable Genipin Derivatives and Studies of Their Neuroprotective Activity in PC12 Cells. ChemMedChem 2012; 7:1661-8. [DOI: 10.1002/cmdc.201200258] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/09/2012] [Indexed: 11/08/2022]
|
20
|
Wang Y, Zhao W, Liu D, Li S, Liu X, Cui D, Chen X. Magnesium and Zinc Complexes Supported by N,O-Bidentate Pyridyl Functionalized Alkoxy Ligands: Synthesis and Immortal ROP of ε-CL and l-LA. Organometallics 2012. [DOI: 10.1021/om300113p] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang Wang
- State Key
Laboratory of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
China
| | - Wei Zhao
- State Key
Laboratory of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
China
| | - Dongtao Liu
- State Key
Laboratory of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shihui Li
- State Key
Laboratory of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinli Liu
- State Key
Laboratory of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dongmei Cui
- State Key
Laboratory of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xuesi Chen
- State Key
Laboratory of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
21
|
Zabka M, Pavela R, Gabrielova-Slezakova L. Promising antifungal effect of some Euro-Asiatic plants against dangerous pathogenic and toxinogenic fungi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:492-7. [PMID: 21218483 DOI: 10.1002/jsfa.4211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/23/2010] [Accepted: 10/04/2010] [Indexed: 05/24/2023]
Abstract
BACKGROUND Increasing evidence of fungicide-resistant toxinogenic and pathogenic fungal species is obvious. Looking for new possibilities of antifungal treatment or sources of antifungal substances is a major problem. Some medicinal plants exert strong antifungal properties and could be conveniently used as a promising alternative source for presently problematic antifungal treatment in many areas with respect to their natural origin. Methanol extracts of 46 medicinal plants from the Eurasian area were used in a screening assay for antifungal activity in this study. The growth inhibitory effect was tested against six significant pathogenic and toxinogenic fungal species: Fusarium oxysporum, F. verticillioides, Penicillium expansum, P. brevicompactum, Aspergillus flavus and A. fumigatus. RESULTS For 14 plant species, the possibility of using them as natural fungicides was indicated. The extract from Grindelia camporum showed significant activity against all target fungal species. The most sensitive target fungus was the toxinogenic and human pathogenic species A. fumigatus. CONCLUSION This study has identified 14 extracts of medicinal plants with a potential use as an antifungal treatment in various areas. One of them showed promising efficiency against all selected significant pathogenic and toxinogenic fungal species.
Collapse
Affiliation(s)
- Martin Zabka
- Crop Research Institute, Drnovská 507, 161 06, Praha 6 Ruzyne, Czech Republic.
| | | | | |
Collapse
|
22
|
Okoro HK, Fatoki OS, Adekola FA, Ximba BJ, Snyman RG, Opeolu B. Human exposure, biomarkers, and fate of organotins in the environment. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 213:27-54. [PMID: 21541847 DOI: 10.1007/978-1-4419-9860-6_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Organotin compounds result from the addition of organic moieties to inorganic tin.Thus, one or more tin-carbon bonds exist in each organotin molecule. The organo-tin compounds are ubiquitous in the environment. Organotin compounds have many uses, including those as fungicides and stabilizers in plastics, among others in industry. The widespread use of organotins as antifouling agents in boat paints has resulted in pollution of freshwater and marine ecosystems. The presence of organotin compounds in freshwater and marine ecosystems is now understood to be a threat, because of the amounts found in water and the toxicity of some organotin compounds to aquatic organisms, and perhaps to humans as well. Organotin com-pounds are regarded by many to be global pollutants of a stature similar to biphenyl,mercury, and the polychlorinated dibenzodioxins. This stature results from the high toxicity, persistence, bioaccumulation, and endocrine disruptive features of even very low levels of selected organotin compounds.Efforts by selected governmental agencies and others have been undertaken to find a global solution to organotin pollution. France was the first country to ban the use of the organotins in 1980. This occurred before the international maritime organization (IMO) called for a global treaty to ban the application of tributyltin (TBT)-based paints. In this chapter, we review the organotin compounds with emphasis on the human exposure, fate, and distribution of them in the environment. The widespread use of the organotins and their high stability have led to contamination of some aquatic ecosystems. As a result, residues of the organotins may reach humans via food consumption. Notwithstanding the risk of human exposure, only limited data are available on the levels at which the organotins exist in foodstuffs consumed by humans. Moreover, the response of marine species to the organotins, such as TBT, has not been thoroughly investigated. Therefore, more data on the organotins and the consequences of exposure to them are needed. In particular, we believe the following areas need attention: expanded toxicity testing in aquatic species, human exposure, human body burdens, and the research to identify biomarkers for testing the toxicity of the organotins to marine invertebrates.
Collapse
Affiliation(s)
- Hussein K Okoro
- Department of Chemistry, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, 7535, South Africa.
| | | | | | | | | | | |
Collapse
|
23
|
de Waisbaum RG, Rodriguez C, Nudelman NS. Determination of TBT in water and sediment samples along the Argentine Atlantic coast. ENVIRONMENTAL TECHNOLOGY 2010; 31:1335-1342. [PMID: 21121457 DOI: 10.1080/09593331003720615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cases of imposex have been reported for some organisms living in areas of the Argentine Atlantic coast. Since this is one of the known effects of the anti-fouling agent tributyltin (TBT), quantitative determinations of organotins in samples of water and sediments collected from sites along the Argentine coast were carried out. Severe cases of imposex were first reported for two gastropod species living in the Mar del Plata area, and determinations of TBT in samples collected from this site gave extremely high values and showed a close correlation between the degree of imposex and TBT concentration. Recent investigations in the area have shown a significant decrease. Surveys were also conducted in sites that exhibit highly irregular coastal profiles to examine the relevance of physical environments. Alarming concentrations of TBT were determined in most of the sites where heavy boat traffic and/or marine activities occur, demonstrating the urgent need for regulations to avoid further input of TBT. Reports from other sites in South America reveal that this should be a subject of regional concern in order to avoid severe damage to the biodiversity of regional marine organisms.
Collapse
Affiliation(s)
- R G de Waisbaum
- Departamento de Quimica Organica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Pab. II, P. 3, Ciudad Universitaria, (1428) Buenos Aires, Argentina
| | | | | |
Collapse
|
24
|
Hobler C, Andrade AJM, Grande SW, Gericke C, Talsness CE, Appel KE, Chahoud I, Grote K. Sex-dependent aromatase activity in rat offspring after pre- and postnatal exposure to triphenyltin chloride. Toxicology 2010; 276:198-205. [PMID: 20708649 DOI: 10.1016/j.tox.2010.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/03/2010] [Accepted: 08/05/2010] [Indexed: 11/19/2022]
Abstract
Triphenyltin (TPT) is an organotin compound (OTC) previously widely used as an antifouling agent in paints applied in the marine environment, a fungicide, and as an agricultural pesticide. In female aquatic invertebrates, certain OTCs induce the so-called imposex, an abnormal induction of male sex characteristics. OTC-induced environmental endocrine disruption also occurs in fish and mammals and a number of in vivo and in vitro studies have argued that OTCs may act through inhibition of the aromatase enzyme. In vivo studies supporting the aromatase inhibition hypothesis in mammals are lacking. Recently, the causal relationship between inhibition of aromatase and imposex was questioned, suggesting aromatase independent mechanisms of action for this phenomenon. We conducted a comprehensive investigation to identify the most sensitive window of exposure to TPTCl and to examine the effects of pre- and postnatal exposure on postnatal development in rats. The results on brain and gonadal aromatase activity obtained from offspring of dams exposed to 2 mg TPTCl/kg bw are reported here. Female and male offspring rats were exposed to 2 mg TPTCl/kg bw/d in utero from gestation day 6 through lactation until weaning on PND 21, or from gestation day 6 until termination at adulthood. Male offspring were sacrificed from PND 58 and female offspring at first estrus after PND 58. Pre- and postnatal TPT exposure clearly affected brain and gonadal aromatase activity in a sex-dependent fashion. While brain aromatase activity was significantly increased on PND 21 and at adulthood in female offspring, male offspring exhibited a significant decrease in brain aromatase activity only at adulthood. Ovarian aromatase activity was unaffected at both time points investigated. In contrast, testicular aromatase activity was significantly increased in males on PND 21 and significantly decreased at adulthood independent from the duration of treatment. The results of the present study confirm our previously reported observations regarding sex-dependent differences in sexual development after TPT exposure with the male rat being more susceptible to disturbances through this endocrine active compound than the female. We conclude that TPT administered during the particularly vulnerable period of development can affect aromatase activity in rats.
Collapse
Affiliation(s)
- Carolin Hobler
- Inst. of Clinical Pharmacology and Toxicology, Charité University Medical School, Campus Benjamin Franklin, 14195 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhao W, Cui D, Liu X, Chen X. Facile Synthesis of Hydroxyl-Ended, Highly Stereoregular, Star-Shaped Poly(lactide) from Immortal ROP of rac-Lactide and Kinetics Study. Macromolecules 2010. [DOI: 10.1021/ma101202g] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinli Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xuesi Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
26
|
Suzuki H, Yamazaki M, Chiba K, Uemori Y, Sawanishi H. Neuritogenic Activities of 1-Alkyloxygenipins. Chem Pharm Bull (Tokyo) 2010; 58:168-71. [DOI: 10.1248/cpb.58.168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hirokazu Suzuki
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University
- Organization for Frontier Research in Preventive Pharmaceutical Sciences, Hokuriku University
| | - Matsumi Yamazaki
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hokuriku University
| | - Kenzo Chiba
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hokuriku University
- Organization for Frontier Research in Preventive Pharmaceutical Sciences, Hokuriku University
| | - Yoshio Uemori
- Department of Physical Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University
| | - Hiroyuki Sawanishi
- Organization for Frontier Research in Preventive Pharmaceutical Sciences, Hokuriku University
| |
Collapse
|
27
|
George KA, Schué F, Chirila TV, Wentrup-Byrne E. Synthesis of four-arm star poly(L
-lactide) oligomers using an in situ
-generated calcium-based initiator. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/pola.23527] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Lyssimachou A, Navarro JC, Bachmann J, Porte C. Triphenyltin alters lipid homeostasis in females of the ramshorn snail Marisa cornuarietis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:1714-1720. [PMID: 19162385 DOI: 10.1016/j.envpol.2008.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 11/21/2008] [Accepted: 12/02/2008] [Indexed: 05/27/2023]
Abstract
Molluscs are sensitive species to the toxic effects of organotin compounds, particularly to masculinisation. Both tributyltin (TBT) and triphenyltin (TPT) have been recently shown to bind to mollusc retinoid X receptor (RXR). If RXR is involved in lipid homeostasis, exposure to TPT would have an immediate effect on endogenous lipids. To test this hypothesis, the ramshorn snail Marisa cornuarietis was exposed to environmentally relevant concentrations of TPT (30, 125, 500 ng/L as Sn) in a semi-static water regime for 7 days. Percentage of lipids and total fatty acid content decreased significantly in TPT-exposed females while the activity of peroxisomal acyl-CoA oxidase, involved in fatty acid catabolism, increased. In addition, fatty acid profiles (carbon chain length and unsaturation degree) were significantly altered in exposed females but not in males. This work highlights the ability of TPT to disrupt lipid metabolism in M. cornuarietis at environmentally realistic concentrations and the higher susceptibility of females in comparison to males.
Collapse
Affiliation(s)
- Angeliki Lyssimachou
- Environmental Chemistry Department, IIQAB-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | | | | | | |
Collapse
|
29
|
Hiromori Y, Nishikawa JI, Yoshida I, Nagase H, Nakanishi T. Structure-dependent activation of peroxisome proliferator-activated receptor (PPAR) gamma by organotin compounds. Chem Biol Interact 2009; 180:238-44. [PMID: 19497422 DOI: 10.1016/j.cbi.2009.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 03/06/2009] [Accepted: 03/10/2009] [Indexed: 11/28/2022]
Abstract
Organotin compounds such as tributyltin (TBT) and triphenyltin (TPT) are frequent environmental contaminants and are suspected of disrupting endocrine function in vertebrates and invertebrates. Previously, we reported that TBT and TPT function as powerful agonists for peroxisome proliferator-activated receptor (PPAR) gamma and stimulate adipocyte differentiation via the PPARgamma signaling pathway. Our current study investigates the structure-dependent binding of butyltin and phenyltin compounds to PPARgamma and their ability to activate the receptor. A Scatchard analysis with purified recombinant PPARgamma demonstrated that [(14)C]TPT binds to PPARgamma with an equilibrium dissociation constant (K(d)) of 66.6+/-5.2 nM, which approximated the 46.2+/-2.5 nM K(d) of a typical PPARgamma agonist, [(3)H]rosiglitazone (Rosi). TBT, TPT, diphenyltin (DPT), and tetrabutyltin (TeBT) blocked the binding of [(3)H]Rosi to PPARgamma in a competitive manner, and all tested organotin compounds except monobutyltin blocked the binding of [(14)C]TPT to PPARgamma in a competitive manner. Unexpectedly, Rosi did not compete at all with [(14)C]TPT for binding to PPARgamma, and contrary to the results of the competition assay, TBT and TeBT, but not dibutyltin, transcriptionally activated a GAL-PPARgamma chimeric receptor. All tested phenyltin compounds transcriptionally activated GAL-PPARgamma with an order of potency of TPT>DPT>monophenyltin. In addition, treatment of human choriocarcinoma cells with TBT, TeBT, and all tested phenyltin compounds stimulated production of human chorionic gonadotropin, which is upregulated by PPARgamma-mediated transcription. Our observations indicate that trialkylated and triphenylated tin compounds are the most potent PPARgamma agonists among the alkylated and phenylated tin compounds, and a phenyl substituent on a tin atom enhances the potency of organotin compounds as a PPARgamma agonist much more than a butyl substituent.
Collapse
Affiliation(s)
- Youhei Hiromori
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | | | | |
Collapse
|
30
|
Antizar-Ladislao B. Polycyclic aromatic hydrocarbons, polychlorinated biphenyls, phthalates and organotins in northern Atlantic Spain's coastal marine sediments. ACTA ACUST UNITED AC 2009; 11:85-91. [DOI: 10.1039/b808668k] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Umeki Y, Hayabuchi H, Hisano M, Kuroda M, Honda M, Ando B, Ohta M, Ikeda M. The Effect of the Dried-Bonito Broth on Blood Pressure, 8-Hydroxydeoxyguanosine (8-OHdG), an Oxidative Stress Marker, and Emotional States in Elderly Subjects. J Clin Biochem Nutr 2008; 43:175-84. [PMID: 19015752 PMCID: PMC2581762 DOI: 10.3164/jcbn.2008061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 05/26/2008] [Indexed: 11/22/2022] Open
Abstract
Dried-bonito broth (DBB, katsuo-bushi dashi) is commonly used in Japanese cuisine, and is also used as a traditional remedy for recovery from fatigue and improvement of blood circulation. To clarify the effect of DBB on blood pressure, oxidative stress and emotional states, a randomized crossover human trial was performed. Twenty-seven elderly Japanese subjects ingested DBB or water for one month. Measurement of blood pressure and urinary 8-hydroxydeoxyguanosine (8-OHdG) and evaluation of emotional states were performed before and after the ingestion periods. The changes in systolic blood pressure (SBP) during DBB ingestion was significantly lower than that during water ingestion (p = 0.037). Urinary 8-OHdG significantly decreased during DBB ingestion (p = 0.0002). Evaluation of emotional states indicated that composure significantly improved during DBB ingestion (p = 0.034). These results suggest that the daily ingestion of DBB lower SBP, reduce urinary 8-OHdG and might improve emotional states in elderly subjects.
Collapse
Affiliation(s)
- Youko Umeki
- Faculty of Human Environmental Science, Fukuoka Women's University, Fukuoka 813-8529, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Vieira FT, Menezes DC, de Lima GM, Wardell JL, Cortés ME, Silva GAB, Vilas‐Boas A, da S. Maia JR. Effect of diorganotin(IV) carboxylate complexes, [N‐(2‐carboxyphenyl) salicylideneiminato]dimethyltin(IV), bis(µ3‐oxo)bis(µ‐O‐aminobenzoato‐O,O′) bis(O‐aminobenzoato)tetrakis[dimethyltin(IV)] and bis(O‐aminobenzoato‐O,O′) di‐n‐butyltin(IV), on the membrane ofCandida albicanscells—a mechanistic investigation of the antifungal activity of organotin complexes. Appl Organomet Chem 2008. [DOI: 10.1002/aoc.1419] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
33
|
Antizar-Ladislao B. Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. a review. b_antizar@hotmail.com. ENVIRONMENT INTERNATIONAL 2008; 34:292-308. [PMID: 17959247 DOI: 10.1016/j.envint.2007.09.005] [Citation(s) in RCA: 478] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 09/05/2007] [Accepted: 09/14/2007] [Indexed: 05/22/2023]
Abstract
Tributyltin (TBT) is a toxic chemical used for various industrial purposes such as slime control in paper mills, disinfection of circulating industrial cooling waters, antifouling agents, and the preservation of wood. Due to its widespread use as an antifouling agent in boat paints, TBT is a common contaminant of marine and freshwater ecosystems exceeding acute and chronic toxicity levels. TBT is the most significant pesticide in marine and freshwaters in Europe and consequently its environmental level, fate, toxicity and human exposure are of current concern. Thus, the European Union has decided to specifically include TBT compounds in its list of priority compounds in water in order to control its fate in natural systems, due to their toxic, persistent, bioaccumulative and endocrine disruptive characteristics. Additionally, the International Maritime Organization has called for a global treaty that bans the application of TBT-based paints starting 1 of January 2003, and total prohibition by 1 of January 2008. This paper reviews the state of the science regarding TBT, with special attention paid to the environmental levels, toxicity, and human exposure. TBT compounds have been detected in a number of environmental samples. In humans, organotin compounds have been detected in blood and in the liver. As for other persistent organic pollutants, dietary intake is most probably the main route of exposure to TBT compounds for the general population. However, data concerning TBT levels in foodstuffs are scarce. It is concluded that investigations on experimental toxicity, dietary intake, potential human health effects and development of new sustainable technologies to remove TBT compounds are clearly necessary.
Collapse
Affiliation(s)
- Blanca Antizar-Ladislao
- Department of Water and Environment Science and Technology, University of Cantabria, Bulevar Ronda Rufino Peón 254, 39316 Torrelavega, Cantabria, Spain
| |
Collapse
|