1
|
Estrela RLD, Dos Santos JDS, Salvador PCDN, Ventura TP, Oneda G, de Lucas RD, Turnes T, Guglielmo LGA. Effects of Caffeine Ingestion on Pulmonary V˙O2 Kinetics and Muscle Fatigue During Severe-Intensity Cycling Exercise. Int J Sport Nutr Exerc Metab 2025; 35:112-119. [PMID: 39515310 DOI: 10.1123/ijsnem.2024-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION This study aimed to analyze the effect of caffeine (CAF) intake on pulmonary oxygen uptake (V˙O2) kinetics, muscle fatigue, and physiological and perceptual parameters during severe-intensity cycling exercise. METHODS Twelve physically active men (age: 26 ± 5 years; V˙O2peak: 46.7 ± 7.8 ml·kg-1·min-1) participated of this placebo (PLA)-controlled, randomized, double-blinded, and crossover design study. Participants performed on separate days (a) a ramp incremental test to determine V˙O2peak and gas exchange threshold and (b) four 8-min constant work rate tests at 60% of the difference between gas exchange threshold and maximal V˙O2peak (i.e., Δ60%) 1 hr after taking either 6 mg/kg of body mass of CAF or PLA. Before and immediately after constant work rate tests, a 5-s all-out isokinetic sprint was performed to assess the muscle torque. V˙O2 kinetics, blood lactate concentration ([La]), and rating of perceived exertion were analyzed during constant work rate tests. RESULTS CAF did not alter the primary time constant of V˙O2 kinetics (PLA: 38.3 ± 14; CAF: 36.7 ± 7.5 s), V˙O2 slow component (PLA: 0.5 ± 0.2; CAF: 0.5 ± 0.2 L/min), or peak torque (PLA: 144.6 ± 18.6; CAF: 143.9 ± 18.7 N·m). CAF decreased rating of perceived exertion (15.9 ± 1.8 vs. 17.0 ± 1.5 a.u.) and increased blood lactate concentration (9.0 ± 2.5 vs. 8.3 ± 2.2 mmol/L; p < .05) after constant work rate tests compared with PLA. CONCLUSION CAF ingestion does not alter V˙O2 kinetics or muscle torque production during 8 min of severe-intensity cycling exercise.
Collapse
Affiliation(s)
- Rafael Leal Dantas Estrela
- Physical Effort Laboratory, Department of Physical Education, Sports Center, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
- Research and Extension Center, Education Department, University of the State of Bahia (UNEB), Campus II, Alagoinhas, Brazil
| | - Jean de Souza Dos Santos
- Physical Effort Laboratory, Department of Physical Education, Sports Center, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| | - Paulo Cesar do Nascimento Salvador
- Physical Effort Laboratory, Department of Physical Education, Sports Center, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| | - Thiago Pereira Ventura
- Physical Effort Laboratory, Department of Physical Education, Sports Center, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| | - Gustavo Oneda
- Physical Effort Laboratory, Department of Physical Education, Sports Center, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
- Environmental Condition and Endurance Performance Analysis Unit, Sports Center, Department of Physical Education, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| | - Ricardo Dantas de Lucas
- Physical Effort Laboratory, Department of Physical Education, Sports Center, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| | - Tiago Turnes
- Physical Effort Laboratory, Department of Physical Education, Sports Center, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| | - Luiz Guilherme Antonacci Guglielmo
- Physical Effort Laboratory, Department of Physical Education, Sports Center, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| |
Collapse
|
2
|
Bezuglov E, Vakhidov T, Malyakin G, Kapralova E, Emanov A, Koroleva E, Manina M, Erdes S, Talibov O. The Influence of Caffeine on Tolerance to Sport-Specific High-Intensity Exercise in Young Elite Soccer Players. J Hum Nutr Diet 2025; 38:e70002. [PMID: 39718415 DOI: 10.1111/jhn.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Modern elite football places extremely high demands on the athlete's body, so it is of practical interest to study the effect of various dietary supplements on load tolerance and postexercise recovery. Furthermore, there is a lack of research on the effects of caffeine on key measures of load tolerance in football such as delayed-onset muscle soreness (DOMS), rate of perceived exertion (RPE) and heart rate (HR) at different time points after the exercise. METHODS 54 young players aged 15-17 years from a leading Russian football academy took part in a randomised trial using the balanced placebo design. They were divided into 4 groups: 1 - told caffeine/given caffeine, 2 - told caffeine/given placebo, 3 - told placebo/given placebo and 4 - told placebo/given caffeine. All participants consumed two capsules 60 min before testing, each containing 200 mg of caffeine or placebo. Sprinting, counter-movement jump, change of direction run, dribbling, T-test and the repeated sprint ability test were used to create conditions for high-intensity sports-specific load. A visual analogue scale was used to assess the severity of muscle soreness. RPE was assessed using the Borg Rating of Perceived Exertion scale. HR immediately postexercise (HRpe), HR after 2 min of passive rest (HRrest) and recovery HR (HRrec = HRpe - HRrest) were obtained. RESULTS The data demonstrated that a single caffeine intake of 400 mg had no statistically significant effect on RPE (p = 0.948), HRpe (p = 0.698) or HRrec (p = 0.920) across the groups. Additionally, the severity of DOMS 24 h postexercise did not differ significantly between the groups (p = 0.077). CONCLUSION Acute caffeine ingestion does not affect the subjective and objective indicators of training load in young football players aged 15-17 years with low levels of anxiety and low levels of daily caffeine intake.
Collapse
Affiliation(s)
- Eduard Bezuglov
- High Performance Sports Laboratory, Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Sports Medicine and Medical Rehabilitation, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Timur Vakhidov
- High Performance Sports Laboratory, Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Sports Medicine and Medical Rehabilitation, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Georgiy Malyakin
- High Performance Sports Laboratory, Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Sports Medicine and Medical Rehabilitation, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elizaveta Kapralova
- High Performance Sports Laboratory, Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Sports Medicine and Medical Rehabilitation, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anton Emanov
- High Performance Sports Laboratory, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Egana Koroleva
- High Performance Sports Laboratory, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marina Manina
- Department of Propaedeutics of Childhood Diseases Sechenov First Moscow State Medical University, Moscow, Russia
| | - Svetlana Erdes
- Department of Propaedeutics of Childhood Diseases Sechenov First Moscow State Medical University, Moscow, Russia
| | - Oleg Talibov
- Department of Therapy, Clinical Pharmacology and Emergency Medicine, Russian University of Medicine, Moscow, Russia
| |
Collapse
|
3
|
Nascimento EMF, Borszcz FK, Ventura TP, Denadai BS, Guglielmo LGA, de Lucas RD. The effect of caffeine chewing gum on muscle performance and fatigue after severe-intensity exercise: isometric vs. dynamic assessments in trained cyclists. Eur J Appl Physiol 2025; 125:483-497. [PMID: 39316127 DOI: 10.1007/s00421-024-05617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
This study investigated the effect of caffeinated chewing gum (GUMCAF) on muscle fatigue (isometric vs. dynamic) after severe-intensity cycling bouts. Fifteen trained male cyclists participated in four visits. Each visit involved two severe-intensity cycling bouts (Δ1 and Δ2) lasting 6 min, separated by a 5-min recovery period. Muscle fatigue was assessed by isometric maximal voluntary knee extension contraction (IMVC) with twitch interpolation technique and dynamically by 7 s all-out cycling sprints. Assessments were performed before GUMCAF (Pre-GUM) and after the cycling bouts (Post-Exercise). GUMCAF and placebo gum (GUMPLA) were administered in a randomized double-blind procedure with participants receiving each gum type (GUMCAF and GUMPLA) during two separate visits. The results showed no significant interaction between gum types and time for the isometric and dynamic measurements (p > 0.05). The percentage change in performance from Pre-GUM to Post-Exercise showed no significant difference between GUMCAF and GUMPLA for either the dynamic-derived TMAX (~ -17.8% and -15.1%, respectively; p = 0.551) or isometric IMVC (~ -12.3% and -17.7%, respectively; p = 0.091) measurements. Moderate to large correlations (r = 0.31-0.51) were found between changes in sprint maximal torque and maximal power output measurements and isometric force, for both gum conditions. GUMCAF was not effective in attenuating muscle force decline triggered by severe-intensity cycling exercises, as measured by both isometric and dynamic methods. The correlations between IMVC and cycling maximal torque and power output suggest caution when interpreting isometric force as a direct measure of fatigue during dynamic cycling exercises.
Collapse
Affiliation(s)
| | - Fernando Klitzke Borszcz
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis, Brazil
- Human Performance Research Group, Center for Health and Sport Sciences, University of Santa Catarina State, Florianópolis, Brazil
| | - Thiago Pereira Ventura
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | | - Ricardo Dantas de Lucas
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
4
|
Montalvo-Alonso JJ, Munilla C, Garriga-Alonso L, Ferragut C, Valadés D, Gonzalo-Encabo P, Pérez-López A. Acute Co-Ingestion of Caffeine and Sodium Bicarbonate on Muscular Endurance Performance. Nutrients 2024; 16:4382. [PMID: 39771003 PMCID: PMC11677328 DOI: 10.3390/nu16244382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Caffeine and sodium bicarbonate individually enhance muscular endurance by delaying fatigue, but their combined effects have scarcely been studied. Objectives: This study aimed to evaluate the acute effects of co-ingesting caffeine and sodium bicarbonate on muscular endurance at different loads in bench press and back squat exercises. Methods: Twenty-seven recreationally trained participants (female/male: 14/14; age: 23 ± 3.6 years) were randomized to four conditions in a double-blind, crossover design: (a) sodium bicarbonate and caffeine (NaHCO3 + CAF); (b) sodium bicarbonate (NaHCO3); (c) caffeine (CAF); (d) placebo (PLA); ingesting 0.3 g/kg NaHCO3, 3 mg/kg caffeine or placebo (maltodextrin). Participants performed two muscle endurance tests on bench press and back squat exercises at 65% and 85% 1RM, performing as many repetitions as possible in one set until task failure. Results: CAF increased the number of repetitions (p < 0.001; ηp2 = 0.111), mean velocity (Vmean, p = 0.043, ηp2 = 0.16), and mean power output (Wmean, p = 0.034, ηp2 = 0.15) compared to placebo. These effects were observed in back squat exercise at 65%1RM in Vmean (3.7%, p = 0.050, g = 1.144) and Wmean (5.2%, p = 0.047, g = 0.986) and at 85%1RM in Vmean (5.4%, p = 0.043, g = 0.22) and Wmean (5.5%, p = 0.050, g = 0.25). No ergogenic effects were found in NaHCO3 + CAF) or NaHCO3 conditions. Conclusions: CAF increased muscular endurance performance in male and female participants by increasing the number of repetitions, mean velocity, and power output; however, when NaHCO3 was ingested, these effects were not detected.
Collapse
|
5
|
Główka N, Malik J, Podgórski T, Stemplewski R, Maciaszek J, Ciążyńska J, Zawieja EE, Chmurzynska A, Nowaczyk PM, Durkalec-Michalski K. The dose-dependent effect of caffeine supplementation on performance, reaction time and postural stability in CrossFit - a randomized placebo-controlled crossover trial. J Int Soc Sports Nutr 2024; 21:2301384. [PMID: 38226646 PMCID: PMC10795626 DOI: 10.1080/15502783.2023.2301384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Caffeine (CAF) ingestion improves performance in a broad range of exercise tasks. Nevertheless, the CAF-induced, dose-dependent effect on discipline-specific performance and cognitive functions in CrossFit/High-Intensity Functional Training (HIFT) has not been sufficiently investigated. The aim of this study was to evaluate the effect of acute supplementation of three different doses of CAF and placebo (PLA) on specific performance, reaction time (RTime), postural stability (PStab), heart rate (HR) and perceived exertion (RPE). METHODS In a randomized double-blind placebo-controlled crossover design, acute pre-exercise supplementation with CAF (3, 6, or 9 mg/kg body mass (BM)) and PLA in 26 moderately trained CrossFit practitioners was examined. The study protocol involved five separate testing sessions using the Fight Gone Bad test (FGB) as the exercise performance evaluation and biochemical analyses, HR and RPE monitoring, as well as the assessment of RTime and PStab, with regard to CYP1A2 (rs762551) and ADORA2A (rs5751876) single nucleotide polymorphism (SNP). RESULTS Supplementation of 6 mgCAF/kgBM induced clinically noticeable improvements in FGBTotal results, RTime and pre-exercise motor time. Nevertheless, there were no significant differences between any CAF doses and PLA in FGBTotal, HRmax, HRmean, RPE, pre/post-exercise RTime, PStab variables or pyruvate concentrations. Lactate concentration was higher (p < 0.05) before and after exercise in all CAF doses than in PLA. There was no effect of CYP1A2 or ADORA2A SNPs on performance. CONCLUSIONS The dose-dependent effect of CAF supplementation appears to be limited to statistically nonsignificant but clinically considered changes on specific performance, RTime, PStab, RPE or HR. However, regarding practical CAF-induced performance implications in CrossFit/HIFT, 6 mgCAF/kgBM may be supposed as the most rational supplementation strategy.
Collapse
Affiliation(s)
- Natalia Główka
- Department of Sports Dietetics, Poznań University of Physical Education, Poznań, Poland
| | - Jakub Malik
- Department of Physical Activity and Health Promotion Science, Poznań University of Physical Education, Poznań, Poland
| | - Tomasz Podgórski
- Department of Physiology and Biochemistry, Poznań University of Physical Education, Poznań, Poland
| | - Rafał Stemplewski
- Department of Digital Technologies in Physical Activity, Poznań University of Physical Education, Poznań, Poland
| | - Janusz Maciaszek
- Department of Physical Activity and Health Promotion Science, Poznań University of Physical Education, Poznań, Poland
| | - Julia Ciążyńska
- Department of Physical Activity and Health Promotion Science, Poznań University of Physical Education, Poznań, Poland
| | - Emilia E. Zawieja
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Agata Chmurzynska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Paulina M. Nowaczyk
- Department of Sports Dietetics, Poznań University of Physical Education, Poznań, Poland
| | - Krzysztof Durkalec-Michalski
- Department of Sports Dietetics, Poznań University of Physical Education, Poznań, Poland
- Sport Sciences–Biomedical Department, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Scapec B, Grgic J, Varovic D, Mikulic P. Caffeine, but not paracetamol (acetaminophen), enhances muscular endurance, strength, and power. J Int Soc Sports Nutr 2024; 21:2400513. [PMID: 39246027 PMCID: PMC11385662 DOI: 10.1080/15502783.2024.2400513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Caffeine is one of the most popular ergogenic aids consumed by athletes. Caffeine's ergogenic effect has been generally explained by its ability to bind to adenosine receptors, thus modulating pain and reducing perceived exertion. Another pharmacological agent that may improve performance due to its analgesic proprieties is paracetamol. This study aimed to explore the effects of caffeine, paracetamol, and caffeine + paracetamol consumption on muscular endurance, strength, power, anaerobic endurance, and jumping performance. METHODS In this randomized, crossover, double-blind study, 29 resistance-trained participants (11 men and 18 women) ingested either a placebo, caffeine (3 mg/kg), paracetamol (1500 mg) or caffeine + paracetamol 45 min before the testing sessions. The testing sessions included performing the bench press exercise with 75% of one-repetition maximum to momentary muscular failure, isokinetic knee extension and flexion at angular velocities of 60°/sec and 180°/sec, Wingate, and countermovement jump (CMJ) tests. RESULTS Compared to placebo, isolated caffeine ingestion increased the number of repetitions performed in the bench press (p = 0.005; d = 0.42). Compared to placebo, isolated caffeine ingestion and/or caffeine + paracetamol consumption was ergogenic for strength (torque), muscular endurance (total work), or power in the isokinetic assessment, particularly at slower angular velocities (p = 0.027 to 0.002; d = 0.16 to 0.26). No significant differences between the conditions were observed for outcomes related to the Wingate and CMJ tests. CONCLUSION This study provided novel evidence into the effectiveness of caffeine, paracetamol, and their combination on exercise performance. We found improvements in muscular endurance, strength, or power only when caffeine was consumed in isolation, or in combination with paracetamol. Isolated paracetamol consumption did not improve performance for any of the analyzed outcomes, thus calling into question its ergogenic potential.
Collapse
Affiliation(s)
- Bela Scapec
- University of Zagreb Faculty of Kinesiology, Zagreb, Croatia
| | - Jozo Grgic
- National University of Singapore, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Singapore
- National University Health System, Centre for Healthy Longevity, Singapore
| | - Dorian Varovic
- University of Zagreb Faculty of Kinesiology, Zagreb, Croatia
| | - Pavle Mikulic
- University of Zagreb Faculty of Kinesiology, Zagreb, Croatia
| |
Collapse
|
7
|
Yang CC, Hsieh MH, Ho CC, Chang YH, Shiu YJ. Effects of Caffeinated Chewing Gum on Exercise Performance and Physiological Responses: A Systematic Review. Nutrients 2024; 16:3611. [PMID: 39519444 PMCID: PMC11547772 DOI: 10.3390/nu16213611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Caffeine intake in the form of chewing gum is characterized by rapid absorption and utilization. OBJECTIVES The purpose of this study was to investigate the effects of caffeinated chewing gum on exercise performance and physiological responses in a systematic review. METHODS All articles were searched using the PubMed and Scopus databases to include articles published up to June 2024, following the Preferred Reporting Items for Systematic Evaluation and Meta-Analysis (PRISMA) protocol. RESULTS Thirty-two studies were finally included. Most studies have found that pre-exercise caffeinated chewing gum supplementation is effective in improving endurance, repetitive sprinting, lower limb strength, and sport-specific performance, as well as lowering rating of perceived exertion (RPE) or fatigue index even with lower dosages of caffeine. Sympathetic activation may be one of the mechanisms by which caffeinated chewing gum affects athletic performance. No significant effect on energy metabolism indicators (blood glucose, blood lactate, free fatty acids) was found. In addition, two studies found that caffeinated chewing gum reduced or maintained cortisol levels and increased testosterone levels. However, caffeinated chewing gum intake does not have an impact on catecholamines and β-endorphins. There have been inconsistent results for explosive performance, agility performance, and pain perception. Only a few studies have examined balance performance. In conclusion, a low dose of caffeine (100-300 mg or 2-4 mg/kg) in the form of chewing gum is rapidly absorbed and utilized, positively impacting most exercise and physiological performance. CONCLUSIONS Future studies should also consider the performance variables of agility, pain perception, and explosive performance to gain a more comprehensive understanding of the effects of caffeinated chewing gum on sympathetic activation and exercise performance.
Collapse
Affiliation(s)
- Chia-Cheng Yang
- Department of Physical Education, National Taichung University of Education, Taichung 403, Taiwan
| | - Meng-Hung Hsieh
- Department of Physical Education, Tunghai University, Taichung 407, Taiwan
| | - Chien-Chang Ho
- Department of Physical Education, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Ya-Hui Chang
- Graduate Program in Department of Exercise Health Science, National Taiwan University of Sport, Taichung 404, Taiwan
| | - Yi-Jie Shiu
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei 106, Taiwan
| |
Collapse
|
8
|
Ou Z, Yang L, Wu J, Xu M, Weng X, Xu G. Metabolic characteristics of ischaemic preconditioning induced performance improvement in Taekwondo athletes using LC‒MS/MS-based plasma metabolomics. Sci Rep 2024; 14:24609. [PMID: 39427043 PMCID: PMC11490506 DOI: 10.1038/s41598-024-76045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
In recent years, ischemic preconditioning (IPC) has garnered significant attention in sports research. While IPC has demonstrated positive effects in high-intensity sports such as judo and swimming, its potential benefits for enhancing the performance of Taekwondo athletes have not been extensively studied. This study aimed to investigate the effects of IPC on taekwondo performance and to observe the metabolic characteristics associated with enhancing sports performance via LC‒MS/MS-based plasma metabolomics. Seventeen participants underwent the repeated frequency speed of kick test (FSKT) after IPC, along with pre- and post-exercise plasma metabolite analysis. Differential abundance metabolite analysis, enriched pathway analysis, and weighted gene coexpression network analysis (WGNCA) were employed to delve into metabolic characteristics. The findings highlighted a significant enhancement in FSKT performance in the experimental group. Metabolomic analysis revealed 109 differentially abundant metabolites, including Dl-lactate, hypoxanthine, acetylcarnitine, and acetylsalicylic acid. Enriched pathway analysis revealed pathways such as pentose and glucuronic acid interconversion, ascorbic acid and aldonic acid metabolism, the pentose phosphate pathway (PPP), and the Warburg effect. In conclusion, IPC can significantly increase the specific athletic abilities of Taekwondo athletes, with enhancements linked to anaerobic metabolism, PPP utilization, the Warburg effect for energy production, redox system stability, reduced muscle fatigue, and pain alleviation.
Collapse
Affiliation(s)
- Ziyue Ou
- College of Martial Arts, Guangzhou Sport University, Guangzhou, 510500, China
| | - Liang Yang
- College of Martial Arts, Guangzhou Sport University, Guangzhou, 510500, China
| | - Jingyun Wu
- Department of Physical Education, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Mingxin Xu
- The Fifth College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiquan Weng
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, 510500, China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, China
| | - Guoqin Xu
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, 510500, China.
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, China.
| |
Collapse
|
9
|
O'Malley CA, Smith SA, Mauger AR, Norbury R. Exercise-induced pain within endurance exercise settings: Definitions, measurement, mechanisms and potential interventions. Exp Physiol 2024; 109:1446-1460. [PMID: 38985528 PMCID: PMC11363130 DOI: 10.1113/ep091687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Pain can be defined as an unpleasant sensory and emotional experience associated with or resembling that associated with actual or potential tissue damage. Though consistent with this definition, different types of pain result in different behavioural and psychophysiological responses. For example, the transient, non-threatening, acute muscle pain element of exercise-induced pain (EIP) is entirely different from other pain types like delayed onset muscle soreness, muscular injury or chronic pain. However, studies often conflate the definitions or assume parity between distinct pain types. Consequently, the mechanisms through which pain might impact exercise behaviour across different pain subcategories may be incorrectly assumed, which could lead to interventions or recommendations that are inappropriate. Therefore, this review aims to distinguish EIP from other subcategories of pain according to their aetiologies and characteristics, thereby providing an updated conceptual and operational definition of EIP. Secondly, the review will discuss the experimental pain models currently used across several research domains and their relevance to EIP with a focus on the neuro-psychophysiological mechanisms of EIP and its effect on exercise behaviour and performance. Finally, the review will examine potential interventions to cope with the impact of EIP and support wider exercise benefits. HIGHLIGHTS: What is the topic of this review? Considerations for future research focusing on exercise-induced pain within endurance exercise settings. What advances does it highlight? An updated appraisal and guide of research concerning exercise-induced pain and its impact on endurance task behaviour, particularly with reference to the aetiology, measurement, and manipulation of exercise-induced pain.
Collapse
Affiliation(s)
- Callum A. O'Malley
- School of Sport, Exercise, and Nutritional SciencesUniversity of ExeterExeterUK
| | - Samuel A. Smith
- School of Sport and Exercise SciencesUniversity of KentCanterburyUK
| | - Alexis R. Mauger
- School of Sport and Exercise SciencesUniversity of KentCanterburyUK
| | - Ryan Norbury
- Faculty of Sport, Technology, and Health SciencesSt Mary's UniversityTwickenhamUK
| |
Collapse
|
10
|
Montalvo-Alonso JJ, Ferragut C, del Val-Manzano M, Valadés D, Roberts J, Pérez-López A. Sex Differences in the Ergogenic Response of Acute Caffeine Intake on Muscular Strength, Power and Endurance Performance in Resistance-Trained Individuals: A Randomized Controlled Trial. Nutrients 2024; 16:1760. [PMID: 38892692 PMCID: PMC11174740 DOI: 10.3390/nu16111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND This study assessed the impact of acute caffeine intake on muscular strength, power, and endurance performance between resistance-trained male and female individuals according to load in upper- and lower-body exercises. METHODS Here, 76 resistance-trained individuals (38 females, 38 males) participated in a study comparing caffeine and a placebo. Each received either 3 mg/kg of caffeine or a placebo 60 min before tests measuring muscular strength and power through bench press and back squat exercises at different intensities (25%, 50%, 75%, 90% 1RM). Muscular endurance at 65% 1RM was also assessed by performing reps until reaching task failure. RESULTS Compared to placebo, caffeine increased mean, peak and time to reach peak velocity and power output (p < 0.01, ηp2 = 0.242-0.293) in the muscular strength/power test in males and females. This effect was particularly observed in the back squat exercise at 50%, 75% and 90% 1RM (2.5-8.5%, p < 0.05, g = 1.0-2.4). For muscular endurance, caffeine increased the number of repetitions, mean velocity and power output (p < 0.001, ηp2 = 0.177-0.255) in both sexes and exercises (3.0-8.9%, p < 0.05, g = 0.15-0.33). CONCLUSIONS Acute caffeine intake resulted in a similar ergogenic effect on muscular strength, power, and endurance performance in upper- and lower-body exercises for male and female resistance-trained participants.
Collapse
Affiliation(s)
- Juan Jesús Montalvo-Alonso
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, 28801 Madrid, Spain; (J.J.M.-A.); (C.F.); (M.d.V.-M.); (D.V.)
| | - Carmen Ferragut
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, 28801 Madrid, Spain; (J.J.M.-A.); (C.F.); (M.d.V.-M.); (D.V.)
| | - Marta del Val-Manzano
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, 28801 Madrid, Spain; (J.J.M.-A.); (C.F.); (M.d.V.-M.); (D.V.)
| | - David Valadés
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, 28801 Madrid, Spain; (J.J.M.-A.); (C.F.); (M.d.V.-M.); (D.V.)
| | - Justin Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| | - Alberto Pérez-López
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, 28801 Madrid, Spain; (J.J.M.-A.); (C.F.); (M.d.V.-M.); (D.V.)
| |
Collapse
|
11
|
McAllister MJ, Martaindale MH, Dillard CC, Gonzalez DE. Stress response to virtual reality based active shooter training: Impact of caffeine consumption. Psychoneuroendocrinology 2024; 161:106923. [PMID: 38142605 DOI: 10.1016/j.psyneuen.2023.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023]
Abstract
Participation in a virtual reality based active shooter training drill (VR-ASD) has been shown to increase biomarkers of stress; however, the impact of caffeine consumption on this response has not been studied. Caffeine ingestion has been shown to have favorable effects on physical and cognitive performance among athletic and tactical occupations alike. This study examined the impact of caffeine ingestion on subjective and physiological markers of stress in response to a mental stress task (MST) which involved participation in a VR-ASD and cognitive challenge consisting of mental arithmetic and a Stroop challenge. Fifty-three subjects were randomly assigned either caffeine (n = 26) or placebo (n = 27) prior to being exposed to the MST. Saliva samples, heart rate (HR), and state-anxiety inventory (SAI) scales, were collected before and after exposure to the MST. Saliva was analyzed for α-amylase (sAA), secretory IgA (SIgA), and cortisol (sCORT) concentrations. The MST resulted in significant increases in sAA, SIgA, HR, and SAI. Immediately post MST, sAA concentrations were significantly higher following the caffeine treatment compared to placebo. These data demonstrate that caffeine consumption results in significantly greater sAA concentrations post MST. This study was pre-registered as a clinical trial ("Impact of supplements on stress markers": NCT05592561).
Collapse
Affiliation(s)
- Matthew J McAllister
- Metabolic & Applied Physiology Laboratory, Department of Health & Human Performance, Texas State University, San Marcos, TX 78666, USA.
| | | | - Courtney C Dillard
- Metabolic & Applied Physiology Laboratory, Department of Health & Human Performance, Texas State University, San Marcos, TX 78666, USA
| | - Drew E Gonzalez
- Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Ghazaleh L, Enayati A, Delfan M, Bamdad S, Laher I, Granacher U, Zouhal H. Effects of caffeine supplementation on anaerobic power and muscle activity in youth athletes. BMC Sports Sci Med Rehabil 2024; 16:23. [PMID: 38243326 PMCID: PMC10799507 DOI: 10.1186/s13102-023-00805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/29/2023] [Indexed: 01/21/2024]
Abstract
This study aimed to investigate the effects of caffeine ingestion on anaerobic performance and muscle activity in young athletes. In this randomized, double-blind, and placebo-controlled study, ten highly trained male post-puberal futsal players aged 15.9 ± 1.2 years conducted two laboratory sessions. Athletes performed the Wingate test 60 min after ingestion of caffeine (CAF, 6 mg/kg body mass) or placebo (PL, dextrose) (blinded administration). Peak power, mean power, and the fatigue index were assessed. During the performance of the Wingate test, electromyographic (EMG) data were recorded from selected lower limbs muscles to determine the root mean square (RMS), mean power frequency (MPF), and median power frequency (MDPF) as frequency domain parameters and wavelet (WT) as time-frequency domain parameters. Caffeine ingestion increased peak (0.80 ± 0.29 W/Kg; p = 0.01; d = 0.42) and mean power (0.39 ± 0.02 W/Kg; p = 0.01; d = 0.26) but did not significantly affect the fatigue index (52.51 ± 9.48%, PL: 49.27 ± 10.39%; p = 0.34). EMG data showed that the MPF and MDPF parameters decreased and the WT increased, but caffeine did not have a significant effect on these changes (p > 0.05). Moreover, caffeine ingestion did not significantly affect RMS changes in the selected muscles (p > 0.05). Here we showed that acute caffeine ingestion improved anaerobic performance without affecting EMG parameters in young male futsal athletes.
Collapse
Affiliation(s)
- Leila Ghazaleh
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran.
| | - Anita Enayati
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran
| | - Maryam Delfan
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran
| | - Sobhan Bamdad
- Department of Biomedical Engineering, Faculty of Engineering, Shahed University, Tehran, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, Freiburg, Germany.
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement), EA 1274, Sport, Rennes, Santé, F-35000, France.
- Institut International des Sciences du Sport (2I2S), Irodouer, 35850, France.
| |
Collapse
|
13
|
Fernández-Sánchez J, Trujillo-Colmena D, Rodríguez-Castaño A, Lavín-Pérez AM, Del Coso J, Casado A, Collado-Mateo D. Effect of Acute Caffeine Intake on Fat Oxidation Rate during Fed-State Exercise: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:207. [PMID: 38257100 PMCID: PMC10819049 DOI: 10.3390/nu16020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Pre-exercise intake of caffeine (from ~3 to 9 mg/kg) has been demonstrated as an effective supplementation strategy to increase fat oxidation during fasted exercise. However, a pre-exercise meal can alter the potential effect of caffeine on fat oxidation during exercise as caffeine modifies postprandial glycaemic and insulinemic responses. Hypothetically, the effect of caffeine on fat oxidation may be reduced or even withdrawn during fed-state exercise. The present systematic review aimed to meta-analyse investigations on the effect of acute caffeine intake on the rate of fat oxidation during submaximal aerobic exercise performed in the fed state (last meal < 5 h before exercise). A total of 18 crossover trials with randomised and placebo-controlled protocols and published between 1982 and 2021 were included, with a total of 228 participants (185 males and 43 females). Data were extracted to compare rates of fat oxidation during exercise with placebo and caffeine at the same exercise intensity, which reported 20 placebo-caffeine pairwise comparisons. A meta-analysis of the studies was performed, using the standardised mean difference (SMD) estimated from Hedges' g, with 95% confidence intervals (CI). In comparison with the placebo, caffeine increased the rate of fat oxidation during fed-state exercise (number of comparisons (n) = 20; p = 0.020, SMD = 0.65, 95% CI = 0.20 to 1.20). Only studies with a dose < 6 mg/kg of caffeine (n = 13) increased the rate of fat oxidation during fed-state exercise (p = 0.004, SMD = 0.86, 95% CI = 0.27 to 1.45), while no such effect was observed in studies with doses ≥6 mg/kg (n = 7; p = 0.97, SMD = -0.03, 95% CI = -1.40 to 1.35). The effect of caffeine on fat oxidation during fed-state exercise was observed in active untrained individuals (n = 13; p < 0.001, SMD = 0.84, 95% CI = 0.39 to 1.30) but not in aerobically trained participants (n = 7; p = 0.27, SMD = 0.50, 95% CI = -0.39 to 1.39). Likewise, the effect of caffeine on fat oxidation was observed in caffeine-naïve participants (n = 9; p < 0.001, SMD = 0.82, 95% CI = 0.45 to 1.19) but not in caffeine consumers (n = 3; p = 0.54, SMD = 0.57, 95% CI = -1.23 to 2.37). In conclusion, acute caffeine intake in combination with a meal ingested within 5 h before the onset of exercise increased the rate of fat oxidation during submaximal aerobic exercise. The magnitude of the effect of caffeine on fat oxidation during fed-state exercise may be modulated by the dose of caffeine administered (higher with <6 mg/kg than with ≥6 mg/kg), participants' aerobic fitness level (higher in active than in aerobically trained individuals), and habituation to caffeine (higher in caffeine-naïve than in caffeine consumers).
Collapse
Affiliation(s)
- Javier Fernández-Sánchez
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (J.F.-S.); (D.T.-C.); (A.R.-C.); (A.C.); (D.C.-M.)
| | - Daniel Trujillo-Colmena
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (J.F.-S.); (D.T.-C.); (A.R.-C.); (A.C.); (D.C.-M.)
| | - Adrián Rodríguez-Castaño
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (J.F.-S.); (D.T.-C.); (A.R.-C.); (A.C.); (D.C.-M.)
| | - Ana Myriam Lavín-Pérez
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (J.F.-S.); (D.T.-C.); (A.R.-C.); (A.C.); (D.C.-M.)
- GO fitLAB, Ingesport, 28003 Madrid, Spain
| | - Juan Del Coso
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (J.F.-S.); (D.T.-C.); (A.R.-C.); (A.C.); (D.C.-M.)
| | - Arturo Casado
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (J.F.-S.); (D.T.-C.); (A.R.-C.); (A.C.); (D.C.-M.)
| | - Daniel Collado-Mateo
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (J.F.-S.); (D.T.-C.); (A.R.-C.); (A.C.); (D.C.-M.)
| |
Collapse
|
14
|
Mackay K, Orssatto LBR, Polman R, Van der Pols JC, Trajano GS. Caffeine does not influence persistent inward current contribution to motoneuron firing. J Neurophysiol 2023; 130:1529-1540. [PMID: 37877186 DOI: 10.1152/jn.00350.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023] Open
Abstract
The purpose of this study was to investigate whether caffeine consumption would change persistent inward current (PIC) contribution to motoneuron firing at increased contraction intensities and after repetitive sustained maximal contractions. Before and after the consumption of 6 mg·kg-1 of caffeine or placebo, 16 individuals performed isometric triangular-shaped ramp dorsiflexion contractions (to 20% and 40% of peak torque), followed by four maximal contractions sustained until torque production dropped to 60% of maximum, and consecutive 20% triangular-shaped contractions. Tibialis anterior motor unit firing frequencies were analyzed from high-density surface electromyograms. PIC contribution to motor unit firing was estimated by calculating the delta frequency (ΔF) using the paired motor unit technique. Motoneuron peak firing frequencies at 20% and 40% contractions and total torque-time integral during the repetitive sustained maximal contractions were also assessed. ΔF increased 0.69 peaks per second (pps) (95% CI = -0.98, -0.405; d = -0.87) from 20% to 40% contraction intensities and reduced 0.85 pps (95% CI = 0.66, 1.05; d = 0.99) after the repetitive sustained maximal contractions, regardless of caffeine consumption. Participants produced 337 Nm·s (95% CI = 49.9, 624; d = 0.63) more torque integral during the repetitive sustained maximal contractions after caffeine consumption. A strong repeated-measures correlation (r = 0.61; 95% CI = 0.49, 0.69) was observed between reductions of ΔF and peak firing frequencies after the repetitive sustained maximal contractions. PIC contribution to motoneuron firing increases from 20% to 40% contraction intensities, with no effect of caffeine (on rested tibialis anterior). Repetitive sustained maximal contractions reduced PIC contribution to motoneuron firing, regardless of caffeine or placebo consumption, evidencing that changes in intrinsic motoneuron properties contributed to performance loss. Caffeine-attenuated reduction of torque production capacity was unlikely mediated by PICs.NEW & NOTEWORTHY Persistent inward current (PIC) contribution to motoneuron firing increases with contraction intensities and is reduced after repetitive sustained maximal contractions, regardless of caffeine consumption. Reductions of PIC contribution to motoneuron firing and peak firing frequencies were largely associated, evidencing a novel mechanism underpinning decrements in maximal torque production capacity following repetitive sustained maximal contractions. Caffeine consumption attenuated neuromuscular performance reductions-allowing higher time-torque integral production during repetitive sustained maximal contractions. This was unlikely mediated by PIC.
Collapse
Affiliation(s)
- Karen Mackay
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Lucas B R Orssatto
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Remco Polman
- Institute of Health and Wellbeing, Federation University, Melbourne, Victoria, Australia
| | - Jolieke C Van der Pols
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Ruiz-Fernández I, Valadés D, Dominguez R, Ferragut C, Pérez-López A. Load and muscle group size influence the ergogenic effect of acute caffeine intake in muscular strength, power and endurance. Eur J Nutr 2023; 62:1783-1794. [PMID: 36840816 DOI: 10.1007/s00394-023-03109-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
INTRODUCTION Although acute caffeine intake seems to improve muscular strength-power-endurance performance, there is scarce evidence evaluating upper vs lower-body exercises at different loads. Thus, this study aimed to examine the effects of acute caffeine intake on upper and lower-body muscular strength, power and endurance performance at different loads. METHODS Twenty resistance-trained athletes (male/female: 10/10; age: 23 ± 4 years; body mass: 70.6 ± 15.1) participated in a double-blind, placebo-controlled, cross-over and randomized study. Participants were provided with either 3 mg/kg of body mass of caffeine or maltodextrin (placebo). Sixty minutes after ingestion, they performed muscular strength and power assessment for bench press and back squat exercise at 25%, 50%, 75% and 90% 1-repetition-maximum (1RM), performing 3, 2, 1 and 1 repetitions respectively, followed by muscular endurance assessment for both exercises at 65% and 85% 1RM performing until task failure. Isometric handgrip, isometric mid-thigh pull and vertical jump tests were also performed. RESULTS In muscular strength and power, compared to placebo, caffeine improved mean velocity (P = 0.045; pη2 = 0.101), mean power (P = 0.049; pη2 = 0.189) and rate of force development (RFD, P = 0.032; pη2 = 0.216), particularly in back squat exercise at 75% and 90% 1RM where mean velocity increased by 5-7% (P = 0.48-0.038; g = 0.348-1.413), mean power by 6-8% (P = 0.050-0.032; g = 0.547-0.818) and RFD by 17-97% (P = 0.042-0.046; g = 1.436-1.196). No differences were found in bench press exercise. In muscular endurance, caffeine improved the number of repetitions in all exercises and loads (P = 0.003; pη2 = 0.206), but only in back squat exercise at 85% 1RM, caffeine increased mean and peak velocity (8-9%, P = 0.006-0.004; g = 2.029-2.075), mean and peak power (10-13%, P = 0.006-0.003; g = 0.888-1.151) and force peak (3%, P = 0.009; g = 0.247). CONCLUSIONS Acute caffeine intake (3 mg/kg) improved muscular strength, power and endurance performance, revealing a more pronounced effect at high-loads (≥ 75% 1RM) and in lower-body (back squat) than in upper-body exercise (bench press) according to muscle group size.
Collapse
Affiliation(s)
- Iván Ruiz-Fernández
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Ctra. Madrid-Barcelona km 33,600, 28871, Alcalá de Henares, Spain
| | - David Valadés
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Ctra. Madrid-Barcelona km 33,600, 28871, Alcalá de Henares, Spain
| | - Raúl Dominguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, Universidad de Sevilla, Seville, Spain
| | - Carmen Ferragut
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Ctra. Madrid-Barcelona km 33,600, 28871, Alcalá de Henares, Spain.
| | - Alberto Pérez-López
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Ctra. Madrid-Barcelona km 33,600, 28871, Alcalá de Henares, Spain
| |
Collapse
|
16
|
Tamilio RA, Clarke ND, Duncan MJ, Morris RO, Tallis J. How Repeatable Is the Ergogenic Effect of Caffeine? Limited Reproducibility of Acute Caffeine (3 mg.kg -1) Ingestion on Muscular Strength, Power, and Muscular Endurance. Nutrients 2022; 14:nu14204416. [PMID: 36297102 PMCID: PMC9611362 DOI: 10.3390/nu14204416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to determine the effect of 3 mg.kg−1 acute caffeine ingestion on muscular strength, power and strength endurance and the repeatability of potential ergogenic effects across multiple trials. Twenty-two university standard male rugby union players (20 ± 2 years) completed the study. Using a double-blind, randomized, and counterbalanced within-subject experimental design. Participants completed six experimental trials (three caffeine and three placebo) where force time characteristic of the Isometric Mid-Thigh Pull (IMTP), Countermovement Jump (CMJ) and Drop Jumps (DJ) were assessed followed by assessments of Chest Press (CP), Shoulder Press (SP), Squats (SQ), and Deadlifts (DL) Repetitions Until Failure (RTF at 70% 1 RM). ANOVA indicated that caffeine improved both the CMJ and DJ (p < 0.044) and increased RTF in all RTF assessments (p < 0.002). When individual caffeine trials were compared to corresponding placebo trials, effect sizes ranged from trivial-large favoring caffeine irrespective of a main effect of treatment being identified in the ANOVA. These results demonstrate for the first time that the performance enhancing effects of caffeine may not be repeatable between days, where our data uniquely indicates that this is in part attributable to between sessions variation in caffeine’s ergogenic potential.
Collapse
|
17
|
Ozan M, Buzdagli Y, Eyipinar CD, Baygutalp NK, Yüce N, Oget F, Kan E, Baygutalp F. Does Single or Combined Caffeine and Taurine Supplementation Improve Athletic and Cognitive Performance without Affecting Fatigue Level in Elite Boxers? A Double-Blind, Placebo-Controlled Study. Nutrients 2022; 14:nu14204399. [PMID: 36297081 PMCID: PMC9610400 DOI: 10.3390/nu14204399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
In previous studies, the effect of single or combined intake of caffeine (CAF) and taurine (TAU) on exercise performance was investigated. However, the potential synergistic effect on physical and cognitive performance after fatigue induced by anaerobic exercise is unknown. The effects of single and combination CAF and TAU supplementation on the Wingate test in elite male boxers and to evaluate balance, agility and cognitive performance after fatigue are being investigated for the first time in this study. Twenty elite male boxers 22.14 ± 1.42 years old were divided into four groups in this double-blind, randomized crossover study: CAF (6 mg/kg of caffeine), TAU (3 g single dose of taurine), CAF*TAU (co-ingestion of 3 g single dose of taurine and 6 mg/kg of caffeine) and PLA (300 mg maltodextrin). The findings are as follows: co-ingestion of CAF*TAU, improved peak (W/kg), average (W), minimum (W) power, time to reach (s), and RPE performances compared to the PLA group significantly (p < 0.05). Similarly, it was determined that a single dose of TAU, created a significant difference (p < 0.05) in peak power (W/kg), and average and minimum power (W) values compared to the CAF group. According to the balance and agility tests performed after the Wingate test, co-ingestion of CAF*TAU revealed a significant difference (p < 0.05) compared to the PLA group. In terms of cognitive performance, co-ingestion of CAF*TAU significantly improved the neutral reaction time (ms) compared to the TAU, CAF and PLA groups. As a result, elite male boxers performed better in terms of agility, balance and cognitive function when they consumed a combination of 6 mg/kg CAF and 3 g TAU. It has been determined that the combined use of these supplements is more effective than their single use.
Collapse
Affiliation(s)
- Murat Ozan
- Department of Physical Education and Sports, Kazım Karabekir Faculty of Education, Atatürk University, 25500 Erzurum, Turkey
| | - Yusuf Buzdagli
- Department of Coaching Education, Faculty of Sport Sciences, Erzurum Technical University, 25500 Erzurum, Turkey
- Correspondence:
| | - Cemre Didem Eyipinar
- Department of Physical Education and Sport, Faculty of Sport Sciences, Gaziantep University, 27310 Gaziantep, Turkey
| | - Nurcan Kılıç Baygutalp
- Department of Biochemistry, Faculty of Pharmacy, Ataturk University, 25500 Erzurum, Turkey
| | - Neslihan Yüce
- Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, 25500 Erzurum, Turkey
| | - Furkan Oget
- Department of Physical Education and Sports, Faculty of Sport Sciences, Erzurum Technical University, 25500 Erzurum, Turkey
| | - Emirhan Kan
- Department of Physical Education and Sports, Kazım Karabekir Faculty of Education, Atatürk University, 25500 Erzurum, Turkey
| | - Fatih Baygutalp
- Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, 25500 Erzurum, Turkey
| |
Collapse
|
18
|
Grgic J, Venier S, Mikulic P. Examining the Effects of Caffeine on Isokinetic Strength, Power, and Endurance. J Funct Morphol Kinesiol 2022; 7:jfmk7040071. [PMID: 36278732 PMCID: PMC9590023 DOI: 10.3390/jfmk7040071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
This study examined caffeine's effects on isokinetic strength, power, and endurance. The sample included 25 young, resistance-trained males. The participants were tested on three occasions, in a control trial (no substance ingestion) and following the ingestion of 6 mg·kg-1 of caffeine or placebo. Exercise tests involved isokinetic knee extension and flexion using angular velocities of 60° s-1 and 180° s-1. Analyzed outcomes included peak torque, average power, and total work. For knee extension at an angular velocity of 60° s-1, there were significant differences for: (1) peak torque when comparing caffeine vs. control (Hedges' g = 0.22) and caffeine vs. placebo (g = 0.30) and (2) average power when comparing caffeine vs. control (g = 0.21) and caffeine vs. placebo (g = 0.29). For knee extension at an angular velocity of 180° s-1, there were significant differences for: (1) peak torque when comparing caffeine vs. placebo (g = 0.26), (2) average power when comparing caffeine vs. control (g = 0.36) and caffeine vs. placebo (g = 0.43), and (3) total work when comparing caffeine vs. control (g = 0.33) and caffeine vs. placebo (g = 0.36). Caffeine was not ergogenic for knee flexors in any of the analyzed outcomes. Additionally, there was no significant difference between control and placebo. In summary, caffeine enhances the mechanical output of the knee extensors at lower and higher angular velocities, and these effects are present when compared to placebo ingestion or no substance ingestion (control).
Collapse
Affiliation(s)
- Jozo Grgic
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Correspondence:
| | - Sandro Venier
- Faculty of Kinesiology, University of Zagreb, 10000 Zagreb, Croatia
| | - Pavle Mikulic
- Faculty of Kinesiology, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
19
|
Marinho AH, Lopes-Silva JP, Cristina-Souza G, Sousa FADB, Ataide-Silva T, Lima-Silva AE, Araujo GGD, Silva-Cavalcante MD. Effects of caffeine ingestion on cardiopulmonary responses during a maximal graded exercise test: a systematic review with meta-analysis and meta-regression. Crit Rev Food Sci Nutr 2022; 64:127-139. [PMID: 35894639 DOI: 10.1080/10408398.2022.2104807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
While the effects of caffeine ingestion on endurance performance are well known, its effects on cardiopulmonary responses during a maximal graded exercise test have been less explored. This study systematically reviewed and meta-analyzed studies investigating the effects of caffeine ingestion on cardiopulmonary responses during a maximal graded exercise test. A search was performed in four databases, and study quality was assessed using the PEDro scale. Data reported by the selected studies were pooled using random-effects meta-analysis, with selected moderator effects assessed via meta-regression. Twenty-one studies with good and excellent methodological quality were included in this review. Compared to placebo, caffeine increased peak minute ventilation (SMD = 0.33; p = 0.01) and time to exhaustion (SMD = 0.41; p = 0.01). However, meta-regression showed no moderating effects of dosage and timing of caffeine ingestion, stage length, or total length of GXT (all p > 0.05). Caffeine ingestion did not affect peak oxygen uptake (SMD = 0.13; p = 0.42), peak heart rate (SMD = 0.27; p = 0.07), peak blood lactate concentration (SMD = 0.60; p = 0.09), peak tidal volume (SMD = 0.10; p = 0.69), peak breathing frequency (SMD =0.20; p = 0.23), or peak power output (SMD = 0.22; p = 0.28). The results of this systematic review with meta-analysis suggest that caffeine increases time to exhaustion and peak minute ventilation among the cardiopulmonary variables assessed during GXT.
Collapse
Affiliation(s)
- Alisson Henrique Marinho
- Laboratory of Applied Sports Science, Institute of Physical Education and Sports, Federal University of Alagoas, Maceió, Alagoas, Brazil
- Human Performance Research Group, Federal University of Technology Parana, Curitiba, Parana, Brazil
- Department of Physical Education, Federal University of Parana, Curitiba, Parana, Brazil
- Nutrition and Exercise Research Group, State University of Minas Gerais (UEMG), Passos, Minas Gerais, Brazil
| | - João Paulo Lopes-Silva
- Applied Research Group to Performance and Health, CESMAC University Center, Maceió, Alagoas, Brazil
| | - Gislaine Cristina-Souza
- Human Performance Research Group, Federal University of Technology Parana, Curitiba, Parana, Brazil
- Nutrition and Exercise Research Group, State University of Minas Gerais (UEMG), Passos, Minas Gerais, Brazil
| | - Filipe Antônio de Barros Sousa
- Laboratory of Applied Sports Science, Institute of Physical Education and Sports, Federal University of Alagoas, Maceió, Alagoas, Brazil
- Post-graduate Program in Nutrition, Faculty of Nutrition, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Thays Ataide-Silva
- Laboratory of Applied Sports Science, Institute of Physical Education and Sports, Federal University of Alagoas, Maceió, Alagoas, Brazil
- Post-graduate Program in Nutrition, Faculty of Nutrition, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Gustavo Gomes de Araujo
- Laboratory of Applied Sports Science, Institute of Physical Education and Sports, Federal University of Alagoas, Maceió, Alagoas, Brazil
- Post-graduate Program in Nutrition, Faculty of Nutrition, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Marcos David Silva-Cavalcante
- Laboratory of Applied Sports Science, Institute of Physical Education and Sports, Federal University of Alagoas, Maceió, Alagoas, Brazil
- Post-graduate Program in Nutrition, Faculty of Nutrition, Federal University of Alagoas, Maceió, Alagoas, Brazil
| |
Collapse
|
20
|
Influence of caffeine on the maximal isometric and concentric force produced by skinned fibers. Sci Rep 2022; 12:7980. [PMID: 35562590 PMCID: PMC9106758 DOI: 10.1038/s41598-022-12222-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/06/2022] [Indexed: 11/08/2022] Open
Abstract
Caffeine is one of the most famous and widely used ergogenic drugs, especially by athletes to improve sports performance. Caffeine is known to enhance muscle contraction by facilitating Ca2+ release from the sarcoplasmic reticulum. While the effect of caffeine on the cross-bridge dynamics has also investigated, the results is controversial. Therefore, the purpose of this study was to examine the influence of caffeine on cross-bridge dynamics using skinned fiber preparations from rabbit soleus (N = 19 in total). We performed isometric contractions at an average sarcomere length of 2.4 μm; thereafter, skinned fibers were shortened by 20% of the fiber length at a velocity of 0.1 mm/s (slow shortening) or 0.5 mm/s (fast shortening). The contractions were performed under both normal and caffeine-containing activating solution conditions to compare the isometric, slow concentric, and fast concentric forces between conditions. The isometric force did not differ between normal and caffeine-containing activating solution conditions. Similarly, the concentric forces obtained during the slow and fast shortening trials did not differ between conditions. We also measured the stiffness and the rate of force redevelopment (kTR) during the isometric contraction phase and found that these values were not different between normal and caffeine conditions. Based on these results, we conclude that the influence of caffeine on cross-bridge dynamics is negligible, and the ergogenic effect of caffeine, from the view of muscle contractility, is by facilitating Ca2+ release, as suggested in previous studies, and not by modulating the cross-bridge dynamics.
Collapse
|
21
|
Caffeine alters the breathing pattern during high-intensity whole-body exercise in healthy men. Eur J Appl Physiol 2022; 122:1497-1507. [PMID: 35396967 DOI: 10.1007/s00421-022-04934-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE The current study investigated the effect of caffeine on the breathing pattern during a high-intensity whole-body exercise. METHODS Using a randomized, crossover, counterbalanced, and double-blind design, twelve healthy men ingested either 5 mg.kg-1 of caffeine or cellulose (placebo) one hour before performing a high-intensity whole-body exercise (i.e., work rate corresponding to 80% of the difference between the gas exchange threshold and maximal oxygen uptake) until the limit of tolerance. Ventilatory and metabolic responses were recorded throughout the trial and at task failure. RESULTS Caffeine ingestion increased time to task failure in relation to the placebo (368.1 ± 49.6 s vs. 328.5 ± 56.6 s, p = 0.005). Caffeine also increased tidal volume and inspiratory time throughout the exercise (p < 0.05). Compared to task failure with placebo, task failure with caffeine intake was marked by higher (p < 0.05) minute ventilation (134.8 ± 16.4 vs. 147.6 ± 18.2 L.min-1), the ventilatory equivalent of oxygen consumption (37.8 ± 4.2 vs. 41.7 ± 5.5 units), and respiratory exchange ratio (1.12 ± 0.10 vs. 1.19 ± 0.11 units). CONCLUSION In conclusion, ingestion of caffeine alters the breathing pattern by increasing tidal volume and lengthening the inspiratory phase of the respiratory cycle. These findings suggest that caffeine affects the ventilatory system, which may account, in part, for its ergogenic effects during high-intensity whole-body exercises.
Collapse
|
22
|
Acute Effect of Caffeine-Based Multi-Ingredient Supplement on Reactive Agility and Jump Height in Recreational Handball Players. Nutrients 2022; 14:nu14081569. [PMID: 35458131 PMCID: PMC9025764 DOI: 10.3390/nu14081569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Pre-exercise caffeine and guarana-based multi-ingredient supplement (MS) consumption may be more effective for physical performance improvement than caffeine and guarana alone due to the synergistic effect of biologically active ingredients in multi-ingredient supplements. This study aimed to examine the acute effect of MS on the reactive agility and jump performance in recreational handball male players. A randomized, double-blind, crossover study involved twenty-four male handball players (body mass 74.6 ± 8.8 kg; body height 179 ± 7 cm; age 23.8 ± 1.4 years). Participants were tested under three conditions: placebo, caffeine + guarana (CAF + GUA), or MS ingestion 45 min before exercise tests. Participants performed a reactive agility test (Y-shaped test) and countermovement jump (CMJ). None of the supplements improved countermovement jump height (p = 0.06). The time needed to complete the agility test was significantly (p = 0.02) shorter in the MS condition than in the placebo. The differences in agility between PL vs. CAF + GUA and MS vs. CAF + GUA conditions were not statistically significant (p = 0.88 and p = 0.07, respectively). The results of this study indicate that the caffeine-based multi-ingredient performance was effective in improvement in reactive agility but not in jump height in recreational handball male players. A similar effect was not observed with CAF + GUA ingestion alone.
Collapse
|
23
|
Sun R, Sun J, Li J, Li S. Effects of caffeine ingestion on physiological indexes of human neuromuscular fatigue: A systematic review and meta-analysis. Brain Behav 2022; 12:e2529. [PMID: 35318818 PMCID: PMC9014999 DOI: 10.1002/brb3.2529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/24/2021] [Accepted: 01/29/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Caffeine is often used as a stimulant during fatigue, but the standard of characteristic physiological indicators of the effect of caffeine on neuromuscular fatigue has not been unified. The purpose of this systematic review and meta-analysis is to summarize current experimental findings on the effects of caffeine on physiological indexes before and after neuromuscular fatigue, identify some characteristic neuromuscular physiological indexes to assess the potential effects of caffeine. METHODS The Preferred Reporting Items for Systematic Reviews and Meta-analyses are followed. We systematically searched PubMed, Google academic, and Web of Science for randomized controlled trials. We searched for studies on caffeine's (i) effects on neuromuscular fatigue and (ii) the influence of physiological indexes changes. Meta-analysis was performed for standardized mean differences (SMD) between caffeine and placebo trials in individual studies. RESULTS The meta-analysis indicated that caffeine significantly improves voluntary activation (VA) (SMD = 1.46;95%CI:0.13, 2.79; p < .00001), PTw (SMD = 1.11, 95%CI: -1.61, 3.84; p < .00001), and M-wave (SMD = 1.10, 95%CI: -0.21, 2.41; p < .00001), and a significant difference (p = .003) on measures of Peak Power (PP), and insignificant difference on measures of heart rate (HR) (I2 = 0.0, p = .84) and Maximal oxygen uptake (VO2 ) (I2 = 0.0, p = .76). CONCLUSION The analysis showed that caffeine intake had a relatively large effect on VA, potentiated twitch (PTw), M-wave, which can be used as characteristic indexes of caffeine's impact on neuromuscular fatigue. This conclusion tends to indicate the effects of caffeine on neuromuscular fatigue during endurance running or jumping or muscle bending and stretching. The caffeine intake had a big effect on the electromyogram (EMG) and peak power (PP), and its effect role needs to be further verified, this conclusion tends to indicate the effect of caffeine on neuromuscular fatigue during jumping or elbow bending moment movements. HR, VO2 , maximal voluntary contraction (MVC) cannot be used as the characteristic indexes of caffeine on neuromuscular fatigue. This conclusion tends to indicate the effect of caffeine on neuromuscular fatigue during endurance exercise. However, the results of meta-analysis are based on limited evidence and research scale, as well as individual differences of participants and different physical tasks, so it is necessary to interpret the results of meta-analysis cautiously. Therefore, future research needs to explore other physiological indicators and their indicative effects in order to determine effective and accurate characteristic indicators of caffeine on neuromuscular fatigue.
Collapse
Affiliation(s)
- Ruishan Sun
- College of Safety Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Junya Sun
- College of Safety Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Jingqiang Li
- College of Safety Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Shuwen Li
- College of Safety Science and Engineering, Civil Aviation University of China, Tianjin, China
| |
Collapse
|
24
|
Couto PG, Silva-Cavalcante MD, Mezêncio B, Azevedo RA, Cruz R, Bertuzzi R, Lima-Silva AE, Kiss MAPD. Effects of caffeine on central and peripheral fatigue following closed- and open-loop cycling exercises. Braz J Med Biol Res 2022; 55:e11901. [PMID: 35239783 PMCID: PMC8905674 DOI: 10.1590/1414-431x2021e11901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/21/2021] [Indexed: 12/04/2022] Open
Abstract
We examined whether endurance performance and neuromuscular fatigue would be
affected by caffeine ingestion during closed- and open-loop exercises. Nine
cyclists performed a closed-loop (4,000-m cycling time trial) and an open-loop
exercise (work rate fixed at mean power of the closed-loop trial) 60 min after
ingesting caffeine (CAF, 5 mg/kg) or placebo (PLA, cellulose). Central and
peripheral fatigue was quantified via pre- to post-exercise decrease in
quadriceps voluntary activation and potentiated twitch force, respectively. Test
sensitivity for detecting caffeine-induced improvements in exercise performance
was calculated as the mean change in time divided by the error of measurement.
Caffeine ingestion reduced the time of the closed-loop trial (PLA: 375.1±14.5 s
vs CAF: 368.2±14.9 s, P=0.024) and increased exercise
tolerance during the open-loop trial (PLA: 418.2±99.5 s vs CAF:
552.5±106.5 s, P=0.001), with similar calculated sensitivity indices (1.5,
90%CI: 0.7-2.9 vs 2.8, 90%CI: 1.9-5.1). The reduction in
voluntary activation was more pronounced (P=0.019) in open- (-6.8±8.3%) than in
closed-loop exercises (-1.9±4.4%), but there was no difference between open- and
closed-loop exercises for the potentiated twitch force reduction (-25.6±12.8
vs -26.6±12.0%, P>0.05). Caffeine had no effect on
central and peripheral fatigue development in either mode of exercise. In
conclusion, caffeine improved endurance performance in both modes of exercise
without influence on post-exercise central and peripheral fatigue, with the
open-loop exercise imposing a greater challenge to central fatigue
tolerance.
Collapse
Affiliation(s)
- P G Couto
- Grupo de Estudos em Desempenho Aeróbio da USP, Escola de Educação Física e Esportes, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | - B Mezêncio
- Laboratório de Biomecânica, Escola de Educação Física e Esportes, Universidade de São Paulo, São Paulo, SP, Brasil
| | - R A Azevedo
- Grupo de Estudos em Desempenho Aeróbio da USP, Escola de Educação Física e Esportes, Universidade de São Paulo, São Paulo, SP, Brasil
| | - R Cruz
- Grupo de Estudos em Desempenho Aeróbio da USP, Escola de Educação Física e Esportes, Universidade de São Paulo, São Paulo, SP, Brasil.,Grupo de Pesquisa em Performance Humana, Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brasil
| | - R Bertuzzi
- Grupo de Estudos em Desempenho Aeróbio da USP, Escola de Educação Física e Esportes, Universidade de São Paulo, São Paulo, SP, Brasil
| | - A E Lima-Silva
- Grupo de Pesquisa em Performance Humana, Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brasil
| | - M A P D Kiss
- Grupo de Estudos em Desempenho Aeróbio da USP, Escola de Educação Física e Esportes, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
25
|
Grgic J. Exploring the minimum ergogenic dose of caffeine on resistance exercise performance: a meta-analytical approach. Nutrition 2022; 97:111604. [DOI: 10.1016/j.nut.2022.111604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/19/2021] [Accepted: 01/15/2022] [Indexed: 11/25/2022]
|
26
|
Simões CB, Gomes PLC, Silva RA, Fonseca IC, Fonseca M, Cruz VM, Drummond MD. Acute caffeine and capsaicin supplementation and performance in resistance training. MOTRIZ: REVISTA DE EDUCACAO FISICA 2022. [DOI: 10.1590/s1980-65742022010121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
Grgic J, Mikulic P. Effects of caffeine on rate of force development: A meta-analysis. Scand J Med Sci Sports 2021; 32:644-653. [PMID: 34861076 DOI: 10.1111/sms.14109] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 01/04/2023]
Abstract
This review aimed to conduct a meta-analysis of studies examining the effects of caffeine on rate of force development (RFD). Ten databases were searched to find relevant studies. Risk of bias (RoB) of the included studies was evaluated. Data were analyzed in a random-effects meta-analysis. Eleven studies with "some concerns" regarding RoB were included. In the main meta-analysis, there was a significant ergogenic effect of caffeine ingestion on RFD (Hedges' g = 0.37; 95% confidence interval [CI]: 0.21, 0.52; p < 0.0001). An ergogenic effect of caffeine was also found on RFD during resistance exercises (Hedges' g = 0.49; 95% CI: 0.30, 0.67; p < 0.0001), but not during the countermovement jump test (Hedges' g = 0.18; 95% CI: -0.02, 0.39; p = 0.08), with a significant difference between the subgroups (p = 0.03). Small-to-moderate (3-5 mg/kg; Hedges' g = 0.25; 95% CI: 0.09, 0.41; p = 0.002) and moderate-to-high caffeine doses (6-10 mg/kg) enhanced RFD (Hedges' g = 0.57; 95% CI: 0.30, 0.85; p < 0.0001), even though the effects were larger with higher caffeine doses (p = 0.04). Overall, caffeine ingestion increases RFD, which is relevant given that RFD is commonly associated with sport-specific tasks. From a practical perspective: (1) individuals interested in the acute enhancement of RFD in resistance exercise may consider supplementing with caffeine; and (2) given that evaluation of RFD is most commonly used for testing purposes, caffeine ingestion (3-10 mg/kg 60 min before exercise) should be standardized before RFD assessments.
Collapse
Affiliation(s)
- Jozo Grgic
- Institute for Health and Sport, Victoria University, Melbourne, Vic, Australia
| | - Pavle Mikulic
- Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
28
|
Rozga M, Jones K, Robinson J, Yahiro A. Nutrition and physical activity interventions for the general population with and without cardiometabolic risk: a scoping review. Public Health Nutr 2021; 24:4718-4736. [PMID: 34030758 PMCID: PMC10195388 DOI: 10.1017/s1368980021002184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/24/2021] [Accepted: 05/12/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The objective of this scoping review was to examine the research question: In the adults with or without cardiometabolic risk, what is the availability of literature examining interventions to improve or maintain nutrition and physical activity-related outcomes? Sub-topics included: (1) behaviour counseling or coaching from a dietitian/nutritionist or exercise practitioner, (2) mobile applications to improve nutrition and physical activity and (3) nutritional ergogenic aids. DESIGN The current study is a scoping review. A literature search of the Medline Complete, CINAHL Complete, Cochrane Database of Systematic Reviews and other databases was conducted to identify articles published in the English language from January 2005 until May 2020. Data were synthesised using bubble charts and heat maps. SETTING Out-patient, community and workplace. PARTICIPANTS Adults with or without cardiometabolic risk factors living in economically developed countries. RESULTS Searches resulted in 19 474 unique articles and 170 articles were included in this scoping review, including one guideline, thirty systematic reviews (SR), 134 randomised controlled trials and five non-randomised trials. Mobile applications (n 37) as well as ergogenic aids (n 87) have been addressed in several recent studies, including SR. While primary research has examined the effect of individual-level nutrition and physical activity counseling or coaching from a dietitian/nutritionist and/or exercise practitioner (n 48), interventions provided by these practitioners have not been recently synthesised in SR. CONCLUSION SR of behaviour counseling or coaching provided by a dietitian/nutritionist and/or exercise practitioner are needed and can inform practice for practitioners working with individuals who are healthy or have cardiometabolic risk.
Collapse
Affiliation(s)
- Mary Rozga
- Evidence Analysis Center, Academy of Nutrition and Dietetics, 120 South Riverside Plaza, Suite 2190, Chicago, IL60606-6995, USA
| | - Kelly Jones
- Kelly Jones Nutrition, LLC, Newtown, PA, USA
| | - Justin Robinson
- Adjunct Faculty, Point Loma Nazarene University, San Diego, CA, USA
| | - Amy Yahiro
- North American Spine Society, Burr Ridge, IL, USA
| |
Collapse
|
29
|
Jones L, Johnstone I, Day C, Le Marquer S, Hulton AT. The Dose-Effects of Caffeine on Lower Body Maximal Strength, Muscular Endurance, and Rating of Perceived Exertion in Strength-Trained Females. Nutrients 2021; 13:3342. [PMID: 34684343 PMCID: PMC8539274 DOI: 10.3390/nu13103342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
Caffeine supplementation has shown to be an effective ergogenic aid enhancing athletic performance, although limited research within female populations exists. Therefore, the aim of the investigation was to assess the effect of pre-exercise caffeine supplementation on strength performance and muscular endurance in strength-trained females. In a double-blind, randomised, counterbalanced design, fourteen strength-trained females using hormonal contraception consumed either 3 or 6 mg·kg-1 BM of caffeine or placebo (PLA). Following supplementation, participants performed a one-repetition maximum (1RM) leg press and repetitions to failure (RF) at 60% of their 1RM. During the RF test, rating of perceived exertion (RPE) was recorded every five repetitions and total volume (TV) lifted was calculated. Repeated measures ANOVA revealed that RF (p = 0.010) and TV (p = 0.012) attained significance, with pairwise comparisons indicating a significant difference between 3 mg·kg-1 BM and placebo for RF (p = 0.014), with an effect size of 0.56, and for 6 mg·kg-1 BM (p = 0.036) compared to the placebo, with an effect size of 0.65. No further significance was observed for 1RM or for RPE, and no difference was observed between caffeine trials. Although no impact on lower body muscular strength was observed, doses of 3 and 6 mg·kg-1 BM of caffeine improved lower body muscular endurance in resistance-trained females, which may have a practical application for enhancing resistance training stimuli and improving competitive performance.
Collapse
Affiliation(s)
| | | | | | | | - Andrew T. Hulton
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (L.J.); (I.J.); (C.D.); (S.L.M.)
| |
Collapse
|
30
|
Schamne JC, Ressetti JC, Bertuzzi R, Okuno NM, Lima-Silva AE. Acute Caffeine Intake Reduces Perceived Exertion But Not Muscle Pain during Moderate Intensity Cycling Exercise in Women with Fibromyalgia. J Am Coll Nutr 2021; 41:720-727. [PMID: 34383607 DOI: 10.1080/07315724.2021.1958102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Exacerbated perceived exertion and muscle pain responses during exercise might limit physical activity practice in fibromyalgia patients. Thus, nutritional strategies that can reduce perceived exertion and muscle pain during exercise in fibromyalgia patients would be useful. The purpose of this study was to investigate the effects of acute caffeine intake on the perceptions of exertion and muscle pain during a moderate intensity exercise in women with fibromyalgia.Method: Using a randomized, double-blinded, placebo-controlled and crossover experimental design, eleven sedentary women diagnosed with fibromyalgia (age: 44.6 ± 10.5 years; body mass index: 28.5 ± 4.5 kg.m-2) ingested a capsule containing either caffeine (5 mg per kg of body mass) or cellulose (placebo), 60 minutes before performing a 30-minute constant-load cycling exercise, with work rate fixed at 50% of their individual peak workload attained in an incremental exercise test. Ratings of perceived leg muscle pain and perceived exertion were assessed every 5 minutes of exercise.Results: The perceived leg muscle pain was similar (F(1,10) = 1.18, p = 0.30, ŋ2 = 0.11) between caffeine (2.1 ± 1.2 arbitrary units) and placebo conditions (2.2 ± 0.9 arbitrary units). The perceived exertion, however, was on average 8 ± 6% lower (F(1,10) = 12.13; p = 0.006; ŋ2 = 0.55) during exercise in the caffeine condition (12.4 ± 1.3 arbitrary units) than in the placebo condition (13.1 ± 1.1 arbitrary units).Conclusions: These findings indicate that acute caffeine intake could be an attractive strategy to attenuate the exacerbated perceived exertion of fibromyalgia patients during moderate intensity exercise.
Collapse
Affiliation(s)
- Julio Cezar Schamne
- Human Performance Research Group, Academic Department of Physical Education, Federal University of Technology - Parana (UTFPR), Curitiba, Brazil.,Department of Physical Education, State University of Ponta Grossa (UEPG), Ponta Grossa, Brazil
| | - Juliana Campos Ressetti
- Department of Physical Education, State University of Ponta Grossa (UEPG), Ponta Grossa, Brazil
| | - Romulo Bertuzzi
- Endurance Performance Research Group (GEDAE-USP), University of São Paulo, São Paulo, Brazil
| | - Nilo Massaru Okuno
- Department of Physical Education, State University of Ponta Grossa (UEPG), Ponta Grossa, Brazil
| | - Adriano Eduardo Lima-Silva
- Human Performance Research Group, Academic Department of Physical Education, Federal University of Technology - Parana (UTFPR), Curitiba, Brazil
| |
Collapse
|
31
|
Lima-Silva AE, Cristina-Souza G, Silva-Cavalcante MD, Bertuzzi R, Bishop DJ. Caffeine during High-Intensity Whole-Body Exercise: An Integrative Approach beyond the Central Nervous System. Nutrients 2021; 13:2503. [PMID: 34444663 PMCID: PMC8400708 DOI: 10.3390/nu13082503] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Caffeine is one of the most consumed ergogenic aids around the world. Many studies support the ergogenic effect of caffeine over a large spectrum of exercise types. While the stimulatory effect of caffeine on the central nervous system is the well-accepted mechanism explaining improvements in exercise performance during high-intensity whole-body exercise, in which other physiological systems such as pulmonary, cardiovascular, and muscular systems are maximally activated, a direct effect of caffeine on such systems cannot be ignored. A better understanding of the effects of caffeine on multiple physiological systems during high-intensity whole-body exercise might help to expand its use in different sporting contexts (e.g., competitions in different environments, such as altitude) or even assist the treatment of some diseases (e.g., chronic obstructive pulmonary disease). In the present narrative review, we explore the potential effects of caffeine on the pulmonary, cardiovascular, and muscular systems, and describe how such alterations may interact and thus contribute to the ergogenic effects of caffeine during high-intensity whole-body exercise. This integrative approach provides insights regarding how caffeine influences endurance performance and may drive further studies exploring its mechanisms of action in a broader perspective.
Collapse
Affiliation(s)
- Adriano E. Lima-Silva
- Human Performance Research Group, Federal University of Technology Parana (UTFPR), Curitiba 81310900, PR, Brazil; (A.E.L.-S.); (G.C.-S.)
| | - Gislaine Cristina-Souza
- Human Performance Research Group, Federal University of Technology Parana (UTFPR), Curitiba 81310900, PR, Brazil; (A.E.L.-S.); (G.C.-S.)
- Nutrition and Exercise Research Group, State University of Minas Gerais (UEMG), Passos 37902092, MG, Brazil
| | - Marcos D. Silva-Cavalcante
- Postgraduate Program in Nutrition (PPGNUT), Faculty of Nutrition (FANUT), Federal University of Alagoas (UFAL), Maceio 57072900, AL, Brazil;
| | - Romulo Bertuzzi
- Endurance Sports Research Group (GEDAE-USP), University of São Paulo, Sao Paulo 05508030, SP, Brazil;
| | - David J. Bishop
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 8001, Australia
| |
Collapse
|
32
|
Ergogenic Effects of Acute Caffeine Intake on Muscular Endurance and Muscular Strength in Women: A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115773. [PMID: 34072182 PMCID: PMC8199301 DOI: 10.3390/ijerph18115773] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022]
Abstract
This meta-analysis aimed to explore the effects of caffeine ingestion on muscular endurance and muscular strength in women. Five databases were searched to find relevant studies. A random-effects meta-analysis of standardized mean differences (SMD) was performed for data analysis. Subgroup meta-analyses explored the effects of caffeine on upper-body and lower-body muscular endurance and muscular strength. Eight crossover placebo-controlled studies were included in the review. In the main meta-analysis that considered data from all included studies, there was a significant ergogenic effect of caffeine on muscular endurance (SMD = 0.25; p = 0.027) and muscular strength (SMD = 0.18; p < 0.001). In a subgroup analysis that considered only upper-body exercises, there was a significant ergogenic effect of caffeine on muscular endurance (SMD = 0.20; p = 0.007) and muscular strength (SMD = 0.17; p < 0.001). In a subgroup analysis that considered only lower-body exercises, there was no significant difference between caffeine and placebo for muscular endurance (SMD = 0.43; p = 0.092) or muscular strength (SMD = 0.16; p = 0.109). The main finding of this meta-analysis is that caffeine ingestion has a significant ergogenic effect on muscular endurance and muscular strength in women. The effects reported in this analysis are similar to those previously observed in men and suggest that women may use caffeine supplementation as an ergogenic aid for muscular performance. Future research is needed to explore the effects of caffeine on lower-body muscular endurance and muscular strength in this population.
Collapse
|
33
|
Dittrich N, Serpa MC, Lemos EC, De Lucas RD, Guglielmo LGA. Effects of Caffeine Chewing Gum on Exercise Tolerance and Neuromuscular Responses in Well-Trained Runners. J Strength Cond Res 2021; 35:1671-1676. [PMID: 30789581 DOI: 10.1519/jsc.0000000000002966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Dittrich, N, Serpa, MC, Lemos, EC, De Lucas, RD, and Guglielmo, LGA. Effects of caffeine chewing gum on exercise tolerance and neuromuscular responses in well-trained runners. J Strength Cond Res 35(6): 1671-1676, 2021-This study aimed to investigate the effects of caffeinated chewing gum on endurance exercise, neuromuscular properties, and rate of perceived exertion on exercise tolerance. Twelve trained male runners (31.3 ± 6.4 years; 70.5 ± 6.6 kg; 175.2 ± 6.2 cm; 9.4 ± 2.7% body fat; and V̇o2max = 62.0 ± 4.2 ml·kg-1·min-1) took part of the study. The athletes performed an intermittent treadmill test to determine maximal aerobic speed and delta 50% (Δ50%) intensity. In the following visits, they performed 2 randomized time to exhaustion tests (15.4 ± 0.7 km·h-1) after the ingestion of 300 mg of caffeine in a double-blind, crossover, randomized design. Maximal voluntary contraction of the knee extensor associated to surface electromyographic recording and the twitch interpolation technique were assessed before and immediately after the tests to quantify neuromuscular fatigue of the knee extensor muscles. Caffeine significantly improved exercise tolerance by 18% (p < 0.01). Neuromuscular responses decreased similarly after time to exhaustion in both exercise conditions; however, athletes were able to run a longer distance in the caffeine condition. The performance improvement induced by caffeine seems to have a neuromuscular contribution because athletes were able to run a longer distance with the same neuromuscular impairment.
Collapse
Affiliation(s)
- Naiandra Dittrich
- Sports Center, Federal University of Santa Catarina, Physical Effort Laboratory, Florianópolis, Brazil
| | | | | | | | | |
Collapse
|
34
|
Guest NS, VanDusseldorp TA, Nelson MT, Grgic J, Schoenfeld BJ, Jenkins NDM, Arent SM, Antonio J, Stout JR, Trexler ET, Smith-Ryan AE, Goldstein ER, Kalman DS, Campbell BI. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr 2021; 18:1. [PMID: 33388079 PMCID: PMC7777221 DOI: 10.1186/s12970-020-00383-4] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
Following critical evaluation of the available literature to date, The International Society of Sports Nutrition (ISSN) position regarding caffeine intake is as follows: 1. Supplementation with caffeine has been shown to acutely enhance various aspects of exercise performance in many but not all studies. Small to moderate benefits of caffeine use include, but are not limited to: muscular endurance, movement velocity and muscular strength, sprinting, jumping, and throwing performance, as well as a wide range of aerobic and anaerobic sport-specific actions. 2. Aerobic endurance appears to be the form of exercise with the most consistent moderate-to-large benefits from caffeine use, although the magnitude of its effects differs between individuals. 3. Caffeine has consistently been shown to improve exercise performance when consumed in doses of 3-6 mg/kg body mass. Minimal effective doses of caffeine currently remain unclear but they may be as low as 2 mg/kg body mass. Very high doses of caffeine (e.g. 9 mg/kg) are associated with a high incidence of side-effects and do not seem to be required to elicit an ergogenic effect. 4. The most commonly used timing of caffeine supplementation is 60 min pre-exercise. Optimal timing of caffeine ingestion likely depends on the source of caffeine. For example, as compared to caffeine capsules, caffeine chewing gums may require a shorter waiting time from consumption to the start of the exercise session. 5. Caffeine appears to improve physical performance in both trained and untrained individuals. 6. Inter-individual differences in sport and exercise performance as well as adverse effects on sleep or feelings of anxiety following caffeine ingestion may be attributed to genetic variation associated with caffeine metabolism, and physical and psychological response. Other factors such as habitual caffeine intake also may play a role in between-individual response variation. 7. Caffeine has been shown to be ergogenic for cognitive function, including attention and vigilance, in most individuals. 8. Caffeine may improve cognitive and physical performance in some individuals under conditions of sleep deprivation. 9. The use of caffeine in conjunction with endurance exercise in the heat and at altitude is well supported when dosages range from 3 to 6 mg/kg and 4-6 mg/kg, respectively. 10. Alternative sources of caffeine such as caffeinated chewing gum, mouth rinses, energy gels and chews have been shown to improve performance, primarily in aerobic exercise. 11. Energy drinks and pre-workout supplements containing caffeine have been demonstrated to enhance both anaerobic and aerobic performance.
Collapse
Affiliation(s)
- Nanci S Guest
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 1 King's College Circle, Room 5326A, Toronto, ON, M5S 1A8, Canada.
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, 30144, USA
| | | | - Jozo Grgic
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Brad J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, Bronx, NY, 10468, USA
| | - Nathaniel D M Jenkins
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, 52240, USA
| | - Shawn M Arent
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Colombia, SC, 29208, USA
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL, 33314, USA
| | - Jeffrey R Stout
- Institue of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, 32816, USA
| | | | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, Applied Physiology Laboratory, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Erica R Goldstein
- Institue of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Douglas S Kalman
- Nutrion Department, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
- Scientific Affairs. Nutrasource, Guelph, ON, Canada
| | - Bill I Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, 33612, USA
| |
Collapse
|
35
|
Santos PS, Felippe LC, Ferreira GA, Learsi SK, Couto PG, Bertuzzi R, Pereira G, Lima-Silva AE. Caffeine increases peripheral fatigue in low- but not in high-performing cyclists. Appl Physiol Nutr Metab 2020; 45:1208-1215. [DOI: 10.1139/apnm-2019-0992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The influence of cyclists’ performance levels on caffeine-induced increases in neuromuscular fatigue after a 4-km cycling time trial (TT) was investigated. Nineteen cyclists performed a 4-km cycling TT 1 h after ingesting caffeine (5 mg·kg−1) or placebo (cellulose). Changes from baseline to after exercise in voluntary activation (VA) and potentiated 1 Hz force twitch (Qtw,pot) were used as markers of central and peripheral fatigue, respectively. Participants were classified as “high performing” (HP, n = 8) or “low performing” (LP, n = 8) in accordance with their performance in a placebo trial. Compared with placebo, caffeine increased the power, anaerobic mechanical power, and anaerobic work, reducing the time to complete the trial in both groups (p < 0.05). There was a group versus supplement and a group versus supplement versus trial interaction for Qtw,pot, in which the postexercise reduction was greater after caffeine compared with placebo in the LP group (Qtw,pot = −34% ± 17% vs. −21% ± 11%, p = 0.02) but not in the HP group (Qtw,pot = −22% ± 8% vs. −23% ± 10%, p = 0.64). There was no effect of caffeine on VA, but there was a group versus trial interaction with lower postexercise values in the LP group than in the HP group (p = 0.03). Caffeine-induced improvement in 4-km cycling TT performance seems to come at the expense of greater locomotor muscle fatigue in LP but not in HP cyclists. Novelty Caffeine improves exercise performance at the expense of a greater end-exercise peripheral fatigue in low-performing athletes. Caffeine-induced improvement in exercise performance does not affect end-exercise peripheral fatigue in high-performing athletes. High-performing athletes seem to have augmented tolerance to central fatigue during a high-intensity time trial.
Collapse
Affiliation(s)
- Pamela S. Santos
- Human Performance Research Group, Academic Department of Physical Education, Federal University of Technology – Parana (UTFPR), Neoville, Curitiba, PR 81310-900, Brazil
- Department of Physical Education, Federal University of Parana, Curitiba, PR 81531-980, Brazil
| | - Leandro C. Felippe
- Human Performance Research Group, Academic Department of Physical Education, Federal University of Technology – Parana (UTFPR), Neoville, Curitiba, PR 81310-900, Brazil
- Sport Science Research Group, Federal University of Pernambuco, Vitoria de Santo Antao, PE 55608-608, Brazil
| | - Guilherme A. Ferreira
- Human Performance Research Group, Academic Department of Physical Education, Federal University of Technology – Parana (UTFPR), Neoville, Curitiba, PR 81310-900, Brazil
- Sport Science Research Group, Federal University of Pernambuco, Vitoria de Santo Antao, PE 55608-608, Brazil
| | - Sara K. Learsi
- Human Performance Research Group, Academic Department of Physical Education, Federal University of Technology – Parana (UTFPR), Neoville, Curitiba, PR 81310-900, Brazil
- Sport Science Research Group, Federal University of Pernambuco, Vitoria de Santo Antao, PE 55608-608, Brazil
| | - Patrícia G. Couto
- Endurance Sports Research Group (GEDAE-USP), University of São Paulo, São Paulo, SP 05508-030, Brazil
| | - Romulo Bertuzzi
- Endurance Sports Research Group (GEDAE-USP), University of São Paulo, São Paulo, SP 05508-030, Brazil
| | - Gleber Pereira
- Department of Physical Education, Federal University of Parana, Curitiba, PR 81531-980, Brazil
| | - Adriano E. Lima-Silva
- Human Performance Research Group, Academic Department of Physical Education, Federal University of Technology – Parana (UTFPR), Neoville, Curitiba, PR 81310-900, Brazil
- Sport Science Research Group, Federal University of Pernambuco, Vitoria de Santo Antao, PE 55608-608, Brazil
| |
Collapse
|
36
|
Norum M, Risvang LC, Bjørnsen T, Dimitriou L, Rønning PO, Bjørgen M, Raastad T. Caffeine increases strength and power performance in resistance-trained females during early follicular phase. Scand J Med Sci Sports 2020; 30:2116-2129. [PMID: 32681596 DOI: 10.1111/sms.13776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/28/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022]
Abstract
The effects of 4 mg·kg-1 caffeine ingestion on strength and power were investigated for the first time, in resistance-trained females during the early follicular phase utilizing a randomized, double-blind, placebo-controlled, crossover design. Fifteen females (29.8 ± 4.0 years, 63.8 ± 5.5 kg [mean ± SD]) ingested caffeine or placebo 60 minutes before completing a test battery separated by 72 hours. One-repetition maximum (1RM), repetitions to failure (RTF) at 60% of 1RM, was assessed in the squat and bench press. Maximal voluntary contraction torque (MVC) and rate of force development (RFD) were measured during isometric knee extensions, while utilizing interpolated twitch technique to measure voluntary muscle activation. Maximal power and jump height were assessed during countermovement jumps (CMJ). Caffeine metabolites were measured in plasma. Adverse effects were registered after each trial. Caffeine significantly improved squat (4.5 ± 1.9%, effect size [ES]: 0.25) and bench press 1RM (3.3 ± 1.4%, ES: 0.20), and squat (15.9 ± 17.9%, ES: 0.31) and bench press RTF (9.8 ± 13.6%, ES: 0.31), compared to placebo. MVC torque (4.6 ± 7.3%, ES: 0.26), CMJ height (7.6 ± 4.0%, ES: 0.50), and power (3.8 ± 2.2%, ES: 0.24) were also significantly increased with caffeine. There were no differences in RFD or muscle activation. Plasma [caffeine] was significantly increased throughout the protocol, and mild side effects of caffeine were experienced by only 3 participants. This study demonstrated that 4 mg·kg-1 caffeine ingestion enhanced maximal strength, power, and muscular endurance in resistance-trained and caffeine-habituated females during the early follicular phase, with few adverse effects. Female strength and power athletes may consider using this dose pre-competition and -training as an effective ergogenic aid.
Collapse
Affiliation(s)
- Martin Norum
- School of Science and Technology, London Sport Institute, Middlesex University, London, UK
| | - Linn Christin Risvang
- School of Science and Technology, London Sport Institute, Middlesex University, London, UK.,Department of Mechanical, Electronics and Chemical Engineering, Faculty of Technology, Art and Design, Oslo Metropolitan University, Oslo, Norway
| | - Thomas Bjørnsen
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway.,Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
| | - Lygeri Dimitriou
- School of Science and Technology, London Sport Institute, Middlesex University, London, UK.,Department of Natural Sciences, School of Science and Technology, Middlesex University, London, UK
| | - Per Ola Rønning
- Department of Mechanical, Electronics and Chemical Engineering, Faculty of Technology, Art and Design, Oslo Metropolitan University, Oslo, Norway
| | - Morten Bjørgen
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
37
|
Apostolidis A, Mougios V, Smilios I, Frangous M, Hadjicharalambous M. Caffeine supplementation is ergogenic in soccer players independent of cardiorespiratory or neuromuscular fitness levels. J Int Soc Sports Nutr 2020; 17:31. [PMID: 32513182 PMCID: PMC7282184 DOI: 10.1186/s12970-020-00360-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 06/03/2020] [Indexed: 11/18/2022] Open
Abstract
Background Equivocal findings examining the influence of caffeine on performance and biological responses to exercise may be due to inter-individual variability in cardiorespiratory or neuromuscular fitness. This study examined whether the effects of caffeine ingestion on exercise performance and biological responses to prolonged intermittent exercise to exhaustion depend on cardiorespiratory or neuromuscular fitness. Methods Twenty male soccer players, separated according to either cardiorespiratory fitness (high vs medium) or neuromuscular fitness (high vs medium) underwent two trials simulating the cardiovascular demands of a soccer game to exhaustion on treadmill after ingesting either caffeine (6 mg∙kg− 1) or placebo. Physical performance, cardiorespiratory and metabolic parameters and blood metabolites were evaluated. Results Time to exhaustion (719 ± 288 vs 469 ± 228 s), jump height (42.7 ± 4.2 vs 38.6 ± 4.4 cm), heart rate (163 ± 12 vs 157 ± 13 b∙min− 1), mean arterial blood pressure (98 ± 8 vs 92 ± 10 mmHg), plasma glucose (5.6 ± 0.7 vs 5.3 ± 0.6 mmol∙l− 1) and lactate (3.3 ± 1.2 vs 2.9 ± 1.2 mmol∙l− 1) were higher, while rating of perceived exertion (12.6 ± 1.7 vs 13.3 ± 1.6) was lower with caffeine vs placebo (p < 0.01), independent of cardiorespiratory or neuromuscular fitness level. Reaction time; plasma glycerol, non-esterified fatty acids and epinephrine; carbohydrate and fat oxidation rates; and energy expenditure were not affected by caffeine (p > 0.05). Conclusions Caffeine was effective in improving endurance and neuromuscular performance in athletes with either high or medium cardiorespiratory and neuromuscular fitness. Cardiorespiratory and neuromuscular fitness do not appear to modulate the ergogenic effects of caffeine supplementation in well-trained athletes.
Collapse
Affiliation(s)
- Andreas Apostolidis
- Human Performance Laboratory, Department of Life & Health Sciences, University of Nicosia, 46 Makedonitissas Ave., P.O. Box 24005, 1700, Nicosia, Cyprus
| | - Vassilis Mougios
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education & Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ilias Smilios
- School of Physical Education & Sports Science, Democritus University of Thrace, Komotini, Greece
| | | | - Marios Hadjicharalambous
- Human Performance Laboratory, Department of Life & Health Sciences, University of Nicosia, 46 Makedonitissas Ave., P.O. Box 24005, 1700, Nicosia, Cyprus.
| |
Collapse
|
38
|
Abstract
Caffeine is a widely utilized performance-enhancing supplement used by athletes and non-athletes alike. In recent years, a number of meta-analyses have demonstrated that caffeine's ergogenic effects on exercise performance are well-established and well-replicated, appearing consistent across a broad range of exercise modalities. As such, it is clear that caffeine is an ergogenic aid-but can we further explore the context of this ergogenic aid in order to better inform practice? We propose that future research should aim to better understand the nuances of caffeine use within sport and exercise. Here, we propose a number of areas for exploration within future caffeine research. These include an understanding of the effects of training status, habitual caffeine use, time of day, age, and sex on caffeine ergogenicity, as well as further insight into the modifying effects of genotype. We also propose that a better understanding of the wider, non-direct effects of caffeine on exercise, such as how it modifies sleep, anxiety, and post-exercise recovery, will ensure athletes can maximize the performance benefits of caffeine supplementation during both training and competition. Whilst not exhaustive, we hope that the questions provided within this manuscript will prompt researchers to explore areas with the potential to have a large impact on caffeine use in the future.
Collapse
Affiliation(s)
- Craig Pickering
- Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, Fylde Road, Preston, PR1 2HE, UK. .,The Prenetics DNAFit Research Centre, London, UK.
| | - Jozo Grgic
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| |
Collapse
|
39
|
Grgic J, Sabol F, Venier S, Mikulic I, Bratkovic N, Schoenfeld BJ, Pickering C, Bishop DJ, Pedisic Z, Mikulic P. What Dose of Caffeine to Use: Acute Effects of 3 Doses of Caffeine on Muscle Endurance and Strength. Int J Sports Physiol Perform 2020; 15:470-477. [PMID: 31575825 DOI: 10.1123/ijspp.2019-0433] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/13/2019] [Accepted: 07/05/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE To explore the effects of 3 doses of caffeine on muscle strength and muscle endurance. METHODS Twenty-eight resistance-trained men completed the testing sessions under 5 conditions: no-placebo control, placebo control, and with caffeine doses of 2, 4, and 6 mg·kg-1. Muscle strength was assessed using the 1-repetition-maximum test; muscle endurance was assessed by having the participants perform a maximal number of repetitions with 60% 1-repetition maximum. RESULTS In comparison with both control conditions, only a caffeine dose of 2 mg·kg-1 enhanced lower-body strength (d = 0.13-0.15). In comparison with the no-placebo control condition, caffeine doses of 4 and 6 mg·kg-1 enhanced upper-body strength (d = 0.07-0.09) with a significant linear trend for the effectiveness of different doses of caffeine (P = .020). Compared with both control conditions, all 3 caffeine doses enhanced lower-body muscle endurance (d = 0.46-0.68). For upper-body muscle endurance, this study did not find significant effects of caffeine. CONCLUSIONS This study revealed a linear trend between the dose of caffeine and its effects on upper-body strength. The study found no clear association between the dose of caffeine and the magnitude of its ergogenic effects on lower-body strength and muscle endurance. From a practical standpoint, the magnitude of caffeine's effects on strength is of questionable relevance. A low dose of caffeine (2 mg·kg-1)-for an 80-kg individual, the dose of caffeine in 1-2 cups of coffee-may produce substantial improvements in lower-body muscle endurance with the magnitude of the effect being similar to that attained using higher doses of caffeine.
Collapse
|
40
|
Abstract
This paper aims to critically evaluate and thoroughly discuss the evidence on the topic of caffeine supplementation when performing resistance exercise, as well as provide practical guidelines for the ingestion of caffeine prior to resistance exercise. Based on the current evidence, it seems that caffeine increases both maximal strength and muscular endurance. Furthermore, power appears to be enhanced with caffeine supplementation, although this effect might, to a certain extent, be caffeine dose- and external load-dependent. A reduction in rating of perceived exertion (RPE) might contribute to the performance-enhancing effects of caffeine supplementation as some studies have observed decreases in RPE coupled with increases in performance following caffeine ingestion. However, the same does not seem to be the case for pain perception as there is evidence showing acute increases in resistance exercise performance without any significant effects of caffeine ingestion on pain perception. Some studies have reported that caffeine ingestion did not affect exercise-induced muscle damage, but that it might reduce perceived resistance exercise-induced delayed-onset muscle soreness; however, this needs to be explored further. There is some evidence that caffeine ingestion, compared with a placebo, may lead to greater increases in the production of testosterone and cortisol following resistance exercise. However, given that the acute changes in hormone levels seem to be weakly correlated with hallmark adaptations to resistance exercise, such as hypertrophy and increased muscular strength, these findings are likely of questionable practical significance. Although not without contrasting findings, the available evidence suggests that caffeine ingestion can lead to acute increases in blood pressure (primarily systolic), and thus caution is needed regarding caffeine supplementation among individuals with high blood pressure. In the vast majority of studies, caffeine was administered in capsule or powder forms, and therefore the effects of alternative forms of caffeine, such as chewing gums or mouth rinses, on resistance exercise performance remain unclear. The emerging evidence suggests that coffee might be at least equally ergogenic as caffeine alone when the caffeine dose is matched. Doses in the range of 3-9 mg·kg-1 seem to be adequate for eliciting an ergogenic effect when administered 60 min pre-exercise. In general, caffeine seems to be safe when taken in the recommended doses. However, at doses as high as 9 mg·kg-1 or higher, side effects such as insomnia might be more pronounced. It remains unclear whether habituation reduces the ergogenic benefits of caffeine on resistance exercise as no evidence exists for this type of exercise. Caution is needed when extrapolating these conclusions to females as the vast majority of studies involved only male participants.
Collapse
|
41
|
Pak İE, Cuğ M, Volpe SL, Beaven CM. The effect of carbohydrate and caffeine mouth rinsing on kicking performance in competitive Taekwondo athletes during Ramadan. J Sports Sci 2020; 38:795-800. [DOI: 10.1080/02640414.2020.1735033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- İbrahim Ethem Pak
- Physical Education and Sports Department, Cumhuriyet University, Sivas, Turkey
| | - Mutlu Cuğ
- Faculty of Sport Sciences, Kocaeli University, Izmit, Turkey
| | - Stella L. Volpe
- Nutrition Sciences Department, Drexel University, Philadelphia, PA, USA
| | | |
Collapse
|
42
|
Mesquita RNO, Cronin NJ, Kyröläinen H, Hintikka J, Avela J. Effects of caffeine on neuromuscular function in a non-fatigued state and during fatiguing exercise. Exp Physiol 2020; 105:690-706. [PMID: 32092208 DOI: 10.1113/ep088265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/27/2020] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of the study? What are the effects of caffeine on neuromuscular function in a non-fatigued state and during fatiguing exercise? What is the main finding and its importance? In a non-fatigued state, caffeine decreased the duration of the silent period evoked by transcranial magnetic stimulation. Caffeine-induced reduction of inhibitory mechanisms in the central nervous system before exercise was associated with an increased performance. Individuals who benefit from caffeine ingestion may experience lower perception of effort during exercise and an accelerated recovery of M-wave amplitude postfatigue. This study elucidates the mechanisms of action of caffeine and demonstrates that inter-individual variability of its effects on neuromuscular function is a fruitful area for further work. ABSTRACT Caffeine enhances exercise performance, but its mechanisms of action remain unclear. In this study, we investigated its effects on neuromuscular function in a non-fatigued state and during fatiguing exercise. Eighteen men participated in this randomized, double-blind, placebo-controlled crossover trial. Baseline measures included plantarflexion force, drop jump, squat jump, voluntary activation of triceps surae muscle, soleus muscle contractile properties, M-wave, α-motoneuron excitability (H-reflex), corticospinal excitability, short-interval intracortical inhibition, intracortical facilitation, silent period evoked by transcranial magnetic stimulation (SP) and plasma potassium and caffeine concentrations. Immediately after baseline testing, participants ingested caffeine (6 mg·kg-1 ) or placebo. After a 1-h rest, baseline measures were repeated, followed by a fatiguing stretch-shortening cycle exercise (sets of 40 bilateral rebound jumps on a sledge apparatus) until task failure. Neuromuscular testing was carried out throughout the fatigue protocol and afterwards. Caffeine enhanced drop jump height (by 4.2%) and decreased the SP (by 12.6%) in a non-fatigued state. A caffeine-related decrease in SP and short-interval intracortical inhibition before the fatiguing activity was associated with an increased time to task failure. The participants who benefitted from an improved performance on the caffeine day reported a significantly lower sense of effort during exercise and had an accelerated postexercise recovery of M-wave amplitude. Caffeine modulates inhibitory mechanisms of the CNS, recovery of M-wave amplitude and perception of effort. This study lays the groundwork for future examinations of differences in caffeine-induced neuromuscular changes between those who are deemed to benefit from caffeine ingestion and those who are not.
Collapse
Affiliation(s)
- Ricardo N O Mesquita
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Neil J Cronin
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department for Health, Bath University, Bath, UK
| | - Heikki Kyröläinen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jukka Hintikka
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Janne Avela
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
43
|
Grgic J, Garofolini A, Pickering C, Duncan MJ, Tinsley GM, Del Coso J. Isolated effects of caffeine and sodium bicarbonate ingestion on performance in the Yo-Yo test: A systematic review and meta-analysis. J Sci Med Sport 2020; 23:41-47. [DOI: 10.1016/j.jsams.2019.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 10/26/2022]
|
44
|
Glaister M, Moir G. Effects of Caffeine on Time Trial Performance and Associated Physiological Responses: A Meta-Analysis. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mark Glaister
- Faculty of Sport, Health, and Applied Sciences, St Mary's University, Twickenham, United Kingdom
| | - Gavin Moir
- Department of Exercise Science, East Stroudsburg University, East Stroudsburg, Pennsylvania
| |
Collapse
|
45
|
Soares EDMKVK, Garcia GL, Molina GE, Fontana KE. MUSCLE STRENGTH AND CAFFEINE SUPPLEMENTATION: ARE WE DOING MORE OF THE SAME? REV BRAS MED ESPORTE 2019. [DOI: 10.1590/1517-869220192502180594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT The purpose of this review was to examine in the current literature the advances made in terms of the effects of caffeine supplementation on maximum strength and its associated mechanisms since the publication of two important papers in 2010. Searches were carried out in the PubMed, Medline, Scielo and Web of Science databases for articles published after 2010. Sixteen studies were included based on inclusion and exclusion criteria. Five studies did not report changes in maximal voluntary strength (31.3%). Four of them used isometric muscle contractions, although this may not be a key factor because five other studies also used isometric contractions and reported ergogenic effects. Furthermore, these four studies evaluated small muscle groups and volunteers were not accustomed to consuming caffeine. Caffeine produced ergogenic effects in eleven of the sixteen studies analyzed (68.8%). None of the doses were clearly related to ergogenic effects; however, a dose of at least 3 mg/kg of caffeine is probably necessary. Caffeine ergogenicity was affected by various factors. There was a lack of standardized protocols and controls for intervening factors (e.g., circadian cycles and nutritional states), which could affect results. An ideal caffeine supplementation protocol that is useful for future research, athletes, and physical activity practitioners, has yet to be defined. A small advance made since 2010 involved a possible lack of gender difference; it would appear that caffeine supplementation affects men and women equally. Level of Evidence I; Systematic Review of Level I Studies.
Collapse
|
46
|
Southward K, Rutherfurd-Markwick KJ, Ali A. The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis. Sports Med 2018; 48:1913-1928. [PMID: 29876876 DOI: 10.1007/s40279-018-0939-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Caffeine is a widely used ergogenic aid with most research suggesting it confers the greatest effects during endurance activities. Despite the growing body of literature around the use of caffeine as an ergogenic aid, there are few recent meta-analyses that quantitatively assess the effect of caffeine on endurance exercise. OBJECTIVES To summarise studies that have investigated the ergogenic effects of caffeine on endurance time-trial performance and to quantitatively analyse the results of these studies to gain a better understanding of the magnitude of the ergogenic effect of caffeine on endurance time-trial performance. METHODS A systematic review was carried out on randomised placebo-controlled studies investigating the effects of caffeine on endurance performance and a meta-analysis was conducted to determine the ergogenic effect of caffeine on endurance time-trial performance. RESULTS Forty-six studies met the inclusion criteria and were included in the meta-analysis. Caffeine has a small but evident effect on endurance performance when taken in moderate doses (3-6 mg/kg) as well as an overall improvement following caffeine compared to placebo in mean power output (3.03 ± 3.07%; effect size = 0.23 ± 0.15) and time-trial completion time (2.22 ± 2.59%; effect size = 0.41 ± 0.2). However, differences in responses to caffeine ingestion have been shown, with two studies reporting slower time-trial performance, while five studies reported lower mean power output during the time-trial. CONCLUSION Caffeine can be used effectively as an ergogenic aid when taken in moderate doses, such as during sports when a small increase in endurance performance can lead to significant differences in placements as athletes are often separated by small margins.
Collapse
Affiliation(s)
- Kyle Southward
- School of Sport, Exercise and Nutrition, Massey University, North Shore Mail Centre, Private Bag 102 904, Auckland, 0745, New Zealand
| | - Kay J Rutherfurd-Markwick
- School of Health Sciences, Massey University, Auckland, New Zealand.,Centre for Metabolic Health Research, Massey University, Auckland, New Zealand
| | - Ajmol Ali
- School of Sport, Exercise and Nutrition, Massey University, North Shore Mail Centre, Private Bag 102 904, Auckland, 0745, New Zealand. .,Centre for Metabolic Health Research, Massey University, Auckland, New Zealand.
| |
Collapse
|
47
|
Grgic J, Pickering C. The effects of caffeine ingestion on isokinetic muscular strength: A meta-analysis. J Sci Med Sport 2018; 22:353-360. [PMID: 30217692 DOI: 10.1016/j.jsams.2018.08.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/10/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES The aims of this paper are threefold: (1) to summarize the research examining the effects of caffeine on isokinetic strength, (2) pool the effects using a meta-analysis, and (3) to explore if there is a muscle group or a velocity specific response to caffeine ingestion. DESIGN Meta-analysis. METHODS PubMed/MEDLINE, Scopus, and SPORTDiscus were searched using relevant terms. The PEDro checklist was used for the assessment of study quality. A random-effects meta-analysis of standardized mean differences (SMDs) was done. RESULTS Ten studies of good and excellent methodological quality were included. The SMD for the effects of caffeine on strength was 0.16 (95% CI=0.06, 0.26; p=0.003; +5.3%). The subgroup analysis for knee extensor isokinetic strength showed a significant difference (p=0.004) between the caffeine and placebo conditions with SMD value of 0.19 (95% CI=0.06, 0.32; +6.1%). The subgroup analysis for the effects of caffeine on isokinetic strength of other, smaller muscle groups indicated no significant difference (p=0.092) between the caffeine and placebo conditions. The subgroup analysis for knee extensor isokinetic strength at angular velocities of 60°s-1 and 180°s-1 showed a significant difference between the caffeine and placebo conditions; however, no significant effect (p=0.193) was found at an angular velocity of 30°s-1. CONCLUSIONS This meta-analysis demonstrates that acute caffeine ingestion caffeine may significantly increase isokinetic strength. Additionally, this meta-analysis reports that the effects of caffeine on isokinetic muscular strength are predominantly manifested in knee extensor muscles and at greater angular velocities.
Collapse
Affiliation(s)
- Jozo Grgic
- Institute for Health and Sport (IHES), Victoria University, Australia.
| | - Craig Pickering
- Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, UK; Exercise and Nutritional Genomics Research Centre, DNAFit Ltd, UK
| |
Collapse
|
48
|
Shen JG, Brooks MB, Cincotta J, Manjourides JD. Establishing a relationship between the effect of caffeine and duration of endurance athletic time trial events: A systematic review and meta-analysis. J Sci Med Sport 2018; 22:232-238. [PMID: 30170953 DOI: 10.1016/j.jsams.2018.07.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/16/2018] [Accepted: 07/26/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Caffeine has well-documented benefits on endurance athletic performance. Because of caffeine's ergogenic effects of reducing perceived fatigue, it is hypothesized that as duration of athletic event increases, so will the effect size of caffeine upon performance. This study aims to examine the relationship between duration of endurance athletic event and the effect size of caffeine compared to placebo for athletic performance. DESIGN A systematic review and meta-analysis of placebo-controlled trials assessing the effects of caffeine in adults performing endurance athletic events. METHODS We searched MedLine, Web of Science, and review article references published through March 2016. We performed meta-analyses on placebo-controlled trials to determine the effect of the duration of an endurance athletic event on the standardized mean difference (Cohen's d) between the caffeine and placebo groups for athletic performance. RESULTS Forty articles including 56 unique comparison groups were included. Pooled results showed a Cohen's d of 0.33 (95% CI=0.21, 0.45; p=1.00; I2=0%). The effect of the duration of athletic event was significantly associated with Cohen's d (Relative Risk: 0.005; 95% CI=0.001, 0.009; p=0.024). For a 30min increase in duration of the athletic event, Cohen's d will increase by 0.150. CONCLUSIONS This study is the first to report on the statistical finding that the effect size of caffeine increases along with the increasing duration of the time trial event. Endurance athletes may especially benefit from caffeine for performance enhancement.
Collapse
Affiliation(s)
| | - Meredith B Brooks
- Department of Global Health and Social Medicine, Harvard Medical School, United States; Department of Health Sciences, Northeastern University, United States
| | - Jessica Cincotta
- Department of Health Sciences, Northeastern University, United States
| | | |
Collapse
|
49
|
Duncan MJ, Dobell AP, Caygill CL, Eyre E, Tallis J. The effect of acute caffeine ingestion on upper body anaerobic exercise and cognitive performance. Eur J Sport Sci 2018; 19:103-111. [PMID: 30102874 DOI: 10.1080/17461391.2018.1508505] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The current study examined the effect of acute caffeine ingestion on mean and peak power production during upper body Wingate test (WANT) performance, rating of perceived exertion, readiness to invest effort and cognitive performance. Using a double-blind design, 12 males undertook upper body WANTs, following ingestion of caffeine (5 mg*kg-1) or placebo. Pre-substance ingestion, 60 mins post substance ingestion and post exercise participants completed measures of readiness to invest physical and mental effort and cognitive performance. Peak power was significantly higher (P = .026), fatigue index greater (P = .02) and rating of perceived exertion lower (P = .025) in the presence of caffeine. Readiness to invest physical effort was also higher (P = .016) in the caffeine condition irrespective of time point (pre, 60 mins post ingestion and post exercise). Response accuracy for incongruent trials on the Flanker task was superior in the presence of caffeine (P = .006). There was a significant substance × time interaction for response speed in both congruent and incongruent conditions (both P = .001) whereby response speeds were faster at 60 mins post ingestion and post exercise in the caffeine condition, compared to placebo. This is the first study to examine the effects of caffeine ingestion on this modality of exercise and suggests that caffeine ingestion significantly enhances peak power, readiness to invest physical effort, and cognitive performance during WANT performance.
Collapse
Affiliation(s)
| | | | - Chloe L Caygill
- a School of Life Sciences , Coventry University , Coventry , UK
| | - Emma Eyre
- a School of Life Sciences , Coventry University , Coventry , UK
| | - Jason Tallis
- a School of Life Sciences , Coventry University , Coventry , UK
| |
Collapse
|
50
|
Southward K, Rutherfurd-Markwick KJ, Ali A. Correction to: The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis. Sports Med 2018; 48:2425-2441. [DOI: 10.1007/s40279-018-0967-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|