1
|
Dolan E, Dumas A, Esteves GP, Takarabe LL, Perfeito LAM, Keane KM, Gualano B, Kelley GA, Burke L, Sale C, Swinton PA. The Influence of Nutrition Intervention on the P1NP and CTX-1 Response to an Acute Exercise Bout: A Systematic Review with Meta-Analysis. Sports Med 2024; 54:2889-2906. [PMID: 39136851 DOI: 10.1007/s40279-024-02087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 11/14/2024]
Abstract
BACKGROUND Although nutrition and exercise both influence bone metabolism, little is currently known about their interaction, or whether nutritional intervention can modulate the bone biomarker response to acute exercise. Improved understanding of the relationships between nutrition, exercise and bone metabolism may have substantial potential to inform nutritional interventions to protect the bone health of exercising individuals, and to elucidate mechanisms by which exercise and nutrition influence bone. OBJECTIVE The aim was to synthesise available evidence related to the influence of nutrition on the response of the bone biomarkers procollagen type 1 N-terminal propeptide (P1NP) and C-terminal telopeptide of type 1 collagen (CTX-1) to acute exercise, using a systematic review and meta-analytic approach. METHODS Studies evaluating the influence of nutritional status or intervention on the bone biomarker response to an acute exercise bout were included and separated into four categories: (1) feeding status and energy availability, (2) macronutrients, (3) micronutrients and (4) other. Studies conducted on healthy human populations of any age or training status were included. Meta-analysis was conducted when data from at least five studies with independent datasets were available. In the case of insufficient data to warrant meta-analysis, results from individual studies were narratively synthesised and standardised mean effect sizes visually represented. RESULTS Twenty-two articles were included. Of these, three investigated feeding status or energy availability, eight macronutrients, eight micronutrients (all calcium) and six other interventions including dairy products or collagen supplementation. Three studies had more than one intervention and were included in all relevant outcomes. The largest and most commonly reported effects were for the bone resorption marker CTX-1. Meta-analysis indicated that calcium intake, whether provided via supplements, diet or infusion, reduced exercise-induced increases in CTX-1 (effect size - 1.1; 95% credible interval [CrI] - 2.2 to - 0.05), with substantially larger effects observed in studies that delivered calcium via direct infusion versus in supplements or foods. Narrative synthesis suggests that carbohydrate supplementation may support bone during acute exercise, via reducing exercise-induced increases in CTX-1. Conversely, a low-carbohydrate/high-fat diet appears to induce the opposite effect, as evidenced by an increased exercise associated CTX-1 response, and reduced P1NP response. Low energy availability may amplify the CTX-1 response to exercise, but it is unclear whether this is directly attributable to energy availability or to the lack of specific nutrients, such as carbohydrate. CONCLUSION Nutritional intervention can modulate the acute bone biomarker response to exercise, which primarily manifests as an increase in bone resorption. Ensuring adequate attention to nutritional factors may be important to protect bone health of exercising individuals, with energy, carbohydrate and calcium availability particularly important to consider. Although a wide breadth of data were available for this evidence synthesis, there was substantial heterogeneity in relation to design and intervention characteristics. Direct and indirect replication is required to confirm key findings and to generate better estimates of true effect sizes.
Collapse
Affiliation(s)
- Eimear Dolan
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.
- Center of Lifestyle Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, Sao Paulo, Brazil.
| | - Alina Dumas
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, Sao Paulo, Brazil
| | - Gabriel Perri Esteves
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, Sao Paulo, Brazil
| | - Leticia Lopes Takarabe
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, Sao Paulo, Brazil
| | - Luisa Alves Mendonça Perfeito
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, Sao Paulo, Brazil
| | - Karen M Keane
- Department of Sport, Exercise and Nutrition, School of Science and Computing, Atlantic Technological University, Galway, Ireland
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Center of Lifestyle Medicine, Faculdade de Medicina (FMUSP), Universidade de São Paulo, Sao Paulo, Brazil
| | - George A Kelley
- School of Public and Population Health and Department of Kinesiology, Boise State University, Boise, USA
| | - Louise Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Craig Sale
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Paul A Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, UK
| |
Collapse
|
2
|
Hilkens L, Praster F, van Overdam J, Nyakayiru J, Singh-Povel CM, Bons J, van Loon LJ, van Dijk JW. Graded Replacement of Carbohydrate-Rich Breakfast Products with Dairy Products: Effects on Postprandial Aminoacidemia, Glycemic Control, Bone Metabolism, and Satiety. J Nutr 2024; 154:479-490. [PMID: 38092152 DOI: 10.1016/j.tjnut.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/31/2023] Open
Abstract
BACKGROUND Postprandial metabolic responses following dairy consumption have mostly been studied using stand-alone dairy products or milk-derived nutrients. OBJECTIVE Assessing the impact of ingesting dairy products as part of a common breakfast on postprandial aminoacidemia, glycemic control, markers of bone metabolism, and satiety. METHODS In this randomized, crossover study, 20 healthy young males and females consumed on 3 separate occasions an iso-energetic breakfast containing no dairy (NO-D), 1 dairy (ONE-D), or 2 dairy (TWO-D) products. Postprandial concentrations of amino acids, glucose, insulin, glucagon-like peptide-1 (GLP-1), calcium, parathyroid hormone (PTH), and markers of bone formation (P1NP) and resorption (CTX-I) were measured before and up to 300 min after initiating the breakfast, along with VAS-scales to assess satiety. RESULTS Plasma essential and branched-chained amino acids availability (expressed as total area under the curve (tAUC)) increased in a dose-dependent manner (P<0.05 for all comparisons). Plasma glucose tAUCs were lower in ONE-D and TWO-D compared with NO-D (P<0.05 for both comparisons). Plasma GLP-1 tAUC increased in a dose-dependent manner (P<0.05 for all comparisons), whereas no differences were observed in plasma insulin tAUC between conditions (P>0.05 for all comparisons). Serum calcium tAUCs were higher in ONE-D and TWO-D compared with NO-D (P<0.05 for both comparisons), along with lower PTH tAUCs in ONE-D and TWO-D compared with NO-D (P=0.001 for both comparisons). In accordance, serum CTX-I concentrations were lower in the late postprandial period in ONE-D and TWO-D compared with NO-D (P<0.01 for both comparisons). No differences were observed in P1NP tAUCs between conditions (P>0.05). The tAUC for satiety was higher in TWO-D compared with NO-D and ONE-D (P<0.05 for both comparisons). CONCLUSIONS Iso-energetic replacement of a carbohydrate-rich breakfast component with one serving of dairy improves postprandial amino acid availability, glycemic control, and bone metabolism. Adding a second serving of dairy in lieu of carbohydrates augments postprandial amino acid and GLP-1 concentrations while further promoting satiety. This study was registered at https://doi.org/10.1186/ISRCTN13531586 with Clinical Trial Registry number ISRCTN13531586.
Collapse
Affiliation(s)
- Luuk Hilkens
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, The Netherlands; Department of Human Biology, NUTRIM, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Floor Praster
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, The Netherlands
| | - Jan van Overdam
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, The Netherlands
| | | | | | - Judith Bons
- Central Diagnostic Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Luc Jc van Loon
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, The Netherlands; Department of Human Biology, NUTRIM, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jan-Willem van Dijk
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Peeling P, Sim M, McKay AKA. Considerations for the Consumption of Vitamin and Mineral Supplements in Athlete Populations. Sports Med 2023; 53:15-24. [PMID: 37358750 PMCID: PMC10721676 DOI: 10.1007/s40279-023-01875-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
Vitamins and minerals are of fundamental importance to numerous human functions that are essential to optimise athlete performance. Athletes incur a high turnover of key vitamins and minerals and are therefore dependent on sufficient energy intake to replenish nutrient stores. However, many athletes are poor at servicing their energy replenishment needs, especially female athletes, and although a 'food first approach' to meeting nutrient requirements is the primary goal, it may be important for some athletes to consider a vitamin and/or mineral supplement to meet their daily needs. When working to determine if an athlete requires vitamin or mineral supplements, practitioners should use a robust framework to assess the overall energy requirements, current dietary practices and the biological and clinical status of their athletes. Of note, any supplementation plan should account for the various factors that may impact the efficacy of the approach (e.g. athlete sex, the nutrient recommended dietary intake, supplement dose/timing, co-consumption of other foods and any food-drug interactions). Importantly, there are numerous vitamins and minerals of key importance to athletes, each having specific relevance to certain situations (e.g. iron and B vitamins are significant contributors to haematological adaptation, calcium and vitamin D are important to bone health and folate is important in the female athlete); therefore, the appropriate supplement for a given situation should be carefully considered and consumed with the goal to augment an athlete's diet.
Collapse
Affiliation(s)
- Peter Peeling
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, 6009, Australia.
- Western Australian Institute of Sport, Mt Claremont, WA, 6010, Australia.
| | - Marc Sim
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6067, Australia
- Medical School, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Alannah K A McKay
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
4
|
Burke LM, Ackerman KE, Heikura IA, Hackney AC, Stellingwerff T. Mapping the complexities of Relative Energy Deficiency in Sport (REDs): development of a physiological model by a subgroup of the International Olympic Committee (IOC) Consensus on REDs. Br J Sports Med 2023; 57:1098-1108. [PMID: 37752007 DOI: 10.1136/bjsports-2023-107335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
The 2023 International Olympic Committee (IOC) consensus statement on Relative Energy Deficiency in Sport (REDs) notes that exposure to low energy availability (LEA) exists on a continuum between adaptable and problematic LEA, with a range of potential effects on both health and performance. However, there is variability in the outcomes of LEA exposure between and among individuals as well as the specific manifestations of REDs. We outline a framework for a 'systems biology' examination of the effect of LEA on individual body systems, with the eventual goal of creating an integrated map of body system interactions. We provide a template that systematically identifies characteristics of LEA exposure (eg, magnitude, duration, origin) and a variety of moderating factors (eg, medical history, diet and training characteristics) that could exacerbate or attenuate the type and severity of impairments to health and performance faced by an individual athlete. The REDs Physiological Model may assist the diagnosis of underlying causes of problems associated with LEA, with a personalised and nuanced treatment plan promoting compliance and treatment efficacy. It could also be used in the strategic prevention of REDs by drawing attention to scenarios of LEA in which impairments of health and performance are most likely, based on knowledge of the characteristics of the LEA exposure or moderating factors that may increase the risk of harmful outcomes. We challenge researchers and practitioners to create a unifying and dynamic physiological model for each body system that can be continuously updated and mapped as knowledge is gained.
Collapse
Affiliation(s)
- Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ida A Heikura
- Canadian Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| | - Anthony C Hackney
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Trent Stellingwerff
- Canadian Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
5
|
Smith ES, McKay AKA, Kuikman M, Ackerman KE, Harris R, Elliott-Sale KJ, Stellingwerff T, Burke LM. Managing Female Athlete Health: Auditing the Representation of Female versus Male Participants among Research in Supplements to Manage Diagnosed Micronutrient Issues. Nutrients 2022; 14:3372. [PMID: 36014878 PMCID: PMC9412577 DOI: 10.3390/nu14163372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022] Open
Abstract
Micronutrient deficiencies and sub-optimal intakes among female athletes are a concern and are commonly prevented or treated with medical supplements. However, it is unclear how well women have been considered in the research underpinning current supplementation practices. We conducted an audit of the literature supporting the use of calcium, iron, and vitamin D. Of the 299 studies, including 25,171 participants, the majority (71%) of participants were women. Studies with exclusively female cohorts (37%) were also more prevalent than those examining males in isolation (31%). However, study designs considering divergent responses between sexes were sparse, accounting for 7% of the literature. Moreover, despite the abundance of female participants, the quality and quantity of the literature specific to female athletes was poor. Just 32% of studies including women defined menstrual status, while none implemented best-practice methodologies regarding ovarian hormonal control. Additionally, only 10% of studies included highly trained female athletes. Investigations of calcium supplementation were particularly lacking, with just two studies conducted in highly trained women. New research should focus on high-quality investigations specific to female athletes, alongside evaluating sex-based differences in the response to calcium, iron, and vitamin D, thus ensuring the specific needs of women have been considered in current protocols involving medical supplements.
Collapse
Affiliation(s)
- Ella S. Smith
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - Alannah K. A. McKay
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - Megan Kuikman
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - Kathryn E. Ackerman
- Wu Tsai Female Athlete Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rachel Harris
- Female Athlete Performance and Health Initiative, Australian Institute of Sport, Canberra, ACT 2617, Australia
- Perth Orthopaedic and Sports Medicine Research Institute, West Perth, WA 6005, Australia
| | | | - Trent Stellingwerff
- Canadian Sport Institute-Pacific, Institute for Sport Excellence, 4371 Interurban Road, Victoria, BC V9E 2C5, Canada
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Louise M. Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| |
Collapse
|