1
|
Zhu C, Miao L, Wei K, Shi D, Gao J. Coronary microvascular dysfunction. Microvasc Res 2024; 153:104652. [PMID: 38211894 DOI: 10.1016/j.mvr.2024.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Coronary microvascular dysfunction (CMD) is a key mechanism underlying ischemic heart disease (IHD), yet its diagnosis and treatment remain challenging. This article presents a comprehensive overview of CMD research, covering its pathogenesis, diagnostic criteria, assessment techniques, risk factors, and therapeutic strategies. Additionally, it highlights the prospects for future CMD research. The article aims at advocating early and effective intervention for CMD and improving the prognosis of IHD.
Collapse
Affiliation(s)
- Chunlin Zhu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Miao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kangkang Wei
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jie Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Aries A, Vignon C, Zanetti C, Goubaud A, Cormier A, Diederichs A, Lahlil R, Hénon P, Garitaonandia I. Development of a potency assay for CD34 + cell-based therapy. Sci Rep 2023; 13:19665. [PMID: 37952030 PMCID: PMC10640600 DOI: 10.1038/s41598-023-47079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
We have previously shown that intracardiac delivery of autologous CD34+ cells after acute myocardial infarction (AMI) is safe and leads to long term improvement. We are now conducting a multicenter, randomized, controlled Phase I/IIb study in post-AMI to investigate the safety and efficacy of intramyocardial injection of expanded autologous CD34+ cells (ProtheraCytes) (NCT02669810). Here, we conducted a series of in vitro studies characterizing the growth factor secretion, exosome secretion, gene expression, cell surface markers, differentiation potential, and angiogenic potential of ProtheraCytes clinical batches to develop a potency assay. We show that ProtheraCytes secrete vascular endothelial growth factor (VEGF) and its concentration is significantly correlated with the number of CD34+ cells obtained after expansion. ProtheraCytes also secrete exosomes containing proangiogenic miRNAs (126, 130a, 378, 26a), antiapoptotic miRNAs (21 and 146a), antifibrotic miRNAs (133a, 24, 29b, 132), and miRNAs promoting myocardial regeneration (199a and 590). We also show that ProtheraCytes have in vitro angiogenic activity, express surface markers of endothelial progenitor cells, and can differentiate in vitro into endothelial cells. After the in vitro characterization of multiple ProtheraCytes clinical batches, we established that measuring the concentration of VEGF provided the most practical, reliable, and consistent potency assay.
Collapse
Affiliation(s)
- Anne Aries
- Institut de Recherche en Hématologie et Transplantation, Hôpital du Hasenrain, 87 Avenue d'Altkirch, Mulhouse, France
| | | | - Céline Zanetti
- Institut de Recherche en Hématologie et Transplantation, Hôpital du Hasenrain, 87 Avenue d'Altkirch, Mulhouse, France
| | | | | | | | - Rachid Lahlil
- Institut de Recherche en Hématologie et Transplantation, Hôpital du Hasenrain, 87 Avenue d'Altkirch, Mulhouse, France
| | - Philippe Hénon
- Institut de Recherche en Hématologie et Transplantation, Hôpital du Hasenrain, 87 Avenue d'Altkirch, Mulhouse, France
- CellProthera SAS, 12 Rue du Parc, Mulhouse, France
| | | |
Collapse
|
3
|
Tang X, Wang Z, Wang J, Cui S, Xu R, Wang Y. Functions and regulatory mechanisms of resting hematopoietic stem cells: a promising targeted therapeutic strategy. Stem Cell Res Ther 2023; 14:73. [PMID: 37038215 PMCID: PMC10088186 DOI: 10.1186/s13287-023-03316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are the common and essential precursors of all blood cells, including immune cells, and they are responsible for the lifelong maintenance and damage repair of blood tissue homeostasis. The vast majority (> 95%) of HSCs are in a resting state under physiological conditions and are only activated to play a functional role under stress conditions. This resting state affects their long-term survival and is also closely related to the lifelong maintenance of hematopoietic function; however, abnormal changes may also be an important factor leading to the decline of immune function in the body and the occurrence of diseases in various systems. While the importance of resting HSCs has attracted increasing research attention, our current understanding of this topic remains insufficient, and the direction of clinical targeted treatments is unclear. Here, we describe the functions of HSCs, analyze the regulatory mechanisms that affect their resting state, and discuss the relationship between resting HSCs and different diseases, with a view to providing guidance for the future clinical implementation of related targeted treatments.
Collapse
Affiliation(s)
- Xinyu Tang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenzhen Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingyi Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruirong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
4
|
Vithani V, Sutariya B, Montenegro DM, Chukwu M, Ehsan P, Aburumman RN, Muthanna SI, Menon SR, Penumetcha SS. A Systematic Review of CD34+ Stem Cell Therapy as an Innovative and Efficient Treatment for the Management of Refractory Angina. Cureus 2022; 14:e32665. [PMID: 36660500 PMCID: PMC9844930 DOI: 10.7759/cureus.32665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/18/2022] [Indexed: 12/23/2022] Open
Abstract
Despite optimal medical treatment, many individuals suffering from severe coronary artery disease are not suitable candidates for further revascularization. Therapeutic angiogenesis has attracted continuous interest to increase myocardial perfusion. Cell therapy using autologous stem cells expressing Cluster of Differentiation 34 plus (CD34+) offers a special therapeutic choice for individuals with refractory angina, seeing as CD34+ stem cells can restore microcirculation. We searched PubMed, PubMed Central (PMC), and Google Scholar to find the relevant articles to write this systematic review about the role of CD34+ stem cell therapy in the management of refractory angina. Additionally, we provided a brief explanation of CD34+ cells and their mechanism of action. Along with the positive finding of other trials, a recent open-label, single-center intracoronary CD34+ cell therapy for the treatment of coronary endothelial dysfunction in patients with angina and nonobstructive coronary arteries (IMPROvE-CED) clinical trial published in 2022 concluded improvement in coronary blood flow, a significant reduction in daily as-needed sublingual nitroglycerin use and improvement in Canadian Cardiovascular Society (CCS) angina class were observed after autologous CD34+ cell treatment. In conclusion, refractory angina management and overall prognosis may be revolutionized once this treatment is approved.
Collapse
Affiliation(s)
- Vruti Vithani
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- General Medicine, Government Medical College, Surat, IND
| | - Bansi Sutariya
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- General Medicine, Government Medical College, Surat, IND
| | - Diana M Montenegro
- General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Michael Chukwu
- General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- General Surgery, Pilgrim Hospital, Boston, GBR
| | - Paghunda Ehsan
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Hayatabad Medical Complex Peshawar, Peshawar, PAK
| | - Rawia N Aburumman
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Mu'tah University, Amman, JOR
| | - Shivani Ishwarya Muthanna
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, IND
| | | | - Sai Sri Penumetcha
- General Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- General Medicine, Chalmeda Anand Rao Institute of Medical Sciences, Karimnagar, IND
| |
Collapse
|
5
|
Vrtovec B, Frljak S, Poglajen G, Zemljic G, Cerar A, Sever M, Haddad F, Wu JC. A PILOT CLINICAL TRIAL OF CELL THERAPY IN HEART FAILURE WITH PRESERVED EJECTION FRACTION. Eur J Heart Fail 2022; 24:1441-1449. [PMID: 35775390 PMCID: PMC9540623 DOI: 10.1002/ejhf.2596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/19/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Aims We investigated the effects of CD34+ cell therapy in patients with heart failure with preserved ejection fraction (HFpEF). Methods and results In a prospective pilot study, we enrolled 30 patients with HFpEF. In Phase 1, patients were treated with medical therapy for 6 months. Thereafter, all patients underwent CD34+ cell transplantation. Using electroanatomical mapping, we measured local mechanical diastolic delay and myocardial viability to guide the targeting of cell injections. Patients were followed for 6 months after cell transplantation (Phase 2), and the primary endpoint was the difference in change in E/e′ between Phase 1 and Phase 2. In Phase 1, the decrease in E/e′ was significantly less pronounced than in Phase 2 (−0.33 ± 1.72 vs. −3.77 ± 2.66, p = 0.001). During Phase 1, there was no significant change in global systolic strain (GLS; from −12.5 ± 2.4% to −12.8 ± 2.6%, p = 0.77), N‐terminal pro‐B‐type natriuretic peptide (NT‐proBNP; from 1463 ± 1247 pg/ml to 1298 ± 931 pg/ml, p = 0.31), or 6‐min walk test (6MWT; from 391 ± 75 m to 402 ± 93 m, p = 0.42). In Phase 2, an improvement was noted in NT‐proBNP (from 1298 ± 931 pg/ml to 887 ± 809 pg/ml, p = 0.02) and 6MWT (from 402 ± 93 m to 438 ± 72 m, p = 0.02). Although GLS did not change significantly in Phase 2 (from −12.8 ± 2.6% to −13.8 ± 2.7%, p = 0.36), we found improved local systolic strain at cell injection sites (−3.4 ± 6.8%, p = 0.005). Conclusions In this non‐randomized trial, transendocardial CD34+ cell therapy in HFpEF was associated with an improvement in E/e′, NT‐proBNP, exercise capacity, and local myocardial strain at the cell injection sites. Clinical Trial Registration: ClinicalTrials.gov NCT02923609.
Collapse
Affiliation(s)
- Bojan Vrtovec
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, UMC Ljubljana, Slovenia
| | - Sabina Frljak
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, UMC Ljubljana, Slovenia
| | - Gregor Poglajen
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, UMC Ljubljana, Slovenia
| | - Gregor Zemljic
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, UMC Ljubljana, Slovenia
| | - Andraz Cerar
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, UMC Ljubljana, Slovenia
| | - Matjaz Sever
- Department of Hematology, UMC Ljubljana, Slovenia
| | - Francois Haddad
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
Sforza A, Vigorelli V, Rurali E, Perrucci GL, Gambini E, Arici M, Metallo A, Rinaldi R, Fiorina P, Barbuti A, Raucci A, Sacco E, Rocchetti M, Pompilio G, Genovese S, Vinci MC. Liraglutide preserves CD34+ stem cells from dysfunction Induced by high glucose exposure. Cardiovasc Diabetol 2022; 21:51. [PMID: 35397526 PMCID: PMC8994898 DOI: 10.1186/s12933-022-01486-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Background Glucagon like peptide-1 receptor agonists (GLP-1RAs) have shown to reduce mortality and cardiovascular events in patients with type 2 diabetes mellitus (T2DM). Since the impairment in number and function of vasculotrophic circulating CD34+ hematopoietic stem progenitor cells (HSPCs) in T2D has been reported to increase cardiovascular (CV) risk, we hypothesized that one of the mechanisms whereby GLP-1 RAs exert CV protective effects may be related to the ability to improve CD34+ HSPC function. Methods In cord blood (CB)-derived CD34+ HSPC, the expression of GLP-1 receptor (GLP-1R) mRNA, receptor protein and intracellular signaling was evaluated by RT-qPCR and Western Blot respectively. CD34+ HSPCs were exposed to high glucose (HG) condition and GLP-1RA liraglutide (LIRA) was added before as well as after functional impairment. Proliferation, CXCR4/SDF-1α axis activity and intracellular ROS production of CD34+ HSPC were evaluated. Results CD34+ HSPCs express GLP-1R at transcriptional and protein level. LIRA treatment prevented and rescued HSPC proliferation, CXCR4/SDF-1α axis activity and metabolic imbalance from HG-induced impairment. LIRA stimulation promoted intracellular cAMP accumulation as well as ERK1/2 and AKT signaling activation. The selective GLP-1R antagonist exendin (9–39) abrogated LIRA-dependent ERK1/2 and AKT phosphorylation along with the related protective effects. Conclusion We provided the first evidence that CD34+ HSPC express GLP-1R and that LIRA can favorably impact on cell dysfunction due to HG exposure. These findings open new perspectives on the favorable CV effects of GLP-1 RAs in T2DM patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01486-9.
Collapse
|
7
|
Henry TD, Bairey Merz CN, Wei J, Corban MT, Quesada O, Joung S, Kotynski CL, Wang J, Lewis M, Schumacher AM, Bartel RL, Takagi H, Shah V, Lee A, Sietsema WK, Losordo DW, Lerman A. Autologous CD34+ Stem Cell Therapy Increases Coronary Flow Reserve and Reduces Angina in Patients With Coronary Microvascular Dysfunction. Circ Cardiovasc Interv 2022; 15:e010802. [PMID: 35067072 PMCID: PMC8843403 DOI: 10.1161/circinterventions.121.010802] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Coronary microvascular dysfunction results in angina and adverse outcomes in patients with evidence of ischemia and nonobstructive coronary artery disease; however, no specific therapy exists. CD34+ cell therapy increases microvasculature in preclinical models and improves symptoms, exercise tolerance, and mortality in refractory angina patients with obstructive coronary artery disease. The objective of this research was to evaluate the safety, tolerability, and efficacy of intracoronary CD34+ cell therapy in patients with coronary microvascular dysfunction. METHODS We conducted a 2-center, 20-participant trial of autologous CD34+ cell therapy (protocol CLBS16-P01; NCT03508609) in patients with ischemia and nonobstructive coronary artery disease with persistent angina and coronary flow reserve ≤2.5. Efficacy measures included coronary flow reserve, angina frequency, Canadian Cardiovascular Society angina class, Seattle Angina Questionnaire, SF-36, and modified Bruce exercise treadmill test obtained at baseline and 6 months after treatment. Autologous CD34+ cells (CLBS16) were mobilized by administration of granulocyte-colony stimulating factor 5µg/kg/day for 5 days and collected by leukapheresis. Participants received a single intracoronary left anterior descending infusion of isolated CD34+ cells in medium that enhances cell function. RESULTS Coronary flow reserve improved from 2.08±0.32 at baseline to 2.68±0.79 at 6 months after treatment (P<0.005). Angina frequency decreased (P<0.004), Canadian Cardiovascular Society class improved (P<0.001), and quality of life improved as assessed by the Seattle Angina Questionnaire (P≤0.03, all scales) and SF-36 (P≤0.04, all scales). There were no cell-related serious adverse events. CONCLUSIONS In this pilot clinical trial of microvascular angina, patients with ischemia and nonobstructive coronary artery disease receiving intracoronary infusion of CD34+ cell therapy had higher coronary flow reserve, less severe angina, and better quality of life at 6 months. The current study supports a potential therapeutic role for CD34+ cells in patients with microvascular angina. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03508609.
Collapse
Affiliation(s)
- Timothy D. Henry
- The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, OH (O.Q., T.D.H.)
| | - C. Noel Bairey Merz
- Barbra Streisand Women’s Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (C.N.B.M., J.W., S.J.)
| | - Janet Wei
- Barbra Streisand Women’s Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (C.N.B.M., J.W., S.J.)
| | | | - Odayme Quesada
- The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, OH (O.Q., T.D.H.)
| | - Sandy Joung
- Barbra Streisand Women’s Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (C.N.B.M., J.W., S.J.)
| | - Christine L. Kotynski
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| | - Jian Wang
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| | - Michelle Lewis
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| | - Ann M. Schumacher
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| | - Ronnda L. Bartel
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| | - Hiroshi Takagi
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| | - Vishal Shah
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| | - Anna Lee
- Mayo Clinic, Rochester, MN (M.T.C., A.L.)
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| | - William K. Sietsema
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| | - Douglas W. Losordo
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| | - Amir Lerman
- Caladrius Biosciences, Basking Ridge, NJ (C.L.K., J.W., M.L., A.M.S., R.L.B., H.T., V.S., A.L., W.K.S., D.W.L.)
| |
Collapse
|
8
|
Angiotensin Receptor Blocker and Neprilysin Inhibitor Suppresses Cardiac Dysfunction by Accelerating Myocardial Angiogenesis in Apolipoprotein E-Knockout Mice Fed a High-Fat Diet. J Renin Angiotensin Aldosterone Syst 2021; 2021:9916789. [PMID: 34394711 PMCID: PMC8357528 DOI: 10.1155/2021/9916789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Materials and Methods Male apolipoprotein E-knockout mice fed a high-fat diet were divided into control (CTL), valsartan (30 mg/kg) (VAL), sacubitril (30 mg/kg) (SAC), and valsartan plus sacubitril (30 mg/kg each) (VAL/SAC) groups after 4 weeks of prefeeding and were subsequently treated for 12 weeks. Results The VAL/SAC group exhibited significantly higher serum brain natriuretic peptide levels; more subtle changes in left ventricular systolic diameter, fractional shortening, and ejection fraction, and significantly higher expression levels of natriuretic peptide precursor B and markers of angiogenesis, including clusters of differentiation 34, vascular endothelial growth factor A, and monocyte chemotactic protein 1, than the CTL group. Conclusions Valsartan plus sacubitril preserved left ventricular systolic function in apolipoprotein E-knockout mice fed a high-fat diet. This result suggests that myocardial angiogenic factors induced by ARNI might provide cardioprotective effects.
Collapse
|
9
|
Zaki MM, Lesha E, Said K, Kiaee K, Robinson-McCarthy L, George H, Hanna A, Appleton E, Liu S, Ng AHM, Khoshakhlagh P, Church GM. Cell therapy strategies for COVID-19: Current approaches and potential applications. SCIENCE ADVANCES 2021; 7:eabg5995. [PMID: 34380619 PMCID: PMC8357240 DOI: 10.1126/sciadv.abg5995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/22/2021] [Indexed: 05/03/2023]
Abstract
Coronavirus disease 2019 (COVID-19) continues to burden society worldwide. Despite most patients having a mild course, severe presentations have limited treatment options. COVID-19 manifestations extend beyond the lungs and may affect the cardiovascular, nervous, and other organ systems. Current treatments are nonspecific and do not address potential long-term consequences such as pulmonary fibrosis, demyelination, and ischemic organ damage. Cell therapies offer great potential in treating severe COVID-19 presentations due to their customizability and regenerative function. This review summarizes COVID-19 pathogenesis, respective areas where cell therapies have potential, and the ongoing 89 cell therapy trials in COVID-19 as of 1 January 2021.
Collapse
Affiliation(s)
- Mark M Zaki
- GC Therapeutics Inc., Cambridge, MA 02139, USA
- Department of Neurosurgery, University of Michigan, 1500 E Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Emal Lesha
- GC Therapeutics Inc., Cambridge, MA 02139, USA
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Khaled Said
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kiavash Kiaee
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Angy Hanna
- Department of Medicine, Beaumont Hospital, Royal Oak, MI, USA
| | - Evan Appleton
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Songlei Liu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Alex H M Ng
- GC Therapeutics Inc., Cambridge, MA 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Parastoo Khoshakhlagh
- GC Therapeutics Inc., Cambridge, MA 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - George M Church
- GC Therapeutics Inc., Cambridge, MA 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| |
Collapse
|
10
|
Matta A, Nader V, Galinier M, Roncalli J. Transplantation of CD34+ cells for myocardial ischemia. World J Transplant 2021; 11:138-146. [PMID: 34046316 PMCID: PMC8131931 DOI: 10.5500/wjt.v11.i5.138] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
CD34+ cells are multipotent hematopoietic stem cells also known as endothelial progenitor cells and are useful in regenerative medicine. Naturally, these cells are mobilized from the bone marrow into peripheral circulation in response to ischemic tissue injury. CD34+ cells are known for their high proliferative and differentiation capacities that play a crucial role in the repair process of myocardial damage. They have an important paracrine activity in secreting factors to stimulate vasculogenesis, reduce endothelial cells and cardiomyocytes apoptosis, remodel extracellular matrix and activate additional progenitor cells. Once they migrate to the target site, they enhance angiogenesis, neovascularization and tissue regeneration. Several trials have demonstrated the safety and efficacy of CD34+ cell therapy in different settings, such as peripheral limb ischemia, stroke and cardiovascular disease. Herein, we review the potential utility of CD34+ cell transplantation in acute myocardial infarction, refractory angina and ischemic heart failure.
Collapse
Affiliation(s)
- Anthony Matta
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, Toulouse 31059, France
- Faculty of Medicine, Holy Spirit University of Kaslik, Kaslik 00000, Lebanon
| | - Vanessa Nader
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, Toulouse 31059, France
- Faculty of Pharmacy, Lebanese University, Beirut 961, Lebanon
| | - Michel Galinier
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, Toulouse 31059, France
| | - Jerome Roncalli
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, Toulouse 31059, France
| |
Collapse
|
11
|
Rai B, Shukla J, Henry TD, Quesada O. Angiogenic CD34 Stem Cell Therapy in Coronary Microvascular Repair-A Systematic Review. Cells 2021; 10:1137. [PMID: 34066713 PMCID: PMC8151216 DOI: 10.3390/cells10051137] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemia with non-obstructive coronary arteries (INOCA) is an increasingly recognized disease, with a prevalence of 3 to 4 million individuals, and is associated with a higher risk of morbidity, mortality, and a worse quality of life. Persistent angina in many patients with INOCA is due to coronary microvascular dysfunction (CMD), which can be difficult to diagnose and treat. A coronary flow reserve <2.5 is used to diagnose endothelial-independent CMD. Antianginal treatments are often ineffective in endothelial-independent CMD and thus novel treatment modalities are currently being studied for safety and efficacy. CD34+ cell therapy is a promising treatment option for these patients, as it has been shown to promote vascular repair and enhance angiogenesis in the microvasculature. The resulting restoration of the microcirculation improves myocardial tissue perfusion, resulting in the recovery of coronary microvascular function, as evidenced by an improvement in coronary flow reserve. A pilot study in INOCA patients with endothelial-independent CMD and persistent angina, treated with autologous intracoronary CD34+ stem cells, demonstrated a significant improvement in coronary flow reserve, angina frequency, Canadian Cardiovascular Society class, and quality of life (ESCaPE-CMD, NCT03508609). This work is being further evaluated in the ongoing FREEDOM (NCT04614467) placebo-controlled trial.
Collapse
Affiliation(s)
- Balaj Rai
- Lindner Center for Research, The Christ Hospital, Cincinnati, OH 45219, USA; (B.R.); (T.D.H.)
| | - Janki Shukla
- Department of Internal Medicine, University of Cincinnati Medical School, Cincinnati, OH 45219, USA;
| | - Timothy D. Henry
- Lindner Center for Research, The Christ Hospital, Cincinnati, OH 45219, USA; (B.R.); (T.D.H.)
| | - Odayme Quesada
- Lindner Center for Research, The Christ Hospital, Cincinnati, OH 45219, USA; (B.R.); (T.D.H.)
- Women’s Heart Center, Vascular and Lung Institute, The Christ Hospital, Cincinnati, OH 45219, USA
| |
Collapse
|
12
|
Gu Y, Rampin A, Alvino VV, Spinetti G, Madeddu P. Cell Therapy for Critical Limb Ischemia: Advantages, Limitations, and New Perspectives for Treatment of Patients with Critical Diabetic Vasculopathy. Curr Diab Rep 2021; 21:11. [PMID: 33651185 PMCID: PMC7925447 DOI: 10.1007/s11892-021-01378-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW To provide a highlight of the current state of cell therapy for the treatment of critical limb ischemia in patients with diabetes. RECENT FINDINGS The global incidence of diabetes is constantly growing with consequent challenges for healthcare systems worldwide. In the UK only, NHS costs attributed to diabetic complications, such as peripheral vascular disease, amputation, blindness, renal failure, and stroke, average £10 billion each year, with cost pressure being estimated to get worse. Although giant leaps forward have been registered in the scope of early diagnosis and optimal glycaemic control, an effective treatment for critical limb ischemia is still lacking. The present review aims to provide an update of the ongoing work in the field of regenerative medicine. Recent advancements but also limitations imposed by diabetes on the potential of the approach are addressed. In particular, the review focuses on the perturbation of non-coding RNA networks in progenitor cells and the possibility of using emerging knowledge on molecular mechanisms to design refined protocols for personalized therapy. The field of cell therapy showed rapid progress but has limitations. Significant advances are foreseen in the upcoming years thanks to a better understanding of molecular bottlenecks associated with the metabolic disorders.
Collapse
Affiliation(s)
- Y Gu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - A Rampin
- Laboratory of Cardiovascular Research, IRCCS, MultiMedica, Milan, Italy
| | - V V Alvino
- Bristol Medical School, Translational Health Sciences, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - G Spinetti
- Laboratory of Cardiovascular Research, IRCCS, MultiMedica, Milan, Italy
| | - P Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
13
|
Shafiee S, Heidarpour M, Sabbagh S, Amini E, Saffari H, Dolati S, Meamar R. Stem cell transplantation therapy for diabetic foot ulcer: a narrative review. ASIAN BIOMED 2021; 15:3-18. [PMID: 37551298 PMCID: PMC10388749 DOI: 10.2478/abm-2021-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Diabetes mellitus is a chronic metabolic disease associated with high cardiovascular risk. A vascular complication of diabetes is foot ulcers. Diabetic foot ulcers are prevalent and substantially reduce the quality of life of patients who have them. Currently, diabetic foot ulcer is a major problem for wound care specialists, and its treatment requires considerable health care resources. So far, various therapeutic modalities have been proposed to treat diabetic foot ulcers and one of them is stem cell-based therapy. Stem cell-based therapy has shown great promise for the treatment of diabetic foot ulcers. This strategy has been shown to be safe and effective in both preclinical and clinical trials. In this review, we provide an overview of the stem cell types and possible beneficial effects of stem cell transplantation therapy for diabetic foot ulcers, and an overview of the current status of stem cell research in both preclinical and clinical trial stages of treatment strategies for diabetic foot ulcers.
Collapse
Affiliation(s)
- Sahar Shafiee
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan81746-73461, Iran
- Clinical Development Research Center, Islamic Azad University, Najafabad Branch, Isfahan81737-35131, Iran
| | - Maryam Heidarpour
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan81737-35131, Iran
| | - Sima Sabbagh
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan81746-73461, Iran
- Clinical Development Research Center, Islamic Azad University, Najafabad Branch, Isfahan81737-35131, Iran
| | - Elham Amini
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan81746-73461, Iran
- Clinical Development Research Center, Islamic Azad University, Najafabad Branch, Isfahan81737-35131, Iran
| | - Hanieh Saffari
- Clinical Development Research Center, Islamic Azad University, Najafabad Branch, Isfahan81737-35131, Iran
| | - Sara Dolati
- Clinical Development Research Center, Islamic Azad University, Najafabad Branch, Isfahan81737-35131, Iran
| | - Rokhsareh Meamar
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan81746-73461, Iran
| |
Collapse
|
14
|
Evans WS, Sapp RM, Kim KI, Heilman JM, Hagberg J, Prior SJ. Effects of Exercise Training on the Paracrine Function of Circulating Angiogenic Cells. Int J Sports Med 2020; 42:1047-1057. [PMID: 33124014 DOI: 10.1055/a-1273-8390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Exercise training has various benefits on cardiovascular health, and circulating angiogenic cells have been proposed as executing these changes. Work from the late 1990s supported an important role of these circulating post-natal cells in contributing to the maintenance and repair of the endothelium and vasculature. It was later found that circulating angiogenic cells were a heterogenous population of cells and primarily functioned in a paracrine manner by adhering to damaged endothelium and releasing growth factors. Many studies have discovered novel circulating angiogenic cell secreted proteins, microRNA and extracellular vesicles that mediate their angiogenic potential, and some studies have shown that both acute and chronic aerobic exercise training have distinct benefits. This review highlights work establishing an essential role of secreted factors from circulating angiogenic cells and summarizes studies regarding the effects of exercise training on these factors. Finally, we highlight the various gaps in the literature in hopes of guiding future work.
Collapse
Affiliation(s)
- William S Evans
- Department of Kinesiology, University of Maryland School of Public Health, College Park
| | - Ryan M Sapp
- Department of Kinesiology, University of Maryland School of Public Health, College Park
| | - Katherine I Kim
- Department of Kinesiology, University of Maryland School of Public Health, College Park
| | - James M Heilman
- Department of Kinesiology, University of Maryland School of Public Health, College Park
| | - James Hagberg
- Department of Kinesiology, University of Maryland School of Public Health, College Park
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park.,Baltimore Veterans Affairs Geriatric Research, Education and Clinical Center, Department of Veterans Affairs, Baltimore
| |
Collapse
|
15
|
Jalilian E, Elkin K, Shin SR. Novel Cell-Based and Tissue Engineering Approaches for Induction of Angiogenesis as an Alternative Therapy for Diabetic Retinopathy. Int J Mol Sci 2020; 21:E3496. [PMID: 32429094 PMCID: PMC7278952 DOI: 10.3390/ijms21103496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/28/2023] Open
Abstract
Diabetic retinopathy (DR) is the most frequent microvascular complication of long-term diabetes and the most common cause of blindness, increasing morbidity in the working-age population. The most effective therapies for these complications include laser photocoagulation and anti-vascular endothelial growth factor (VEGF) intravitreal injections. However, laser and anti-VEGF drugs are untenable as a final solution as they fail to address the underlying neurovascular degeneration and ischemia. Regenerative medicine may be a more promising approach, aimed at the repair of blood vessels and reversal of retinal ischemia. Stem cell therapy has introduced a novel way to reverse the underlying ischemia present in microvascular complications in diseases such as diabetes. The present review discusses current treatments, their side effects, and novel cell-based and tissue engineering approaches as a potential alternative therapeutic approach.
Collapse
Affiliation(s)
- Elmira Jalilian
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Kenneth Elkin
- Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA;
| |
Collapse
|
16
|
Baruah J, Wary KK. Exosomes in the Regulation of Vascular Endothelial Cell Regeneration. Front Cell Dev Biol 2020; 7:353. [PMID: 31998716 PMCID: PMC6962177 DOI: 10.3389/fcell.2019.00353] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Exosomes have been described as nanoscale membranous extracellular vesicles that emerge from a variety of cells and tissues and are enriched with biologically active genomic and non-genomic biomolecules capable of transducing cell to cell communication. Exosome release, and exosome mediated signaling and cross-talks have been reported in several pathophysiological states. Therefore, exosomes have the potential to become suitable for the diagnosis, prognosis and treatment of specific diseases, including endothelial cell (EC) dysfunction and regeneration. The role of EC-derived exosomes in the mechanisms of cardiovascular tissue regenerative processes represents currently an area of intense research activity. Recent studies have described the potential of exosomes to influence the pathophysiology of immune signaling, tumor metastasis, and angiogenesis. In this review, we briefly discuss progress made in our understanding of the composition and the roles of exosomes in relation to EC regeneration as well as revascularization of ischemic tissues.
Collapse
Affiliation(s)
- Jugajyoti Baruah
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States
| | - Kishore K Wary
- Department of Pharmacology, The University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
17
|
Fadini GP, Spinetti G, Santopaolo M, Madeddu P. Impaired Regeneration Contributes to Poor Outcomes in Diabetic Peripheral Artery Disease. Arterioscler Thromb Vasc Biol 2019; 40:34-44. [PMID: 31510789 DOI: 10.1161/atvbaha.119.312863] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Diabetes mellitus increases the risk and accelerates the course of peripheral artery disease, making patients more susceptible to ischemic events and infections and delaying tissue healing. Current understanding of pathogenic mechanisms is mainly based on the negative influence of diabetes mellitus on atherosclerotic disease and inflammation. In recent years, the novel concept that diabetes mellitus can impinge on endogenous regenerative processes has been introduced. Diabetes mellitus affects regeneration at the local level, disturbing proper angiogenesis, collateral artery formation, and muscle repair. Recent evidence indicates that an impairment in vascular mural cells, alias pericytes, may participate in diabetic peripheral vasculopathy. Moreover, the bone marrow undergoes a global remodeling, consisting of microvessels and sensory neurons rarefaction and fat accumulation, which creates a hostile microenvironment for resident stem cells. Bone marrow remodeling is also responsible for detrimental systemic effects. In particular, the aid of reparative cells from the bone marrow is compromised: these elements are released in an improper manner and become harmful vectors of inflammatory and antiangiogenic molecules and noncoding RNAs. This new understanding of impaired regeneration is inspiring new therapeutic options for the treatment of ischemic complications in people with diabetes mellitus.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- From the Department of Medicine, University of Padova, Italy (G.P.F.).,Veneto Institute of Molecular Medicine, Padova, Italy (G.P.F.)
| | - Gaia Spinetti
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy (G.S.)
| | - Marianna Santopaolo
- Experimental Cardiovascular Medicine, University of Bristol, United Kingdom (M.S., P.M.)
| | - Paolo Madeddu
- Experimental Cardiovascular Medicine, University of Bristol, United Kingdom (M.S., P.M.)
| |
Collapse
|