1
|
Bouhadoun A, Manikpurage HD, Deschildre C, Zalghout S, Dubourdeau M, Urbach V, Ho-Tin-Noe B, Deschamps L, Michel JB, Longrois D, Norel X. DHA, RvD1, RvD5, and MaR1 reduce human coronary arteries contractions induced by PGE 2. Prostaglandins Other Lipid Mediat 2023; 165:106700. [PMID: 36528331 DOI: 10.1016/j.prostaglandins.2022.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
In patients with coronary artery disease (CAD), plasma levels of pro-inflammatory lipid mediators such as PGE2 and TxA2 are increased. They could increase vascular contraction while EPA and DHA could reduce it. Studies have been mostly conducted on animal vessels. Therefore, the aim of the study was to investigate if EPA, DHA, and DHA-derived metabolites: RvD1, RvD5 and MaR1 can modulate contraction of human coronary arteries (HCA) induced by PGE2 or TxA2 stable analogue (U46619). DHA and EPA relaxed HCA pre-contracted with PGE2. 18 h-incubation with DHA but not EPA reduced the PGE2-induced contractions. Pre-incubation with RvD1, RvD5 and MaR1 reduced the PGE2-induced contractions. Indomethacin did not significantly modify the PGE2 responses. L-NOARG (inhibitor of nitric oxide synthase), reduced only the PGE2-induced contractions in RvD1-treated rings. Finally, FPR2/ALX, GPR32 and LGR6 receptors are detected in HCA by immunofluorescence. Our results indicate that DHA and its metabolites could be beneficial for HCA blood flow and could be a therapeutic perspective for patients with CAD.
Collapse
Affiliation(s)
- Amel Bouhadoun
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France
| | - Hasanga D Manikpurage
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada
| | - Catherine Deschildre
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France
| | - Sara Zalghout
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France
| | | | | | - Benoît Ho-Tin-Noe
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France
| | - Lydia Deschamps
- Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Université Paris Cité Paris, France
| | - Jean-Baptiste Michel
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France
| | - Dan Longrois
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France; Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Université Paris Cité Paris, France
| | - Xavier Norel
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France.
| |
Collapse
|
2
|
Takenouchi Y, Ohtake K, Nobe K, Kasono K. Eicosapentaenoic acid ethyl ester improves endothelial dysfunction in type 2 diabetic mice. Lipids Health Dis 2018; 17:118. [PMID: 29788974 PMCID: PMC5964666 DOI: 10.1186/s12944-018-0770-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/04/2018] [Indexed: 12/29/2022] Open
Abstract
Background Eicosapentaenoic acid (EPA) is thought to have many beneficial effects, such as anti-atherosclerogenic and anti-inflammatory properties. However, few studies have reported its effects of endothelial dysfunction in diabetes and its direct effects on the aorta. Here, we investigated the effects of EPA treatment on impaired endothelium-dependent relaxation of the aorta in KKAy mice, a model of type 2 diabetes. Methods Male KKAy mice were fed a high-fat (HF) diet for 8 weeks to induce diabetes, after which they were divided into two groups. One group was fed a HF diet, and the other group was fed a HF diet containing EPA ethyl ester (EPA-E, 10 mg/day) for 4 weeks. Then, the vascular reactivities of prepared aortic rings were measured in an organ bath to determine if EPA-E administration changed vascular function in these diabetic mice. In addition, we examined effect of EPA-E and its metabolites to vascular action using aorta separated from C57BL/6 J mice. Results Although EPA-E administration did not change the plasma glucose and insulin levels in diabetic mice, total cholesterol levels were significantly decreased. The aorta extracted from EPA-E untreated diabetic mice showed impaired endothelium-dependent relaxation in response to acetylcholine (ACh). However, EPA-E administration improved the relaxation response to ACh to the control levels observed in non-diabetic C57BL/6 J mice. On the other hand, endothelium-independent relaxation in response to sodium nitroprusside did not significantly differ among these three groups. The enhanced contractile response by phenylephrine in diabetic mice was not altered by the administration of EPA-E. In addition, the direct administration of EPA-E metabolites such as EPA, docosahexaenoic acid, and docosapentaenoic acid led to vasodilation in the aortic rings of C57BL/6 J mice. Conclusion These results showed that chronic EPA-E administration prevented the development of endothelial dysfunction in KKAy mice, partly via the direct action of EPA-E metabolites on the aorta.
Collapse
Affiliation(s)
- Yasuhiro Takenouchi
- Department of Pharmacology, Kawasaki Medical School, 577, Matsushima, Kurashiki, Okayama, 701-0192, Japan. .,Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, 350-0295, Japan.
| | - Kazuo Ohtake
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, 350-0295, Japan
| | - Koji Nobe
- Division of Pharmacology, Department of Pharmacology, Toxicology Therapeutics, School of Pharmacy, Showa University, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Keizo Kasono
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, 350-0295, Japan
| |
Collapse
|
3
|
Abstract
Coronary vasomotion abnormalities play important roles in the pathogenesis of ischaemic heart disease, in which endothelial dysfunction and coronary artery spasm are substantially involved. Endothelial vasodilator functions are heterogeneous depending on the vessel size, with relatively greater role of nitric oxide (NO) in conduit arteries and predominant role of endothelium-derived hyperpolarizing factor (EDHF) in resistance arteries, where endothelium-derived hydrogen peroxide serves as an important EDHF. The functions of NO synthases in the endothelium are also heterogeneous with multiple mechanisms involved, accounting for the diverse functions of the endothelium in vasomotor as well as metabolic modulations. Cardiovascular abnormalities and metabolic phenotypes become evident when all three NO synthases are deleted, suggesting the importance of both NO and EDHF. Coronary artery spasm plays important roles in the pathogenesis of a wide range of ischaemic heart disease. The central mechanism of the spasm is hypercontraction of vascular smooth muscle cells (VSMCs), but not endothelial dysfunction, where activation of Rho-kinase, a molecular switch of VSMC contraction, plays a major role through inhibition of myosin light-chain phosphatase. The Rho-kinase pathway is also involved in the pathogenesis of a wide range of cardiovascular diseases and new Rho-kinase inhibitors are under development for various indications. The registry study by the Japanese Coronary Spasm Association has demonstrated many important aspects of vasospastic angina. The ongoing international registry study of vasospastic angina in six nations should elucidate the unknown aspects of the disorder. Coronary vasomotion abnormalities appear to be an important therapeutic target in cardiovascular medicine.
Collapse
Affiliation(s)
- Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
4
|
Kanji S, Seely D, Yazdi F, Tetzlaff J, Singh K, Tsertsvadze A, Tricco AC, Sears ME, Ooi TC, Turek MA, Skidmore B, Ansari MT. Interactions of commonly used dietary supplements with cardiovascular drugs: a systematic review. Syst Rev 2012; 1:26. [PMID: 22651380 PMCID: PMC3534595 DOI: 10.1186/2046-4053-1-26] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 04/18/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND The objective of this systematic review was to examine the benefits, harms and pharmacokinetic interactions arising from the co-administration of commonly used dietary supplements with cardiovascular drugs. Many patients on cardiovascular drugs take dietary supplements for presumed benefits and may be at risk for adverse supplement-drug interactions. METHODS The Allied and Complementary Medicine Database, the Cochrane Library, EMBASE, International Bibliographic Information on Dietary Supplements and MEDLINE were searched from the inception of the review to October 2011. Grey literature was also reviewed.Two reviewers independently screened records to identify studies comparing a supplement plus cardiovascular drug(s) with the drug(s) alone. Reviewers extracted data using standardized forms, assessed the study risk of bias, graded the strength of evidence and reported applicability. RESULTS Evidence was obtained from 65 randomized clinical trials, 2 controlled clinical trials and 1 observational study. With only a few small studies available per supplement, evidence was insufficient for all predefined gradable clinical efficacy and harms outcomes, such as mortality and serious adverse events. One long-term pragmatic trial showed no benefit from co-administering vitamin E with aspirin on a composite cardiovascular outcome. Evidence for most intermediate outcomes was insufficient or of low strength, suggesting no effect. Incremental benefits were noted for triglyceridemia with omega-3 fatty acid added to statins; and there was an improvement in levels of high-density lipoprotein cholesterol with garlic supplementation when people also consumed nitrates CONCLUSIONS Evidence of low-strength indicates benefits of omega-3 fatty acids (plus statin, or calcium channel blockers and antiplatelets) and garlic (plus nitrates or warfarin) on triglycerides and HDL-C, respectively. Safety concerns, however, persist.
Collapse
Affiliation(s)
- Salmaan Kanji
- Clinical Epidemiology, The Ottawa Hospital Research Institute and the Department of Pharmacy, The Ottawa Hospital, Ottawa, ON, Canada
| | - Dugald Seely
- Clinical Epidemiology, The Ottawa Hospital Research Institute and the Department of Pharmacy, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Research & Clinical Epidemiology, The Canadian College of Naturopathic Medicine, Toronto, ON, Canada
| | - Fatemeh Yazdi
- Ottawa Methods Centre, Clinical Epidemiology Program, Ottawa Hospital Research Institute, University of Ottawa Evidence-based Practice Center, Ottawa, ON, Canada
| | - Jennifer Tetzlaff
- Ottawa Methods Centre, Clinical Epidemiology Program, Ottawa Hospital Research Institute, University of Ottawa Evidence-based Practice Center, Ottawa, ON, Canada
| | - Kavita Singh
- Ottawa Methods Centre, Clinical Epidemiology Program, Ottawa Hospital Research Institute, University of Ottawa Evidence-based Practice Center, Ottawa, ON, Canada
| | - Alexander Tsertsvadze
- Ottawa Methods Centre, Clinical Epidemiology Program, Ottawa Hospital Research Institute, University of Ottawa Evidence-based Practice Center, Ottawa, ON, Canada
| | - Andrea C Tricco
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, ON, Canada
| | - Margaret E Sears
- Ottawa Methods Centre, Clinical Epidemiology Program, Ottawa Hospital Research Institute, University of Ottawa Evidence-based Practice Center, Ottawa, ON, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Teik C Ooi
- Division of Endocrinology and Metabolism, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Michele A Turek
- Division of Cardiology, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Becky Skidmore
- Division of Cardiology, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Mohammed T Ansari
- Ottawa Methods Centre, Clinical Epidemiology Program, Ottawa Hospital Research Institute, University of Ottawa Evidence-based Practice Center, Ottawa, ON, Canada
| |
Collapse
|
5
|
Mozaffarian D, Wu JHY. (n-3) fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary? J Nutr 2012; 142:614S-625S. [PMID: 22279134 PMCID: PMC3278271 DOI: 10.3945/jn.111.149633] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/21/2011] [Accepted: 10/03/2011] [Indexed: 01/03/2023] Open
Abstract
Considerable research supports cardiovascular benefits of consuming omega-3 PUFA, also known as (n-3) PUFA, from fish or fish oil. Whether individual long-chain (n-3) PUFA have shared or complementary effects is not well established. We reviewed evidence for dietary and endogenous sources and cardiovascular effects on biologic pathways, physiologic risk factors, and clinical endpoints of EPA [20:5(n-3)], docosapentaenoic acid [DPA, 22:5(n-3)], and DHA [22:6(n-3)]. DHA requires direct dietary consumption, with little synthesis from or retroconversion to DPA or EPA. Whereas EPA is also largely derived from direct consumption, EPA can also be synthesized in small amounts from plant (n-3) precursors, especially stearidonic acid. In contrast, DPA appears principally derived from endogenous elongation from EPA, and DPA can also undergo retroconversion back to EPA. In experimental and animal models, both EPA and DHA modulate several relevant biologic pathways, with evidence for some differential benefits. In humans, both fatty acids lower TG levels and, based on more limited studies, favorably affect cardiac diastolic filling, arterial compliance, and some metrics of inflammation and oxidative stress. All three (n-3) PUFA reduce ex vivo platelet aggregation and DHA also modestly increases LDL and HDL particle size; the clinical relevance of such findings is uncertain. Combined EPA+DHA or DPA+DHA levels are associated with lower risk of fatal cardiac events and DHA with lower risk of atrial fibrillation, suggesting direct or indirect benefits of DHA for cardiac arrhythmias (although not excluding similar benefits of EPA or DPA). Conversely, EPA and DPA, but not DHA, are associated with lower risk of nonfatal cardiovascular endpoints in some studies, and purified EPA reduced risk of nonfatal coronary syndromes in one large clinical trial. Overall, for many cardiovascular pathways and outcomes, identified studies of individual (n-3) PUFA were relatively limited, especially for DPA. Nonetheless, the present evidence suggests that EPA and DHA have both shared and complementary benefits. Based on current evidence, increasing consumption of either would be advantageous compared to little or no consumption. Focusing on their combined consumption remains most prudent given the potential for complementary effects and the existing more robust literature on cardiovascular benefits of their combined consumption as fish or fish oil for cardiovascular benefits.
Collapse
Affiliation(s)
- Dariush Mozaffarian
- Division of Cardiovascular Medicine and Channing Laboratory, Brigham and Women's Hospital, Boston, MA, USA.
| | | |
Collapse
|
6
|
Association between 24-hour ambulatory blood pressure and erythrocyte n-3 polyunsaturated fatty acids in Korean subjects with hypertension. Nutr Res 2010; 30:807-14. [DOI: 10.1016/j.nutres.2010.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/16/2010] [Accepted: 09/23/2010] [Indexed: 02/07/2023]
|
7
|
Riediger ND, Othman RA, Suh M, Moghadasian MH. A systemic review of the roles of n-3 fatty acids in health and disease. JOURNAL OF THE AMERICAN DIETETIC ASSOCIATION 2009; 109:668-79. [PMID: 19328262 DOI: 10.1016/j.jada.2008.12.022] [Citation(s) in RCA: 409] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 10/03/2008] [Indexed: 01/07/2023]
Abstract
Attention to the role of n-3 long-chain fatty acids in human health and disease has been continuously increased during recent decades. Many clinical and epidemiologic studies have shown positive roles for n-3 fatty acids in infant development; cancer; cardiovascular diseases; and more recently, in various mental illnesses, including depression, attention-deficit hyperactivity disorder, and dementia. These fatty acids are known to have pleiotropic effects, including effects against inflammation, platelet aggregation, hypertension, and hyperlipidemia. These beneficial effects may be mediated through several distinct mechanisms, including alterations in cell membrane composition and function, gene expression, or eicosanoid production. A number of authorities have recently recommended increases in intakes of n-3 fatty acids by the general population. To comply with this recommendation a variety of food products, most notably eggs, yogurt, milk, and spreads have been enriched with these fatty acids. Ongoing research will further determine the tissue distribution, biological effects, cost-effectiveness, and consumer acceptability of such enriched products. Furthermore, additional controlled clinical trials are needed to document whether long-term consumption or supplementation with eicosapentaenoic acid/docosahexaenoic acid or the plant-derived counterpart (alpha-linolenic acid) results in better quality of life.
Collapse
Affiliation(s)
- Natalie D Riediger
- Department of Human Nutritional Sciences, University of Manitoba and Canadian Centre for Agri-Food Research in Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
8
|
Yusof HM, Miles EA, Calder P. Influence of very long-chain n-3 fatty acids on plasma markers of inflammation in middle-aged men. Prostaglandins Leukot Essent Fatty Acids 2008; 78:219-28. [PMID: 18403189 DOI: 10.1016/j.plefa.2008.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 02/20/2008] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
Abstract
This study investigated the effects of a moderate dose of long-chain n-3 polyunsaturated fatty acids (1.8 g eicosapentaenoic acid (EPA) plus 0.3g docosahexaenoic acid (DHA) per day) given for 8 weeks to healthy middle-aged males on cardiovascular risk factors, particularly plasma lipids and inflammatory markers. The study was double-blind and placebo-controlled. The proportion of EPA was significantly increased in plasma phosphatidylcholine (from 1.4% to 5.0% of total fatty acids; P<0.001), cholesteryl esters (from 1.2% to 4.5%; P<0.001) and triacylglycerols (from 0.3% to 1.8%; P<0.001). In contrast, the more modest increases in DHA in these lipid fractions were not significant. There was very little effect of n-3 fatty acids on the risk factors measured, apart from a reduction in plasma soluble intercellular adhesion molecule (sICAM)-1 concentration compared with placebo (P=0.05). The change in plasma sICAM-1 concentration was significantly inversely related to the change in DHA in plasma phosphatidylcholine (r=-0.675; P=0.001), but less so to the change in EPA (r=-0.406; P=0.076). Data from the present study suggest that marine oil providing 1.8 g of EPA plus 0.3g DHA/day is not sufficient to demonstrate marked effects on cardiovascular risk factors (plasma lipids and inflammatory markers) in healthy middle-aged men, although there may be a slight anti-inflammatory effect as indicated by the decrease in sICAM-1. The stronger association between changes in DHA than EPA and sICAM-1 concentrations suggest that DHA may be more anti-inflammatory than EPA. Thus, one reason why only limited effects were seen here may be that the dose of DHA provided was insufficient.
Collapse
Affiliation(s)
- Hayati M Yusof
- Institute of Human Nutrition, School of Medicine, University of Southampton, Southampton , UK.
| | | | | |
Collapse
|
9
|
Abstract
1. Population studies and clinical trials provide compelling evidence that omega-3 (omega3) fatty acids have cardioprotective effects. The strongest evidence is from DART and GISSI-P, two secondary prevention trials in patients with previous myocardial infarctions. Data from these trials support a reduction in ventricular fibrillation as a primary mechanism for the decreased incidence of myocardial infarction. 2. Evidence suggests that w3 fatty acids may also provide protection against stroke, particularly ischaemic stroke. 3. The cardioprotective effects of omega3 fatty acids relate to improvements in blood pressure, cardiac function, arterial compliance and vascular function, as well as improved lipid metabolism, antiplatelet and anti-inflammatory effects. 4. Clinical trials in humans have shown that eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have different haemodynamic properties. Docosahexaenoic acid may be more favourable in lowering blood pressure and heart rate, as well as improving vascular function. However, the effects of EPA and DHA may also differ depending on the target population.
Collapse
Affiliation(s)
- Trevor A Mori
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, University of Western Australia and the Cardiovascular Research Centre, Perth, Western Australia, Australia.
| |
Collapse
|
10
|
Mori TA, Woodman RJ. The independent effects of eicosapentaenoic acid and docosahexaenoic acid on cardiovascular risk factors in humans. Curr Opin Clin Nutr Metab Care 2006; 9:95-104. [PMID: 16477172 DOI: 10.1097/01.mco.0000214566.67439.58] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review details the independent effects of purified eicosapentaenoic acid and docosahexaenoic acid on cardiovascular risk factors in humans. We report data from the recent literature and our own controlled clinical trials which compared the independent effects of these fatty acids in individuals at increased risk of cardiovascular disease, namely overweight hyperlipidaemic men and treated-hypertensive, type 2 diabetic men and women. We discuss the biological effects of these fatty acids and the potential mechanisms through which they may affect cardiovascular disease risk factors. RECENT FINDINGS A cardioprotective effect for omega3 fatty acids is supported by prospective studies demonstrating an inverse association between fish intake and coronary heart disease mortality. Data from secondary prevention trials support a reduction in ventricular fibrillation as a primary mechanism for the decreased incidence of myocardial infarction. Clinical trials and experimental studies have shown that omega3 fatty acids have many other potentially important antiatherogenic and antithrombotic effects. Omega-3 fatty acids lower blood pressure and heart rate, improve dyslipidaemia, reduce inflammation, and improve vascular and platelet function. These favourable effects have until recently been primarily attributed to the omega3 fatty acid eicosapentaenoic acid, which is present in large amounts in fish oil. Controlled studies in humans now demonstrate that docosahexaenoic acid, although often present in lower quantities, has equally important anti-arrhythmic, anti-thrombotic and anti-atherogenic effects. SUMMARY Available evidence strongly suggests that eicosapentaenoic acid and docosahexaenoic acid have differing haemodynamic and anti-atherogenic properties. The effects of the two fatty acids may also differ depending on the target population.
Collapse
Affiliation(s)
- Trevor A Mori
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, University of Western Australia.
| | | |
Collapse
|
11
|
Woodman RJ, Chew GT, Watts GF. Mechanisms, Significance and Treatment of Vascular Dysfunction in Type 2 Diabetes Mellitus. Drugs 2005; 65:31-74. [PMID: 15610050 DOI: 10.2165/00003495-200565010-00003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endothelial dysfunction and increased arterial stiffness occur early in the pathogenesis of diabetic vasculopathy. They are both powerful independent predictors of cardiovascular risk. Advances in non-invasive methodologies have led to widespread clinical investigation of these abnormalities in diabetes mellitus, generating a wealth of new knowledge concerning the mechanisms of vascular dysfunction, risk factor associations and potential treatment targets. Endothelial dysfunction primarily reflects decreased availability of nitric oxide (NO), a critical endothelium-derived vasoactive factor with vasodilatory and anti-atherosclerotic properties. Techniques for assessing endothelial dysfunction include ultrasonographic measurement of flow-mediated vasodilatation of the brachial artery and plethysmography measurement of forearm blood flow responses to vasoactive agents. Arterial stiffness may be assessed using pulse wave analysis to generate measures of pulse wave velocity, arterial compliance and wave reflection. The pathogenesis of endothelial dysfunction in type 2 diabetes is multifactorial, with principal contributors being oxidative stress, dyslipidaemia and hyperglycaemia. Elevated blood glucose levels drive production of reactive oxidant species (ROS) via multiple pathways, resulting in uncoupling of mitochondrial oxidative phosphorylation and endothelial NO synthase (eNOS) activity, reducing NO availability and generating further ROS. Hyperglycaemia also contributes to accelerated arterial stiffening by increasing formation of advanced glycation end-products (AGEs), which alter vessel wall structure and function. Diabetic dyslipidaemia is characterised by accumulation of triglyceride-rich lipoproteins, small dense low-density lipoprotein (LDL) particles, reduced high-density lipoprotein (HDL)-cholesterol and increased postprandial free fatty acid flux. These lipid abnormalities contribute to increasing oxidative stress and may directly inhibit eNOS activity. Although lipid-regulating agents such as HMG-CoA reductase inhibitors (statins), fibric acid derivatives (fibrates) and fish oils are used to treat diabetic dyslipidaemia, their impact on vascular function is less clear. Studies in type 2 diabetes have yielded inconsistent results, but this may reflect sampling variation and the potential over-riding influence of oxidative stress, dysglycaemia and insulin resistance on endothelial dysfunction. Results of positive intervention trials suggest that improvement in vascular function is mediated by both lipid and non-lipid mechanisms, including anti-inflammatory, anti-oxidative and direct effects on the arterial wall. Other treatments, such as renin-angiotensin-aldosterone system antagonists, insulin sensitisers and lifestyle-based interventions, have shown beneficial effects on vascular function in type 2 diabetes. Novel approaches, targeting eNOS and AGEs, are under development, as are new lipid-regulating therapies that more effectively lower LDL-cholesterol and raise HDL-cholesterol. Combination therapy may potentially increase therapeutic efficacy and permit use of lower doses, thereby reducing the risk of adverse drug effects and interactions. Concomitant treatments that specifically target oxidative stress may also improve endothelial dysfunction in diabetes. Vascular function studies can be used to explore the therapeutic potential and mechanisms of action of new and established interventions, and provide useful surrogate measures for cardiovascular endpoints in clinical trials.
Collapse
Affiliation(s)
- Richard J Woodman
- School of Medicine and Pharmacology, University of Western Australia, and West Australian Heart Research Institute, Perth, Western Australia, Australia
| | | | | |
Collapse
|
12
|
Kaku B, Kanaya H, Horita Y, Uno Y, Yamazaki T, Ohka T. Self-vasodilating ability at the spastic site of patients with vasospastic angina: estimation by acetylcholine delayed phase. JAPANESE HEART JOURNAL 2003; 44:299-311. [PMID: 12825798 DOI: 10.1536/jhj.44.299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Deficient nitric oxide (NO) release is thought to be the principal mechanism of coronary spasm, however, the precise mechanisms are unknown. Although acetylcholine (ACh) is used for provocation of coronary spasm, ACh is also used for the augmentation of blood flow and flow-mediated vasodilation is induced. We estimated the self-vasodilating ability (endothelial function) at the spastic site of coronary arteries in patients with vasospastic angina (VSA) during the provocation test of coronary spasm by ACh. This study included 93 patients with VSA and 77 patients with atypical chest pain (ACP). Intracoronary injection of ACh (20, 50, and 100 microg) was performed over 30 seconds and the coronary artery diameter of the spastic site was measured 3 to 4 minutes after ACh injection (delayed phase). The ability of dilation (AOD) was calculated as: ([diameter of delayed phase-baseline diameter]/[diameter after isosorbide dinitrate-baseline diameter]) x 100 (%). No significant difference was noted between the AOD in patients with ACP and VSA (28 +/- 36 vs 15 +/- 60%, respectively). The AOD values of 49% of patients with VSA were greater than the mean value of AOD of patients with ACP. At least almost half of the patients with VSA may have preserved self-vasodilating ability at the spastic site, and an abnormality other than endothelial dysfunction is involved in the mechanism of coronary spasm in these patients.
Collapse
Affiliation(s)
- Bunji Kaku
- Division of Cardiology, Department of Internal Medicine, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Woodman RJ, Mori TA, Burke V, Puddey IB, Barden A, Watts GF, Beilin LJ. Effects of purified eicosapentaenoic acid and docosahexaenoic acid on platelet, fibrinolytic and vascular function in hypertensive type 2 diabetic patients. Atherosclerosis 2003; 166:85-93. [PMID: 12482554 DOI: 10.1016/s0021-9150(02)00307-6] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Type 2 diabetes and hypertension are both associated with an increased risk of atherothrombosis. We assessed whether purified eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil have differential effects on platelet, fibrinolytic and vascular function in patients with both conditions. METHODS In a double-blind placebo-controlled trial of parallel design, 59 treated-hypertensive Type 2 diabetic men and postmenopausal women, were randomised to 4 g/day of EPA, DHA or olive oil (placebo) for 6 weeks. Collagen and PAF-stimulated platelet aggregation, collagen-stimulated thromboxane release (TXB2), plasma tPA and PAI-1 antigens, von Willebrand factor, p-selectin, and flow-mediated and glyceryl-trinitrate-mediated dilatation of the brachial artery, were examined before and at the end of intervention. RESULTS Thirty-nine men and 12 women aged 61.2+/-1.2 year completed the study. Relative to placebo, DHA but not EPA supplementation significantly reduced collagen aggregation (16.9%, P=0.05) and TXB2 (18.8%, P=0.03). There were no significant changes in either PAF-stimulated platelet aggregation, fibrinolytic function or vascular function in either the EPA or DHA group relative to placebo. CONCLUSION Highly purified DHA may be a more effective anti-thrombotic agent than EPA. However, longer-term studies assessing morbidity and mortality are needed in order to establish if DHA contributes to reducing CHD amongst Type 2 diabetic patients with treated hypertension.
Collapse
Affiliation(s)
- Richard J Woodman
- Department of Medicine, Medical Research Foundation Building, The University of Western Australia, PO Box X2213, Perth, WA 6000, Australia.
| | | | | | | | | | | | | |
Collapse
|
14
|
Fukuda Y, Teragawa H, Matsuda K, Yamagata T, Matsuura H, Chayama K. Tetrahydrobiopterin improves coronary endothelial function, but does not prevent coronary spasm in patients with vasospastic angina. Circ J 2002; 66:58-62. [PMID: 11999667 DOI: 10.1253/circj.66.58] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reduced bioavailability of tetrahydrobiopterin (BH4), an essential cofactor for nitric oxide (NO) synthase, and the resulting decrease in NO in the coronary circulation may be involved in the pathogenesis of coronary spasm. The present study investigated the effects of BH4 on the vascular response to acetylcholine (ACh) in 28 patients with vasospastic angina (VA) using quantitative angiography. After recording the vascular responses to ACh (3 and 30 microg/min), either BH4 (1 mg/min) or saline was infused into the coronary artery for 2 min before and during a subsequent infusion of ACh. With the 3 microg/min dose of ACh, BH4 attenuated the ACh-induced decrease in coronary diameter in both the nonspastic segments (-1.1 +/- 2.2% ACh vs 6.0 +/- 2.8% ACh+BH4) and spastic segments (-6.3 +/- 2.7% ACh vs 2.9 +/- 2.7% ACh+BH4), but did not influence the ACh-induced coronary spasm at 30 microg/min (-57.3 +/-2.4% ACh vs -55.3 +/- 2.4% ACh+BH4). In the control patients, saline did not influence either the spastic or nonspastic vasoconstrictor responses to ACh. Acute administration of BH4 improves coronary endothelial function, but does not prevent coronary spasm in patients with VA.
Collapse
Affiliation(s)
- Yukihiro Fukuda
- The First Department of Internal Medicine, Hiroshima University School of Medicine, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Shimokawa H. Cellular and molecular mechanisms of coronary artery spasm: lessons from animal models. JAPANESE CIRCULATION JOURNAL 2000; 64:1-12. [PMID: 10651199 DOI: 10.1253/jcj.64.1] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coronary artery spasm plays an important role in the pathogenesis of a wide variety of ischemic heart diseases, especially in the Japanese population. Because coronary artery spasm can be induced by a variety of stimuli with different mechanisms of action, the occurrence of the spasm appears to be due to the local hyperreactivity of the coronary artery rather than to an enhanced stimulation with a single mechanism of action. Several lines of evidence indicate that coronary artery spasm is caused primarily by smooth muscle hypercontraction whereas the contribution of endothelial dysfunction may be minimal. In order to elucidate the cellular and molecular mechanisms of the spasm, porcine models of the spasm were developed. In the first model with balloon injury and high-cholesterol feeding, a close topological correlation between the early atherosclerotic lesions and the spastic sites was noted, whereas in the second model with an inflammatory cytokine the potential importance of coronary inflammatory changes, especially at the adventitia, was noted. Subsequent studies in vivo and in vitro demonstrated that protein kinase C (PKC) and Rho-kinase are substantially involved in the intracellular mechanism of the spasm, resulting in increases in the mono- and diphosphorylations of myosin light chain (MLC). Furthermore, molecular biological analyses demonstrated that Rho-kinase is upregulated at the spastic site (at all levels, including mRNA, protein, and activity), resulting in the inhibition of MLC phosphatase through the phosphorylation of its myosin binding subunit and thereby causing the increase in MLC phosphorylations. Preliminary results also suggest that the long-term inhibition of Rho-kinase is effective in inhibiting the development of arteriosclerotic vascular lesions in several porcine models. Thus, Rho-kinase could be regarded as a novel therapeutic target for coronary arteriosclerosis in general and coronary artery spasm in particular.
Collapse
Affiliation(s)
- H Shimokawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|