1
|
Kinoshita K, Motomura K, Ushida K, Hirata Y, Konno A, Hirai H, Kotani S, Hitora-Imamura N, Kurauchi Y, Seki T, Katsuki H. Nurr1 overexpression in the primary motor cortex alleviates motor dysfunction induced by intracerebral hemorrhage in the striatum in mice. Neurotherapeutics 2024; 21:e00370. [PMID: 38704311 PMCID: PMC11305294 DOI: 10.1016/j.neurot.2024.e00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024] Open
Abstract
Hemorrhage-induced injury of the corticospinal tract (CST) in the internal capsule (IC) causes severe neurological dysfunction in both human patients and rodent models of intracerebral hemorrhage (ICH). A nuclear receptor Nurr1 (NR4A2) is known to exert anti-inflammatory and neuroprotective effects in several neurological disorders. Previously we showed that Nurr1 ligands prevented CST injury and alleviated neurological deficits after ICH in mice. To prove direct effect of Nurr1 on CST integrity, we examined the effect of Nurr1 overexpression in neurons of the primary motor cortex on pathological consequences of ICH in mice. ICH was induced by intrastriatal injection of collagenase type VII, where hematoma invaded into IC. Neuron-specific overexpression of Nurr1 was induced by microinjection of synapsin I promoter-driven adeno-associated virus (AAV) vector into the primary motor cortex. Nurr1 overexpression significantly alleviated motor dysfunction but showed only modest effect on sensorimotor dysfunction after ICH. Nurr1 overexpression also preserved axonal structures in IC, while having no effect on hematoma-associated inflammatory events, oxidative stress, and neuronal death in the striatum after ICH. Immunostaining revealed that Nurr1 overexpression increased the expression of Ret tyrosine kinase and phosphorylation of Akt and ERK1/2 in neurons in the motor cortex. Moreover, administration of Nurr1 ligands 1,1-bis(3'-indolyl)-1-(p-chlorophenyl)methane or amodiaquine increased phosphorylation levels of Akt and ERK1/2 as well as expression of glial cell line-derived neurotrophic factor and Ret genes in the cerebral cortex. These results suggest that the therapeutic effect of Nurr1 on striatal ICH is attributable to the preservation of CST by acting on cortical neurons.
Collapse
Affiliation(s)
- Keita Kinoshita
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Kensuke Motomura
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Keisuke Ushida
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Yuma Hirata
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Shunsuke Kotani
- Global Center for Natural Resources Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Natsuko Hitora-Imamura
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan; Department of Pharmacology, School of Pharmacy, Himeji Dokkyo University, Hyogo, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
2
|
Knepp B, Ander BP, Jickling GC, Hull H, Yee AH, Ng K, Rodriguez F, Carmona-Mora P, Amini H, Zhan X, Hakoupian M, Alomar N, Sharp FR, Stamova B. Gene expression changes implicate specific peripheral immune responses to Deep and Lobar Intracerebral Hemorrhages in humans. BRAIN HEMORRHAGES 2022; 3:155-176. [PMID: 36936603 PMCID: PMC10019834 DOI: 10.1016/j.hest.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The peripheral immune system response to Intracerebral Hemorrhage (ICH) may differ with ICH in different brain locations. Thus, we investigated peripheral blood mRNA expression of Deep ICH, Lobar ICH, and vascular risk factor-matched control subjects (n = 59). Deep ICH subjects usually had hypertension. Some Lobar ICH subjects had cerebral amyloid angiopathy (CAA). Genes and gene networks in Deep ICH and Lobar ICH were compared to controls. We found 774 differentially expressed genes (DEGs) and 2 co-expressed gene modules associated with Deep ICH, and 441 DEGs and 5 modules associated with Lobar ICH. Pathway enrichment showed some common immune/inflammatory responses between locations including Autophagy, T Cell Receptor, Inflammasome, and Neuroinflammation Signaling. Th2, Interferon, GP6, and BEX2 Signaling were unique to Deep ICH. Necroptosis Signaling, Protein Ubiquitination, Amyloid Processing, and various RNA Processing terms were unique to Lobar ICH. Finding amyloid processing pathways in blood of Lobar ICH patients suggests peripheral immune cells may participate in processes leading to perivascular/vascular amyloid in CAA vessels and/or are involved in its removal. This study identifies distinct peripheral blood transcriptome architectures in Deep and Lobar ICH, emphasizes the need for considering location in ICH studies/clinical trials, and presents potential location-specific treatment targets.
Collapse
Affiliation(s)
- Bodie Knepp
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Bradley P. Ander
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Glen C. Jickling
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada
| | - Heather Hull
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Alan H. Yee
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Kwan Ng
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Fernando Rodriguez
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Paulina Carmona-Mora
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Hajar Amini
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Xinhua Zhan
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Marisa Hakoupian
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Noor Alomar
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Frank R. Sharp
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Boryana Stamova
- Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
3
|
Wang D, Ousaka D, Qiao H, Wang Z, Zhao K, Gao S, Liu K, Teshigawara K, Takada K, Nishibori M. Treatment of Marmoset Intracerebral Hemorrhage with Humanized Anti-HMGB1 mAb. Cells 2022; 11:cells11192970. [PMID: 36230933 PMCID: PMC9563572 DOI: 10.3390/cells11192970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is recognized as a severe clinical problem lacking effective treatment. High mobility group box-1 (HMGB1) exhibits inflammatory cytokine-like activity once released into the extracellular space from the nuclei. We previously demonstrated that intravenous injection of rat anti-HMGB1 monoclonal antibody (mAb) remarkably ameliorated brain injury in a rat ICH model. Therefore, we developed a humanized anti-HMGB1 mAb (OKY001) for clinical use. The present study examined whether and how the humanized anti-HMGB1 mAb ameliorates ICH injury in common marmosets. The results show that administration of humanized anti-HMGB1 mAb inhibited HMGB1 release from the brain into plasma, in association with a decrease of 4-hydroxynonenal (4-HNE) accumulation and a decrease in cerebral iron deposition. In addition, humanized anti-HMGB1 mAb treatment resulted in a reduction in brain injury volume at 12 d after ICH induction. Our in vitro experiment showed that recombinant HMGB1 inhibited hemoglobin uptake by macrophages through CD163 in the presence of haptoglobin, suggesting that the release of excess HMGB1 from the brain may induce a delay in hemoglobin scavenging, thereby allowing the toxic effects of hemoglobin, heme, and Fe2+ to persist. Finally, humanized anti-HMGB1 mAb reduced body weight loss and improved behavioral performance after ICH. Taken together, these results suggest that intravenous injection of humanized anti-HMGB1 mAb has potential as a novel therapeutic strategy for ICH.
Collapse
Affiliation(s)
- Dengli Wang
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Daiki Ousaka
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Handong Qiao
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Ziyi Wang
- Research Fellow of Japan Society for the Promotion of Science, Tokyo 1020083, Japan
- Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Kun Zhao
- Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Shangze Gao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Keyue Liu
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Kenzo Takada
- Sapporo Laboratory, EVEC, Inc., Sapporo 0606642, Japan
| | - Masahiro Nishibori
- Department of Translational Research and Drug Development, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
- Correspondence:
| |
Collapse
|
4
|
A Nurr1 ligand C-DIM12 attenuates brain inflammation and improves functional recovery after intracerebral hemorrhage in mice. Sci Rep 2022; 12:11009. [PMID: 35773404 PMCID: PMC9246855 DOI: 10.1038/s41598-022-15178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022] Open
Abstract
We have previously reported that amodiaquine, a compound that binds to the ligand-binding domain of a nuclear receptor Nurr1, attenuates inflammatory responses and neurological deficits after intracerebral hemorrhage (ICH) in mice. 1,1-Bis(3'-indolyl)-1-(p-chlorophenyl)methane (C-DIM12) is another Nurr1 ligand that recognizes a domain of Nurr1 different from the ligand-binding domain. In the present study, mice were treated daily with C-DIM12 (50 or 100 mg/kg, p.o.) or amodiaquine (40 mg/kg, i.p.), or twice daily with 1400 W (20 mg/kg, i.p.), an inducible nitric oxide synthase (iNOS) inhibitor, from 3 h after ICH induction by microinjection of collagenase into the striatum. C-DIM12 improved the recovery of neurological function and prevented neuron loss in the hematoma, while suppressed activation of microglia/macrophages and expression of inflammatory mediators interleukin-6 and CC chemokine ligand 2. In addition, C-DIM12 as well as amodiaquine preserved axonal structures in the internal capsule and axonal transport function. We also found that C-DIM12 and amodiaquine suppressed the increases of iNOS mRNA expression after ICH. Moreover, 1400 W improved neurological function and prevented neuron loss, activation of microglia/macrophages and axonal transport dysfunction. These results suggest that suppression of iNOS induction contributes to several features of the therapeutic effects of Nurr1 ligands.
Collapse
|
5
|
Zhang R, Yong VW, Xue M. Revisiting Minocycline in Intracerebral Hemorrhage: Mechanisms and Clinical Translation. Front Immunol 2022; 13:844163. [PMID: 35401553 PMCID: PMC8993500 DOI: 10.3389/fimmu.2022.844163] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/24/2022] [Indexed: 01/31/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is an important subtype of stroke with an unsatisfactory prognosis of high mortality and disability. Although many pre-clinical studies and clinical trials have been performed in the past decades, effective therapy that meaningfully improve prognosis and outcomes of ICH patients is still lacking. An active area of research is towards alleviating secondary brain injury after ICH through neuroprotective pharmaceuticals and in which minocycline is a promising candidate. Here, we will first discuss new insights into the protective mechanisms of minocycline for ICH including reducing iron-related toxicity, maintenance of blood-brain barrier, and alleviating different types of cell death from preclinical data, then consider its shortcomings. Finally, we will review clinical trial perspectives for minocycline in ICH. We hope that this summary and discussion about updated information on minocycline as a viable treatment for ICH can facilitate further investigations.
Collapse
Affiliation(s)
- Ruiyi Zhang
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - V. Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Lorente L, Martín MM, González-Rivero AF, Pérez-Cejas A, Abreu-González P, Sabatel R, Ramos L, Argueso M, Cáceres JJ, Solé-Violán J, Jiménez A, García-Marín V. High Serum DNA and RNA Oxidative Damage in Non-surviving Patients with Spontaneous Intracerebral Hemorrhage. Neurocrit Care 2021; 33:90-96. [PMID: 31598840 DOI: 10.1007/s12028-019-00864-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE One study found higher leukocytes 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in patients with spontaneous intracerebral hemorrhage (ICH) than in healthy subjects due to the oxidation of guanosine from deoxyribonucleic acid (DNA). The objective of this study was to determine whether there is an association between oxidative damage of serum DNA and ribonucleic acid (RNA) and mortality in patients with ICH. METHODS In this observational and prospective study, patients with severe supratentorial ICH (defined as Glasgow Coma Scale < 9) were included from six Intensive Care Units of Spanish hospitals. At the time of severe ICH diagnosis, concentrations in serum of malondialdehyde (as lipid peroxidation biomarker) and of the three oxidized guanine species (OGS) (8-hydroxyguanosine from RNA, 8-hydroxyguanine from DNA or RNA, and 8-OHdG from DNA) were determined. Thirty-day mortality was considered the end-point study. RESULTS Serum levels of OGS (p < 0.001) and malondialdehyde (p = 0.002) were higher in non-surviving (n = 46) than in surviving patients (n = 54). There was an association of serum OGS levels with serum malondialdehyde levels (rho = 0.36; p = 0.001) and 30-day mortality (OR = 1.568; 95% CI 1.183-2.078; p = 0.002). CONCLUSIONS The novel and most important finding of our study was that serum OGS levels in ICH patients are associated with mortality.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Crta del Rosario s/n, 38010, Santa Cruz de Tenerife, Spain
| | - Agustín F González-Rivero
- Laboratory Department, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain
| | - Antonia Pérez-Cejas
- Laboratory Department, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain
| | - Pedro Abreu-González
- Department of Physiology, Faculty of Medicine, University of the La Laguna, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain
| | - Rafael Sabatel
- Department of Radiology, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain
| | - Luis Ramos
- Intensive Care Unit, Hospital General La Palma, Buenavista de Arriba s/n, Breña Alta, 38713, La Palma, Spain
| | - Mónica Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda, Blasco Ibáñez no. 17-19, 46004, Valencia, Spain
| | - Juan J Cáceres
- Intensive Care Unit, Hospital Insular, Plaza Dr, Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n, 35010, Las Palmas de Gran Canaria, Spain
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain
| | - Victor García-Marín
- Department of Neurosurgery, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain
| |
Collapse
|
7
|
Mortality prediction by serum melatonin levels of patients with spontaneous intracerebral hemorrhage. Neurol Sci 2021; 43:1859-1864. [PMID: 34350514 DOI: 10.1007/s10072-021-05386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/05/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE In one study, higher serum melatonin levels have been reported at diagnosis of spontaneous intracerebral hemorrhage (ICH) in non-surviving than in surviving patients. Now, we carried out this study with the aims to explore whether blood melatonin concentrations in the first 7 days of ICH are different in survivor and non-survivor patients and whether are useful in the prediction of mortality. METHODS Six Spanish hospitals participated in this observational study of patients with severe supratentorial ICH (defining severe as Glasgow Coma Scale < 9). We determined serum melatonin levels during the first, fourth, and eighth day of severe ICH. RESULTS Surviving (n = 64) compared to non-surviving (n = 53) patients showed lower serum melatonin levels during the first (p < 0.001), fourth (p < 0.001), and eighth day (p < 0.001) of severe ICH. We found in multiple logistic regression analysis an association between serum melatonin levels and 30-day mortality (odds ratio = 8.932; 95% CI = 2.442-32.665; p = 0.001) controlling for midline shift, ICH score, early evacuation of ICH, and glycemia. We found an AUC (95% CI) for the mortality prediction of 0.90 (0.83-0.95; p < 0.001), 0.94 (0.87-0.98; p < 0.001), and 0.90 (0.81-0.96; p < 0.001) by serum melatonin concentrations during the first, fourth, and eighth day. CONCLUSIONS In our current study, it appears that novel findings of serum melatonin levels recollected at any moment during the first 7 days of a severe ICH were higher in non-survivor than in survivor patients and could help in mortality prediction.
Collapse
|
8
|
Hsueh PJ, Wang MH, Hsiao CJ, Chen CK, Lin FL, Huang SH, Yen JL, Tsai PH, Kuo YH, Hsiao G. Ergosta-7,9(11),22-trien-3β-ol Alleviates Intracerebral Hemorrhage-Induced Brain Injury and BV-2 Microglial Activation. Molecules 2021; 26:molecules26102970. [PMID: 34067678 PMCID: PMC8156058 DOI: 10.3390/molecules26102970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 01/19/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating neurological disorder characterized by an exacerbation of neuroinflammation and neuronal injury, for which few effective therapies are available at present. Inhibition of excessive neuroglial activation has been reported to alleviate ICH-related brain injuries. In the present study, the anti-ICH activity and microglial mechanism of ergosta-7,9(11),22-trien-3β-ol (EK100), a bioactive ingredient from Asian medicinal herb Antrodia camphorate, were evaluated. Post-treatment of EK100 significantly attenuated neurobehavioral deficit and MRI-related brain lesion in the mice model of collagenase-induced ICH. Additionally, EK100 alleviated the inducible expression of cyclooxygenase (COX)-2 and the activity of matrix metalloproteinase (MMP)-9 in the ipsilateral brain regions. Consistently, it was shown that EK100 concentration-dependently inhibited the expression of COX-2 protein in Toll-like receptor (TLR)-4 activator lipopolysaccharide (LPS)-activated microglial BV-2 and primary microglial cells. Furthermore, the production of microglial prostaglandin E2 and reactive oxygen species were attenuated by EK100. EK100 also attenuated the induction of astrocytic MMP-9 activation. Among several signaling pathways, EK100 significantly and concentration-dependently inhibited activation of c-Jun N-terminal kinase (JNK) MAPK in LPS-activated microglial BV-2 cells. Consistently, ipsilateral JNK activation was markedly inhibited by post-ICH-treated EK100 in vivo. In conclusion, EK100 exerted the inhibitory actions on microglial JNK activation, and attenuated brain COX-2 expression, MMP-9 activation, and brain injuries in the mice ICH model. Thus, EK100 may be proposed and employed as a potential therapeutic agent for ICH.
Collapse
Affiliation(s)
- Po-Jen Hsueh
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-J.H.); (C.-J.H.); (S.-H.H.); (J.-L.Y.)
| | - Mong-Heng Wang
- Department of Physiology, Medical College of Georgia, Augusta University, GA 30912, USA;
| | - Che-Jen Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-J.H.); (C.-J.H.); (S.-H.H.); (J.-L.Y.)
- Laboratory of Neural Repair, Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chih-Kuang Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Tayouan, Taoyuan 33378, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Fan-Li Lin
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Tasmania, Australia;
| | - Shu-Hsien Huang
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-J.H.); (C.-J.H.); (S.-H.H.); (J.-L.Y.)
| | - Jing-Lun Yen
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-J.H.); (C.-J.H.); (S.-H.H.); (J.-L.Y.)
| | - Ping-Huei Tsai
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Medical Imaging and Radiological Sciences, Chung Shang Medical University, Taichung 40201, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, Asia University, Taichung 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
- Correspondence: (Y.-H.K.); (G.H.); Tel./Fax: +886-2-23778620 (G.H.)
| | - George Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-J.H.); (C.-J.H.); (S.-H.H.); (J.-L.Y.)
- Correspondence: (Y.-H.K.); (G.H.); Tel./Fax: +886-2-23778620 (G.H.)
| |
Collapse
|
9
|
Hijioka M. [A Research on Drug Discovery for Intracerebral Hemorrhage Focusing on Leukotriene B 4 and Its Receptor]. YAKUGAKU ZASSHI 2020; 140:1323-1327. [PMID: 33132267 DOI: 10.1248/yakushi.20-00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracerebral hemorrhage (ICH) results from blood vessels rupture in the brain, forming a blood clot in the brain parenchyma. Leakage of blood constituents causes detrimental tissue damages, ensuing long-lasting neurological deficits; however, effective therapeutic approaches are not yet developed to date. In this study, leukotriene B4 (LTB4) and its receptor leukotriene B4 receptor 1 (BLT1) are proposed as novel therapeutic targets for ICH therapy. After the onset of ICH, the LTB4 content in the brain transiently elevated. Microglia are considered as the source of LTB4 production. Thrombin, a blood constituent, activated the BV-2 microglia and increased the LTB4 secretion from the BV-2 cells. Microglia-released LTB4 promoted its own microglial activation and neutrophil-like differentiated HL-60 cell migration activity. LTB4 receptors comprised of two types: BLT1 and BLT2, with BLT1 known to be a high-affinity receptor associated with chemotaxis. BLT1 knockout mice showed decreased neutrophil invasion, attenuating sensorimotor dysfunction after ICH. Furthermore, therapeutic administration of ONO-4057, an orally active LTB4 receptor antagonist, attenuated neutrophil invasion, microglial activation, axonal fragmentation, and sensorimotor deficits induced by ICH. These results suggest that LTB4 and its receptor BLT1 can be potential promising therapeutic targets that prevent tissue damages following ICH.
Collapse
Affiliation(s)
- Masanori Hijioka
- Laboratory of Pharmacology and Neurobiology, College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
10
|
Molecular Correlates of Hemorrhage and Edema Volumes Following Human Intracerebral Hemorrhage Implicate Inflammation, Autophagy, mRNA Splicing, and T Cell Receptor Signaling. Transl Stroke Res 2020; 12:754-777. [PMID: 33206327 PMCID: PMC8421315 DOI: 10.1007/s12975-020-00869-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022]
Abstract
Intracerebral hemorrhage (ICH) and perihematomal edema (PHE) volumes are major determinants of ICH outcomes as is the immune system which plays a significant role in damage and repair. Thus, we performed whole-transcriptome analyses of 18 ICH patients to delineate peripheral blood genes and networks associated with ICH volume, absolute perihematomal edema (aPHE) volume, and relative PHE (aPHE/ICH; rPHE). We found 440, 266, and 391 genes correlated with ICH and aPHE volumes and rPHE, respectively (p < 0.005, partial-correlation > |0.6|). These mainly represented inflammatory pathways including NF-κB, TREM1, and Neuroinflammation Signaling-most activated with larger volumes. Weighted Gene Co-Expression Network Analysis identified seven modules significantly correlated with these measures (p < 0.05). Most modules were enriched in neutrophil, monocyte, erythroblast, and/or T cell-specific genes. Autophagy, apoptosis, HIF-1α, inflammatory and neuroinflammatory response (including Toll-like receptors), cell adhesion (including MMP9), platelet activation, T cell receptor signaling, and mRNA splicing were represented in these modules (FDR p < 0.05). Module hub genes, potential master regulators, were enriched in neutrophil-specific genes in three modules. Hub genes included NCF2, NCF4, STX3, and CSF3R, and involved immune response, autophagy, and neutrophil chemotaxis. One module that correlated negatively with ICH volume correlated positively with rPHE. Its genes and hubs were enriched in T cell-specific genes including hubs LCK and ITK, Src family tyrosine kinases whose modulation improved outcomes and reduced BBB dysfunction following experimental ICH. This study uncovers molecular underpinnings associated with ICH and PHE volumes and pathophysiology in human ICH, where knowledge is scarce. The identified pathways and hub genes may represent novel therapeutic targets.
Collapse
|
11
|
Marques M, Cordeiro M, Marinho M, Vian C, Vaz G, Alves B, Jardim R, Hort M, Dora C, Horn A. Curcumin-loaded nanoemulsion improves haemorrhagic stroke recovery in wistar rats. Brain Res 2020; 1746:147007. [DOI: 10.1016/j.brainres.2020.147007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/16/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
|
12
|
Kim H, Lee JE, Yoo HJ, Sung JH, Yang SH. Effect of Pioglitazone on Perihematomal Edema in Intracerebral Hemorrhage Mouse Model by Regulating NLRP3 Expression and Energy Metabolism. J Korean Neurosurg Soc 2020; 63:689-697. [PMID: 33105536 PMCID: PMC7671775 DOI: 10.3340/jkns.2020.0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
Objective Cerebral edema is the predominant mechanism of secondary inflammation after intracerebral hemorrhage (ICH). Pioglitazone, peroxisome proliferator-activated receptor gamma agonist has been shown to play a role in regulation of central nervous system inflammation. Here, we examined the pharmacological effects of pioglitazone in an ICH mouse model and investigated its regulation on NLRP3 inflammasome and glucose metabolism.
Methods The ICH model was established in C57 BL/6 mice by the stereotactical inoculation of blood (30 µL) into the right frontal lobe. The treatment group was administered i.p. pioglitazone (20 mg/kg) for 1, 3, and 6 days. The control group was administered i.p. phosphate-buffered saline for 1, 3, and 6 days. We investigated brain water contents, NLRP3 expression, and changes in the metabolites in the ICH model using liquid chromatography-tandem mass spectrometry.
Results On day 3, brain edema in the mice treated with pioglitazone was decreased more than that in the control group. Expression levels of NLRP3 in the ICH model treated with pioglitazone were decreased more than those of the control mice on days 3 and 7. The pioglitazone group showed higher levels of glycolytic metabolites than those in the ICH mice. Lactate production was increased in the ICH mice treated with pioglitazone.
Conclusion Our results demonstrated less brain swelling following ICH in mice treated with pioglitazone. Pioglitazone decreased NLRP3-related brain edema and increased anaerobic glycolysis, resulting in the production of lactate in the ICH mice model. NLRP3 might be a therapeutic target for ICH recovery.
Collapse
Affiliation(s)
- Hoon Kim
- Department of Neurosurgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Eun Lee
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Ju Yoo
- Biomedical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Hoon Sung
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Ho Yang
- Department of Neurosurgery, Cell Death Disease Research Center, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
13
|
Transient receptor potential vanilloid 4 agonist GSK1016790A improves neurological outcomes after intracerebral hemorrhage in mice. Biochem Biophys Res Commun 2020; 529:590-595. [PMID: 32736678 DOI: 10.1016/j.bbrc.2020.06.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/21/2020] [Indexed: 01/31/2023]
Abstract
Intracerebral hemorrhage (ICH) is one of the most severe subtypes of stroke with high morbidity and mortality. Although a lot of drug discovery studies have been conducted, the drugs with satisfactory therapeutic effects for motor paralysis after ICH have yet to reach clinical application. Transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable cation channel and activated by hypoosmolarity and warm temperature, is expressed in various cell types. The present study investigated whether TRPV4 would participate in the brain damage in a mouse model of ICH. ICH was induced by intrastriatal treatment of collagenase. Administration of GSK1016790A, a selective TRPV4 agonist, attenuated neurological and motor deficits. The inhibitory effects of the TRPV4 agonist in collagenase-injected WT mice were completely disappeared in TRPV4-KO mice. The TRPV4 agonist did not alter brain injury volume and brain edema at 1 and 3 days after ICH induction. The TRPV4 agonist did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 3 days after ICH induction. Quantitative RT-PCR experiments revealed that the TRPV4 agonist significantly upregulated the expression level of c-fos, a marker of neuronal activity, while the agonist gave no effects on the expression level of cytokines/chemokines at 1 day after ICH induction, These results suggest that stimulation of TRPV4 would ameliorate ICH-induced brain injury, presumably by increased neuronal activity and TRPV4 provides a novel therapeutic target for the treatment for ICH.
Collapse
|
14
|
Hijioka M, Futokoro R, Ohto-Nakanishi T, Nakanishi H, Katsuki H, Kitamura Y. Microglia-released leukotriene B 4 promotes neutrophil infiltration and microglial activation following intracerebral hemorrhage. Int Immunopharmacol 2020; 85:106678. [PMID: 32544870 DOI: 10.1016/j.intimp.2020.106678] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 10/24/2022]
Abstract
Intracerebral hemorrhage (ICH) from blood vessel rupture results in parenchymal hematoma formation and neuroinflammation, ultimately leading to neurodegeneration. Several lines of evidence suggest that the severity of ICH-induced neural damage is exacerbated by infiltration of T-cells, monocytes, and especially neutrophils into the hematoma. Neutrophil migration is regulated by chemokines, formyl peptides, and leukotriene B4 (LTB4), a metabolite of arachidonic acid. In this study, we demonstrate that LTB4 is a key signaling factor promoting microglial activity and leukocyte infiltration into hematoma and thus a potentially critical determinant of ICH pathogenesis and clinical outcome. Lipidomic analysis revealed markedly increased LTB4 concentration in the hematoma-containing brain tissues 6-24 h after experimental ICH in mice. Expression of 5-lipoxygenase, a rate-limiting enzyme for LTB4 production, was upregulated in activated microglia and neutrophils within the hematoma following ICH. Treatment of cultured BV-2 microglia with thrombin, which is abundant in hematoma, promoted activation, proinflammatory cytokine expression, and LTB4 secretion. Further, conditioned medium from thrombin-stimulated BV-2 cells potentiated the transwell migration of neutrophil-like cells, a response blocked by a LTB4 receptor antagonist. These results suggest that arachidonic acid conversion to LTB4 following ICH contributes to neuroinflammation and ensuing neural tissue damage by inducing microglial activation and neutrophil recruitment.
Collapse
Affiliation(s)
- Masanori Hijioka
- Laboratory of Pharmacology and Neurobiology, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan.
| | - Risa Futokoro
- Laboratory of Pharmacology and Neurobiology, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| | | | - Hiroki Nakanishi
- Lipidome Lab Co., Ltd., Akita 010-0825, Japan; Research Center for Biosignaling, Akita University, Akita 010-8543, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yoshihisa Kitamura
- Laboratory of Pharmacology and Neurobiology, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
15
|
The Serum Melatonin Levels and Mortality of Patients with Spontaneous Intracerebral Hemorrhage. Brain Sci 2019; 9:brainsci9100263. [PMID: 31581589 PMCID: PMC6826740 DOI: 10.3390/brainsci9100263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023] Open
Abstract
Objective: Providing melatonin in animal models with spontaneous intracerebral hemorrhage (SIH) has been associated with beneficial effects. However, to our knowledge, there are no published data on circulating melatonin levels regarding the prognosis of SIH patients. Therefore, the objectives of this study were to determine whether serum melatonin levels in SIH patients were associated with early mortality and whether they could be used as prognostic biomarkers. Methods: This observational and prospective study included patients with supratentorial and clinically severe SIH (defined as Glasgow Coma Scale GCS <9) admitted to the Intensive Care Units of six Spanish hospitals. Serum melatonin levels were determined at the time of severe SIH diagnosis. Mortality at 30 days was the study end-point. Results: Non-surviving patients (n = 46) showed higher serum melatonin levels (p < 0.001) than surviving (n = 54) patients. An area under the curve was found for the prediction of 30-day mortality by serum melatonin levels of 0.89 (95% CI = 0.81-0.94; p < 0.001). Multiple logistic regression analysis showed an association of serum melatonin levels with 30-day mortality (Odds Ratio = 8.16; 95% CI = 2.30-28.95; p = 0.001) after controlling for midline shift, glycemia, early evacuation of SIH, and Intracerebral hemorrhage(ICH) score. Conclusions: The novel findings by our study were the presence of higher serum melatonin levels in non-surviving patients than in surviving patients and the association of these levels with mortality.
Collapse
|
16
|
Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, Che F, Chen X, Ren H, Hong M, Wang J. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol 2019; 178:101610. [PMID: 30923023 DOI: 10.1016/j.pneurobio.2019.03.003] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 12/18/2022]
Abstract
Intracerebral hemorrhage (ICH) is a common and severe cerebrovascular disease that has high mortality. Few survivors achieve self-care. Currently, patients receive only symptomatic treatment for ICH and benefit poorly from this regimen. Inflammatory cytokines are important participants in secondary injury after ICH. Increases in proinflammatory cytokines may aggravate the tissue injury, whereas increases in anti-inflammatory cytokines might be protective in the ICH brain. Inflammatory cytokines have been studied as therapeutic targets in a variety of acute and chronic brain diseases; however, studies on ICH are limited. This review summarizes the roles and functions of various pro- and anti-inflammatory cytokines in secondary brain injury after ICH and discusses pathogenic mechanisms and emerging therapeutic strategies and directions for treatment of ICH.
Collapse
Affiliation(s)
- Huimin Zhu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhiqiang Wang
- Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Jixu Yu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China; Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Xiuli Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Feng He
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhenchuan Liu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Fengyuan Che
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Hong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Durocher M, Ander BP, Jickling G, Hamade F, Hull H, Knepp B, Liu DZ, Zhan X, Tran A, Cheng X, Ng K, Yee A, Sharp FR, Stamova B. Inflammatory, regulatory, and autophagy co-expression modules and hub genes underlie the peripheral immune response to human intracerebral hemorrhage. J Neuroinflammation 2019; 16:56. [PMID: 30836997 PMCID: PMC6399982 DOI: 10.1186/s12974-019-1433-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/12/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) has a high morbidity and mortality. The peripheral immune system and cross-talk between peripheral blood and brain have been implicated in the ICH immune response. Thus, we delineated the gene networks associated with human ICH in the peripheral blood transcriptome. We also compared the differentially expressed genes in blood following ICH to a prior human study of perihematomal brain tissue. METHODS We performed peripheral blood whole-transcriptome analysis of ICH and matched vascular risk factor control subjects (n = 66). Gene co-expression network analysis identified groups of co-expressed genes (modules) associated with ICH and their most interconnected genes (hubs). Mixed-effects regression identified differentially expressed genes in ICH compared to controls. RESULTS Of seven ICH-associated modules, six were enriched with cell-specific genes: one neutrophil module, one neutrophil plus monocyte module, one T cell module, one Natural Killer cell module, and two erythroblast modules. The neutrophil/monocyte modules were enriched in inflammatory/immune pathways; the T cell module in T cell receptor signaling genes; and the Natural Killer cell module in genes regulating alternative splicing, epigenetic, and post-translational modifications. One erythroblast module was enriched in autophagy pathways implicated in experimental ICH, and NRF2 signaling implicated in hematoma clearance. Many hub genes or module members, such as IARS, mTOR, S1PR1, LCK, FYN, SKAP1, ITK, AMBRA1, NLRC4, IL6R, IL17RA, GAB2, MXD1, PIK3CD, NUMB, MAPK14, DDX24, EVL, TDP1, ATG3, WDFY3, GSK3B, STAT3, STX3, CSF3R, PIP4K2A, ANXA3, DGAT2, LRP10, FLOT2, ANK1, CR1, SLC4A1, and DYSF, have been implicated in neuroinflammation, cell death, transcriptional regulation, and some as experimental ICH therapeutic targets. Gene-level analysis revealed 1225 genes (FDR p < 0.05, fold-change > |1.2|) have altered expression in ICH in peripheral blood. There was significant overlap of the 1225 genes with dysregulated genes in human perihematomal brain tissue (p = 7 × 10-3). Overlapping genes were enriched for neutrophil-specific genes (p = 6.4 × 10-08) involved in interleukin, neuroinflammation, apoptosis, and PPAR signaling. CONCLUSIONS This study delineates key processes underlying ICH pathophysiology, complements experimental ICH findings, and the hub genes significantly expand the list of novel ICH therapeutic targets. The overlap between blood and brain gene responses underscores the importance of examining blood-brain interactions in human ICH.
Collapse
Affiliation(s)
- Marc Durocher
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Bradley P. Ander
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Glen Jickling
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Farah Hamade
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Heather Hull
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Bodie Knepp
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Da Zhi Liu
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Xinhua Zhan
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Anh Tran
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Xiyuan Cheng
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Kwan Ng
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Alan Yee
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Frank R. Sharp
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Boryana Stamova
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
- MIND Institute Biosciences Building, 2805 50th Street, Sacramento, CA 95817 USA
| |
Collapse
|
18
|
Sheng Z, Liu Y, Li H, Zheng W, Xia B, Zhang X, Yong VW, Xue M. Efficacy of Minocycline in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis of Rodent and Clinical Studies. Front Neurol 2018; 9:1103. [PMID: 30619060 PMCID: PMC6306456 DOI: 10.3389/fneur.2018.01103] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 12/03/2018] [Indexed: 12/27/2022] Open
Abstract
Objectives: This study aimed to assess the efficacy of minocycline for the treatment of acute ischemic stroke. Background: While there have been meta-analysis that surveyed the efficacy of minocycline in the treatment of acute stroke, they have some methodological limitations. We performed a new systematic review which was distinct from previous one by adding new outcomes and including new studies. Methods: Document retrieval was executed through PubMed, Cochrane Central Register of Controlled Trials, the Stroke Center, NIH's Clinical Trials, Current Controlled Trials, and the WHO International Clinical Trials Registry Platform Search Portal before Jan 2018. The data meeting the inclusion criteria were extracted. Before meta-analysis, publication bias and heterogeneity of included studies were surveyed. Random and fixed-effects models were employed to calculate pooled estimates and 95% confidence intervals (CIs). Additionally, sensitivity and subgroup analyses were implemented. Result: For clinical studies, 4 trials with 201 patients in the minocycline group, and 195 patients in the control group met the inclusion criteria; 3 were randomized trials. At the end of 90-day follow up or discharge day, results showed that the groups receiving minocycline were superior to the control group, with significant differences in the NIHSS scores (mean difference [MD], −2.75; 95% CI, −4.78, 0.27; p = 0.03) and mRS scores (MD, −0.98; 95% CI, −1.27, −0.69; p < 0.01), but not Barthel Index Score (MD, 9.04; 95% CI, −0.78, 18.07; p = 0.07). For rodent experiments, 14 studies were included. Neurological severity scores (NSS) was significantly improved (MD, −1.38; 95% CI, −1.64, −1.31; p < 0.01) and infarct volume was obviously reduced (Std mean difference [SMD], −2.38; 95% CI, −3.40, −1.36; p < 0.01) in the minocycline group. Heterogeneity among the studies was proved to exist for infarct volume (Chi2 = 116.12, p < 0.01; I2 = 0.89) but not for other variables. Conclusions: Based on the results in our study, minocycline appears as an effective therapeutic option for acute ischemic stroke.
Collapse
Affiliation(s)
- Zhaofu Sheng
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Yang Liu
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Hongmin Li
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Wei Zheng
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Bin Xia
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Xin Zhang
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - V Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| |
Collapse
|
19
|
Iglesias-Rey R, Rodríguez-Yáñez M, Arias S, Santamaría M, Rodríguez-Castro E, López-Dequidt I, Hervella P, Sobrino T, Campos F, Castillo J. Inflammation, edema and poor outcome are associated with hyperthermia in hypertensive intracerebral hemorrhages. Eur J Neurol 2018; 25:1161-1168. [PMID: 29751370 PMCID: PMC6099376 DOI: 10.1111/ene.13677] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/03/2018] [Indexed: 01/20/2023]
Abstract
Background and purpose The deleterious effect of hyperthermia on intracerebral hemorrhage (ICH) has been studied. However, the results are not conclusive and new studies are needed to elucidate clinical factors that influence the poor outcome. The aim of this study was to identify the clinical factors (including ICH etiology) that influence the poor outcome associated with hyperthermia and ICH. We also tried to identify potential mechanisms involved in hyperthermia during ICH. Methods We conducted a retrospective study enrolling patients with non‐traumatic ICH from a prospective registry. We used logistic regression models to analyze the influence of hyperthermia in relation to different inflammatory and endothelial dysfunction markers, hematoma growth and edema volume in hypertensive and non‐hypertensive patients with ICH. Results We included 887 patients with ICH (433 hypertensive, 50 amyloid, 117 by anticoagulants and 287 with other causes). Patients with hypertensive ICH showed the highest body temperature (37.5 ± 0.8°C) as well as the maximum increase in temperature (0.9 ± 0.1°C) within the first 24 h. Patients with ICH of hypertensive etiologic origin, who presented hyperthermia, showed a 5.3‐fold higher risk of a poor outcome at 3 months. We found a positive relationship (r = 0.717, P < 0.0001) between edema volume and hyperthermia during the first 24 h but only in patients with ICH of hypertensive etiologic origin. This relationship seems to be mediated by inflammatory markers. Conclusion Our data suggest that hyperthermia, together with inflammation and edema, is associated with poor outcome only in ICH of hypertensive etiology.
Collapse
Affiliation(s)
- R Iglesias-Rey
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - M Rodríguez-Yáñez
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - S Arias
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - M Santamaría
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - E Rodríguez-Castro
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - I López-Dequidt
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - P Hervella
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - T Sobrino
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - F Campos
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - J Castillo
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
20
|
Lorente L, Martín MM, Abreu-González P, Sabatel R, Ramos L, Argueso M, Solé-Violán J, Riaño-Ruiz M, Jiménez A, García-Marín V. Serum Malondialdehyde Levels and Mortality in Patients with Spontaneous Intracerebral Hemorrhage. World Neurosurg 2018; 113:e542-e547. [PMID: 29477698 DOI: 10.1016/j.wneu.2018.02.085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Oxidative stress has been associated with secondary brain injury after spontaneous intracerebral hemorrhage (SIH). Malondialdehyde (MDA) appears in blood during lipid oxidation. Higher serum MDA levels have been found in patients with SIH than in healthy controls; however, we have not found data indicating an association between elevated serum MDA and early mortality in this population. This was the main objective of our study. METHODS MDA levels were measured in serum samples obtained from 100 patients at diagnosis of severe SIH (Glasgow Coma Scale score ≤8) and 80 healthy controls. The endpoint of the study was mortality at 30 days. RESULTS Serum MDA levels were significantly higher in patients with severe SIH than in healthy controls (1.46 [1.18-2.2] vs. 1.11 [0.72-1.51]; P < 0.001), and in nonsurviving (n = 46) than in surviving (n = 54) patients (1.68 [1.23-4.02] vs. 1.37 [0.99-1.92]; P = 0.002). The area under the receiving operating characteristic curve of serum MDA levels to predict 30-day mortality was 0.68 (95% CI, 0.58-0.77; P < 0.001). Serum MDA levels were associated with 30-day mortality (OR, 6.279; 95% CI, 1.940-20.319; P = 0.002). CONCLUSIONS The most important new finding of our study is that there is an association between serum MDA levels at diagnosis of severe SIH and early mortality.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Pedro Abreu-González
- Department of Physiology, Faculty of Medicine, University of the La Laguna, Santa Cruz de Tenerife, Spain
| | - Rafael Sabatel
- Department of Radiology, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Luis Ramos
- Intensive Care Unit, Hospital General La Palma, La Palma, Spain
| | - Mónica Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Marta Riaño-Ruiz
- Servicio de Bioquímica Clínica, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Victor García-Marín
- Department of Neurosurgery, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| |
Collapse
|
21
|
Katsuki H, Hijioka M. Intracerebral Hemorrhage as an Axonal Tract Injury Disorder with Inflammatory Reactions. Biol Pharm Bull 2018; 40:564-568. [PMID: 28458342 DOI: 10.1248/bpb.b16-01013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracerebral hemorrhage (ICH) is a neurological disorder frequently accompanied by severe dysfunction. Critical pathogenic events leading to poor prognosis should be identified for the development of novel effective therapies for ICH. Here we focus on the injury of the axonal tract, particularly of the internal capsule, with reference to its contribution to ICH pathology and potential therapeutic interventions in addition to its cellular mechanisms. Studies on human ICH patients and rodent models of ICH suggest that invasion of hematoma into the internal capsule greatly worsens the severity of post-ICH symptoms. A blood-derived protease thrombin may play an important role in the acute phase of axonal tract injury in the internal capsule that includes compromised axonal transport and fragmentation of axonal structures. Several agents such as clioquinol, melatonin and Am80 (a retinoic acid receptor agonist) have been shown to produce therapeutic effects on rodent models of ICH associated with injury of the internal capsule. In the course of examinations on the effect of Am80, we obtained evidence for the involvement of CXCL2, a neutrophil chemotactic factor, in the pathogenesis of ICH. Accordingly, we also refer to the potential roles of infiltrating neutrophils and inflammatory responses in axonal tract injury and resultant neurological dysfunction in ICH.
Collapse
Affiliation(s)
- Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Masanori Hijioka
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
22
|
Wang D, Liu K, Wake H, Teshigawara K, Mori S, Nishibori M. Anti-high mobility group box-1 (HMGB1) antibody inhibits hemorrhage-induced brain injury and improved neurological deficits in rats. Sci Rep 2017; 7:46243. [PMID: 28393932 PMCID: PMC5385548 DOI: 10.1038/srep46243] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/09/2017] [Indexed: 02/06/2023] Open
Abstract
As one of the most lethal stroke subtypes, intracerebral hemorrhage (ICH) is acknowledged as a serious clinical problem lacking effective treatment. Available evidence from preclinical and clinical studies suggests that inflammatory mechanisms are involved in the progression of ICH-induced secondary brain injury. High mobility group box-1 (HMGB1) is a ubiquitous and abundant nonhistone DNA-binding protein, and is also an important proinflammatory molecule once released into the extracellular space from the nuclei. Here, we show that treatment with neutralizing anti-HMGB1 mAb (1 mg/kg, i.v. twice) remarkably ameliorated ICH-injury induced by local injection of collagenase IV in the striatum of rats. Administration of anti-HMGB1 mAb inhibited the release of HMGB1 into the extracellular space in the peri-hematomal region, reduced serum HMGB1 levels and decreased brain edema by protecting blood-brain barrier integrity, in association with decreased activated microglia and the expression of inflammation-related factors at 24 h after ICH. Consequently, anti-HMGB1 mAb reduced the oxidative stress and improved the behavioral performance of rats. These results strongly indicate that HMGB1 plays a critical role in the development of ICH-induced secondary injury through the amplification of plural inflammatory responses. Intravenous injection of neutralizing anti-HMGB1 mAb has potential as a novel therapeutic strategy for ICH.
Collapse
Affiliation(s)
- Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuji Mori
- School of Pharmacy, Shujitsu University, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
23
|
Alternative activation-skewed microglia/macrophages promote hematoma resolution in experimental intracerebral hemorrhage. Neurobiol Dis 2017; 103:54-69. [PMID: 28365213 DOI: 10.1016/j.nbd.2017.03.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 02/24/2017] [Accepted: 03/28/2017] [Indexed: 12/27/2022] Open
Abstract
Microglia/macrophages (MMΦ) are highly plastic phagocytes that can promote both injury and repair in diseased brain through the distinct function of classically activated and alternatively activated subsets. The role of MMΦ polarization in intracerebral hemorrhage (ICH) is unknown. Herein, we comprehensively characterized MMΦ dynamics after ICH in mice and evaluated the relevance of MMΦ polarity to hematoma resolution. MMΦ accumulated within the hematoma territory until at least 14days after ICH induction. Microglia rapidly reacted to the hemorrhagic insult as early as 1-1.5h after ICH and specifically presented a "protective" alternatively activated phenotype. Substantial numbers of activated microglia and newly recruited monocytes also assumed an early alternatively activated phenotype, but the phenotype gradually shifted to a mixed spectrum over time. Ultimately, markers of MMΦ classic activation dominated at the chronic stage of ICH. We enhanced MMΦ alternative activation by administering intraperitoneal injections of rosiglitazone, and subsequently observed elevations in CD206 expression on brain-isolated CD11b+ cells and increases in IL-10 levels in serum and perihematomal tissue. Enhancement of MMΦ alternative activation correlated with hematoma volume reduction and improvement in neurologic deficits. Intraventricular injection of alternative activation signature cytokine IL-10 accelerated hematoma resolution, whereas microglial phagocytic ability was abolished by IL-10 receptor neutralization. Our results suggest that MMΦ respond dynamically to brain hemorrhage by exhibiting diverse phenotypic changes at different stages of ICH. Alternative activation-skewed MMΦ aid in hematoma resolution, and IL-10 signaling might contribute to regulation of MMΦ phagocytosis and hematoma clearance in ICH.
Collapse
|
24
|
Cui C, Cui Y, Gao J, Li R, Jiang X, Tian Y, Wang K, Cui J. Intraparenchymal treatment with bone marrow mesenchymal stem cell-conditioned medium exerts neuroprotection following intracerebral hemorrhage. Mol Med Rep 2017; 15:2374-2382. [DOI: 10.3892/mmr.2017.6223] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/12/2017] [Indexed: 11/06/2022] Open
|
25
|
Anan J, Hijioka M, Kurauchi Y, Hisatsune A, Seki T, Katsuki H. Cortical hemorrhage-associated neurological deficits and tissue damage in mice are ameliorated by therapeutic treatment with nicotine. J Neurosci Res 2017; 95:1838-1849. [DOI: 10.1002/jnr.24016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/26/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Junpei Anan
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto Japan
| | - Masanori Hijioka
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto Japan
| | - Akinori Hisatsune
- Priority Organization for Innovation and Excellence; Kumamoto University; Kumamoto Japan
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program,”; Kumamoto University; Kumamoto Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto Japan
| |
Collapse
|
26
|
Hijioka M, Anan J, Ishibashi H, Kurauchi Y, Hisatsune A, Seki T, Koga T, Yokomizo T, Shimizu T, Katsuki H. Inhibition of Leukotriene B4 Action Mitigates Intracerebral Hemorrhage-Associated Pathological Events in Mice. J Pharmacol Exp Ther 2016; 360:399-408. [DOI: 10.1124/jpet.116.238824] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/28/2016] [Indexed: 01/30/2023] Open
|
27
|
MicroRNA-132 attenuates neurobehavioral and neuropathological changes associated with intracerebral hemorrhage in mice. Neurochem Int 2016; 107:182-190. [PMID: 27940326 DOI: 10.1016/j.neuint.2016.11.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
Abstract
Recent studies suggest that microRNA-132 (miR-132) potentiates the cholinergic blockade of inflammatory reactions by targeting acetylcholinesterase (AChE) and affords robust protection against ischemia-induced neuronal death. However, the role of miR-132 in intracerebral hemorrhage (ICH) remains unexplored. This study aimed to determine whether miR-132 participates in the process and launches an anti-inflammatory response in a mouse model of ICH. To establish a relationship between miR-132 and ICH-induced neuronal inflammation and death, we used unilateral stereotaxic injections to deliver lentiviruses encoding miR-132, anti-miR-132 or an empty lentiviral vector directly into the right caudate nuclei of 192 living male C57BL/6 mice. Fourteen days later, ICH was induced by injection of autologous blood into these three groups. Neurodeficits, brain edema, blood-brain barrier (BBB) integrity, inflammatory reactions, together with cell death were assessed after ICH. Compared with the control group, the mice overexpressing miR-132 in the brain responded with attenuated neurological deficits and brain edema. The counts of activated microglia and the expression of proinflammatory cytokines were also decreased in these mice. Additionally, BBB integrity improved, and the extent of neuronal death decreased in ICH mice injected with lentivirus encoding miR-132. On the contrary, a decrease of miR-132 expression aggravated the severity of inflammation and increased cell apoptosis. Overall, these findings support a protective role of miR-132 in a mouse model of ICH, providing new opportunities for therapeutic intervention.
Collapse
|
28
|
Saekhu M, Mahyuddin H, Ronokusumo TA, Sastroasmoro S. Tigecycline reduced tumor necrosis factor alpha level and inhospital mortality in spontaneous supratentorial intracerebral hemorrhage. MEDICAL JOURNAL OF INDONESIA 2016. [DOI: 10.13181/mji.v25i2.1351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Background: The outcome of patients with spontaneous supratentorial intracerebral hemorrhage (SSICH) is unsatisfactory. Inflammatory response secondary to brain injury as well as those resulted from surgical procedure were considered responsible of this outcome. This study was intended to elucidate the anti-inflammatory activity of tigecycline by measuring TNF-α level and its neuroprotective effect as represented by inhospital mortality rate.Methods: Patients with SSICH who were prepared for hematoma evacuation were randomized to receive either tigecycline (n=35) or fosfomycine (n=37) as prophylactic antibiotic. TNF-α level was measured in all subjects before surgery and postoperatively on day-1 and day-7. A repeated brain CT Scan was performed on postoperative day-7. The Glasgow outcome scale (GOS) and length of stay (LOS) were recorded at the time of hospital discharge. Data were analyzed using Mann-Whitney and Chi square test. Relative clinical effectiveness was measured by calculating the number needed to treat (NNT).Results: There was a significant difference regarding the proportion of subject who had reduced TNF-α level on postoperative day-7 between the groups receiving tigecycline and fosfomycine (62% vs 29%, p=0.022). Decrease brain edema on CT control (86% vs 80%, p=0.580). Tigecycline administration showed a tendency of better clinical effectiveness in lowering inhospital mortality (17% vs 35%; p=0.083; OR=0.49; NNT=5) and worse clinical outcome / GOS ≤ 2 (20% vs 38% ; p=0.096; OR=0.41; NNT=6). LOS ≥ 15 hari ( 40% vs 27%; p=0.243; OR=1.81; NNT=8).Conclusion: Tigecycline showed anti-inflammatory and neuroprotective activities. These activities were associated with improved clinical outcome in patients with SSICH after hematoma evacuation.
Collapse
|
29
|
The Effect of Minimally Invasive Hematoma Aspiration on the JNK Signal Transduction Pathway after Experimental Intracerebral Hemorrhage in Rats. Int J Mol Sci 2016; 17:ijms17050710. [PMID: 27187368 PMCID: PMC4881532 DOI: 10.3390/ijms17050710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 12/29/2022] Open
Abstract
Objective: To explore the effect of minimally invasive hematoma aspiration (MIHA) on the c-Jun NH2-terminal kinase (JNK) signal transduction pathway after intracerebral hemorrhage (ICH). Methods: In this experiment, 300 adult male Wistar rats were randomly and averagely divided into sham-operated group, ICH group and MIHA group. In each group, 60 rats were used in the detection of indexes in this experiment, while the other 40 rats were used to replace rats which reached the exclusion criteria (accidental death or operation failure). In ICH group and MIHA group, ICH was induced by injection of 70 µL of autologous arterial blood into rat brain, while only the rats in MIHA group were treated by MIHA 6 h after ICH. Rats in sham-operated group were injected nothing into brains, and they were not treated either, like rats in ICH group. In each group, six rats were randomly selected to observe their Bederson’s scales persistently (6, 24, 48, 72, 96, 120 h after ICH). According to the time they were sacrificed, the remaining rats in each group were divided into 3 subgroups (24, 72, 120 h). The change of brain water content (BWC) was measured by the wet weight to dry weight ratio method. The morphology of neurons in cortex was observed by the hematoxylin–eosin (HE) staining. The expressions of phospho-c-Jun NH2-terminal kinase (pJNK) and JNK in peri-hematomal brain tissue were determined by the immunohistochemistry (IHC) and Western blotting (WB). Results: At all time points, compared with the ICH groups, the expression of pJNK decreased obviously in MIHA groups (p < 0.05), while their Bederson’s scales and BWC declined, and neuron injury in the cortex was relieved. The expression level of JNK was not altered at different groups. The data obtained by IHC and WB indicated a high-level of consistency, which provided a certain dependability of the test results. Conclusion: The JNK signal transduction pathway could be activated after intracerebral hemorrhage, with the expressions of pJNK increasing. MIHA could relieve the histo-pathological damage of nerve cells, reducing brain edema and neurological deficits, and these neuroprotective effects might be associated with suppression of JNK signal transduction pathway.
Collapse
|
30
|
Hijioka M, Anan J, Matsushita H, Ishibashi H, Kurauchi Y, Hisatsune A, Seki T, Katsuki H. Axonal dysfunction in internal capsule is closely associated with early motor deficits after intracerebral hemorrhage in mice. Neurosci Res 2015; 106:38-46. [PMID: 26511923 DOI: 10.1016/j.neures.2015.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 01/15/2023]
Abstract
Previously we showed that expansion of intracerebral hemorrhage (ICH) into the internal capsule greatly aggravated neurological symptoms in mice. Here we examined ICH-associated events in the internal capsule with relation to neurological dysfunction. Corticospinal axons labeled by biotinylated dextran amine exhibited fragmented appearance after ICH induced by local injection of collagenase into the internal capsule. Fragmentation of axonal structures was confirmed by neurofilament-H immunostaining, which was evident from 6h after induction of ICH. We also observed accumulation of amyloid precursor protein, which indicated compromised axonal transport, from 3h after induction of ICH. The early defect in axonal transport was accompanied by a robust decline in motor performance. Local application of an axonal transport inhibitor colchicine to the internal capsule induced a prompt decline in motor performance, suggesting that compromised axonal transport is closely associated with early neurological dysfunction in ICH. Arrest of axonal transport and fragmentation of axonal structures were also induced by local injection of thrombin, but not by thrombin receptor activator peptide-6, a protease-activated receptor-1 agonist. These results suggest that receptor-independent actions of thrombin mediate disruption of structure and function of axons by hemorrhage expansion into the internal capsule, which leads to severe neurological dysfunction.
Collapse
Affiliation(s)
- Masanori Hijioka
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Junpei Anan
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hideaki Matsushita
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hayato Ishibashi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Akinori Hisatsune
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 862-8555, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto 862-0973, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| |
Collapse
|
31
|
Blood glutamate grabbing does not reduce the hematoma in an intracerebral hemorrhage model but it is a safe excitotoxic treatment modality. J Cereb Blood Flow Metab 2015; 35:1206-12. [PMID: 25735920 PMCID: PMC4640266 DOI: 10.1038/jcbfm.2015.28] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/14/2015] [Accepted: 01/22/2015] [Indexed: 01/01/2023]
Abstract
Recent studies have shown that blood glutamate grabbing is an effective strategy to reduce the excitotoxic effect of extracellular glutamate released during ischemic brain injury. The purpose of the study was to investigate the effect of two of the most efficient blood glutamate grabbers (oxaloacetate and recombinant glutamate oxaloacetate transaminase 1: rGOT1) in a rat model of intracerebral hemorrhage (ICH). Intracerebral hemorrhage was produced by injecting collagenase into the basal ganglia. Three treatment groups were developed: a control group treated with saline, a group treated with oxaloacetate, and a final group treated with human rGOT1. Treatments were given 1 hour after hemorrhage. Hematoma volume (analyzed by magnetic resonance imaging (MRI)), neurologic deficit, and blood glutamate and GOT levels were quantified over a period of 14 days after surgery. The results observed showed that the treatments used induced a significant reduction of blood glutamate levels; however, they did not reduce the hematoma, nor did they improve the neurologic deficit. In the present experimental study, we have shown that this novel therapeutic strategy is not effective in case of ICH pathology. More importantly, these findings suggest that blood glutamate grabbers are a safe treatment modality that can be given in cases of suspected ischemic stroke without previous neuroimaging.
Collapse
|
32
|
Pathogenesis of brain edema and investigation into anti-edema drugs. Int J Mol Sci 2015; 16:9949-75. [PMID: 25941935 PMCID: PMC4463627 DOI: 10.3390/ijms16059949] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/15/2015] [Accepted: 04/27/2015] [Indexed: 12/18/2022] Open
Abstract
Brain edema is a potentially fatal pathological state that occurs after brain injuries such as stroke and head trauma. In the edematous brain, excess accumulation of extracellular fluid results in elevation of intracranial pressure, leading to impaired nerve function. Despite the seriousness of brain edema, only symptomatic treatments to remove edema fluid are currently available. Thus, the development of novel anti-edema drugs is required. The pathogenesis of brain edema is classified as vasogenic or cytotoxic edema. Vasogenic edema is defined as extracellular accumulation of fluid resulting from disruption of the blood-brain barrier (BBB) and extravasations of serum proteins, while cytotoxic edema is characterized by cell swelling caused by intracellular accumulation of fluid. Various experimental animal models are often used to investigate mechanisms underlying brain edema. Many soluble factors and functional molecules have been confirmed to induce BBB disruption or cell swelling and drugs targeted to these factors are expected to have anti-edema effects. In this review, we discuss the mechanisms and involvement of factors that induce brain edema formation, and the possibility of anti-edema drugs targeting them.
Collapse
|
33
|
Cordeiro MF, Horn AP. Stem cell therapy in intracerebral hemorrhage rat model. World J Stem Cells 2015; 7:618-629. [PMID: 25914768 PMCID: PMC4404396 DOI: 10.4252/wjsc.v7.i3.618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/03/2014] [Accepted: 12/19/2014] [Indexed: 02/06/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a very complex pathology, with many different not fully elucidated etiologies and prognostics. It is the most severe subtype of stroke, with high mortality and morbidity rates. Unfortunately, despite the numerous promising preclinical assays including neuroprotective, anti-hypertensive, and anti-inflammatory drugs, to this moment only symptomatic treatments are available, motivating the search for new alternatives. In this context, stem cell therapy emerged as a promising tool. However, more than a decade has passed, and there is still much to be learned not only about stem cells, but also about ICH itself, and how these two pieces come together. To date, rats have been the most widely used animal model in this research field, and there is much more to be learned from and about them. In this review, we first summarize ICH epidemiology, risk factors, and pathophysiology. We then present different methods utilized to induce ICH in rats, and examine how accurately they represent the human disease. Next, we discuss the different types of stem cells used in previous ICH studies, also taking into account the tested transplantation sites. Finally, we summarize what has been achieved in assays with stem cells in rat models of ICH, and point out some relevant issues where attention must be given in future efforts.
Collapse
|
34
|
Neuronal tumour necrosis factor-α and interleukin-1β expression in a porcine model of intracerebral haemorrhage: Modulation by U-74389G. Brain Res 2015; 1615:98-105. [PMID: 25916578 DOI: 10.1016/j.brainres.2015.04.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/06/2015] [Accepted: 04/17/2015] [Indexed: 12/11/2022]
Abstract
Tumour necrosis factor α (TNF-α) and interleukin 1β (IL-1β) are important mediators of intracerebral haemorrhage (ICH) inflammatory response. Lazaroids, established antioxidants and neuroprotectants, have been studied in several brain pathologies. The present study was designed to investigate: a) TNF-α and IL-1β changes, in neurons and b) U-74389G effects, 4 and 24h after haematoma induction in a porcine model of intracerebral haemorrhage. In twenty male landrace pigs (swines) aged 135-150 days old, autologous whole blood was injected around the right basal ganglia territory; in ten of the pigs the lazaroid compound U-74389G was administered. Brain TNF-α and IL-1β immunopositive neurons were determined by immunoarray techniques at 4 and 24h timepoints. After the haematoma induction the number of TNF-α immunopositive neurons ipsilateral to the haematoma was significantly higher compared to the contralateral site at 4h (p<0.0005), while U-74389G significantly reduced the number of TNF-α immunopositive neurons, ipsilateral to the haematoma, at 4h (p=0.002); at 24h, TNF-α immunopositive neurons were found significantly lower in the control group ipsilateral to the haematoma in comparison to 4h timepoint(p<0.0005). The number of IL-1β immunopositive neurons at 4h after the hematoma induction was significantly higher ipsilateral to the haematoma site (p<0.0005). U-74389G had no statistical significant effect. TNF-α and IL-1β, increase in neurons, 4h after the haematoma induction, ipsilateral to the haematoma site. The administration of the antioxidant compound U-74389G, results in early (at 4h) decrease of TNF-α immunopositive neurons but shows no statistical significant effect to IL-1β immunopossitive neurons.
Collapse
|
35
|
Guo J, Chen Q, Tang J, Zhang J, Tao Y, Li L, Zhu G, Feng H, Chen Z. Minocycline-induced attenuation of iron overload and brain injury after experimental germinal matrix hemorrhage. Brain Res 2014; 1594:115-24. [PMID: 25451129 DOI: 10.1016/j.brainres.2014.10.046] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/11/2014] [Accepted: 10/15/2014] [Indexed: 12/31/2022]
Abstract
Germinal matrix hemorrhage (GMH) is the most important adverse neurologic event during the newborn period. Evidence has shown that neonates with GMH and hydrocephalus have more severe damage compared to those with GMH alone. Our preliminary study demonstrated the role of iron in hydrocephalus and brain damage in adult rats following intraventricular hemorrhage. Therefore, the aim of the current study was to investigate iron accumulation and iron-handling proteins in a rat model of GMH and whether minocycline reduces iron overload after GMH and iron-induced brain injury in vivo. This study was divided into two parts. In the first part, rats received either a needle insertion or an intracerebral injection of 0.3 U of clostridial collagenase VII-S. Brain iron and brain iron handling proteins (heme oxygenase-1 and ferritin) were measured. In the second part, rats with a GMH were treated with minocycline or vehicle. Brain edema, brain cell death, hydrocephalus, iron-handling proteins and long-term motor function were examined. The result showed iron accumulation and upregulation of iron-handling proteins after GMH. Minocycline treatment significantly reduced GMH-induced brain edema, hydrocephalus and brain damage. Minocycline also suppressed upregulation of ferritin after GMH. In conclusion, the current study found that iron plays a role in brain injury following GMH and that minocycline reduces iron overload after GMH and iron-induced brain injury.
Collapse
Affiliation(s)
- Jing Guo
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jun Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jianbo Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yihao Tao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lin Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
36
|
Sheng H, Chaparro RE, Sasaki T, Izutsu M, Pearlstein RD, Tovmasyan A, Warner DS. Metalloporphyrins as therapeutic catalytic oxidoreductants in central nervous system disorders. Antioxid Redox Signal 2014; 20:2437-64. [PMID: 23706004 DOI: 10.1089/ars.2013.5413] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Metalloporphyrins, characterized by a redox-active transitional metal (Mn or Fe) coordinated to a cyclic porphyrin core ligand, mitigate oxidative/nitrosative stress in biological systems. Side-chain substitutions tune redox properties of metalloporphyrins to act as potent superoxide dismutase mimics, peroxynitrite decomposition catalysts, and redox regulators of transcription factor function. With oxidative/nitrosative stress central to pathogenesis of CNS injury, metalloporphyrins offer unique pharmacologic activity to improve the course of disease. RECENT ADVANCES Metalloporphyrins are efficacious in models of amyotrophic lateral sclerosis, Alzheimer's disease, epilepsy, neuropathic pain, opioid tolerance, Parkinson's disease, spinal cord injury, and stroke and have proved to be useful tools in defining roles of superoxide, nitric oxide, and peroxynitrite in disease progression. The most substantive recent advance has been the synthesis of lipophilic metalloporphyrins offering improved blood-brain barrier penetration to allow intravenous, subcutaneous, or oral treatment. CRITICAL ISSUES Insufficient preclinical data have accumulated to enable clinical development of metalloporphyrins for any single indication. An improved definition of mechanisms of action will facilitate preclinical modeling to define and validate optimal dosing strategies to enable appropriate clinical trial design. Due to previous failures of "antioxidants" in clinical trials, with most having markedly less biologic activity and bioavailability than current-generation metalloporphyrins, a stigma against antioxidants has discouraged the development of metalloporphyrins as CNS therapeutics, despite the consistent definition of efficacy in a wide array of CNS disorders. FUTURE DIRECTIONS Further definition of the metalloporphyrin mechanism of action, side-by-side comparison with "failed" antioxidants, and intense effort to optimize therapeutic dosing strategies are required to inform and encourage clinical trial design.
Collapse
Affiliation(s)
- Huaxin Sheng
- 1 Department of Anesthesiology, Duke University Medical Center (DUMC) , Durham, North Carolina
| | | | | | | | | | | | | |
Collapse
|
37
|
Perihaematomal cytokine expression is a crucial component of intracerebral haemorrhage pathophysiology. Neurol Sci 2014; 35:1471-3. [PMID: 24729011 DOI: 10.1007/s10072-014-1785-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
|
38
|
Matsushita H, Hijioka M, Ishibashi H, Anan J, Kurauchi Y, Hisatsune A, Seki T, Shudo K, Katsuki H. Suppression of CXCL2 upregulation underlies the therapeutic effect of the retinoid Am80 on intracerebral hemorrhage in mice. J Neurosci Res 2014; 92:1024-34. [PMID: 24659080 DOI: 10.1002/jnr.23379] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/03/2014] [Accepted: 02/14/2014] [Indexed: 12/11/2022]
Abstract
We previously demonstrated that a synthetic retinoic acid receptor agonist, Am80, attenuated intracerebral hemorrhage (ICH)-induced neuropathological changes and neurological dysfunction. Because inflammatory events are among the prominent features of ICH pathology that are affected by Am80, this study investigated the potential involvement of proinflammatory cytokines/chemokines in the effect of Am80 on ICH. ICH induced by collagenase injection into mouse striatum caused prominent upregulation of mRNAs for interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, CXCL1, CXCL2, and CCL3. We found that dexamethasone (DEX) and Am80 differently modulated the increase in expression of these cytokines/chemokines; TNF-α expression was attenuated only by DEX, whereas CXCL2 expression was attenuated only by Am80. Expression of IL-1β and IL-6 was inhibited both by DEX and Am80. Neurological assessments revealed that Am80, but not DEX, significantly alleviated motor dysfunction of mice after ICH. From these results, we suspected that CXCL2 might be critically involved in determining the extent of motor dysfunction. Indeed, magnetic resonance imaging-based classification of ICH in individual mice revealed that invasion of hematoma into the internal capsule, which has been shown to cause severe neurological disabilities, was associated with higher levels of CXCL2 expression than ICH without internal capsule invasion. Moreover, a CXCR1/2 antagonist reparixin ameliorated neurological deficits after ICH. Overall, suppression of CXCL2 expression may contribute to the beneficial effect of Am80 as a therapeutic agent for ICH, and interruption of CXCL2 signaling may provide a promising target for ICH therapy.
Collapse
Affiliation(s)
- Hideaki Matsushita
- Department of Chemico-Pharmacological Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
D'Ambrosio R, Eastman CL, Fattore C, Perucca E. Novel frontiers in epilepsy treatments: preventing epileptogenesis by targeting inflammation. Expert Rev Neurother 2014; 13:615-25. [PMID: 23738999 DOI: 10.1586/ern.13.54] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Currently available epilepsy drugs only affect the symptoms (seizures), and there is a need for innovative treatments that target the underlying disease. Increasing evidence points to inflammation as a potentially important mechanism in epileptogenesis. In the last decade, a new generation of etiologically realistic syndrome-specific experimental models have been developed, which are expected to capture the epileptogenic mechanisms operating in corresponding patient populations, and to exhibit similar treatment responsiveness. Recently, an intervention known to have broad-ranging anti-inflammatory effects (selective brain cooling) has been found to prevent the development of spontaneously occurring seizures in an etiologically realistic rat model of post-traumatic epilepsy. Several drugs used clinically for other indications also have the potential for inhibiting inflammation, and should be investigated for antiepileptogenic activity in these models. If results of such studies are positive, these compounds could rapidly enter Phase III trials in patients at high risk of developing epilepsy.
Collapse
Affiliation(s)
- Raimondo D'Ambrosio
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
40
|
Belur PK, Chang JJ, He S, Emanuel BA, Mack WJ. Emerging experimental therapies for intracerebral hemorrhage: targeting mechanisms of secondary brain injury. Neurosurg Focus 2013; 34:E9. [PMID: 23634928 DOI: 10.3171/2013.2.focus1317] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracerebral hemorrhage (ICH) is associated with a higher degree of morbidity and mortality than other stroke subtypes. Despite this burden, currently approved treatments have demonstrated limited efficacy. To date, therapeutic strategies have principally targeted hematoma expansion and resultant mass effect. However, secondary mechanisms of brain injury are believed to be critical effectors of cell death and neurological outcome following ICH. This article reviews the pathophysiology of secondary brain injury relevant to ICH, examines pertinent experimental models, and highlights emerging therapeutic strategies. Treatment paradigms discussed include thrombin inhibitors, deferoxamine, minocycline, statins, granulocyte-colony stimulating factors, and therapeutic hypothermia. Despite promising experimental and preliminary human data, further studies are warranted prior to effective clinical translation.
Collapse
Affiliation(s)
- Praveen K Belur
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
41
|
Hyperthermia in human ischemic and hemorrhagic stroke: similar outcome, different mechanisms. PLoS One 2013; 8:e78429. [PMID: 24223804 PMCID: PMC3817202 DOI: 10.1371/journal.pone.0078429] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/19/2013] [Indexed: 12/20/2022] Open
Abstract
Hyperthermia is a predictor of poor outcome in ischemic (IS) and intracerebral hemorrhagic (ICH) stroke. Our aim was to study the plausible mechanisms involved in the poor outcome associated to hyperthermia in stroke. We conducted a case-control study including patients with IS (n = 100) and ICH (n = 100) within the first 12 hours from symptom onset. Specifically, IS and ICH patients were consecutively included into 2 subgroups, according to the highest body temperature within the first 24 hours: Tmax <37.5°C and Tmax ≥37.5°C, up to reach 50 patients per subgroup of temperature for both IS and ICH patients. Body temperature was determined at admission and every 4 hours during the first 48 hours. Main outcome variable was poor functional outcome (modified Rankin scale score >2) at 3 months. Serum levels of glutamate and active MMP-9 were measured at admission. Our results showed that Tmax ≥37.5°C within the first 24 hours was independently associated with poor outcome in both IS (OR, 12.43; 95% CI, 3.73-41.48; p<0.0001) and ICH (OR, 4.29; 95% CI, 1.32-13.91; p = 0.015) after adjusting for variables with a proven biological relevance for outcome. However, when molecular markers levels were included in the logistic regression model, we observed that glutamate (OR, 1.01; 95% CI, 1.00-1.02; p = 0.001) and infarct volume (OR, 1.06; 95% CI, 1.01-1.10; p = 0.015) were the only variables independently associated to poor outcome in IS, and active MMP-9 (OR, 1.04; 95% CI, 1.00-1.08; p = 0.002) and National Institute of Health Stroke Scale (NIHSS) at admission (OR, 1.29; 95% CI, 1.13-1.49; p<0.0001) in ICH. In conclusion, these results suggest that although the outcome associated to hyperthermia is similar in human IS and ICH, the underlying mechanisms may be different.
Collapse
|
42
|
Esposito E, Mandeville ET, Lo EH. Lower doses of isoflurane treatment has no beneficial effects in a rat model of intracerebral hemorrhage. BMC Neurosci 2013; 14:129. [PMID: 24138708 PMCID: PMC3924354 DOI: 10.1186/1471-2202-14-129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 09/20/2013] [Indexed: 11/20/2022] Open
Abstract
Background Intracerebral hemorrhage is a subtype of stroke that has a poor prognosis without an adequate therapy. Recently, the use of anesthetics such as isoflurane has been shown to be protective after cerebral ischemia. However, the potential therapeutic effect of isoflurane after intracerebral hemorrhage (ICH) has not been fully explored. Results In this study, male Sprague–Dawley rats (SD) were subjected to ICH and randomized into controls and 1.2% or 1.5% isoflurane posttreatment groups. Brain water content, neurological outcomes and matrix metalloproteinase-2 and -9 (MMP2-MMP9) plasma levels were quantified at 24 hours. Isoflurane treatment did not reduce brain edema compared with controls in any of the applied isoflurane concentrations. Moreover, consistent with this lack of effect on brain edema, isoflurane posttreatment did not affect neurological outcomes in any of the tests used. Plasma MMP levels did not change. Conclusion Our data suggested that there is no neuroprotection after isoflurane posttreatment in a rat model of ICH.
Collapse
Affiliation(s)
- Elga Esposito
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | | | | |
Collapse
|
43
|
Bimpis A, Papalois A, Tsakiris S, Kalafatakis K, Zarros A, Gkanti V, Skandali N, Al-Humadi H, Kouzelis C, Liapi C. Modulation of crucial adenosinetriphosphatase activities due to U-74389G administration in a porcine model of intracerebral hemorrhage. Metab Brain Dis 2013; 28:439-46. [PMID: 23344690 DOI: 10.1007/s11011-013-9380-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
Spontaneous intracerebral hemorrhage (ICH) represents a partially-understood cerebrovascular disease of high incidence, morbidity and mortality. We, herein, report the findings of our study concerning the role of two important adenosinetriphosphatases (ATPases) in a porcine model of spontaneous ICH that we have recently developed (by following recent references as well as previously-established models and techniques), with a focus on the first 4 and 24 h following the lesion's induction, in combination with a study of the effectiveness of the lazaroid antioxidant U-74389G administration. Our study demonstrates that the examined ICH model does not cause a decrease in Na(+),K(+)-ATPase activity (the levels of which are responsible for a very large part of neuronal energy expenditure) in the perihematomal basal ganglia territory, nor a change in the activity of Mg(2+)-ATPase. This is the first report focusing on these crucial ATPases in the experimental setting of ICH and differs from the majority of the findings concerning the behavior of these (crucial for central nervous system cell survival) enzymes under stroke-related ischemic conditions. The administration of U-74389G (an established antioxidant) in this ICH model revealed an injury specific type of behavior, that could be considered as neuroprotective provided that one considers that Na(+),K(+)- and Mg(2+)-ATPase inhibition might in this case diminish the local ATP consumption.
Collapse
Affiliation(s)
- Alexios Bimpis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Wendy C Ziai
- Johns Hopkins Hospital, Division of Neurosciences Critical Care, 600 N Wolfe St/Meyer 8-140, Baltimore, MD 21287, USA.
| |
Collapse
|
45
|
Matsushita H, Hijioka M, Hisatsune A, Isohama Y, Iwamoto S, Terasawa H, Katsuki H. MRI-based analysis of intracerebral hemorrhage in mice reveals relationship between hematoma expansion and the severity of symptoms. PLoS One 2013; 8:e67691. [PMID: 23844065 PMCID: PMC3699642 DOI: 10.1371/journal.pone.0067691] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/21/2013] [Indexed: 01/12/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is featured by poor prognosis such as high mortality rate and severe neurological dysfunction. In humans, several valuables including hematoma volume and ventricular expansion of hemorrhage are known to correlate with the extent of mortality and neurological dysfunction. However, relationship between hematoma conditions and the severity of symptoms in animal ICH models has not been clarified. Here we addressed this issue by using 7-tesla magnetic resonance imaging (MRI) on collagenase-induced ICH model in mice. We found that the mortality rate and the performance in behavioral tests did not correlate well with the volume of hematoma. In contrast, when hemorrhage invaded the internal capsule, mice exhibited high mortality and showed poor sensorimotor performance. High mortality rate and poor performance in behavioral tests were also observed when hemorrhage invaded the lateral ventricle, although worsened symptoms associated with ventricular hemorrhage were apparent only during early phase of the disease. These results clearly indicate that invasion of the internal capsule or the lateral ventricle by hematoma is a critical determinant of poor prognosis in experimental ICH model in mice as well as in human ICH patients. MRI assessment may be a powerful tool to refine investigations of pathogenic mechanisms and evaluations of drug effects in animal models of ICH.
Collapse
Affiliation(s)
- Hideaki Matsushita
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masanori Hijioka
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akinori Hisatsune
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
| | - Yoichiro Isohama
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigeto Iwamoto
- Department of Structural Bioimaging, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroaki Terasawa
- Department of Structural Bioimaging, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
46
|
Munakata M, Shirakawa H, Nagayasu K, Miyanohara J, Miyake T, Nakagawa T, Katsuki H, Kaneko S. Transient Receptor Potential Canonical 3 Inhibitor Pyr3 Improves Outcomes and Attenuates Astrogliosis After Intracerebral Hemorrhage in Mice. Stroke 2013; 44:1981-7. [DOI: 10.1161/strokeaha.113.679332] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Masaya Munakata
- From the Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (M.M., H.S., K.N., J.M., T.M., T.N., S.K.); and Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan (H.K.)
| | - Hisashi Shirakawa
- From the Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (M.M., H.S., K.N., J.M., T.M., T.N., S.K.); and Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan (H.K.)
| | - Kazuki Nagayasu
- From the Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (M.M., H.S., K.N., J.M., T.M., T.N., S.K.); and Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan (H.K.)
| | - Jun Miyanohara
- From the Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (M.M., H.S., K.N., J.M., T.M., T.N., S.K.); and Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan (H.K.)
| | - Takahito Miyake
- From the Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (M.M., H.S., K.N., J.M., T.M., T.N., S.K.); and Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan (H.K.)
| | - Takayuki Nakagawa
- From the Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (M.M., H.S., K.N., J.M., T.M., T.N., S.K.); and Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan (H.K.)
| | - Hiroshi Katsuki
- From the Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (M.M., H.S., K.N., J.M., T.M., T.N., S.K.); and Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan (H.K.)
| | - Shuji Kaneko
- From the Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (M.M., H.S., K.N., J.M., T.M., T.N., S.K.); and Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan (H.K.)
| |
Collapse
|
47
|
Early predictors of hematoma resorption rate in medically treated patients with spontaneous supratentorial hemorrhage. J Neurol Sci 2013; 327:55-60. [PMID: 23477665 DOI: 10.1016/j.jns.2013.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/29/2013] [Accepted: 02/13/2013] [Indexed: 11/24/2022]
Abstract
Spontaneous intracranial hemorrhages are associated with a relatively high mortality rate, and there is no effective treatment so far. Hematoma resorption speed after intracranial hemorrhage (ICH) is believed to correlate with clinical outcome. However, little is known about hematoma resorption rates following spontaneous ICH. The aim of this study is to identify factors that can influence the rate of hematoma resorption in patients with spontaneous supratentorial ICH. We studied 80 patients admitted at the First Affiliated Hospital of Xi'an JiaoTong University from November 2008 to April 2012. The rate of hematoma resorption was calculated for each patient by measuring the variation in the volume of the hematoma (mL) from two computerized tomography brain scans divided by the time factor (days) separating the respective scans. Non-parametric and standard multiple linear regression methods were used for statistical analysis. The size of the hematoma was identified as a predictor of the rate of hematoma resorption. For supratentorial hematomas with a maximum volume of 45 mL, the larger the volume, the greater the rate of resorption. Non-hypertensive patients had a more favorable rate of hematoma resorption than those who were hypertensive. A low serum high-density lipoprotein (HDL) level (<0.83 mmol/L) was associated with a slower hematoma resorption rate. Therefore, a spontaneous ICH hematoma of less than 45 mL, a history of chronic hypertension, and a lower level of HDL were found to be the predictors of the hematoma resorption rate in the first 7-day period following ICH onset.
Collapse
|
48
|
Yang D, Zhang J, Han Y, James E, Chopp M, Seyfried DM. Acute Statin Treatment Improves Recovery after Experimental Intracerebral Hemorrhage. ACTA ACUST UNITED AC 2013; 3:69-75. [PMID: 23837132 DOI: 10.4236/wjns.2013.32010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE We have previously demonstrated that 2-week treatment of experimental intracerebral hemorrhage (ICH) with a daily dose of 2 mg/kg statin starting 24 hours post-injury exerts a neuroprotective effect. The present study extends our previous investigation and tests the effect of acute high-dose (within 24 hours) statin therapy on experimental ICH. MATERIAL AND METHODS Fifty-six male Wistar rats were subjected to ICH by stereotactic injection of 100 μl of autologous blood into the striatum. Rats were divided randomly into seven groups: saline control group (n = 8); 10, 20 and 40 mg/kg simvastatin-treated groups (n = 8); and 10, 20 and 40 mg/kg atorvastatin-treated groups (n = 8). Simvastatin or atorvastatin were administered orally at 3 and 24 hours after ICH. Neurological functional outcome was evaluated using behavioral tests (mNSS and corner turn test) at multiple time points after ICH. Animals were sacrificed at 28 days after treatment, and histological studies were completed. RESULTS Acute treatment with simvastatin or atorvastatin at doses of 10 and 20 mg/kg, but not at 40 mg/kg, significantly enhanced recovery of neurological function starting from 2 weeks post-ICH and persisting for up to 4 weeks post ICH. In addition, at doses of 10 mg/kg and 20 mg/kg, histological evaluations revealed that simvastatin or atorvastatin reduced tissue loss, increased cell proliferation in the subventricular zone and enhanced vascular density and synaptogenesis in the hematoma boundary zone when compared to saline-treated rats. CONCLUSIONS Treatment with simvastatin or atorvastatin at doses of 10 and 20 mg/kg significantly improves neurological recovery after administration during the first 24 hours after ICH. Decreased tissue loss, increased cell proliferation and vascularity likely contribute to improved functional recovery in rats treated with statins after ICH.
Collapse
Affiliation(s)
- Dongmei Yang
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI
| | | | | | | | | | | |
Collapse
|
49
|
Hijioka M, Matsushita H, Ishibashi H, Hisatsune A, Isohama Y, Katsuki H. α7 Nicotinic acetylcholine receptor agonist attenuates neuropathological changes associated with intracerebral hemorrhage in mice. Neuroscience 2012; 222:10-9. [DOI: 10.1016/j.neuroscience.2012.07.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/26/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022]
|
50
|
Bimpis A, Papalois A, Tsakiris S, Zarros A, Kalafatakis K, Botis J, Stolakis V, Zissis KM, Liapi C. Activation of acetylcholinesterase after U-74389G administration in a porcine model of intracerebral hemorrhage. Metab Brain Dis 2012; 27:221-5. [PMID: 22476954 DOI: 10.1007/s11011-012-9301-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
Abstract
Spontaneous intracerebral hemorrhage (ICH) accounts for 10-15% of all strokes. Despite high incidence, morbidity and mortality, the precise pathophysiology of spontaneous ICH is not fully understood, while there is little data concerning the mechanisms that follow the primary insult of the hematoma formation. The cholinergic system, apart from its colossal importance as a neurotransmission system, seems to also play an important role in brain injury recovery. It has been recently suggested that the brain possesses a cholinergic anti-inflammatory pathway that counteracts the inflammatory responses after ICH, thereby limiting damage to the brain itself. We, herein, report the findings of our study concerning the role of acetylcholinesterase (AChE; a crucial membrane-bound enzyme involved in cholinergic neurotransmission) in a porcine model of spontaneous ICH, with a focus on the first 4 and 24 h following the lesion's induction, in combination with a study of the effectiveness of the lazaroid antioxidant U-74389G administration. Our study demonstrates the activation of AChE activity following U-74389G administration. The lazaroid U-74389G seems to be an established neuroprotectant and this is the first report of its supporting role in the enhancement of cholinergic response to the induction of ICH.
Collapse
Affiliation(s)
- Alexios Bimpis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|