1
|
Yang X, Zhangyi Z, Yu A, Zhou Q, Xia A, Qiu J, Cai M, Chu X, Li L, Feng Z, Luo Z, Sun G, Zhang J, Geng M, Chen S, Xie Z. GV-971 attenuates the progression of neuromyelitis optica in murine models and reverses alterations in gut microbiota and associated peripheral abnormalities. CNS Neurosci Ther 2024; 30:e14847. [PMID: 38973196 PMCID: PMC11228355 DOI: 10.1111/cns.14847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
AIMS Growing evidence suggests that an imbalanced gut microbiota composition plays a crucial role in the development of neuromyelitis optica spectrum disorders (NMOSD), an inflammatory demyelinating disease primarily affecting the optic nerves and central nervous system (CNS). In light of this, we explored the potential therapeutic benefits of GV-971 in NMOSD. GV-971 is a drug used for treating mild-to-moderate Alzheimer's disease, which targets the gut-brain axis and reduces neuroinflammation. METHODS To evaluate GV-971's effects, we employed the experimental autoimmune encephalomyelitis (EAE) mouse model to establish NMOSD animal models. This was achieved by injecting NMO-IgG into aged mice (11 months old) or using NMO-IgG along with complement injection and microbubble-enhanced low-frequency ultrasound (MELFUS) techniques in young mice (7 weeks old). We assessed the impact of GV-971 on incidence rate, clinical scores, body weight, and survival, with methylprednisolone serving as a positive control. In NMOSD models of young mice, we analyzed spinal cord samples through H&E staining, immunohistochemistry, and Luxol Fast Blue staining. Fecal samples collected at different time points underwent 16S rRNA gene sequencing, while plasma samples were analyzed using cytokine array and untargeted metabolomics analysis. RESULTS Our findings indicated that GV-971 significantly reduced the incidence of NMOSD, alleviated symptoms, and prolonged survival in NMOSD mouse models. The NMOSD model exhibited substantial neuroinflammation and injury, accompanied by imbalances in gut microbiota, peripheral inflammation, and metabolic disorders, suggesting a potentially vicious cycle that accelerates disease pathogenesis. Notably, GV-971 effectively reduces neuroinflammation and injury, and restores gut microbiota composition, as well as ameliorates peripheral inflammation and metabolic disorders. CONCLUSIONS GV-971 attenuates the progression of NMOSD in murine models and reduces neuroinflammation and injury, likely through its effects on remodeling gut microbiota and peripheral inflammation and metabolic disorders.
Collapse
Affiliation(s)
- Xinying Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Zhongheng Zhangyi
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aisong Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aihua Xia
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Ji Qiu
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Meixiang Cai
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Xingkun Chu
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Liang Li
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Zhengnan Feng
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Zhiyu Luo
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Guangqiang Sun
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Jing Zhang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Yu Z, Yang Y, Chan RB, Shi M, Stewart T, Huang Y, Liu Z, Lan G, Sheng L, Tian C, Yang D, Zhang J. GV-971 attenuates α-Synuclein aggregation and related pathology. CNS Neurosci Ther 2024; 30:e14393. [PMID: 37563872 PMCID: PMC10848097 DOI: 10.1111/cns.14393] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/10/2023] [Accepted: 06/24/2023] [Indexed: 08/12/2023] Open
Abstract
RATIONALE Synucleinopathies, including Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB), share a distinct pathological feature, that is, a widespread accumulation of α-synuclein (α-syn) in the brain. There is a significant clinical unmet need for disease-modifying treatments for synucleinopathies. Recently, a seaweed-derived mixture of oligosaccharides sodium oligomannate, GV-971, was approved for Phase 2 clinical trials for PD. This study aimed to further evaluate the therapeutic effects of GV-971 on synucleinopathies using cellular and animal models and explore its associated molecular mechanisms. METHODS α-Syn aggregation was assessed, in vitro and ex vivo, by ThT assay. A dopaminergic neuron cell line, Prnp-SNCAA53T mice, and brain slices from PD and DLB patients were used to determine the efficacy of GV-971 in ameliorating α-syn pathology. Measurements of motor functions, including pole, cylinder, and rotarod tests, were conducted on Prnp-SNCAA53T mice 4 weeks after intragastric administration of GV-971 (200 mg day-1 kg-1 ). RESULTS GV-971 effectively prevented α-syn aggregation and even disassembled pre-aggregated α-syn fibrils, in vitro and ex vivo. In addition, GV-971 was able to rescue α-syn-induced neuronal damage and reduced release of extracellular vesicles (EVs), likely via modulating Alix expression. In the Prnp-SNCAA53T mouse model, when treated at the age of 5 months, GV-971 significantly decreased α-syn deposition in the cortex, midbrain, and cerebellum regions, along with ameliorating the motor dysfunctions. CONCLUSIONS Our results indicate that GV-971, when administered at a relatively early stage of the disease process, significantly reduced α-syn accumulation and aggregation in Prnp-SNCAA53T mice. Furthermore, GV-971 corrected α-syn-induced inhibition of EVs release in neurons, contributing to neuronal protection. Future studies are needed to further assess GV-971 as a promising disease-modifying therapy for PD and other synucleinopathies.
Collapse
Affiliation(s)
- Zhenwei Yu
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Ying Yang
- Department of Pathology, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- National Health and Disease Human Brain Tissue Resource CenterZhejiang UniversityHangzhouChina
| | | | - Min Shi
- Department of PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Tessandra Stewart
- Department of PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Yang Huang
- Department of PathologyPeking University Health Science Center and Third HospitalBeijingChina
| | - Zongran Liu
- Department of PathologyPeking University Health Science Center and Third HospitalBeijingChina
| | - Guoyu Lan
- Department of PathologyPeking University Health Science Center and Third HospitalBeijingChina
| | - Lifu Sheng
- Department of PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Chen Tian
- Department of Pathology, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Dishun Yang
- Department of PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Jing Zhang
- Department of Pathology, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- National Health and Disease Human Brain Tissue Resource CenterZhejiang UniversityHangzhouChina
| |
Collapse
|
3
|
Kim J, Jeon H, Yun Kim H, Kim Y. Failure, Success, and Future Direction of Alzheimer Drugs Targeting Amyloid-β Cascade: Pros and Cons of Chemical and Biological Modalities. Chembiochem 2023; 24:e202300328. [PMID: 37497809 DOI: 10.1002/cbic.202300328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 07/28/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia and has become a health concern worldwide urging for an effective therapeutic. The amyloid hypothesis, currently the most pursued basis of AD drug discovery, points the cause of AD to abnormal production and ineffective removal of pathogenic aggregated amyloid-β (Aβ). AD therapeutic research has been focused on targeting different species of Aβ in the amyloidogenic process to control Aβ content and recover cognitive decline. Among the different processes targeted, the clearance mechanism has been found to be the most effective, supported by the recent clinical approval of an Aβ-targeting immunotherapeutic drug which significantly slowed cognitive decline. Although the current AD drug discovery field is extensively researching immunotherapeutic drugs, there are numerous properties of immunotherapy in need of improvements that could be overcome by an equally performing chemical drug. Here, we review chemical and immunotherapy drug candidates, based on their mechanism of modulating the amyloid cascade, selected from the AlzForum database. Through this review, we aim to summarize and evaluate the prospect of Aβ-targeting chemical drugs.
Collapse
Affiliation(s)
- JiMin Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Hanna Jeon
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Hye Yun Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - YoungSoo Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| |
Collapse
|
4
|
Zhou C, Zhang J, Luo X, Lian F, Zeng Y, Zhang Z, Zhang H, Zhang N. Sodium Oligomannate Electrostatically Binds to Aβ and Blocks Its Aggregation. J Phys Chem B 2023; 127:1983-1994. [PMID: 36848623 DOI: 10.1021/acs.jpcb.3c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
GV-971 (sodium oligomannate) is a China Food and Drug Administration (CFDA)-approved drug for treating Alzheimer's disease, and it could inhibit Aβ fibril formation in vitro and in mouse studies. To elucidate the mechanisms for understanding how GV-971 modulates Aβ's aggregation, we conducted a systematic biochemical and biophysical study of Aβ40/Aβ42:GV-971 systems. The integrating analysis of previously published data and our results suggests that the multisite electrostatic interactions between GV-971's carboxylic groups and Aβ40/Aβ42's three histidine residues might play a dominant role in driving the binding of GV-971 to Aβ. The fuzzy-type electrostatic interactions between GV-971 and Aβ are expected to protect Aβ from aggregation potentially through breaking the histidine-mediated inter-Aβ electrostatic interactions. Meanwhile, since GV-971's binding exhibited a slight downregulation effect on the flexibility of Aβ's histidine-colonized fragment, which potentially favors Aβ aggregation, we conclude that the dynamics alteration plays a minor role in GV-971's modulation on Aβ aggregation.
Collapse
Affiliation(s)
- Chen Zhou
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jingjing Zhang
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinwen Luo
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Fulin Lian
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yangyang Zeng
- Green Valley (Shanghai) Pharmaceuticals Co., Ltd., Shanghai 201203, China
| | - Zhenqing Zhang
- School of Pharmaceutical Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Haiyan Zhang
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Naixia Zhang
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
5
|
Sahlgren Bendtsen KM, Hall VJ. The Breakthroughs and Caveats of Using Human Pluripotent Stem Cells in Modeling Alzheimer's Disease. Cells 2023; 12:cells12030420. [PMID: 36766763 PMCID: PMC9913971 DOI: 10.3390/cells12030420] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Modeling Alzheimer's disease (AD) using human-induced pluripotent stem cells (iPSCs) is a field now spanning 15 years. Developments in the field have shown a shift in using simple 2D cortical neuron models to more advanced tri-cultures and 3D cerebral organoids that recapitulate more features of the disease. This is largely due to development and optimization of new cell protocols. In this review, we highlight recent major breakthroughs in the AD field and the implications this has in modeling AD using iPSCs (AD-iPSCs). To date, AD-iPSCs have been largely used to recapitulate and study impaired amyloid precursor protein (APP) processing and tau phosphorylation in both familial and sporadic AD. AD-iPSCs have also been studied for varying neuronal and glial dysfunctions. Moreover, they have been useful for discovering new molecular mechanisms, such as identifying proteins that bridge APP processing with tau phosphorylation and for identifying molecular pathways that bridge APP processing dysfunction with impaired cholesterol biosynthesis. Perhaps the greatest use of AD-iPSCs has been in discovering compounds via drug screening, that reduce amyloid beta (Aβ) in neurons, such as the anti-inflammatory compound, cromolyn, and antiparasitic drugs, avermectins. In addition, high content screening using AD-iPSCs has led to the identification of statins that can reduce levels of phosphorylated tau (p-Tau) in neurons. Some of these compounds have made it through to testing in human clinical trials. Improvements in omic technologies including single cell RNA sequencing and proteomics as well as advances in production of iPSC-cerebral organoids and tri-cultures is likely to result in the further discovery of new drugs and treatments for AD. Some caveats remain in the field, including, long experimental conditions to create mature neurons, high costs of media that limit research capabilities, and a lack of reproducibility using current iPSC-cerebral organoid protocols. Despite these current limitations, AD-iPSCs remain an excellent cellular model for studying AD mechanisms and for drug discovery.
Collapse
|
6
|
Decourt B, Noorda K, Noorda K, Shi J, Sabbagh MN. Review of Advanced Drug Trials Focusing on the Reduction of Brain Beta-Amyloid to Prevent and Treat Dementia. J Exp Pharmacol 2022; 14:331-352. [PMID: 36339394 PMCID: PMC9632331 DOI: 10.2147/jep.s265626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 10/14/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer disease (AD) is the most common neurodegenerative disease and typically affects patients older than age 65. Around this age, the number of neurons begins to gradually decrease in healthy brains, but brains of patients with AD show a marked increase in neuron death, often resulting in a significant loss of cognitive abilities. Cognitive skills affected include information retention, recognition capabilities, and language skills. At present, AD can be definitively diagnosed only through postmortem brain biopsies via the detection of extracellular amyloid beta (Aβ) plaques and intracellular hyperphosphorylated tau neurofibrillary tangles. Because the levels of both Aβ plaques and tau tangles are increased, these 2 proteins are thought to be related to disease progression. Although relatively little is known about the cause of AD and its exact pathobiological development, many forms of treatment have been investigated to determine an effective method for managing AD symptoms by targeting Aβ. These treatments include but are not limited to using small molecules to alter the interactions of Aβ monomers, reducing hyperactivation of neuronal circuits altering Aβ's molecular pathway of synthesis, improving degradation of Aβ, employing passive immunity approaches, and stimulating patients' active immunity to target Aβ. This review summarizes the current therapeutic interventions in Phase II/III of clinical development or higher that are capable of reducing abnormal brain Aβ levels to determine which treatments show the greatest likelihood of clinical efficacy. We conclude that, in the near future, the most promising therapeutic interventions for brain Aβ pathology will likely be passive immunotherapies, with aducanumab and donanemab leading the way, and that these drugs may be combined with antidepressants and acetylcholine esterase inhibitors, which can modulate Aβ synthesis.
Collapse
Affiliation(s)
- Boris Decourt
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | | | | | - Jiong Shi
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Marwan N Sabbagh
- Alzheimer’s and Memory Disorders Division, Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| |
Collapse
|
7
|
Wang G, Wang X, Zheng X, Sun S, Zhao J, Long Y, Mao Y. Acidic oligosaccharide sugar chain combined with hyperbaric oxygen delays D-galactose-induced brain senescence in mice via attenuating oxidative stress and neuroinflammation. Neurosci Res 2022; 185:40-48. [PMID: 35970311 DOI: 10.1016/j.neures.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Aging is fundamental to neurodegeneration and dementia. Preventing oxidative stress and neuroinflammation are potential methods of delaying the onset of aging-associated neurodegenerative diseases. The acidic oligosaccharide sugar chain (AOSC) and hyperbaric oxygen (HBO) can increase the expression of antioxidants and have a neuroprotective function. In this study, we investigate the ability of AOSC, HBO, and AOSC + HBO to prevent D-gal-induced brain senescence. The Morris water maze and Y-maze test results showed that all three therapies significantly attenuated D-gal-induced memory disorders. A potential mechanism of this action was decreasing elevated levels of oxidative stress and neuroinflammation. The western blot and morphological results showed that all three therapies decreased D-gal-induced neuroinflammation and downregulated inflammatory mediators including the nuclear factor κ-light-chain-enhancer of activated B cells, cyclooxygenase-2, interleukin-1β, and tumor necrosis factor alpha. Taken together, our results indicated that AOSC, HBO, and AOSC + HBO therapies attenuated D-gal-induced brain aging in mice by repressing RAGE/NF-KB-induced inflammation, the activation of astrocytes and microglia, and a decrease in neuronal degeneration. These could be useful therapies for treating age-related neurodegenerative diseases such as Alzheimer's disease. Furthermore, HBO combined with AOSC had a better effect than HBO or AOSC alone.
Collapse
Affiliation(s)
- Guimei Wang
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaolin Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaoyue Zheng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shuqin Sun
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jing Zhao
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ying Long
- Department of Hyperbaric Oxygen, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yongjun Mao
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
8
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
9
|
Bi D, Yang X, Lu J, Xu X. Preparation and potential applications of alginate oligosaccharides. Crit Rev Food Sci Nutr 2022; 63:10130-10147. [PMID: 35471191 DOI: 10.1080/10408398.2022.2067832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alginate, a linear polymer consisting of β-D-mannuronic acid (M) and α-L-guluronic acid (G) with 1,4-glycosidic linkages and comprising 40% of the dry weight of algae, possesses various applications in the food and nutraceutical industries. However, the potential applications of alginate are restricted in some fields because of its low water solubility and high solution viscosity. Alginate oligosaccharides (AOS) on the other hand, have low molecular weight which result in better water solubility. Hence, it becomes a more popular target to be researched in recent years for its use in foods and nutraceuticals. AOS can be obtained by multiple degradation methods, including enzymatic degradation, from alginate or alginate-derived poly G and poly M. AOS have unique bioactivity and can bring human health benefits, which render them potentials to be developed/incorporated into functional food. This review comprehensively covers methods of the preparation and analysis of AOS, and discussed the potential applications of AOS in foods and nutraceuticals.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Xu Yang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
| |
Collapse
|
10
|
Kim CK, Lee YR, Ong L, Gold M, Kalali A, Sarkar J. Alzheimer's Disease: Key Insights from Two Decades of Clinical Trial Failures. J Alzheimers Dis 2022; 87:83-100. [PMID: 35342092 PMCID: PMC9198803 DOI: 10.3233/jad-215699] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Given the acknowledged lack of success in Alzheimer’s disease (AD) drug development over the past two decades, the objective of this review was to derive key insights from the myriad failures to inform future drug development. A systematic and exhaustive review was performed on all failed AD compounds for dementia (interventional phase II and III clinical trials from ClinicalTrials.gov) from 2004 to the present. Starting with the initial ∼2,700 AD clinical trials, ∼550 trials met our initial criteria, from which 98 unique phase II and III compounds with various mechanisms of action met our criteria of a failed compound. The two recent reported phase III successes of aducanumab and oligomannate are very encouraging; however, we are awaiting real-world validation of their effectiveness. These two successes against the 98 failures gives a 2.0% phase II and III success rate since 2003, when the previous novel compound was approved. Potential contributing methodological factors for the clinical trial failures were categorized into 1) insufficient evidence to initiate the pivotal trials, and 2) pivotal trial design shortcomings. Our evaluation found that rational drug development principles were not always followed for AD therapeutics development, and the question remains whether some of the failed compounds may have shown efficacy if the principles were better adhered to. Several recommendations are made for future AD therapeutic development. The whole database of the 98 failed compounds is presented in the Supplementary Material.
Collapse
Affiliation(s)
| | | | | | - Michael Gold
- Neuroscience Development, AbbVie, North Chicago, IL, USA
| | | | | |
Collapse
|
11
|
Li Y, Jin L, Wang F, Ren L, Pen R, Bo G, Wang L. Epigenetic axis of SNHG19/miR-137/TNFAIP1 modulates amyloid beta peptide 25-35-induced SH-SY5Y cytotoxicity. Epigenomics 2022; 14:187-198. [PMID: 35170354 DOI: 10.2217/epi-2021-0288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: In this study, the authors hypothesized that, in an in vitro Alzheimer's disease model, the epigenetic axis of SNHG19/hsa-miR-137 functionally regulates amyloid beta peptide 25-35 (Aβ25-35)-induced SH-SY5Y cytotoxicity. Methods: Dual luciferase activity assay demonstrated that SNHG19 could directly bind hsa-miR-137. In Aβ25-35-treated SH-SY5Y cells, SNHG19 was upregulated and hsa-miR-137 downregulated. Results: SNHG19 knockdown ameliorated Aβ25-35-induced SH-SY5Y cytotoxicity, then reversed by secondary hsa-miR-137 downregulation. TNFAIP1 was dynamically regulated by Aβ25-35 and gene modifications in SH-SY5Y cells. Finally, upregulation of TNFAIP1 reversed the protective effect of SNHG19 knockdown on Aβ25-35-induced cytotoxicity. Conclusions: The authors concluded that the epigenetic axis of SNHG19/hsa-miR-137/TNFAIP1 may functionally regulate Aβ25-35-induced SH-SY5Y cytotoxicity, thus making it a potential molecular target for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Yipei Li
- Medical Key Laboratory of Brain Degenerative Diseases of Henan Province, Henan Medical College, Zhengzhou, Henan, 451191, China.,Department of Pathophysiology, Henan Medical College, Zhengzhou, Henan, 451191, China
| | - Li Jin
- Medical Key Laboratory of Brain Degenerative Diseases of Henan Province, Henan Medical College, Zhengzhou, Henan, 451191, China.,Department of Pathophysiology, Henan Medical College, Zhengzhou, Henan, 451191, China
| | - Fang Wang
- Medical Key Laboratory of Brain Degenerative Diseases of Henan Province, Henan Medical College, Zhengzhou, Henan, 451191, China
| | - Li Ren
- Medical Key Laboratory of Brain Degenerative Diseases of Henan Province, Henan Medical College, Zhengzhou, Henan, 451191, China
| | - Ruirui Pen
- Medical Key Laboratory of Brain Degenerative Diseases of Henan Province, Henan Medical College, Zhengzhou, Henan, 451191, China.,Department of Pathophysiology, Henan Medical College, Zhengzhou, Henan, 451191, China
| | - Guojia Bo
- Medical Key Laboratory of Brain Degenerative Diseases of Henan Province, Henan Medical College, Zhengzhou, Henan, 451191, China
| | - Li Wang
- Medical Key Laboratory of Brain Degenerative Diseases of Henan Province, Henan Medical College, Zhengzhou, Henan, 451191, China
| |
Collapse
|
12
|
Gong CX, Dai CL, Liu F, Iqbal K. Multi-Targets: An Unconventional Drug Development Strategy for Alzheimer's Disease. Front Aging Neurosci 2022; 14:837649. [PMID: 35222001 PMCID: PMC8864545 DOI: 10.3389/fnagi.2022.837649] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/20/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that eventually leads to dementia and death of the patient. Despite the enormous amounts of resources and efforts for AD drug development during the last three decades, no effective treatments have been developed that can slow or halt the progression of the disease. Currently available drugs for treating AD can only improve clinical symptoms temporarily with moderate efficacies. In recent years, the scientific community has realized these challenges and reconsidered the future directions of AD drug development. The most significant recent changes in AD drug development strategy include shifting from amyloid-based targets to other targets, such as tau, and efforts toward better designs for clinical trials. However, most AD drug development is still focused on a single mechanism or target, which is the conventional strategy for drug development. Although multifactorial mechanisms and, on this basis, multi-target strategies have been proposed in recent years, this approach has not been widely recognized and accepted by the mainstream of AD drug development. Here, we emphasize the multifactorial mechanisms of AD and discuss the urgent need for a paradigm shift in AD drug development from a single target to multiple targets, either with the multi-target-directed ligands approach or the combination therapy approach. We hope this article will increase the recognition of the multifactorial nature of AD and promote this paradigm shift. We believe that such a shift will facilitate successful development of effective AD therapies.
Collapse
Affiliation(s)
- Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States
| | | | | | | |
Collapse
|
13
|
Zeng L, Li J, Cheng Y, Wang D, Gu J, Li F, Han W. Comparison of Biochemical Characteristics, Action Models, and Enzymatic Mechanisms of a Novel Exolytic and Two Endolytic Lyases with Mannuronate Preference. Mar Drugs 2021; 19:md19120706. [PMID: 34940705 PMCID: PMC8705907 DOI: 10.3390/md19120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Recent explorations of tool-like alginate lyases have been focused on their oligosaccharide-yielding properties and corresponding mechanisms, whereas most were reported as endo-type with α-L-guluronate (G) preference. Less is known about the β-D-mannuronate (M) preference, whose commercial production and enzyme application is limited. In this study, we elucidated Aly6 of Flammeovirga sp. strain MY04 as a novel M-preferred exolytic bifunctional lyase and compared it with AlgLs of Pseudomonas aeruginosa (Pae-AlgL) and Azotobacter vinelandii (Avi-AlgL), two typical M-specific endolytic lyases. This study demonstrated that the AlgL and heparinase_II_III modules play indispensable roles in determining the characteristics of the recombinant exo-type enzyme rAly6, which is preferred to degrade M-enriched substrates by continuously cleaving various monosaccharide units from the nonreducing end, thus yielding various size-defined ΔG-terminated oligosaccharides as intermediate products. By contrast, the endolytic enzymes Pae-rAlgL and Avi-rAlgL varied their action modes specifically against M-enriched substrates and finally degraded associated substrate chains into various size-defined oligosaccharides with a succession rule, changing from ΔM to ΔG-terminus when the product size increased. Furthermore, site-directed mutations and further protein structure tests indicated that H195NHSTW is an active, half-conserved, and essential enzyme motif. This study provided new insights into M-preferring lyases for novel resource discoveries, oligosaccharide preparations, and sequence determinations.
Collapse
Affiliation(s)
- Lianghuan Zeng
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (J.L.); (D.W.); (F.L.)
- United Post-Graduate Education Base of Shandong University and Jinan Enlighten Biotechnology Co., Ltd., Jinan 250100, China; (Y.C.); (J.G.)
| | - Junge Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (J.L.); (D.W.); (F.L.)
- United Post-Graduate Education Base of Shandong University and Jinan Enlighten Biotechnology Co., Ltd., Jinan 250100, China; (Y.C.); (J.G.)
| | - Yuanyuan Cheng
- United Post-Graduate Education Base of Shandong University and Jinan Enlighten Biotechnology Co., Ltd., Jinan 250100, China; (Y.C.); (J.G.)
- Department of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Dandan Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (J.L.); (D.W.); (F.L.)
| | - Jingyan Gu
- United Post-Graduate Education Base of Shandong University and Jinan Enlighten Biotechnology Co., Ltd., Jinan 250100, China; (Y.C.); (J.G.)
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (J.L.); (D.W.); (F.L.)
| | - Wenjun Han
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (J.L.); (D.W.); (F.L.)
- United Post-Graduate Education Base of Shandong University and Jinan Enlighten Biotechnology Co., Ltd., Jinan 250100, China; (Y.C.); (J.G.)
- Activity Biotechnology Co., Ltd., Jinan 250100, China
- Correspondence: ; Tel.: +86-15763908639
| |
Collapse
|
14
|
Jiang L, Sun Q, Li L, Lu F, Liu F. Molecular Insights into the Inhibitory Effect of GV971 Components Derived from Marine Acidic Oligosaccharides against the Conformational Transition of Aβ42 Monomers. ACS Chem Neurosci 2021; 12:3772-3784. [PMID: 34565139 DOI: 10.1021/acschemneuro.1c00555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
GV971 derived from marine acidic oligosaccharides has been used to cure Alzheimer's disease (AD). However, the molecular mechanism of its inhibition of the conformational transition of amyloid β-proteins (Aβ) is still unclear. Herein, molecular dynamics simulations were used to explore the molecular mechanism of the main GV971 components including DiM, TetraM, HexaM, and OctaM to inhibit the conformational conversion of the Aβ42 monomer. It is found that the GV971 components inhibit the conformational transition from α-helix to β-sheet and the hydrophobic collapse of the Aβ42 monomer. In addition, the binding energy analysis implies that both electrostatic and van der Waals interactions are beneficial to the binding of GV971 components to the Aβ42 monomer. Among them, electrostatic interactions occupy the dominant position. Moreover, the GV971 components mainly interact directly with the charged residues D1, R5, K16, and K28 by forming salt bridges and hydrogen bonds, which specifically bind to the N-terminal region of Aβ42.
Collapse
Affiliation(s)
- Luying Jiang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Quancheng Sun
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Li Li
- College of Marine and Environmental Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| |
Collapse
|
15
|
Menaa F, Wijesinghe U, Thiripuranathar G, Althobaiti NA, Albalawi AE, Khan BA, Menaa B. Marine Algae-Derived Bioactive Compounds: A New Wave of Nanodrugs? Mar Drugs 2021; 19:484. [PMID: 34564146 PMCID: PMC8469996 DOI: 10.3390/md19090484] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Marine algae are rich in bioactive nutraceuticals (e.g., carbohydrates, proteins, minerals, fatty acids, antioxidants, and pigments). Biotic (e.g., plants, microorganisms) and abiotic factors (e.g., temperature, pH, salinity, light intensity) contribute to the production of primary and secondary metabolites by algae. Easy, profitable, and sustainable recovery methods include novel solid-liquid and liquid-liquid extraction techniques (e.g., supercritical, high pressure, microwave, ultrasound, enzymatic). The spectacular findings of algal-mediated synthesis of nanotheranostics has attracted further interest because of the availability of microalgae-based natural bioactive therapeutic compounds and the cost-effective commercialization of stable microalgal drugs. Algal extracts can serve as stabilizing/capping and reducing agents for the synthesis of thermodynamically stable nanoparticles (NPs). Different types of nanotherapeutics have been synthesized using physical, chemical, and biological methods. Marine algae are a fascinating source of lead theranostics compounds, and the development of nanotheranostics has been linked to enhanced drug efficacy and safety. Indeed, algae are remarkable nanobiofactories, and their pragmatic properties reside in their (i) ease of handling; (ii) capacity to absorb/accumulate inorganic metallic ions; (iii) cost-effectiveness; and (iv) capacity of eco-friendly, rapid, and healthier synthesis of NPs. Preclinical and clinical trials shall enable to really define effective algal-based nanotherapies. This review aims to provide an overview of the main algal compounds that are nutraceuticals and that can be extracted and purified for nanotheranostic purposes.
Collapse
Affiliation(s)
- Farid Menaa
- Department of Internal Medicine and Nanomedicine, Fluorotronics-CIC, San Diego, CA 92037, USA;
| | - Udari Wijesinghe
- Institute of Chemistry Ceylon, College of Chemical Sciences, Rajagiriya 10107, Sri Lanka; (U.W.); (G.T.)
| | - Gobika Thiripuranathar
- Institute of Chemistry Ceylon, College of Chemical Sciences, Rajagiriya 10107, Sri Lanka; (U.W.); (G.T.)
| | - Norah A. Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Al Quwaiiyah 19257, Saudi Arabia;
| | - Aishah E. Albalawi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Barkat Ali Khan
- Department of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Bouzid Menaa
- Department of Internal Medicine and Nanomedicine, Fluorotronics-CIC, San Diego, CA 92037, USA;
| |
Collapse
|
16
|
Hafez Ghoran S, Kijjoa A. Marine-Derived Compounds with Anti-Alzheimer's Disease Activities. Mar Drugs 2021; 19:410. [PMID: 34436249 PMCID: PMC8399123 DOI: 10.3390/md19080410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible and progressive brain disorder that slowly destroys memory and thinking skills, and, eventually, the ability to perform simple tasks. As the aging population continues to increase exponentially, AD has become a big concern for society. Therefore, neuroprotective compounds are in the spotlight, as a means to tackle this problem. On the other hand, since it is believed-in many cultures-that marine organisms in an individual diet cannot only improve brain functioning, but also slow down its dysfunction, many researchers have focused on identifying neuroprotective compounds from marine resources. The fact that the marine environment is a rich source of structurally unique and biologically and pharmacologically active compounds, with unprecedented mechanisms of action, marine macroorganisms, such as tunicates, corals, sponges, algae, as well as microorganisms, such as marine-derived bacteria, actinomycetes, and fungi, have been the target sources of these compounds. Therefore, this literature review summarizes and categorizes various classes of marine-derived compounds that are able to inhibit key enzymes involved in AD, including acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase (BACE-1), and different kinases, together with the related pathways involved in the pathogenesis of AD. The compounds discussed herein are emerging as promising anti-AD activities for further in-depth in vitro and in vivo investigations, to gain more insight of their mechanisms of action and for the development of potential anti-AD drug leads.
Collapse
Affiliation(s)
- Salar Hafez Ghoran
- Department of Chemistry, Faculty of Science, Golestan University, Gorgan 439361-79142, Iran;
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj 75919-94779, Iran
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
17
|
Feng W, Liu J, Wang S, Hu Y, Pan H, Hu T, Guan H, Zhang D, Mao Y. Alginate oligosaccharide alleviates D-galactose-induced cardiac ageing via regulating myocardial mitochondria function and integrity in mice. J Cell Mol Med 2021; 25:7157-7168. [PMID: 34227740 PMCID: PMC8335675 DOI: 10.1111/jcmm.16746] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022] Open
Abstract
Ageing is a crucial risk factor for the development of age‐related cardiovascular diseases. Therefore, the molecular mechanisms of ageing and novel anti‐ageing interventions need to be deeply studied. Alginate oligosaccharide (AOS) possesses high pharmacological activities and beneficial effects. Our study was undertaken to investigate whether AOS could be used as an anti‐ageing drug to alleviate cardiac ageing. D‐galactose (D‐gal)‐induced C57BL/6J ageing mice were established by subcutaneous injection of D‐gal (200 mg·kg‐1·d‐1) for 8 weeks. AOS (50, 100 and 150 mg·kg‐1·d‐1) were administrated intragastrically for the last 4 weeks. As a result, AOS prevented cardiac dysfunction in D‐gal‐induced ageing mice, including partially preserved ejection fraction (EF%) and fractional shortening (FS%). AOS inhibited D‐gal‐induced up‐regulation of natriuretic peptides A (ANP), brain natriuretic peptide (BNP) and ageing markers p53 and p21 in a dose‐dependent manner. To further explore the potential mechanisms contributing to the anti‐ageing protective effect of AOS, the age‐related mitochondrial compromise was analysed. Our data indicated that AOS alleviated D‐gal‐induced cardiac ageing by improving mitochondrial biogenesis, maintaining the mitochondrial integrity and enhancing the efficient removal of impaired mitochondria. AOS also decreased the ROS production and oxidative stress status, which, in turn, further inhibiting cardiac mitochondria from being destroyed. Together, these results demonstrate that AOS may be an effective therapeutic agent to alleviate cardiac ageing.
Collapse
Affiliation(s)
- Wenjing Feng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, China
| | - Jianya Liu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shan Wang
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Hu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Pan
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ting Hu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Huashi Guan
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, China
| | - Yongjun Mao
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Li G, Zhou Y, Yang WY, Zhang C, Hong L, Jia L. Inhibitory Effects of Sulfated Polysaccharides from the Sea Cucumber Cucumaria Frondosa against Aβ40 Aggregation and Cytotoxicity. ACS Chem Neurosci 2021; 12:1854-1859. [PMID: 33999600 DOI: 10.1021/acschemneuro.1c00223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abnormal aggregation and deposition of Aβ is one of the causative agents for Alzheimer's disease. The development of inhibitors for Aβ aggregation has been considered a possible method to prevent and treat Alzheimer's disease. Edible sea cucumbers contain many bioactive molecules, including saponins, phospholipids, peptides, and polysaccharides. Herein, we report that polysaccharides extracted from sea cucumber Cucumaria frondosa could reduce the aggregation and cytotoxicity of Aβ40. By utilizing multiple biochemical and biophysical instruments, we found that the polysaccharides could inhibit the aggregation of Aβ40. A chemical kinetics analysis further suggested that the major inhibitory effects of the polysaccharides were achieved by disassembling mature fibrils, which in turn reduced the cytotoxicity of Aβ. These results suggested that the polysaccharides extracted from sea cucumber could be used as an effective inhibitor for Aβ.
Collapse
Affiliation(s)
- Gao Li
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Yu Zhou
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Wu-Yue Yang
- Yau Mathematical Sciences Center, Tsinghua University, Beijing, Beijing 100084, China
| | - Chen Zhang
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Liu Hong
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| |
Collapse
|
19
|
Lu J, Pan Q, Zhou J, Weng Y, Chen K, Shi L, Zhu G, Chen C, Li L, Geng M, Zhang Z. Pharmacokinetics, distribution, and excretion of sodium oligomannate, a recently approved anti-Alzheimer's disease drug in China. J Pharm Anal 2021; 12:145-155. [PMID: 35573885 PMCID: PMC9073255 DOI: 10.1016/j.jpha.2021.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
The National Medical Products Administration has authorized sodium oligomannate for treating mild-to-moderate Alzheimer's disease. In this study, an LC-MS/MS method was developed and validated to quantitate sodium oligomannate in different biomatrices. The plasma pharmacokinetics, tissue distribution, and excretion of sodium oligomannate in Sprague-Dawley rats and beagle dogs were systematically investigated. Despite its complicated structural composition, the absorption, distribution, metabolism, and excretion profiles of the oligosaccharides in sodium oligomannate of different sizes and terminal derivatives were indiscriminate. Sodium oligomannate mainly crossed the gastrointestinal epithelium through paracellular transport following oral administration, with very low oral bioavailability in rats (0.6%–1.6%) and dogs (4.5%–9.3%). Absorbed sodium oligomannate mainly resided in circulating body fluids in free form with minimal distribution into erythrocytes and major tissues. Sodium oligomannate could penetrate the blood-cerebrospinal fluid (CSF) barrier of rats, showing a constant area under the concentration-time curve ratio (CSF/plasma) of approximately 5%. The cumulative urinary excretion of sodium oligomannate was commensurate with its oral bioavailability, supporting that excretion was predominantly renal, whereas no obvious biliary secretion was observed following a single oral dose to bile duct-cannulated rats. Moreover, only 33.7% (male) and 26.3% (female) of the oral dose were recovered in the rat excreta within 96 h following a single oral administration, suggesting that the intestinal flora may have ingested a portion of unabsorbed sodium oligomannate as a nutrient. ADME profiles of sodium oligomannate oligosaccharides were indiscriminate. An LC-MS/MS method was developed and validated for the ADME study of sodium oligomannate. Sodium oligomannate was absorbed through paracellular transport with very low BA. Approximately 5% of sodium oligomannate penetrated the blood–CSF barrier of rats. The absorbed drug was excreted through the kidney; unabsorbed drug was excreted in feces.
Collapse
|
20
|
Bi D, Xiao S, Lin Z, Yao L, Fang W, Wu Y, Xu H, Lu J, Xu X. Alginate-Derived Mannuronate Oligosaccharide Attenuates Tauopathy through Enhancing Autophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4438-4445. [PMID: 33829789 DOI: 10.1021/acs.jafc.1c00394] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymannuronate (PM) is an acidic polysaccharide prepared from alginate, contained in edible brown seaweeds. An unsaturated mannuronate oligosaccharide (MOS) is an enzymatically depolymerized oligosaccharide prepared from PM. The effects of MOS on attenuating tauopathy were studied in HEK293/Tau cells and primary triple transgenic (3×Tg) neurons. MOS inhibited heparin-induced aggregation of the Tau-K18 oligomer and suppressed the levels of phosphorylated Tau protein. MOS treatment reduced the activity of glycogen synthase kinase-3β (GSK-3β) by decreasing its phosphorylation levels on the sites of Y216 and increasing phosphorylation levels on the sites of S9. MOS treatment increased the ratio of LC3-II/LC3-I levels and reduced the expression of p62, indicating an increase in autophagy. Finally, MOS-induced decrease in Tau protein expression was attenuated by the addition of an autophagy inhibitor, confirming the involvement of autophagy. These data support MOS as a promising functional food or potential pharmaceutics for attenuating Tau protein-related disease.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
| | - Shifeng Xiao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zhijian Lin
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen University, Shenzhen 518060, China
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Weishan Fang
- School of Medicine, Shenzhen University, Shenzhen 518055, PR China
| | - Yan Wu
- Instrumental Analysis Center, Shenzhen University, Shenzhen 518060, PR China
| | - Hong Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Jun Lu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
- Institute of Biomedical Technology, Auckland University of Technology, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Discovery, Auckland 1010, New Zealand
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
21
|
Xiao S, Chan P, Wang T, Hong Z, Wang S, Kuang W, He J, Pan X, Zhou Y, Ji Y, Wang L, Cheng Y, Peng Y, Ye Q, Wang X, Wu Y, Qu Q, Chen S, Li S, Chen W, Xu J, Peng D, Zhao Z, Li Y, Zhang J, Du Y, Chen W, Fan D, Yan Y, Liu X, Zhang W, Luo B, Wu W, Shen L, Liu C, Mao P, Wang Q, Zhao Q, Guo Q, Zhou Y, Li Y, Jiang L, Ren W, Ouyang Y, Wang Y, Liu S, Jia J, Zhang N, Liu Z, He R, Feng T, Lu W, Tang H, Gao P, Zhang Y, Chen L, Wang L, Yin Y, Xu Q, Xiao J, Cong L, Cheng X, Zhang H, Gao D, Xia M, Lian T, Peng G, Zhang X, Jiao B, Hu H, Chen X, Guan Y, Cui R, Huang Q, Xin X, Chen H, Ding Y, Zhang J, Feng T, Cantillon M, Chen K, Cummings JL, Ding J, Geng M, Zhang Z. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer's dementia. ALZHEIMERS RESEARCH & THERAPY 2021; 13:62. [PMID: 33731209 PMCID: PMC7967962 DOI: 10.1186/s13195-021-00795-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/22/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND New therapies are urgently needed for Alzheimer's disease (AD). Sodium oligomannate (GV-971) is a marine-derived oligosaccharide with a novel proposed mechanism of action. The first phase 3 clinical trial of GV-971 has been completed in China. METHODS We conducted a phase 3, double-blind, placebo-controlled trial in participants with mild-to-moderate AD to assess GV-971 efficacy and safety. Participants were randomized to placebo or GV-971 (900 mg) for 36 weeks. The primary outcome was the drug-placebo difference in change from baseline on the 12-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog12). Secondary endpoints were drug-placebo differences on the Clinician's Interview-Based Impression of Change with caregiver input (CIBIC+), Alzheimer's Disease Cooperative Study-Activities of Daily Living (ADCS-ADL) scale, and Neuropsychiatric Inventory (NPI). Safety and tolerability were monitored. RESULTS A total of 818 participants were randomized: 408 to GV-971 and 410 to placebo. A significant drug-placebo difference on the ADAS-Cog12 favoring GV-971 was present at each measurement time point, measurable at the week 4 visit and continuing throughout the trial. The difference between the groups in change from baseline was - 2.15 points (95% confidence interval, - 3.07 to - 1.23; p < 0.0001; effect size 0.531) after 36 weeks of treatment. Treatment-emergent adverse event incidence was comparable between active treatment and placebo (73.9%, 75.4%). Two deaths determined to be unrelated to drug effects occurred in the GV-971 group. CONCLUSIONS GV-971 demonstrated significant efficacy in improving cognition with sustained improvement across all observation periods of a 36-week trial. GV-971 was safe and well-tolerated. TRIAL REGISTRATION ClinicalTrials.gov, NCT0229391 5. Registered on November 19, 2014.
Collapse
Affiliation(s)
- Shifu Xiao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Alzheimer's Disease and Related Disorders Center, Shanghai Jiaotong University, 600 South Wan Ping Road, Shanghai, 200030, China.
| | - Piu Chan
- Xuanwu Hospital Capital Medical University, Beijing, China
| | - Tao Wang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiaotong University, 600 South Wan Ping Road, Shanghai, 200030, China
| | - Zhen Hong
- Huashan Hospital, Fudan University, Shanghai, China
| | - Shuzhen Wang
- Qilu Hospital of Shandong University, Ji'nan, China
| | - Weihong Kuang
- West China Hospital of Sichuan University, Chengdu, China
| | - Jincai He
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoping Pan
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuying Zhou
- Tianjin Huanhu Hospital, Huanhu Hospital Affiliated to Nankai University, Tianjin, China
| | - Yong Ji
- Tianjin Huanhu Hospital, Huanhu Hospital Affiliated to Nankai University, Tianjin, China
| | - Luning Wang
- Department of Geriatric Neurology of PLA General Hospital, Beijing, China
| | - Yan Cheng
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Peng
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qinyong Ye
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoping Wang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuncheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, China
| | - Jun Xu
- Northern Jiangsu People's Hospital, Yangzhou, China
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | | | - Yansheng Li
- Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yifeng Du
- Shandong Provinical Hospital affiliated to Shandong University, Ji'nan, China
| | - Weixian Chen
- Jiangsu Province People's Hospital, Nanjing, China
| | | | - Yong Yan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaowei Liu
- Department of Geriatric psychiatry, Wuxi Mental Health Center, Wuxi, China
| | - Wei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Benyan Luo
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyuan Wu
- Tongji Hospital of Tongji University, Shanghai, China
| | - Lu Shen
- Xiangya Hospital Central South University, Changsha, China
| | - Chunfeng Liu
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Peixian Mao
- Beijing An Ding Hospital, Capital Medical University, Beijing, China
| | - Qiumei Wang
- Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Beijing, 100730, China
| | - Qianhua Zhao
- Huashan Hospital, Fudan University, Shanghai, China
| | - Qihao Guo
- Huashan Hospital, Fudan University, Shanghai, China
| | - Yongtao Zhou
- Xuanwu Hospital Capital Medical University, Beijing, China
| | - Yi Li
- Qilu Hospital of Shandong University, Ji'nan, China
| | - Lijun Jiang
- West China Hospital of Sichuan University, Chengdu, China
| | - Wenwei Ren
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yingjun Ouyang
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yan Wang
- Tianjin Huanhu Hospital, Huanhu Hospital Affiliated to Nankai University, Tianjin, China
| | - Shuai Liu
- Tianjin Huanhu Hospital, Huanhu Hospital Affiliated to Nankai University, Tianjin, China
| | - Jianjun Jia
- Department of Geriatric Neurology of PLA General Hospital, Beijing, China
| | - Nan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhonglin Liu
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Raoli He
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Tingyi Feng
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhui Lu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huidong Tang
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Gao
- Beijing Hospital, Beijing, China
| | - Yingchun Zhang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, China
| | - Lanlan Chen
- Northern Jiangsu People's Hospital, Yangzhou, China
| | - Lei Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - You Yin
- Shanghai Changzheng Hospital, Shanghai, China
| | - Qun Xu
- Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinsong Xiao
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lin Cong
- Shandong Provinical Hospital affiliated to Shandong University, Ji'nan, China
| | - Xi Cheng
- Jiangsu Province People's Hospital, Nanjing, China
| | - Hui Zhang
- Peking University Third Hospital, Beijing, China
| | - Dan Gao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Minghua Xia
- Department of Geriatric psychiatry, Wuxi Mental Health Center, Wuxi, China
| | - Tenghong Lian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guoping Peng
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Zhang
- Tongji Hospital of Tongji University, Shanghai, China
| | - Bin Jiao
- Xiangya Hospital Central South University, Changsha, China
| | - Hua Hu
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueyan Chen
- Beijing An Ding Hospital, Capital Medical University, Beijing, China
| | - Yihui Guan
- Huashan Hospital, Fudan University, Shanghai, China
| | - Ruixue Cui
- Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Beijing, 100730, China
| | - Qiu Huang
- Med-X Research Institution, Shanghai Jiao Tong University, Shanghai, China
| | - Xianliang Xin
- Shanghai Green Valley Pharmaceutical Co. Ltd., No. 421, Niudun Road, Shanghai, China
| | - Hongjian Chen
- Shanghai Green Valley Pharmaceutical Co. Ltd., No. 421, Niudun Road, Shanghai, China
| | - Yu Ding
- Shanghai Green Valley Pharmaceutical Co. Ltd., No. 421, Niudun Road, Shanghai, China
| | - Jing Zhang
- Shanghai Green Valley Pharmaceutical Co. Ltd., No. 421, Niudun Road, Shanghai, China
| | - Teng Feng
- Shanghai Green Valley Pharmaceutical Co. Ltd., No. 421, Niudun Road, Shanghai, China
| | - Marc Cantillon
- Shanghai Green Valley Pharmaceutical Co. Ltd., No. 421, Niudun Road, Shanghai, China
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Jeffrey L Cummings
- Chamberrs-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, USA
| | - Jian Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu chong zhi Road, Nevada, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu chong zhi Road, Nevada, China.
| | - Zhenxin Zhang
- Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Beijing, 100730, China.
| |
Collapse
|
22
|
The Seaweed Diet in Prevention and Treatment of the Neurodegenerative Diseases. Mar Drugs 2021; 19:md19030128. [PMID: 33652930 PMCID: PMC7996752 DOI: 10.3390/md19030128] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Edible marine algae are rich in bioactive compounds and are, therefore, a source of bioavailable proteins, long chain polysaccharides that behave as low-calorie soluble fibers, metabolically necessary minerals, vitamins, polyunsaturated fatty acids, and antioxidants. Marine algae were used primarily as gelling agents and thickeners (phycocolloids) in food and pharmaceutical industries in the last century, but recent research has revealed their potential as a source of useful compounds for the pharmaceutical, medical, and cosmetic industries. The green, red, and brown algae have been shown to have useful therapeutic properties in the prevention and treatment of neurodegenerative diseases: Parkinson, Alzheimer’s, and Multiple Sclerosis, and other chronic diseases. In this review are listed and described the main components of a suitable diet for patients with these diseases. In addition, compounds derived from macroalgae and their neurophysiological activities are described.
Collapse
|
23
|
Rathnayake AU, Abuine R, Kim YJ, Byun HG. Anti-Alzheimer's Materials Isolated from Marine Bio-resources: A Review. Curr Alzheimer Res 2020; 16:895-906. [PMID: 31647396 DOI: 10.2174/1567205016666191024144044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 08/12/2019] [Accepted: 09/08/2019] [Indexed: 12/15/2022]
Abstract
The most common type of dementia found in the elderly population is Alzheimer's disease. The disease not only impacts the patients and their families but also the society therefore, the main focus of researchers is to search new bioactive materials for treating AD. The marine environment is a rich source of functional ingredients and to date, we can find sufficient research relating to anti- Alzheimer's compounds isolated from marine environment. Therefore, this review focuses on the anti- Alzheimer's material from marine bio-resources and then expounds on the anti-Alzheimer's compounds from marine seaweed, marine animal and marine microorganisms. Moreover, because of the complexity of the disease, different hypothesizes have been elaborated and active compounds have been isolated to inhibit different stages of pathophysiological mechanisms. Sulfated polysaccharides, glycoprotein, and enzymatic hydrolysates from marine seaweeds, peptides, dietary omega-3 polyunsaturated fatty acids and skeletal polysaccharide from marine animals and secondary metabolites from marine microorganism are summarized in this review under the anti-Alzheimer's compounds from the marine.
Collapse
Affiliation(s)
| | - Racheal Abuine
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Yong-Jae Kim
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Hee-Guk Byun
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung 25457, Korea
| |
Collapse
|
24
|
Unsaturated mannuronate oligosaccharide ameliorates β-amyloid pathology through autophagy in Alzheimer's disease cell models. Carbohydr Polym 2020; 251:117124. [PMID: 33142656 DOI: 10.1016/j.carbpol.2020.117124] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 01/08/2023]
Abstract
Unsaturated mannuronate oligosaccharide (MOS) is an enzymatic depolymerization product from alginate-derived polymannuronate (PM). In this study, we investigated for the first time the potential therapeutic effect of MOS on Alzheimer's disease (AD) and its molecular mechanism in N2a-sw cells and 3×Tg-AD primary cortex neurons. Our results showed that MOS ranges from mannuronate dimer to mannuronate undecamer (M2-M11) with an unsaturated nonreducing terminal structure and with a double bond and 1,4-glycosidic linkages. It significantly inhibited the aggregation of amyloid-β (Aβ)1-42 oligomer, decreased expression of Aβ1-42 and reduced levels of amyloid precursor protein (APP) and BACE1. It promoted the autophagy, which involves the inactivation of mTOR signaling pathway and the facilitation of the fusion of autophagosomes and lysosomes. Finally, autophagy inhibitors blocked MOS' anti-AD actions, confirming the involvement of autophagy. In conclusion, MOS from seaweed alginate might be a promising nutraceutical or natural medicine for AD therapy.
Collapse
|
25
|
Liu F, Zhao W, Zhao F, Dong Q, Wang Y, Wei W, Jia L, Li L, Lu F. Dual Effect of the Acidic Polysaccharose Ulvan on the Inhibition of Amyloid-β Protein Fibrillation and Disintegration of Mature Fibrils. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41167-41176. [PMID: 32818379 DOI: 10.1021/acsami.0c14292] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The abnormal folding and aggregation of amyloid-β protein (Aβ) is the main reason for the occurrence and development of Alzheimer's disease (AD). The discovery of novel inhibitors against Aβ aggregation is still the current research focus. Herein, we report the inhibitory effect of ulvan, an acidic polysaccharide from green algae of the genus Ulva, against Aβ fibrillation using thioflavin T (ThT) fluorescence and atomic force microscopy (AFM) assays. It is shown that ulvan effectively inhibits Aβ fibrillogenesis in a concentration-dependent manner and actively inhibits the formation of A11-reactive Aβ oligomers, the most toxic Aβ species. The circular dichroism spectrum reveals that ulvan blocks the conformational transition of Aβ40 from the initial random coil to a β-sheet structure, but it only delays the conformational transition of Aβ42. It is also found that ulvan greatly reduces Aβ-induced cytotoxicity by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, ulvan effectively downregulates intracellular reactive oxygen species production and protects PC12 cells from the damage caused by Aβ fibrillation. Moreover, ulvan disaggregates preformed mature fibrils into off-pathway oligomers and greatly decreases their associated cytotoxicity, as revealed using ThT fluorescence, AFM, MTT, and dot-blotting assays. The above results not only fully describe the inhibitory effect of ulvan on Aβ fibrillation and its related cytotoxicity but also provide novel ideas for the development of functional food ingredients from seaweed to treat AD.
Collapse
Affiliation(s)
- Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P.R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Wenping Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Fang Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Qinchen Dong
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Ying Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Wei Wei
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Longgang Jia
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Li Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P.R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| |
Collapse
|
26
|
Wang T, Kuang W, Chen W, Xu W, Zhang L, Li Y, Li H, Peng Y, Chen Y, Wang B, Xiao J, Li H, Yan C, Du Y, Tang M, He Z, Chen H, Li W, Lin H, Shi S, Bi J, Zhou H, Cheng Y, Gao X, Guan Y, Huang Q, Chen K, Xin X, Ding J, Geng M, Xiao S. A phase II randomized trial of sodium oligomannate in Alzheimer's dementia. ALZHEIMERS RESEARCH & THERAPY 2020; 12:110. [PMID: 32928279 PMCID: PMC7489025 DOI: 10.1186/s13195-020-00678-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Sodium oligomannate (GV-971), a marine-derived oligosaccharide, is a novel agent that may improve cognition in AD patients. METHODS The 24-week multicenter, randomized, double-blind, placebo parallel controlled clinical trial was conducted in AD in China between 24 October 2011 and 10 July 2013. The study included a 4-week screening/washout period, followed by a 24-week treatment period. Patients were randomized in a 1:1:1 ratio to receive GV-971 900 mg, 600 mg, or placebo capsule in treatment period, respectively. The primary outcome was cognitive improvement as assessed by changes in Alzheimer's Disease Assessment Scale-cognitive subscale 12-item (ADAS-cog12) scores from baseline to week 24. The secondary efficacy outcomes included CIBIC-Plus, ADCS-ADL, and NPI at 24 weeks after treatment compared with baseline. A subgroup study was assessment of the change in cerebral glucose metabolism by fluorodeoxyglucose positron emission tomography measurements. RESULTS Comparing with the placebo group (n = 83, change - 1.45), the ADAS-cog12 score change in the GV-971 600-mg group (n = 76) was - 1.39 (p = 0.89) and the GV-971 900-mg group (n = 83) was - 2.58 (p = 0.30). The treatment responders according to CIBIC-Plus assessment were significantly higher in the GV-971 900-mg group than the placebo group (92.77% vs. 79.52%, p < 0.05). The GV-971 900-mg subgroup showed a lower decline of cerebral metabolic rate for glucose than the placebo subgroup at the left precuneus, right posterior cingulate, bilateral hippocampus, and bilateral inferior orbital frontal at uncorrected p = 0.05. The respective rates of treatment-related AEs were 5.9%, 14.3%, and 3.5%. CONCLUSIONS GV-971 was safe and well tolerated. GV-971 900 mg was chosen for phase III clinical study. TRIAL REGISTRATION ClinicalTrials.gov, NCT01453569 . Registered on October 18, 2011.
Collapse
Affiliation(s)
- Tao Wang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Alzheimer's Disease and Related Disorders Center of Shanghai Jiaotong University, 600 South Wan Ping Road, Shanghai, 200030, China.
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Chen
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with the Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenwei Xu
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Wuxi, Jiangsu, China
| | - Liming Zhang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingjie Li
- Department of Neurology, The Hospital of 81st Group Army PLA, Zhangjiakou, Hebei, China
| | - Hailin Li
- Department of Geriatric Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Baojun Wang
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia Autonomous Region, China
| | - Jinsong Xiao
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Honghua Li
- Department of Neurology, Central War Zone General Hospital of the Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Mouni Tang
- Department of Geriatric Psychiatry, Guangzhou Brian Hospital, Guangzhou, Guangdong, China
| | - Zhiyi He
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haibo Chen
- Department of Neurology, Beijing Hospital, Beijing, China
| | - Wei Li
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Lin
- Department of Neurology, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shanxi, China
| | - Shugui Shi
- Department of Neurology, The First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, China
| | - Jianzhong Bi
- Department of Neurology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Huadong Zhou
- Department of Neurology, Daping Hospital, Chongqing, China
| | - Yan Cheng
- Department of Neurology, Tianjin Medical University general hospital, Tianjin, China
| | - Xiaoping Gao
- Department of Neurology, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Yihui Guan
- PET Center Huashan Hospital Fudan University, Shanghai, China
| | - Qiu Huang
- Med-X Research Institution, Shanghai Jiao Tong University, Shanghai, China
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Xianliang Xin
- Shanghai Green Valley Pharmaceutical Co Ltd, Shanghai, China
| | - Jian Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Shifu Xiao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Alzheimer's Disease and Related Disorders Center of Shanghai Jiaotong University, 600 South Wan Ping Road, Shanghai, 200030, China.
| |
Collapse
|
27
|
Lozupone M, Solfrizzi V, D'Urso F, Di Gioia I, Sardone R, Dibello V, Stallone R, Liguori A, Ciritella C, Daniele A, Bellomo A, Seripa D, Panza F. Anti-amyloid-β protein agents for the treatment of Alzheimer's disease: an update on emerging drugs. Expert Opin Emerg Drugs 2020; 25:319-335. [PMID: 32772738 DOI: 10.1080/14728214.2020.1808621] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Currently available Alzheimer's disease (AD) therapeutics are only symptomatic, targeting cholinergic and glutamatergic neurotransmissions. Several putative disease-modifying drugs in late-stage clinical development target amyloid-β (Aβ) peptide and tau protein, the principal neurophatological hallmarks of the disease. AREAS COVERED Phase III randomized clinical trials of anti-Aβ drugs for AD treatment were searched in US and EU clinical trial registries and principal biomedical databases until May 2020. EXPERT OPINION At present, compounds in Phase III clinical development for AD include four anti-Ab monoclonal antibodies (solanezumab, gantenerumab, aducanumab, BAN2401), the combination of cromolyn sodium and ibuprofen (ALZT-OP1), and two small molecules (levetiracetam, GV-971). These drugs are mainly being tested in subjects during early AD phases or at preclinical stage of familial AD or even in asymptomatic subjects at high risk of developing AD. The actual results support the hypothesis that elevated Aβ represents an early stage in the AD continuum and demonstrate the feasibility of enrolling these high-risk participants in secondary prevention trials to slow cognitive decline during the AD preclinical stages. However, a series of clinical failures may question further development of Aβ-targeting drugs and the findings from current ongoing Phase III trials will hopefully give light to this critical issue.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro , Bari, Italy
| | - Vincenzo Solfrizzi
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro" , Bari, Italy
| | - Francesca D'Urso
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
| | - Ilaria Di Gioia
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
| | - Rodolfo Sardone
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| | - Vittorio Dibello
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy.,Department of Orofacial Pain and Dysfunction, Academic Centre of Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , The Netherlands
| | - Roberta Stallone
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| | - Angelo Liguori
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| | - Chiara Ciritella
- Physical and Rehabilitation Medicine Department, University of Foggia , Foggia, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart , Rome, Italy.,Institute of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS , Rome, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
| | - Davide Seripa
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo Della Sofferenza , Foggia, Italy.,Hematology and Stem Cell Transplant Unit, Vito Fazzi Hospital, ASL Lecce , Lecce, Italy
| | - Francesco Panza
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| |
Collapse
|
28
|
Wang X, Sun G, Feng T, Zhang J, Huang X, Wang T, Xie Z, Chu X, Yang J, Wang H, Chang S, Gong Y, Ruan L, Zhang G, Yan S, Lian W, Du C, Yang D, Zhang Q, Lin F, Liu J, Zhang H, Ge C, Xiao S, Ding J, Geng M. Geng et al. reply. Cell Res 2020; 30:820. [PMID: 32661309 PMCID: PMC7609299 DOI: 10.1038/s41422-020-0377-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Xinyi Wang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Guangqiang Sun
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Teng Feng
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Jing Zhang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Xun Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tao Wang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xingkun Chu
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Jun Yang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Huan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shuaishuai Chang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Yanxue Gong
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Lingfei Ruan
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Guanqun Zhang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Siyuan Yan
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Wen Lian
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Chen Du
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Dabing Yang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Qingli Zhang
- Institutional Technology Service Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Feifei Lin
- Institutional Technology Service Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia Liu
- Institutional Technology Service Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haiyan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Changrong Ge
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Shifu Xiao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Jian Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
29
|
Affiliation(s)
- Yi Rao
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China. .,Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
30
|
Impact of Ecklonia radiata extracts on the neuroprotective activities against amyloid beta (Aβ1-42) toxicity and aggregation. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
31
|
Oligomannuronate prevents mitochondrial dysfunction induced by IAPP in RINm5F islet cells by inhibition of JNK activation and cell apoptosis. Chin Med 2020; 15:27. [PMID: 32226477 PMCID: PMC7092590 DOI: 10.1186/s13020-020-00310-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/13/2020] [Indexed: 01/09/2023] Open
Abstract
Background Oligomannuronates (OM) are natural products from alginate that is frequently used as food supplement. The aim of this study was to investigate the in vitro protective effects of OM on RINm5F cells against human Islet amyloid polypeptide (IAPP) induced mitochondrial dysfunction, as well as the underlying mechanisms. Methods In the present study, we obtained several kinds of OM with different molecular masses, and then we used RINm5F cells as a model to elucidate the involvement of JNK signal pathway in hIAPP-induced mitochondrial dysfunction in pancreatic beta cells, and the protective effects of OM are associated with its ability to attenuate the mitochondrial dysfunction. Results Our results demonstrated that human IAPP induced mitochondrial dysfunction, as evidence by loss of ΔΨm and ATP content, and decrease in oxygen consumption and complex activities, was accompanied by JNK activation, changes in the expressions of Bcl-2 and Bax proteins, release of cytochrome c (Cyto-c) and apoptosis inducing factor (AIF) from mitochondria into cytosol. Interestingly, the human IAPP induced damage in RINm5F cells were effectively restored by co-treatment of OM. Moreover, JNK activation was required for the OM mediated changes in RINm5F cells. Conclusions OM prevented mitochondrial dysfunction induced by human IAPP in RINm5F islet cells through JNK dependent signaling pathways.
Collapse
|
32
|
Xing M, Cao Q, Wang Y, Xiao H, Zhao J, Zhang Q, Ji A, Song S. Advances in Research on the Bioactivity of Alginate Oligosaccharides. Mar Drugs 2020; 18:E144. [PMID: 32121067 PMCID: PMC7142810 DOI: 10.3390/md18030144] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Alginate is a natural polysaccharide present in various marine brown seaweeds. Alginate oligosaccharide (AOS) is a degradation product of alginate, which has received increasing attention due to its low molecular weight and promising biological activity. The wide-ranging biological activity of AOS is closely related to the diversity of their structures. AOS with a specific structure and distinct applications can be obtained by different methods of alginate degradation. This review focuses on recent advances in the biological activity of alginate and its derivatives, including their anti-tumor, anti-oxidative, immunoregulatory, anti-inflammatory, neuroprotective, antibacterial, hypolipidemic, antihypertensive, and hypoglycemic properties, as well as the ability to suppress obesity and promote cell proliferation and regulate plant growth. We hope that this review will provide theoretical basis and inspiration for the high-value research developments and utilization of AOS-related products.
Collapse
Affiliation(s)
- Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
| | - Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
| | - Yu Wang
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
| | - Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
| | - Qing Zhang
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
| |
Collapse
|
33
|
Bi D, Li X, Li T, Li X, Lin Z, Yao L, Li H, Xu H, Hu Z, Zhang Z, Liu Q, Xu X. Characterization and Neuroprotection Potential of Seleno-Polymannuronate. Front Pharmacol 2020; 11:21. [PMID: 32153394 PMCID: PMC7044149 DOI: 10.3389/fphar.2020.00021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022] Open
Abstract
Seleno-polymannuronate (Se-PM) was prepared from alginate-derived polymannuronate (PM) through a sulfation followed by a selenylation replacement reaction. The organic selenium content of Se-PM was 437.25 μg/g and its average molecular weight was 2.36 kDa. The neuroprotection effect of Se-PM and corresponding molecular mechanisms were investigated. Our results showed that, comparing to both sulfated PM (S-PM) and PM, Se-PM remarkably inhibited the aggregation of Aβ1-42 oligomer in vitro and significantly reduced the APP and BACE1 protein expression in N2a-sw cells, highlighting the critical function of the selenium presented in Se-PM. Moreover, Se-PM decreased the expression of cytochrome c and the ratio of Bax to Bcl-2, and enhanced the mitochondrial membrane potential in N2a-sw cells. These results suggested that Se-PM treatment can markedly inhibit N2a-sw cell apoptosis and promote N2a-sw cell survival and that Se-PM might be a potential therapeutic agent for the prevention of neurodegeneration owing to its remarkable neuroprotection effect.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiaofan Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Tong Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Zhijian Lin
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hui Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hong Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhenqing Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
34
|
Olasehinde TA, Olaniran AO, Okoh AI. Aqueous-ethanol extracts of some South African seaweeds inhibit beta-amyloid aggregation, cholinesterases, and beta-secretase activities in vitro. J Food Biochem 2019; 43:e12870. [PMID: 31353743 DOI: 10.1111/jfbc.12870] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 01/20/2023]
Abstract
In this study, we evaluated the anti-amyloidogenic, anticholinesterase, and antioxidant potentials of hydroethanolic extracts of Ecklonia maxima (ECK), Gelidium pristoides (GLD), Gracilaria gracilis (GCL), and Ulva lactuca (ULT). The effect of the extracts on β-amyloid (Aβ1-42 ) peptide were determined using electron microscope. The effects of the extracts on β-secretase and cholinesterase activities, as well as their radical scavenging and metal chelating activities were also assessed. Electron micrographs revealed that ECK, GLD, GCL, and ULT incubated with Aβ1-42 at different intervals (0-96 hr) showed very low levels of fibrils compared to the control. The extracts also inhibited β-secretase, acetylcholinesterase, and butyrylcholinesterase activities in a dose-dependent manner. Furthermore, the extracts scavenged hydroxyl radicals and were able to chelate Fe2+ in a dose-dependent manner. Our findings suggest that the seaweed extracts are potential sources of lead compounds and novel inhibitors of β-amyloid aggregation, β-secretase, and cholinesterases for the management of Alzheimer's diseases. PRACTICAL APPLICATIONS: Seaweeds have been identified as good sources of naturally occurring bioactive compounds with several medicinal properties. They are commonly used as functional foods and development of nutraceuticals, dietary supplements, and cosmeceuticals. However, the neuroprotective effects of many species of seaweeds have not been fully explored. The findings of this study suggests that Gracilaria gracilis, Ulva lactuca, Ecklonia maxima, and Gelidium pristoides are potential sources of cholinesterase, beta-secretase, and amyloid protein aggregation inhibitors. Hence, this support the use of these seaweeds as alternative sources of antioxidants and natural compounds with neuroprotective potentials for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Tosin A Olasehinde
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu-Natal, Durban, South Africa
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
35
|
Olasehinde TA, Mabinya LV, Olaniran AO, Okoh AI. Chemical characterization, antioxidant properties, cholinesterase inhibitory and anti-amyloidogenic activities of sulfated polysaccharides from some seaweeds. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.bcdf.2019.100182] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Khan MV, Zakariya SM, Khan RH. Protein folding, misfolding and aggregation: A tale of constructive to destructive assembly. Int J Biol Macromol 2018; 112:217-229. [DOI: 10.1016/j.ijbiomac.2018.01.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/04/2018] [Accepted: 01/14/2018] [Indexed: 12/20/2022]
|
37
|
Bi D, Lai Q, Cai N, Li T, Zhang Y, Han Q, Peng Y, Xu H, Lu J, Bao W, Liu Q, Xu X. Elucidation of the Molecular-Mechanisms and In Vivo Evaluation of the Anti-inflammatory Effect of Alginate-Derived Seleno-polymannuronate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2083-2091. [PMID: 29406745 DOI: 10.1021/acs.jafc.7b05719] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Alginate-derived polymannuronate (PM) is a type of polysaccharide found in edible brown seaweeds. Seleno-polymannuronate (Se-PM) was prepared from PM via synthesis using sulfation- and selenation-replacement reactions. The anti-inflammatory activity of Se-PM and its corresponding molecular mechanisms were investigated. In lipopolysaccharide (LPS)-activated murine macrophage RAW264.7 cells, Se-PM significantly attenuated the production of nitric oxide (NO), prostaglandin E2 (PGE2), and reactive oxygen species (ROS); the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2); and the secretion of proinflammatory cytokines. Moreover, Se-PM remarkably suppressed the LPS-induced activation of the nuclear-factor (NF)-κB and mitogen-activated-protein-kinase (MAPK) signaling pathways in RAW264.7 cells. Furthermore, Se-PM also decreased the production of proinflammatory mediators in LPS-triggered primary murine macrophages. Additionally, Se-PM inhibited the inflammatory response in the air-pouch inflammation model. These results might contribute to the overall understanding of the potential health benefits of Se-PM for food and drug applications.
Collapse
Affiliation(s)
- Decheng Bi
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Qiuxian Lai
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Nan Cai
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Tong Li
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Yiyao Zhang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Qingguo Han
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Yanwen Peng
- Cell-Gene Therapy Translational Medicine Research Center , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , PR China
| | - Hong Xu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Jun Lu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
- School of Science and School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, and Institute of Biomedical Technology , Auckland University of Technology , Auckland 1142 , New Zealand
| | - Weiyang Bao
- College of Fisheries and Life , Dalian Ocean University , Dalian 116023 , PR China
| | - Qiong Liu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Xu Xu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| |
Collapse
|
38
|
Koirala P, Jung HA, Choi JS. Recent advances in pharmacological research on Ecklonia species: a review. Arch Pharm Res 2017; 40:981-1005. [PMID: 28840539 PMCID: PMC7090987 DOI: 10.1007/s12272-017-0948-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/16/2017] [Indexed: 12/18/2022]
Abstract
The genus Ecklonia (Lessoniaceae, Phaeophyceae), commonly called kelp (brown algae), is abundant on the coasts of Japan and Korea. During the past few decades, Ecklonia species have received tremendous attention for their wide range of therapeutic properties and multiple health benefits, such as great nutritional value and being rich in vitamins, minerals, dietary fiber, proteins, and polysaccharides. Several novel functional ingredients with diversified biological activities have been isolated and possess antimicrobial, antiviral, hepatoprotective, cardioprotective, anti-inflammatory, neuroprotective, anticarcinogenic, immunomodulatory, hypolipidemic, anti-diabetic, and antioxidant therapeutic properties. The present review discusses the phytochemical, pharmacological, therapeutic, nutritional, and health benefits of different species of genus Ecklonia, as well as their use in the prevention of disease and maintenance of good health.
Collapse
Affiliation(s)
- Prashamsa Koirala
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
39
|
Brännström K, Islam T, Sandblad L, Olofsson A. The role of histidines in amyloid β fibril assembly. FEBS Lett 2017; 591:1167-1175. [PMID: 28267202 PMCID: PMC5434815 DOI: 10.1002/1873-3468.12616] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 12/12/2022]
Abstract
Low pH has a strong stabilising effect on the fibrillar assembly of amyloid β, which is associated with Alzheimer's disease. The stabilising effect is already pronounced at pH 6.0, suggesting that protonation of histidines might mediate this effect. Through the systematic substitution of the three native histidines in Aβ for alanines, we have evaluated their role in fibril stability. Using surface plasmon resonance, we show that at neutral pH the fibrillar forms of all His-Ala variants are destabilised by a factor of 4-12 compared to wild-type Aβ. However, none of the His-Ala Aβ variants impair the stabilising effect of the fibril at low pH.
Collapse
Affiliation(s)
| | - Tohidul Islam
- Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
| | - Linda Sandblad
- Department of Molecular Biology, Umeå University, Sweden
| | - Anders Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
| |
Collapse
|
40
|
Zhang SG, Wang XS, Zhang YD, Di Q, Shi JP, Qian M, Xu LG, Lin XJ, Lu J. Indirubin-3'-monoxime suppresses amyloid-beta-induced apoptosis by inhibiting tau hyperphosphorylation. Neural Regen Res 2016; 11:988-93. [PMID: 27482230 PMCID: PMC4962599 DOI: 10.4103/1673-5374.184500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Indirubin-3′-monoxime is an effective inhibitor of cyclin-dependent protein kinases, and may play an obligate role in neuronal apoptosis in Alzheimer's disease. Here, we found that indirubin-3′-monoxime improved the morphology and increased the survival rate of SH-SY5Y cells exposed to amyloid-beta 25–35 (Aβ25–35), and also suppressed apoptosis by reducing tau phosphorylation at Ser199 and Thr205. Furthermore, indirubin-3′-monoxime inhibited phosphorylation of glycogen synthase kinase-3β (GSK-3β). Our results suggest that indirubin-3′-monoxime reduced Aβ25–35-induced apoptosis by suppressing tau hyperphosphorylation via a GSK-3β-mediated mechanism. Indirubin-3′-monoxime is a promising drug candidate for Alzheimer's disease.
Collapse
Affiliation(s)
- Shu-Gang Zhang
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiao-Shan Wang
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying-Dong Zhang
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Neurology, Affiliated Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qing Di
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jing-Ping Shi
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Min Qian
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li-Gang Xu
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xing-Jian Lin
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Lu
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
41
|
Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications. INT J POLYM SCI 2016. [DOI: 10.1155/2016/7697031] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Over the last decades, alginates, natural multifunctional polymers, have increasingly drawn attention as attractive compounds in the biomedical and pharmaceutical fields due to their unique physicochemical properties and versatile biological activities. The focus of the paper is to describe biological and pharmacological activity of alginates and to discuss the present use and future possibilities of alginates as a tool in drug formulation. The recent technological advancements with using alginates, issues related to alginates suitability as matrix for three-dimensional tissue cultures, adjuvants of antibiotics, and antiviral agents in cell transplantation in diabetes or neurodegenerative diseases treatment, and an update on the antimicrobial and antiviral therapy of the alginate based drugs are also highlighted.
Collapse
|
42
|
Dias C, Rauter AP. Carbohydrates and Glycomimetics in Alzheimer's Disease Therapeutics and Diagnosis. CARBOHYDRATES IN DRUG DESIGN AND DISCOVERY 2015. [DOI: 10.1039/9781849739993-00180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Alzheimer's disease is the most prevalent form of late-life dementia, affecting millions worldwide. The devastating nature of the disease, unsuccessful treatment options and high socio-economic impact has inspired scientists to develop new structures with neuroprotective properties. Although currently available drugs target cholinergic neurotransmission, investigation towards disease-modifying therapies has been growing and carbohydrates have been playing an active role in the latest discoveries. Sugars, as polyfunctional compounds particularly important in biology and widely involved in human health and disease, have great potential to generate bioactive and bioavailable interesting molecules. Herein we discuss the importance of carbohydrates and glycomimetic structures, addressing different aspects of neuroprotection under investigation, targeting amyloid, tau and cholinergic hypotheses. The potential of carbohydrates in diagnosis is also discussed.
Collapse
Affiliation(s)
- Catarina Dias
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016 Lisbon Portugal
| | - Amélia P. Rauter
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016 Lisbon Portugal
| |
Collapse
|
43
|
Chang L, Li F, Chen X, Xu S, Wang C, Chen H, Wang Q. Effects of acidic oligosaccharide sugar chain on amyloid oligomer-induced impairment of synaptic plasticity in rats. Metab Brain Dis 2014; 29:683-90. [PMID: 24723110 DOI: 10.1007/s11011-014-9521-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
Soluble amyloid-β protein (Aβ) oligomers have been recognized to be early and key intermediates in Alzheimer's disease-related synaptic dysfunction. In this study, using in vitro electrophysiology, we investigated interactions of the acidic oligosaccharide sugar chain (AOSC), a marine-derived acidic oligosaccharide, with oligomeric Aβ. We found that the inhibition of long-term potentiation (LTP) induced by Aβ oligomers can be dose dependently reversed by the application of AOSC, whereas AOSC alone did not alter normal LTP induction. Interestingly, treatment with Aβ monomers with or without AOSC did not affect LTP induction. Additionally, when fresh-made Aβ was co-incubated with AOSC before in vitro testing, there was no impairment of LTP induction. The results from Western blots demonstrated that AOSC prevent the aggregation of Aβ oligomers. These findings indicate that AOSC may reverse Aβ oligomer-mediated cytotoxicity by directly disrupting the amyloid oligomer aggregation, and this action is concentration dependent. Thus, we propose that AOSC might be a potential therapeutic drug for Alzheimer's disease due to its protection against oligomeric Aβ-induced dysfunction of synaptic plasticity.
Collapse
Affiliation(s)
- Lan Chang
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, 315211, China,
| | | | | | | | | | | | | |
Collapse
|
44
|
A glucan isolated from flowers of Lonicera japonica Thunb. inhibits aggregation and neurotoxicity of Aβ42. Carbohydr Polym 2014; 110:142-7. [DOI: 10.1016/j.carbpol.2014.03.060] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 01/13/2023]
|
45
|
Syad AN, Devi KP. Assessment of anti-amyloidogenic activity of marine red alga G. acerosa against Alzheimer's beta-amyloid peptide 25-35. Neurol Res 2014; 37:14-22. [PMID: 25016970 DOI: 10.1179/1743132814y.0000000422] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE The amyloid hypothesis stimulates the discovery of compounds, which promotes beta-amyloid peptide (Aβ) clearance, thereby altering the underlying pathophysiology of Alzheimer's disease (AD). Hence, the present study aims at the evaluation of anti-amyloidogenic potential of Gelidiella acerosa. METHODS Prevention of Aβ 25-35 aggregate formation and disaggregation of pre-formed fibrils by G. acerosa was evaluated in three phases by thioflavin T spectrophotometric assay. The results were further validated by confocal microscopic analysis. The conformational changes in the aggregated and non-aggregated Aβ in the presence of G. acerosa were analyzed by Fourier transform infrared (FTIR) spectroscopic analysis. RESULTS Phase-I study shows that G. acerosa reverts (4.56 ± 0.35 AU at 96 hours) the increase in fluorescence intensity of aggregated Aβ (18.76 ± 0.99 AU) significantly (P < 0.05) as that of non-aggregated peptides, which suggests that G. acerosa prevents the formation of oligomers from monomers. The seaweed also prevents the fibril formation even after the aggregation process was initiated at 20 hours, which was verified by the significant (P < 0.05) decrease in the fluorescence intensity (2.94 ± 0.0721 AU) at 36 hours (Phase II). In addition, G. acerosa promotes fibrillar destabilization (Phase III), which was further substantiated by confocal microscopic analysis. Fourier transform infrared spectroscopy reveals that alteration in amide I and amide II band spectrum, which occurs due to Aβ 25-35 aggregation was restored upon co-treatment with G. acerosa benzene extract. CONCLUSION Overall, the results suggest that G. acerosa might have direct interaction with the aggregated peptide, thereby preventing oligomerization and fibrillation of Aβ 25-35.
Collapse
|
46
|
Du Y, Liu R, Sun G, Meng P, Song J. Pre-moxibustion and moxibustion prevent Alzheimer's disease. Neural Regen Res 2013; 8:2811-9. [PMID: 25206602 PMCID: PMC4146019 DOI: 10.3969/j.issn.1673-5374.2013.30.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/11/2013] [Indexed: 12/14/2022] Open
Abstract
The Alzheimer's disease model in Wistar rats was established by injection of amyloid β-peptide (Aβ1-42) into the hippocampal CA1 region. Rats were treated with suspended moxibustion on Baihui (GV20) and Shenshu (BL23) acupoints. Prior to and post Aβ1-42 exposure. Results showed no evidence of apoptosis in hippocampal neurons, a significantly reduced apoptosis rate of neurons and improved learning and memory abilities were observed in the Alzheimer's disease model. In particular, moxibustion prior to Aβ1-42 exposure was more effective than moxibustion after Aβ1-42 exposure in protecting the neuronal structure and lowering the apoptosis rate. Our findings indicate that a combination of preventive and therapeutic moxibustion has a beneficial effect for the prevention of Alzheimer's disease development.
Collapse
Affiliation(s)
- Yanjun Du
- College of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, China
| | - Ruolan Liu
- Department of Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Guojie Sun
- College of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, China
| | - Peiyan Meng
- College of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, China
| | - Jie Song
- College of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, China
| |
Collapse
|
47
|
Zhao JK, Guan FL, Duan SR, Zhao JW, Sun RH, Zhang LM, Wang DS. Effect of focal mild hypothermia on expression of MMP-9, TIMP-1, Tau-1 and β-APP in rats with cerebral ischaemia/reperfusion injury. Brain Inj 2013; 27:1190-8. [PMID: 23895636 DOI: 10.3109/02699052.2013.804206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PRIMARY OBJECTIVE Following stroke, hypothermia is reported to reduce both cellular and extracellular damage. This study aimed to examine the effects of focal mild hypothermia on proteins associated with both extracellular (matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of MMP-9 (TIMP-1)) and cellular damage (Tau-1 and β-amyloid precursor protein (β-APP)) to characterize the protective effects of hypothermia. METHODS AND PROCEDURES Male Wistar rats received ischaemic damage using a transient, focal ischaemia/reperfusion model. Afterwards, one group (HT) received 6 hours of focal mild hypothermia (33 °C) applied to the head, while another remained at normal temperature (NT). The brains were collected at 6, 12, 24, 48 and 72 hours after hypothermia to measure infarct volume ratio and to detect cells immunopositive for MMP-9, TIMP-1, Tau-1 and β-APP, while neurological deficits were examined separately after 2 weeks. MAIN OUTCOMES AND RESULTS Focal mild hypothermia had no effect on infarct volume ratio but expression of MMP-9, TIMP-1 Tau-1 and β-APP was decreased. Furthermore, neurological function in the HT group was better than in the NT group. CONCLUSIONS Focal mild hypothermia has protective effects on cerebral ischaemia-reperfusion injury characterized by decreased expression of MMP-9, TIMP-1, Tau-1 and β-APP, along with improvement of neurological function despite no changes in infarct volume.
Collapse
Affiliation(s)
- Jing-Kun Zhao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, PR China
| | | | | | | | | | | | | |
Collapse
|
48
|
Wang S, Li J, Xia W, Geng M. A marine-derived acidic oligosaccharide sugar chain specifically inhibits neuronal cell injury mediated byβ-amyloid-induced astrocyte activationin vitro. Neurol Res 2013; 29:96-102. [PMID: 17427283 DOI: 10.1179/174313206x152483] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
In Alzheimer's disease (AD), beta-amyloid (Abeta) plaques are surrounded by activated astrocytes and microglia. A growing body of evidence suggests that these activated astrocytes contribute to neurotoxicity through the induction of inflammatory cytokines and the production of oxidative stress mediators. Thus, a compound inhibiting Abeta-induced activation of astrocytes may lead to a novel therapy for AD. Our current work investigates the roles of acidic oligosaccharide sugar chain (AOSC), derived from brown algae Echlonia Kurome Okam, on Abeta-induced inflammatory responses and cytotoxicity. We observed that AOSC inhibited the toxicity and apoptosis in SH-SY5Y cell line induced by Abeta-stimulated astrocytes conditioned medium. We found that AOSC inhibited the reactive phenotype of astrocytes, blocked cellular oxidative stress, reduced the production of tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 and prevented the influx of Ca2+. Thus, our results indicate that AOSC might be a potentially therapeutic compound for AD.
Collapse
Affiliation(s)
- Shaohua Wang
- Department of Pharmacology, Marine Drug and Food Institute, Ocean University of China, Qingdao 266003, China
| | | | | | | |
Collapse
|
49
|
Srinivasan A. Experimental inhibition of peptide fibrillogenesis by synthetic peptides, carbohydrates and drugs. Subcell Biochem 2012; 65:271-94. [PMID: 23225008 DOI: 10.1007/978-94-007-5416-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Peptide fibrillogenesis generally begins by the transformation of normally soluble proteins into elongated aggregates which are called as amyloid. These fibrils mainly consist of ß-sheets. They share certain common characteristics such as a cross-ß x-ray diffraction pattern, association with other common proteins and typical staining by the dye Congo Red. The individual form of the deposit consists of a disease-specific peptide/protein. The disease-specific protein serves as the basis for the classification of the amyloids. The association of fibril-forming peptides/proteins with diseases makes them primary disease-targets. Understanding the molecular interactions involved in the fibril formation becomes the foremost requirement to characterize the target. Interference with these interactions of ß-sheets in vitro prevents and sometimes reverses the fibril assembly. A small molecule capable of interfering with the formation of fibril could have therapeutic applications in these diseases. This anti-aggregation approach appears to be a viable treatment option. A search for such a molecule is pursued actively world over. All types of compounds and approaches to slow down or prevent the aggregation process have been described in the literature. These efforts are reviewed in this chapter.
Collapse
|
50
|
Nayak A, Lee CC, McRae GJ, Belfort G. Osmolyte controlled fibrillation kinetics of insulin: New insight into fibrillation using the preferential exclusion principle. Biotechnol Prog 2010; 25:1508-14. [PMID: 19653270 DOI: 10.1002/btpr.255] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Amyloid proteins are converted from their native-fold to long beta-sheet-rich fibrils in a typical sigmoidal time-dependent protein aggregation curve. This reaction process from monomer or dimer to oligomer to nuclei and then to fibrils is the subject of intense study. The main results of this work are based on the use of a well-studied model amyloid protein, insulin, which has been used in vitro by others. Nine osmolyte molecules, added during the protein aggregation process for the production of amyloid fibrils, slow-down or speed up the process depending on the molecular structure of each osmolyte. Of these, all stabilizing osmolytes (sugars) slow down the aggregation process in the following order: tri > di > monosaccharides, whereas destabilizing osmolytes (urea, guanidium hydrochloride) speed up the aggregation process in a predictable way that fits the trend of all osmolytes. With respect to kinetics, we illustrate, by adapting our earlier reaction model to the insulin system, that the intermediates (trimers, tetramers, pentamers, etc.) are at very low concentrations and that nucleation is orders of magnitude slower than fibril growth. The results are then collated into a cogent explanation using the preferential exclusion and accumulation of osmolytes away from and at the protein surface during nucleation, respectively. Both the heat of solution and the neutral molecular surface area of the osmolytes correlate linearly with two fitting parameters of the kinetic rate model, that is, the lag time and the nucleation rate prior to fibril formation. These kinetic and thermodynamic results support the preferential exclusion model and the existence of oligomers including nuclei and larger structures that could induce toxicity.
Collapse
Affiliation(s)
- Arpan Nayak
- Howard P. Isermann Dept. of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | |
Collapse
|