1
|
Freund W, Wikstroem P, Wunderlich AP, Schuetz U, Beer M. Sitting foot: posture dependent changes of volume, edema and perfusion of the foot. A prospective interventional study with 27 volunteers. BMC Musculoskelet Disord 2024; 25:858. [PMID: 39472847 PMCID: PMC11520782 DOI: 10.1186/s12891-024-07971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Sitting is known to be bad for your cardiovascular health. We furthermore hypothesized that sitting posture will reduce perfusion of the foot and increase edema, possibly predisposing to disease like osteochondritis. METHODS We included 27 healthy volunteers and performed MRI measurements including arterial spin labelling (ASL) and intravoxel incoherent motion (IVIM) perfusion as well as short tau inversion recovery (STIR) edema measurement and 3D volumetry. After randomization, the elevation of one foot during the day was used as an intervention. RESULTS Intra- and interrater variability was 1-6%. ASL perfusion measurement was hindered by artifacts. IVIM perfusion showed no significant changes during supine measurements. Volumetry could demonstrate a highly significant (p = 0.00005) volume increase, while the intervention led to a significant (p = 0.0076) volume decrease during the day. However, the water content in STIR remained unchanged and the normalized (quotient bone/muscle) edema was reduced on the control side (p = 0.006) and increased on the intervention side (p = 0.01). CONCLUSIONS Sitting all day leads to swelling of the healthy foot. Compensation in healthy subjects seems to prevent lasting perfusion changes or edema evolution in the bone despite an increase of muscle signal and volume increase. Thus, the etiology of osteochondritis needs further studies.
Collapse
Affiliation(s)
- Wolfgang Freund
- Diagnostic and Interventional Radiology, University Hospitals Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| | - Peter Wikstroem
- Diagnostic and Interventional Radiology, University Hospitals Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
- Urology, Hegau-Bodensee-Klinikum, Singen, Germany
| | - Arthur P Wunderlich
- Diagnostic and Interventional Radiology, University Hospitals Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Uwe Schuetz
- Diagnostic and Interventional Radiology, University Hospitals Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Meinrad Beer
- Diagnostic and Interventional Radiology, University Hospitals Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| |
Collapse
|
2
|
Sur S, Lin Z, Li Y, Yasar S, Rosenberg PB, Moghekar A, Hou X, Jiang D, Kalyani RR, Hazel K, Pottanat G, Xu C, Pillai JJ, Liu P, Albert M, Lu H. CO 2 cerebrovascular reactivity measured with CBF-MRI in older individuals: Association with cognition, physical function, amyloid and tau proteins. J Cereb Blood Flow Metab 2024; 44:1618-1628. [PMID: 38489769 PMCID: PMC11532674 DOI: 10.1177/0271678x241240582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
Vascular pathology is the second leading cause of cognitive impairment and represents a major contributing factor in mixed dementia. However, biomarkers for vascular cognitive impairment and dementia (VCID) are under-developed. Here we aimed to investigate the potential role of CO2 Cerebrovascular Reactivity (CVR) measured with phase-contrast quantitative flow MRI in cognitive impairment and dementia. Forty-five (69 ± 7 years) impaired (37 mild-cognitive-impairment and 8 mild-dementia by syndromic diagnosis) and 22 cognitively-healthy-control (HC) participants were recruited and scanned on a 3 T MRI. Biomarkers of AD pathology were measured in cerebrospinal fluid. We found that CBF-CVR was lower (p = 0.027) in the impaired (mean±SE, 3.70 ± 0.15%/mmHg) relative to HC (4.28 ± 0.21%/mmHg). After adjusting for AD pathological markers (Aβ42/40, total tau, and Aβ42/p-tau181), higher CBF-CVR was associated with better cognitive performance, including Montreal Cognitive Assessment, MoCA (p = 0.001), composite cognitive score (p = 0.047), and language (p = 0.004). Higher CBF-CVR was also associated with better physical function, including gait-speed (p = 0.006) and time for five chair-stands (p = 0.049). CBF-CVR was additionally related to the Clinical-Dementia-Rating, CDR, including global CDR (p = 0.026) and CDR Sum-of-Boxes (p = 0.015). CBF-CVR was inversely associated with hemoglobin A1C level (p = 0.017). In summary, CBF-CVR measured with phase-contrast MRI shows associations with cognitive performance, physical function, and disease-severity, independent of AD pathological markers.
Collapse
Affiliation(s)
- Sandeepa Sur
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Zixuan Lin
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Yang Li
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Sevil Yasar
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Paul B Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Xirui Hou
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Dengrong Jiang
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Rita R Kalyani
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Kaisha Hazel
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - George Pottanat
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Cuimei Xu
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jay J Pillai
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Division of Neuroradiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Peiying Liu
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
3
|
Liu W, Ma D, Cao C, Liu S, Ma X, Jia F, Li P, Zhang H, Liao Y, Qu H. Abnormal cerebral blood flow in children with developmental stuttering. Pediatr Res 2024:10.1038/s41390-024-03359-1. [PMID: 38914760 DOI: 10.1038/s41390-024-03359-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Stuttering affects approximately 5% of children; however, its neurological basis remains unclear. Identifying imaging biomarkers could aid in early detection. Accordingly, we investigated resting-state cerebral blood flow (CBF) in children with developmental stuttering. METHODS Pulsed arterial spin labelling magnetic resonance imaging was utilised to quantify CBF in 35 children with developmental stuttering and 27 healthy controls. We compared normalised CBF between the two groups and evaluated the correlation between abnormal CBF and clinical indicators. RESULTS Compared with healthy controls, the stuttering group exhibited decreased normalised CBF in the cerebellum lobule VI bilaterally, right cuneus, and left superior occipital gyrus and increased CBF in the right medial superior frontal gyrus, left rectus, and left dorsolateral superior frontal gyrus. Additionally, normalised CBF in the left cerebellum lobule VI and left superior occipital gyrus was positively correlated with stuttering severity. CONCLUSIONS Children who stutter display decreased normalised CBF primarily in the cerebellum and occipital gyrus, with increased normalised CBF in the frontal gyrus. Additionally, the abnormal CBF in the left cerebellum lobule VI and left superior occipital gyrus was associated with more severe symptoms, suggesting that decreased CBF in these areas may serve as a novel neuroimaging clue for stuttering. IMPACT Stuttering occurs in 5% of children and often extends into adulthood, which may negatively affect quality of life. Early detection and treatment are essential. We used pulsed arterial spin labelling magnetic resonance imaging to visualise the resting-state cerebral blood flow (CBF) in children who stutter and healthy children. Normalised CBF was decreased in stutterers in the cerebellum and occipital gyrus and increased in the frontal gyrus. Stuttering severity was linked to abnormal normalised CBF in the left cerebellum lobule VI and left superior occipital gyrus, suggesting that CBF may serve as a novel neuroimaging clue for stuttering.
Collapse
Affiliation(s)
- Wanqing Liu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Dan Ma
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Rehabilitation Medicine, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Chuanlong Cao
- The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Sai Liu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - XinMao Ma
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Fenglin Jia
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Pei Li
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Hui Zhang
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yi Liao
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| | - Haibo Qu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
4
|
Hillaert A, Sanmiguel Serpa LC, Xu Y, Hesta M, Bogaert S, Vanderperren K, Pullens P. Optimization of Fair Arterial Spin Labeling Magnetic Resonance Imaging (ASL-MRI) for Renal Perfusion Quantification in Dogs: Pilot Study. Animals (Basel) 2024; 14:1810. [PMID: 38929429 PMCID: PMC11201026 DOI: 10.3390/ani14121810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Arterial spin labeling (ASL) MRI allows non-invasive quantification of renal blood flow (RBF) and shows great potential for renal assessment. To our knowledge, renal ASL-MRI has not previously been performed in dogs. The aim of this pilot study was to determine parameters essential for ALS-MRI-based quantification of RBF in dogs: T1, blood (longitudinal relaxation time), λ (blood tissue partition coefficient) and TI (inversion time). A Beagle was scanned at 3T with a multi-TI ASL sequence, with TIs ranging from 250 to 2500 ms, to determine the optimal TI value. The T1 of blood for dogs was determined by scanning a blood sample with a 2D IR TSE sequence. The water content of the dog's kidney was determined by analyzing kidney samples from four dogs with a moisture analyzer and was subsequently used to calculate λ. The optimal TI and the measured values for T1,blood, and λ were 2000 ms, 1463 ms and 0.91 mL/g, respectively. These optimized parameters for dogs resulted in lower RBF values than those obtained from inline generated RBF maps. In conclusion, this study determined preliminary parameters essential for ALS-MRI-based RBF quantification in dogs. Further research is needed to confirm these values, but it may help guide future research.
Collapse
Affiliation(s)
- Amber Hillaert
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (A.H.)
| | - Luis Carlos Sanmiguel Serpa
- Department of Medical Imaging, Ghent University Hospital, 9000 Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging, Ghent University, 9000 Ghent, Belgium
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Yangfeng Xu
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (A.H.)
| | - Myriam Hesta
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (A.H.)
| | - Stephanie Bogaert
- Department of Medical Imaging, Ghent University Hospital, 9000 Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging, Ghent University, 9000 Ghent, Belgium
| | - Katrien Vanderperren
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (A.H.)
| | - Pim Pullens
- Department of Medical Imaging, Ghent University Hospital, 9000 Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging, Ghent University, 9000 Ghent, Belgium
- Institute of Biomedical Engineering and Technology (IBiTech)—MEDISP, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Lu S, Su C, Cao Y, Jia Z, Shi H, He Y, Yan L. Assessment of Collateral Flow in Patients with Carotid Stenosis Using Random Vessel-Encoded Arterial Spin-Labeling: Comparison with Digital Subtraction Angiography. AJNR Am J Neuroradiol 2024; 45:155-162. [PMID: 38238091 DOI: 10.3174/ajnr.a8100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/07/2023] [Indexed: 02/09/2024]
Abstract
BACKGROUND AND PURPOSE Collateral circulation plays an important role in steno-occlusive internal carotid artery disease (ICAD) to reduce the risk of stroke. We aimed to investigate the utility of planning-free random vessel-encoded arterial spin-labeling (rVE-ASL) in assessing collateral flows in patients with ICAD. MATERIALS AND METHODS Forty patients with ICAD were prospectively recruited. The presence and extent of collateral flow were assessed and compared between rVE-ASL and DSA by using Contingency (C) and Cramer V (V) coefficients. The differences in flow territory alterations stratified by stenosis ratio and symptoms, respectively, were compared between symptomatic (n = 19) and asymptomatic (n = 21) patients by using the Fisher exact test. RESULTS Good agreement was observed between rVE-ASL and DSA in assessing collateral flow (C = 0.762, V = 0.833, both P < .001). Patients with ICA stenosis of ≥90% were more likely to have flow alterations (P < .001). Symptomatic patients showed a higher prevalence of flow alterations in the territory of the MCA on the same side of ICAD (63.2%), compared with asymptomatic patients (23.8%, P = .012), while the flow alterations in the territory of anterior cerebral artery did not differ (P = .442). The collateral flow to MCA territory was developed primarily from the contralateral internal carotid artery (70.6%) and vertebrobasilar artery to a lesser extent (47.1%). CONCLUSIONS rVE-ASL provides comparable information with DSA on the assessment of collateral flow. The flow alterations in the MCA territory may be attributed to symptomatic ICAD.
Collapse
Affiliation(s)
- Shanshan Lu
- From the Department of Radiology (S.L., C.S.), The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chunqiu Su
- From the Department of Radiology (S.L., C.S.), The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yuezhou Cao
- Department of Interventional Radiology (Y.C., Z.J., H.S.), The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhenyu Jia
- Department of Interventional Radiology (Y.C., Z.J., H.S.), The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Haibin Shi
- Department of Interventional Radiology (Y.C., Z.J., H.S.), The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yining He
- Department of Radiology (Y.H., L.Y.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Lirong Yan
- Department of Radiology (Y.H., L.Y.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
6
|
Karayiannis CC, Srikanth V, Beare R, Mehta H, Gillies M, Phan TG, Xu ZY, Chen C, Moran C. Type 2 Diabetes and Biomarkers of Brain Structure, Perfusion, Metabolism, and Function in Late Mid-Life: A Multimodal Discordant Twin Study. J Alzheimers Dis 2024; 97:1223-1233. [PMID: 38217597 DOI: 10.3233/jad-230640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
BACKGROUND Type 2 diabetes (T2D) is associated with an increased risk of dementia and early features may become evident even in mid-life. Characterizing these early features comprehensively requires multiple measurement modalities and careful selection of participants with and without T2D. OBJECTIVE We conducted a cross-sectional multimodal imaging study of T2D-discordant twins in late mid-life to provide insights into underlying mechanisms. METHODS Measurements included computerized cognitive battery, brain MRI (including arterial spin labelling, diffusion tensor, resting state functional), fluorodeoxyglucose (FDG)-PET, and retinal optical coherence tomography. RESULTS There were 23 pairs, mean age 63.7 (±6.1) years. In global analyses, T2D was associated with poorer attention (β= -0.45, p <0.001) and with reduced FDG uptake (β= -5.04, p = 0.02), but not with cortical thickness (p = 0.71), total brain volume (p = 0.51), fractional anisotropy (p = 0.15), mean diffusivity (p = 0.34), or resting state activity (p = 0.4). Higher FDG uptake was associated with better attention (β= 3.19, p = 0.01) but not with other cognitive domains. In regional analyses, T2D was associated with lower accumbens volume (β= -44, p = 0.0004) which was in turn associated with poorer attention. CONCLUSION T2D-related brain dysfunction in mid-life manifests as attentional loss accompanied by evidence of subtle neurodegeneration and global reduction in cerebral metabolism, in the absence of overt cerebrovascular disease.
Collapse
Affiliation(s)
- Christopher C Karayiannis
- Department of Medicine, Peninsula Health, Melbourne, Australia
- Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, Australia
| | - Velandai Srikanth
- Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, Australia
- National Centre for Healthy Ageing, Melbourne, Australia
- Department of Geriatric Medicine, Peninsula Health, Melbourne, Australia
| | - Richard Beare
- Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, Australia
- National Centre for Healthy Ageing, Melbourne, Australia
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Hemal Mehta
- Royal Free London NHS Foundation Trust, London, UK
- Macular Research Group, University of Sydney, Sydney, Australia
| | - Mark Gillies
- Macular Research Group, University of Sydney, Sydney, Australia
| | - Thanh G Phan
- Stroke and Ageing Research Centre, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Zheng Yang Xu
- Royal Free London NHS Foundation Trust, London, UK
- UCL Medical School, London, UK
| | - Christine Chen
- Ophthalmology Department, Monash Health, Melbourne, Australia
- Department of Surgery, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Chris Moran
- Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, Australia
- National Centre for Healthy Ageing, Melbourne, Australia
- Department of Geriatric Medicine, Peninsula Health, Melbourne, Australia
- Department of Aged Care, Alfred Health, Melbourne, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
7
|
Dobeson CB, Birkbeck M, Bhatnagar P, Hall J, Pearson R, West S, English P, Butteriss D, Perthen J, Lewis J. Perfusion MRI in the evaluation of brain metastases: current practice review and rationale for study of baseline MR perfusion imaging prior to stereotactic radiosurgery (STARBEAM-X). Br J Radiol 2023; 96:20220462. [PMID: 37660364 PMCID: PMC10646666 DOI: 10.1259/bjr.20220462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Stereotactic radiosurgery is an established focal treatment for brain metastases with high local control rates. An important side-effect of stereotactic radiosurgery is the development of radionecrosis. On conventional MR imaging, radionecrosis and tumour progression often have similar appearances, but have contrasting management approaches. Perfusion MR imaging is often used in the post-treatment setting in order to help distinguish between the two, but image interpretation can be fraught with challenges.Perfusion MR plays an established role in the baseline and post-treatment evaluation of primary brain tumours and a number of studies have concentrated on the value of perfusion imaging in brain metastases. Of the parameters generated, relative cerebral blood volume is the most widely used variable in terms of its clinical value in differentiating between radionecrosis and tumour progression. Although it has been suggested that the relative cerebral blood volume tends to be elevated in active metastatic disease following treatment with radiosurgery, but not with treatment-related changes, the literature available on interpretation of the ratios provided in the context of defining tumour progression is not consistent.This article aims to provide an overview of the role perfusion MRI plays in the assessment of brain metastases and introduces the rationale for the STARBEAM-X study (Study of assessment of radionecrosis in brain metastases using MR perfusion extra imaging), which will prospectively evaluate baseline perfusion imaging in brain metastases. We hope this will allow insight into the vascular appearance of metastases from different primary sites, and aid in the interpretation of post-treatment perfusion imaging.
Collapse
Affiliation(s)
| | - Matthew Birkbeck
- Northern Medical Physics and Clinical Engineering, Freeman Hospital, Newcastle upon Tyne, UK
| | - Priya Bhatnagar
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Julie Hall
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Rachel Pearson
- Department of Oncology, Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| | - Serena West
- Department of Oncology, Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| | - Philip English
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - David Butteriss
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Joanna Perthen
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Joanne Lewis
- Department of Oncology, Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
van Grinsven EE, Guichelaar J, Philippens MEP, Siero JCW, Bhogal AA. Hemodynamic imaging parameters in brain metastases patients - Agreement between multi-delay ASL and hypercapnic BOLD. J Cereb Blood Flow Metab 2023; 43:2072-2084. [PMID: 37632255 PMCID: PMC10925872 DOI: 10.1177/0271678x231196989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023]
Abstract
Arterial spin labeling (ASL) MRI is a routine clinical imaging technique that provides quantitative cerebral blood flow (CBF) information. A related technique is blood oxygenation level-dependent (BOLD) MRI during hypercapnia, which can assess cerebrovascular reactivity (CVR). ASL is weighted towards arteries, whereas BOLD is weighted towards veins. Their associated parameters in heterogeneous tissue types or under different hemodynamic conditions remains unclear. Baseline multi-delay ASL MRI and BOLD MRI during hypercapnia were performed in fourteen patients with brain metastases. In the ROI analysis, the CBF and CVR values were positively correlated in regions showing sufficient reserve capacity (i.e. non-steal regions, rrm = 0.792). Additionally, longer hemodynamic lag times were related to lower baseline CBF (rrm = -0.822) and longer arterial arrival time (AAT; rrm = 0.712). In contrast, in regions exhibiting vascular steal an inverse relationship was found with higher baseline CBF related to more negative CVR (rrm = -0.273). These associations were confirmed in voxelwise analyses. The relationship between CBF, AAT and CVR measures seems to be dependent on the vascular status of the underlying tissue. Healthy tissue relationships do not hold in tissues experiencing impaired or exhausted autoregulation. CVR metrics can possibly identify at-risk areas before perfusion deficiencies become visible on ASL MRI, specifically within vascular steal regions.
Collapse
Affiliation(s)
- Eva E van Grinsven
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jamila Guichelaar
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marielle EP Philippens
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen CW Siero
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Spinoza Center for Neuroimaging, Amsterdam, Netherlands
| | - Alex A Bhogal
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
9
|
van Grinsven EE, de Leeuw J, Siero JCW, Verhoeff JJC, van Zandvoort MJE, Cho J, Philippens MEP, Bhogal AA. Evaluating Physiological MRI Parameters in Patients with Brain Metastases Undergoing Stereotactic Radiosurgery-A Preliminary Analysis and Case Report. Cancers (Basel) 2023; 15:4298. [PMID: 37686575 PMCID: PMC10487230 DOI: 10.3390/cancers15174298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Brain metastases occur in ten to thirty percent of the adult cancer population. Treatment consists of different (palliative) options, including stereotactic radiosurgery (SRS). Sensitive MRI biomarkers are needed to better understand radiotherapy-related effects on cerebral physiology and the subsequent effects on neurocognitive functioning. In the current study, we used physiological imaging techniques to assess cerebral blood flow (CBF), oxygen extraction fraction (OEF), cerebral metabolic rate of oxygen (CMRO2) and cerebrovascular reactivity (CVR) before and three months after SRS in nine patients with brain metastases. The results showed improvement in OEF, CBF and CMRO2 within brain tissue that recovered from edema (all p ≤ 0.04), while CVR remained impacted. We observed a global post-radiotherapy increase in CBF in healthy-appearing brain tissue (p = 0.02). A repeated measures correlation analysis showed larger reductions within regions exposed to higher radiotherapy doses in CBF (rrm = -0.286, p < 0.001), CMRO2 (rrm = -0.254, p < 0.001), and CVR (rrm = -0.346, p < 0.001), but not in OEF (rrm = -0.004, p = 0.954). Case analyses illustrated the impact of brain metastases progression on the post-radiotherapy changes in both physiological MRI measures and cognitive performance. Our preliminary findings suggest no radiotherapy effects on physiological parameters occurred in healthy-appearing brain tissue within 3-months post-radiotherapy. Nevertheless, as radiotherapy can have late side effects, larger patient samples allowing meaningful grouping of patients and longer follow-ups are needed.
Collapse
Affiliation(s)
- Eva E. van Grinsven
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Jordi de Leeuw
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.d.L.); (A.A.B.)
| | - Jeroen C. W. Siero
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.d.L.); (A.A.B.)
- Spinoza Center for Neuroimaging, 1105 BK Amsterdam, The Netherlands
| | - Joost J. C. Verhoeff
- Department of Radiation Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands (M.E.P.P.)
| | - Martine J. E. van Zandvoort
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Junghun Cho
- Department of Biomedical Engineering, SUNY Buffalo, Buffalo, NY 14228, USA;
| | - Marielle E. P. Philippens
- Department of Radiation Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands (M.E.P.P.)
| | - Alex A. Bhogal
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.d.L.); (A.A.B.)
| |
Collapse
|
10
|
Joshi D, Prasad S, Saini J, Ingalhalikar M. Role of Arterial Spin Labeling (ASL) Images in Parkinson's Disease (PD): A Systematic Review. Acad Radiol 2023; 30:1695-1708. [PMID: 36435728 DOI: 10.1016/j.acra.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022]
Abstract
RATIONALE AND OBJECTIVES Parkinson's disease is a chronic progressive neurodegenerative disorder with standard structural MRIs often showing no gross abnormalities. Quantitative perfusion MRI modality Arterial Spin Labeling (ASL) is helpful in identifying PD specific perfusion patterns. Absolute Cerebral blood flow (CBF) measurement using ASL provides insights into regional perfusion abnormalities. We reviewed the role of ASL to identify specific brain regions responsible for motor, non-motor symptoms and neurovascular changes observed in PD. Challenges in assessing the blood perfusion level are discussed with future development for improving the evaluation of ASL perfusion maps. MATERIALS AND METHODS We included CBF quantification studies using ASL for PD diagnosis. A systematic search was performed in Pubmed, Scopus and Web of Science. The perfusion parameters CBF and arterial arrival time (AAT) measured using ASL were considered for brain region assessment. Clinical aspects of PD have been analyzed using ASL perfusion maps. RESULTS The systematic search identified 153 unique records. Thirty articles were selected after verification of inclusion and exclusion criteria. Voxel and region-based analyses in white and gray matter tissues have been performed to identify PD-specific perfusion patterns by reported articles. Predominant brain regions such as basal ganglia sub-regions, frontoparietal network, precuneus, occipital lobe, sensory motor area regions, visual network, which are associated with motor and non-motor symptoms in PD, were identified with CBF hypoperfusion, indicating neuronal loss and cerebrovascular dysfunction. CONCLUSION CBF and AAT values derived from ASL can potentially be used as biomarkers to discriminate PD from similar brain-related disorders.
Collapse
Affiliation(s)
- Dhanashri Joshi
- Symbiosis Center of Medical Image Analysis, Symbiosis International (Deemed) University, Pune,MH, India
| | - Shweta Prasad
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, KA, India; Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences, Bengaluru,, KA, India
| | - Jitender Saini
- Department of Neuroimaging & Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, KA, India
| | - Madhura Ingalhalikar
- Symbiosis Center of Medical Image Analysis, Symbiosis International (Deemed) University, Pune,MH, India.
| |
Collapse
|
11
|
Wang K, Guo H, Tian X, Miao Y, Han P, Jin F. Efficacy of three-dimensional arterial spin labeling and how it compares against that of contrast enhanced magnetic resonance imaging in preoperative grading of brain gliomas. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37040330 DOI: 10.1002/tox.23800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
PURPOSE To evaluate the efficacy of three-dimensional arterial spin labeling (3D-ASL) imaging in preoperative grading of brain gliomas, and compare the discrepancy between images obtained from 3D-ASL and contrast enhanced magnetic resonance imaging (CE-MRI) in grading of gliomas. METHODS Fifty-one patients with brain gliomas received plain MRI, CE-MRI and 3D-ASL scanning before surgery. In 3D-ASL images, the maximum tumor blood flow (TBF) of tumor parenchyma was measured, relative TBF-M and rTBF-WM were calculated. The cases were categorized into "ASL dominant" and "CE dominant" to compare the discrepancy between 3D-ASL and CE-MRI results. Independent samples t test, Mann-Whitney and U test and one-way analysis of variance (ANOVA) were performed to test the differences of TBF, rTBF-M and rTBF-WM values among brain gliomas with different grades. Spearman rank correlation analysis was performed to assess the correlation between TBF, rTBF-M, rTBF-WM and glioma grades respectively. To compare the discrepancy between 3D-ASL and CE-MRI results. RESULTS In high-grade gliomas (HGG) group, TBF, rTBF-M and rTBF-WM values were higher than those in low-grade gliomas (LGG) group (p < .05). Multiple comparison showed TBF and rTBF-WM values were different between grade I and IV gliomas, grade II and IV gliomas (both p < .05), the rTBF-M value was different between grade I and IV gliomas (p < .05). The values of all 3D-ASL derived parameters were positively correlated with gliomas grading (all p < .001). TBF showed highest specificity (89.3%) and rTBF-WM showed highest sensitivity (96.4%) when discriminating LGG and HGG using ROC curve. There were 29 CE dominant cases (23 cases were HGG), 9 ASL dominant cases (4 cases were HGG). CONCLUSION: 3D-ASL is of significance to preoperative grading of brain gliomas and might be more sensitive than CE-MRI in detection of tumor perfusion.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Huanxuan Guo
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiaoyan Tian
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yanping Miao
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ping Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Jin
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
12
|
Moya-Sáez E, de Luis-García R, Alberola-López C. Toward deep learning replacement of gadolinium in neuro-oncology: A review of contrast-enhanced synthetic MRI. FRONTIERS IN NEUROIMAGING 2023; 2:1055463. [PMID: 37554645 PMCID: PMC10406200 DOI: 10.3389/fnimg.2023.1055463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/04/2023] [Indexed: 08/10/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) have become a crucial part of MRI acquisitions in neuro-oncology for the detection, characterization and monitoring of brain tumors. However, contrast-enhanced (CE) acquisitions not only raise safety concerns, but also lead to patient discomfort, the need of more skilled manpower and cost increase. Recently, several proposed deep learning works intend to reduce, or even eliminate, the need of GBCAs. This study reviews the published works related to the synthesis of CE images from low-dose and/or their native -non CE- counterparts. The data, type of neural network, and number of input modalities for each method are summarized as well as the evaluation methods. Based on this analysis, we discuss the main issues that these methods need to overcome in order to become suitable for their clinical usage. We also hypothesize some future trends that research on this topic may follow.
Collapse
Affiliation(s)
- Elisa Moya-Sáez
- Laboratorio de Procesado de Imagen, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain
| | | | | |
Collapse
|
13
|
Alsulami TA, Hyare H, Thomas DL, Golay X. The value of arterial spin labelling (ASL) perfusion MRI in the assessment of post-treatment progression in adult glioma: A systematic review and meta-analysis. Neurooncol Adv 2023; 5:vdad122. [PMID: 37841694 PMCID: PMC10576519 DOI: 10.1093/noajnl/vdad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Background The distinction between viable tumor and therapy-induced changes is crucial for the clinical management of patients with gliomas. This study aims to quantitatively assess the efficacy of arterial spin labeling (ASL) biomarkers, including relative cerebral blood flow (rCBF) and absolute cerebral blood flow (CBF), for the discrimination of progressive disease (PD) and treatment-related effects. Methods Eight articles were included in the synthesis after searching the literature systematically. Data have been extracted and a meta-analysis using the random-effect model was subsequently carried out. Diagnostic accuracy assessment was also performed. Results This study revealed that there is a significant difference in perfusion measurements between groups with PD and therapy-induced changes. The rCBF yielded a standardized mean difference (SMD) of 1.25 [95% CI 0.75, 1.75] (p < .00001). The maximum perfusion indices (rCBFmax and CBFmax) both showed equivalent discriminatory ability, with SMD of 1.35 [95% CI 0.78, 1.91] (p < .00001) and 1.56 [95% CI 0.79, 2.33] (p < .0001), respectively. Similarly, accuracy estimates were comparable among ASL-derived metrices. Pooled sensitivities [95% CI] were 0.85 [0.67, 0.94], 0.88 [0.71, 0.96], and 0.93 [0.73, 0.98], and pooled specificities [95% CI] were 0.83 [0.71, 0.91], 0.83 [0.67, 0.92], 0.84 [0.67, 0.93], for rCBF, rCBFmax and CBFmax, respectively. Corresponding HSROC area under curve (AUC) [95% CI] were 0.90 [0.87, 0.92], 0.92 [0.89, 0.94], and 0.93 [0.90, 0.95]. Conclusion These results suggest that ASL quantitative biomarkers, particularly rCBFmax and CBFmax, have the potential to discriminate between glioma progression and therapy-induced changes.
Collapse
Affiliation(s)
- Tamadur A Alsulami
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Harpreet Hyare
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Trust, London, UK
| |
Collapse
|
14
|
Carmichael O. The Role of fMRI in Drug Development: An Update. ADVANCES IN NEUROBIOLOGY 2023; 30:299-333. [PMID: 36928856 DOI: 10.1007/978-3-031-21054-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Functional magnetic resonance imaging (fMRI) of the brain is a technology that holds great potential for increasing the efficiency of drug development for the central nervous system (CNS). In preclinical studies and both early- and late-phase human trials, fMRI has the potential to improve cross-species translation of drug effects, help to de-risk compounds early in development, and contribute to the portfolio of evidence for a compound's efficacy and mechanism of action. However, to date, the utilization of fMRI in the CNS drug development process has been limited. The purpose of this chapter is to explore this mismatch between potential and utilization. This chapter provides introductory material related to fMRI and drug development, describes what is required of fMRI measurements for them to be useful in a drug development setting, lists current capabilities of fMRI in this setting and challenges faced in its utilization, and ends with directions for future development of capabilities in this arena. This chapter is the 5-year update of material from a previously published workshop summary (Carmichael et al., Drug DiscovToday 23(2):333-348, 2018).
Collapse
Affiliation(s)
- Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
15
|
Troudi A, Tensaouti F, Baudou E, Péran P, Laprie A. Arterial Spin Labeling Perfusion in Pediatric Brain Tumors: A Review of Techniques, Quality Control, and Quantification. Cancers (Basel) 2022; 14:4734. [PMID: 36230655 PMCID: PMC9564035 DOI: 10.3390/cancers14194734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Arterial spin labeling (ASL) is a magnetic resonance imaging (MRI) technique for measuring cerebral blood flow (CBF). This noninvasive technique has added a new dimension to the study of several pediatric tumors before, during, and after treatment, be it surgery, radiotherapy, or chemotherapy. However, ASL has three drawbacks, namely, a low signal-to-noise-ratio, a minimum acquisition time of 3 min, and limited spatial summarize current resolution. This technique requires quality control before ASL-CBF maps can be extracted and before any clinical investigations can be conducted. In this review, we describe ASL perfusion principles and techniques, summarize the most recent advances in CBF quantification, report technical advances in ASL (resting-state fMRI ASL, BOLD fMRI coupled with ASL), set out guidelines for ASL quality control, and describe studies related to ASL-CBF perfusion and qualitative and semi-quantitative ASL weighted-map quantification, in healthy children and those with pediatric brain tumors.
Collapse
Affiliation(s)
- Abir Troudi
- Toulouse Neuro Imaging Center (ToNIC), INSERM-University of Toulouse Paul Sebatier, 31300 Toulouse, France
| | - Fatima Tensaouti
- Toulouse Neuro Imaging Center (ToNIC), INSERM-University of Toulouse Paul Sebatier, 31300 Toulouse, France
- Radiation Oncology Department, Claudius Regaud Institute, Toulouse University Cancer Institute-Oncopole, 31300 Toulouse, France
| | - Eloise Baudou
- Toulouse Neuro Imaging Center (ToNIC), INSERM-University of Toulouse Paul Sebatier, 31300 Toulouse, France
- Pediatric Neurology Department, Children’s Hospital, Toulouse University Hospital, 31300 Toulouse, France
| | - Patrice Péran
- Toulouse Neuro Imaging Center (ToNIC), INSERM-University of Toulouse Paul Sebatier, 31300 Toulouse, France
| | - Anne Laprie
- Toulouse Neuro Imaging Center (ToNIC), INSERM-University of Toulouse Paul Sebatier, 31300 Toulouse, France
- Radiation Oncology Department, Claudius Regaud Institute, Toulouse University Cancer Institute-Oncopole, 31300 Toulouse, France
| |
Collapse
|
16
|
Shepelytskyi Y, Grynko V, Rao MR, Li T, Agostino M, Wild JM, Albert MS. Hyperpolarized 129 Xe imaging of the brain: Achievements and future challenges. Magn Reson Med 2022; 88:83-105. [PMID: 35253919 PMCID: PMC9314594 DOI: 10.1002/mrm.29200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
Abstract
Hyperpolarized (HP) xenon-129 (129 Xe) brain MRI is a promising imaging modality currently under extensive development. HP 129 Xe is nontoxic, capable of dissolving in pulmonary blood, and is extremely sensitive to the local environment. After dissolution in the pulmonary blood, HP 129 Xe travels with the blood flow to the brain and can be used for functional imaging such as perfusion imaging, hemodynamic response detection, and blood-brain barrier permeability assessment. HP 129 Xe MRI imaging of the brain has been performed in animals, healthy human subjects, and in patients with Alzheimer's disease and stroke. In this review, the overall progress in the field of HP 129 Xe brain imaging is discussed, along with various imaging approaches and pulse sequences used to optimize HP 129 Xe brain MRI. In addition, current challenges and limitations of HP 129 Xe brain imaging are discussed, as well as possible methods for their mitigation. Finally, potential pathways for further development are also discussed. HP 129 Xe MRI of the brain has the potential to become a valuable novel perfusion imaging technique and has the potential to be used in the clinical setting in the future.
Collapse
Affiliation(s)
- Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Chemistry and Materials Science Program, Lakehead University, Thunder Bay, Ontario, Canada
| | - Madhwesha R Rao
- POLARIS, Unit of Academic Radiology, Department of IICD, University of Sheffield, Sheffield, UK
| | - Tao Li
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Martina Agostino
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Jim M Wild
- POLARIS, Unit of Academic Radiology, Department of IICD, University of Sheffield, Sheffield, UK.,Insigneo Institute for in Silico Medicine, Sheffield, UK
| | - Mitchell S Albert
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| |
Collapse
|
17
|
Parmentier CEJ, de Vries LS, Groenendaal F. Magnetic Resonance Imaging in (Near-)Term Infants with Hypoxic-Ischemic Encephalopathy. Diagnostics (Basel) 2022; 12:diagnostics12030645. [PMID: 35328199 PMCID: PMC8947468 DOI: 10.3390/diagnostics12030645] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 01/14/2023] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a major cause of neurological sequelae in (near-)term newborns. Despite the use of therapeutic hypothermia, a significant number of newborns still experience impaired neurodevelopment. Neuroimaging is the standard of care in infants with HIE to determine the timing and nature of the injury, guide further treatment decisions, and predict neurodevelopmental outcomes. Cranial ultrasonography is a helpful noninvasive tool to assess the brain before initiation of hypothermia to look for abnormalities suggestive of HIE mimics or antenatal onset of injury. Magnetic resonance imaging (MRI) which includes diffusion-weighted imaging has, however, become the gold standard to assess brain injury in infants with HIE, and has an excellent prognostic utility. Magnetic resonance spectroscopy provides complementary metabolic information and has also been shown to be a reliable prognostic biomarker. Advanced imaging modalities, including diffusion tensor imaging and arterial spin labeling, are increasingly being used to gain further information about the etiology and prognosis of brain injury. Over the past decades, tremendous progress has been made in the field of neonatal neuroimaging. In this review, the main brain injury patterns of infants with HIE, the application of conventional and advanced MRI techniques in these newborns, and HIE mimics, will be described.
Collapse
Affiliation(s)
- Corline E. J. Parmentier
- Department of Neonatology, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands; (C.E.J.P.); (L.S.d.V.)
| | - Linda S. de Vries
- Department of Neonatology, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands; (C.E.J.P.); (L.S.d.V.)
- Department of Neonatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Floris Groenendaal
- Department of Neonatology, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands; (C.E.J.P.); (L.S.d.V.)
- Correspondence:
| |
Collapse
|
18
|
Şahin S, Ertekin E, Şahin T, Özsunar Y. Evaluation of normal-appearing white matter with perfusion and diffusion MRI in patients with treated glioblastoma. MAGMA (NEW YORK, N.Y.) 2022; 35:153-162. [PMID: 34951690 DOI: 10.1007/s10334-021-00990-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE We tried to reveal how the normal appearing white matter (NAWM) was affected in patients with glioblastoma treated with chemo-radiotherapy (CRT) in the period following the treatment, by multiparametric MRI. MATERIALS AND METHODS 43 multiparametric MRI examinations of 17 patients with glioblastoma treated with CRT were examined. A total of six different series or maps were analyzed in the examinations: Apparent Diffusion Coefficient (ADC) and Fractional Anisotropy (FA) maps, Gradient Echo (GRE) sequence, Dynamic susceptibility contrast (DSC) and Arterial spin labeling (ASL) perfusion sequences. Each sequence in each examination was examined in detail with 14 Region of Interest (ROI) measurements. The obtained values were proportioned to the contralateral NAWM values and the results were recorded as normalized values. Time dependent changes of normalized values were statistically analyzed. RESULTS The most prominent changes in follow-up imaging occurred in the perilesional region. In perilesional NAWM, we found a decrease in normalized FA (nFA), rCBV (nrCBV), rCBF (nrCBF), ASL (nASL)values (p < 0.005) in the first 3 months after treatment, followed by a plateau and an increase approaching pretreatment values, although it did not reach. Similar but milder findings were present in other NAWM areas. In perilesional NAWM, nrCBV values were found to be positively high correlated with nrCBF and nASL, and negatively high correlated with nADC values (r: 0.963, 0.736, - 0.973, respectively). We also found high correlations between the mean values of nrCBV, nrCBF, nASL in other NAWM areas (r: 0.891, 0.864, respectively). DISCUSSION We showed that both DSC and ASL perfusion values decreased correlatively in the first 3 months and showed a plateau after 1 year in patients with glioblastoma treated with CRT, unlike the literature. Although it was not as evident as perfusion MRI, it was observed that the ADC values also showed a plateau pattern following the increase in the first 3 months. Further studies are needed to explain late pathophysiological changes. Because of the high correlation, our results support ASL perfusion instead of contrast enhanced perfusion methods.
Collapse
Affiliation(s)
- Sinan Şahin
- Department of Radiology, Adnan Menderes University, Aydın, Turkey
| | - Ersen Ertekin
- Department of Radiology, Adnan Menderes University, Aydın, Turkey.
| | - Tuna Şahin
- Department of Radiology, Adnan Menderes University, Aydın, Turkey
| | - Yelda Özsunar
- Department of Radiology, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
19
|
Cote S, Butler R, Michaud V, Lavallee E, Croteau E, Mendrek A, Lepage J, Whittingstall K. The regional effect of serum hormone levels on cerebral blood flow in healthy nonpregnant women. Hum Brain Mapp 2021; 42:5677-5688. [PMID: 34480503 PMCID: PMC8559491 DOI: 10.1002/hbm.25646] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
Sex hormones estrogen (EST) and progesterone (PROG) have received increased attention for their important physiological action outside of reproduction. While studies have shown that EST and PROG have significant impacts on brain function, their impact on the cerebrovascular system in humans remains largely unknown. To address this, we used a multi-modal magnetic resonance imaging (MRI) approach to investigate the link between serum hormones in the follicular phase and luteal phase of the menstrual cycle (MC) with measures of cerebrovascular function (cerebral blood flow [CBF]) and structure (intracranial artery diameter). Fourteen naturally cycling women were recruited and assessed at two-time points of their MC. CBF was derived from pseudo-continuous arterial spin labeling while diameters of the internal carotid and basilar artery was assessed using time of flight magnetic resonance angiography, blood samples were performed after the MRI. Results show that PROG and EST had opposing and spatially distinct effects on CBF: PROG correlated negatively with CBF in anterior brain regions (r = -.86, p < .01), while EST correlations were positive, yet weak and most prominent in posterior areas (r = .78, p < .01). No significant correlations between either hormone or intracranial artery diameter were observed. These results show that EST and PROG have opposing and regionally distinct effects on CBF and that this relationship is likely not due to interactions with large intracranial arteries. Considering that CBF in healthy women appears tightly linked to their current hormonal state, future studies should consider assessing MC-related hormone fluctuations in the design of functional MRI studies in this population.
Collapse
Affiliation(s)
- Samantha Cote
- Faculty of Medicine and Health Sciences, Department of Nuclear Medicine and RadiobiologyUniversity of SherbrookeSherbrookeQuebecCanada
| | - Russell Butler
- Faculty of Arts and Sciences, Department of Computer ScienceBishop's UniversitySherbrookeQuebecCanada
| | - Vincent Michaud
- Department of Diagnostic RadiologyUniversity of SherbrookeSherbrookeQuebecCanada
| | - Eric Lavallee
- Sherbrooke Molecular Imaging Center (CIMS), Sherbrooke University Hospital Research Center (CR‐CHUS)SherbrookeQuebecCanada
| | - Etienne Croteau
- Faculty of Medicine and Health Sciences, Department of Nuclear Medicine and RadiobiologyUniversity of SherbrookeSherbrookeQuebecCanada
- Sherbrooke Molecular Imaging Center (CIMS), Sherbrooke University Hospital Research Center (CR‐CHUS)SherbrookeQuebecCanada
| | - Adrianna Mendrek
- Faculty of Arts and Sciences, Department of PsychologyBishop's UniversitySherbrookeQuebecCanada
| | - Jean‐Francois Lepage
- Faculty of Medicine and Health Sciences, Department of Nuclear Medicine and RadiobiologyUniversity of SherbrookeSherbrookeQuebecCanada
- Faculty of Medicine and Health Sciences, Department of PediatricsUniversity of SherbrookeSherbrookeQuebecCanada
| | - Kevin Whittingstall
- Faculty of Medicine and Health Sciences, Department of Nuclear Medicine and RadiobiologyUniversity of SherbrookeSherbrookeQuebecCanada
- Department of Diagnostic RadiologyUniversity of SherbrookeSherbrookeQuebecCanada
| |
Collapse
|
20
|
Troy AM, Cheng HM. Human microvascular reactivity: a review of vasomodulating stimuli and non-invasive imaging assessment. Physiol Meas 2021; 42. [PMID: 34325417 DOI: 10.1088/1361-6579/ac18fd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/29/2021] [Indexed: 11/11/2022]
Abstract
The microvasculature serves an imperative function in regulating perfusion and nutrient exchange throughout the body, adaptively altering blood flow to preserve hemodynamic and metabolic homeostasis. Its normal functioning is vital to tissue health, whereas its dysfunction is present in many chronic conditions, including diabetes, heart disease, and cognitive decline. As microvascular dysfunction often appears early in disease progression, its detection can offer early diagnostic information. To detect microvascular dysfunction, one uses imaging to probe the microvasculature's ability to react to a stimulus, also known as microvascular reactivity (MVR). An assessment of MVR requires an integrated understanding of vascular physiology, techniques for stimulating reactivity, and available imaging methods to capture the dynamic response. Practical considerations, including compatibility between the selected stimulus and imaging approach, likewise require attention. In this review, we provide a comprehensive foundation necessary for informed imaging of MVR, with a particular focus on the challenging endeavor of assessing microvascular function in deep tissues.
Collapse
Affiliation(s)
- Aaron M Troy
- Institute of Biomedical Engineering, University of Toronto, Toronto, CANADA
| | | |
Collapse
|
21
|
Atalla SW, Cowan RL, Anderson AR, Dietrich MS, Iversen L, Beth Kalvas L, Moss KO, Wright K, Monroe TB. Determining the impact of age and sex on the psychophysical and neurophysiological response to thermal pain across the adult lifespan. J Adv Nurs 2021; 77:1546-1555. [PMID: 33450111 PMCID: PMC7898385 DOI: 10.1111/jan.14514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 01/07/2023]
Abstract
AIMS Determine sex- and age-associated psychophysical and neurophysiological differences in the processing of pain across the adult lifespan. DESIGN Preliminary, exploratory, cross-sectional study. METHODS Using psychophysics (to measure intensity and unpleasantness) and functional magnetic resonance imaging blood oxygenation level dependent methods (to measure stimulus-evoked brain activation), we will examine sex- and age-associated differences in thermal pain processing and their underlying neurophysiology in a broad range of healthy adults (ages 30-89). We will acquire resting state functional connectivity data for secondary analyses exploring whether resting state connectivity predicts psychophysical and neurophysiological responses to thermal pain. To examine the effects of altered blood flow, we will acquire resting-state arterial spin labeling magnetic resonance imaging data to quantify resting cerebral blood flow. We will interpret findings in the context of a proposed neural model of pain, ageing, and sex. Study funding was received in June of 2014. Ethical approval was obtained from the Vanderbilt University IRB prior to study initiation. CONCLUSION Exploring the biological reasons for age- and sex-associated differences in pain processing will increase our understanding of pain in older adults. The paucity of neurobiological evidence to support best practice pain management in older adults places these individuals at risk for poor pain management. IMPACT Poorly treated pain in older adults is a critical public health problem associated with a poor quality of life and increased healthcare costs. Understanding how age and sex have an impact on central processing of pain across the lifespan is a critical step toward improving personalized pain medicine.
Collapse
Affiliation(s)
- Sebastian W. Atalla
- The Ohio State University College of NursingColumbusOHUSA
- Vanderbilt University Medical Center Psychiatric Neuroimaging ProgramNashvilleTNUSA
| | - Ronald L. Cowan
- Vanderbilt University Medical Center Psychiatric Neuroimaging ProgramNashvilleTNUSA
- Vanderbilt University Medical Center Institute of Imaging ScienceNashvilleTNUSA
- Vanderbilt University Department of Psychiatry and Behavioral SciencesNashvilleTNUSA
| | - Alison R. Anderson
- Vanderbilt University Medical Center Psychiatric Neuroimaging ProgramNashvilleTNUSA
- Vanderbilt University School of NursingNashvilleTNUSA
| | | | - Larkin Iversen
- The Ohio State University College of NursingColumbusOHUSA
| | | | - Karen O. Moss
- The Ohio State University College of NursingColumbusOHUSA
| | - Kathy Wright
- The Ohio State University College of NursingColumbusOHUSA
| | - Todd B. Monroe
- The Ohio State University College of NursingColumbusOHUSA
| |
Collapse
|
22
|
Lin Z, Jiang D, Liu D, Li Y, Uh J, Hou X, Pillai JJ, Qin Q, Ge Y, Lu H. Noncontrast assessment of blood-brain barrier permeability to water: Shorter acquisition, test-retest reproducibility, and comparison with contrast-based method. Magn Reson Med 2021; 86:143-156. [PMID: 33559214 DOI: 10.1002/mrm.28687] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/28/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Assessment of the blood-brain barrier (BBB) permeability without the need for contrast agent is desirable, and the ability to measure the permeability to small molecules such as water may further increase the sensitivity in detecting diseases. This study proposed a time-efficient, noncontrast method to measure BBB permeability to water, evaluated its test-retest reproducibility, and compared it with a contrast agent-based method. METHODS A single-delay water extraction with phase-contrast arterial spin tagging (WEPCAST) method was devised in which spatial profile of the signal along the superior sagittal sinus was used to estimate bolus arrival time, and the WEPCAST signal at the corresponding location was used to compute water extraction fraction, which was combined with global cerebral blood flow to estimate BBB permeability surface area product to water. The reliability of WEPCAST sequence was examined in terms of intrasession, intersession, and inter-vendor (Philips [Ingenia, Best, the Netherlands] and Siemens [Prisma, Erlangen, Germany]) reproducibility. Finally, we compared this new technique to a contrast agent-based method. RESULTS Single-delay WEPCAST reduced the scan duration from approximately 20 min to 5 min. Extract fraction values estimated from single-delay WEPCAST showed good consistency with the multi-delay method (R = 0.82, P = .004). Group-averaged permeability surface area product values were found to be 137.5 ± 9.3 mL/100 g/min. Intrasession, intersession, and inter-vendor coefficient of variation of the permeability surface area product values were 6.6 ± 4.5%, 6.9 ± 3.7%, and 8.9 ± 3.0%, respectively. Finally, permeability surface area product obtained from WEPCAST MRI showed a significant correlation with that from the contrast-based method (R = .73, P = .02). CONCLUSION Single-delay WEPCAST MRI can measure BBB permeability to water within 5 min with an intrasession, intersession, and inter-vendor test-retest reproducibility of 6% to 9%. This method may provide a useful marker of BBB breakdown in clinical studies.
Collapse
Affiliation(s)
- Zixuan Lin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dapeng Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Yang Li
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jinsoo Uh
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Xirui Hou
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jay J Pillai
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Yulin Ge
- Department of Radiology, New York University Langone Medical Center, New York, New York, USA
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Rojas-Villabona A, Pizzini FB, Solbach T, Sokolska M, Ricciardi G, Lemonis C, DeVita E, Suzuki Y, van Osch MJP, Foroni RI, Longhi M, Montemezzi S, Atkinson D, Kitchen N, Nicolato A, Golay X, Jäger HR. Are Dynamic Arterial Spin-Labeling MRA and Time-Resolved Contrast-Enhanced MRA Suited for Confirmation of Obliteration following Gamma Knife Radiosurgery of Brain Arteriovenous Malformations? AJNR Am J Neuroradiol 2021; 42:671-678. [PMID: 33541896 DOI: 10.3174/ajnr.a6990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/21/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Intra-arterial DSA has been traditionally used for confirmation of cure following gamma knife radiosurgery for AVMs. Our aim was to evaluate whether 4D arterial spin-labeling MRA and contrast-enhanced time-resolved MRA in combination can be an alternative to DSA for confirmation of AVM obliteration following gamma knife radiosurgery. MATERIALS AND METHODS In this prospective study, 30 patients undergoing DSA for confirmation of obliteration following gamma knife radiosurgery for AVMs (criterion standard) also underwent MRA, including arterial spin-labeling MRA and contrast-enhanced time-resolved MRA. One dataset was technically unsatisfactory, and the case was excluded. The DSA and MRA datasets of 29 patients were independently and blindly evaluated by 2 observers regarding the presence/absence of residual AVMs. RESULTS The mean time between gamma knife radiosurgery and follow-up DSA/MRA was 53 months (95% CI, 42-64 months; range, 22-168 months). MRA total scanning time was 9 minutes and 17 seconds. Residual AVMs were detected on DSA in 9 subjects (obliteration rate = 69%). All residual AVMs were detected on at least 1 MRA sequence. Arterial spin-labeling MRA and contrast-enhanced time-resolved MRA showed excellent specificity and positive predictive values individually (100%). However, their sensitivity and negative predictive values were suboptimal due to 1 false-negative with arterial spin-labeling MRA and 2 with contrast-enhanced time-resolved MRA (sensitivity = 88% and 77%, negative predictive values = 95% and 90%, respectively). Both sensitivity and negative predictive values increased to 100% if a composite assessment of both MRA sequences was performed. Diagnostic accuracy (receiver operating characteristic) and agreement (κ) are maximized using arterial spin-labeling MRA and contrast-enhanced time-resolved MRA in combination (area under receiver operating characteristic curve = 1, P < .001; κ = 1, P < .001, respectively). CONCLUSIONS Combining arterial spin-labeling MRA with contrast-enhanced time-resolved MRA holds promise as an alternative to DSA for confirmation of obliteration following gamma knife radiosurgery for brain AVMs, having provided 100% sensitivity and specificity in the study. Their combined use also enables reliable characterization of residual lesions.
Collapse
Affiliation(s)
- A Rojas-Villabona
- From The Gamma Knife Centre at Queen Square (A.R.-V.) .,Department of Neurosurgery (A.R.-V.), Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - F B Pizzini
- Department of Radiology (F.B.P., R.I.F.), Department of Diagnostic and Public Health, Verona University, Verona, Italy
| | - T Solbach
- The Lysholm Department of Neuroradiology (T.S., H.R.J.)
| | - M Sokolska
- Department of Medical Physics and Bioengineering (M.S.).,Neuroradiological Academic Unit (M.S., X.G., H.R.J.)
| | - G Ricciardi
- Neuroradiology Unit (G.R., C.L.), Department of Diagnostic and Pathology, University Hospital of Verona, Verona, Italy
| | - C Lemonis
- Neuroradiology Unit (G.R., C.L.), Department of Diagnostic and Pathology, University Hospital of Verona, Verona, Italy
| | - E DeVita
- School of Biomedical Engineering and Imaging Sciences (E.D.V.), King's College London, London, UK
| | - Y Suzuki
- Wellcome Centre for Integrative Neuroimaging (Y.S.), FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - M J P van Osch
- C.J. Gorter Center for High Field MRI (M.J.P.v.O.), Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - R I Foroni
- Department of Radiology (F.B.P., R.I.F.), Department of Diagnostic and Public Health, Verona University, Verona, Italy
| | - M Longhi
- Department of Neuroscience (M.L., A.N.)
| | | | - D Atkinson
- Department of Brain Repair and Rehabilitation, Institute of Neurology and Centre for Medical Imaging (D.A.), University College London, London, UK
| | - N Kitchen
- Department of Neurosurgery (N.K.), National Hospital for Neurology and Neurosurgery, London, UK
| | | | - X Golay
- Neuroradiological Academic Unit (M.S., X.G., H.R.J.)
| | - H R Jäger
- The Lysholm Department of Neuroradiology (T.S., H.R.J.).,Neuroradiological Academic Unit (M.S., X.G., H.R.J.)
| |
Collapse
|
24
|
Strauss SB, Meng A, Ebani EJ, Chiang GC. Imaging Glioblastoma Posttreatment: Progression, Pseudoprogression, Pseudoresponse, Radiation Necrosis. Neuroimaging Clin N Am 2021; 31:103-120. [PMID: 33220823 DOI: 10.1016/j.nic.2020.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Radiographic monitoring of posttreatment glioblastoma is important for clinical trials and determining next steps in management. Evaluation for tumor progression is confounded by the presence of treatment-related radiographic changes, making a definitive determination less straight-forward. The purpose of this article was to describe imaging tools available for assessing treatment response in glioblastoma, as well as to highlight the definitions, pathophysiology, and imaging features typical of true progression, pseudoprogression, pseudoresponse, and radiation necrosis.
Collapse
Affiliation(s)
- Sara B Strauss
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Alicia Meng
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Edward J Ebani
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Gloria C Chiang
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA.
| |
Collapse
|
25
|
Peñate Medina T, Kolb JP, Hüttmann G, Huber R, Peñate Medina O, Ha L, Ulloa P, Larsen N, Ferrari A, Rafecas M, Ellrichmann M, Pravdivtseva MS, Anikeeva M, Humbert J, Both M, Hundt JE, Hövener JB. Imaging Inflammation - From Whole Body Imaging to Cellular Resolution. Front Immunol 2021; 12:692222. [PMID: 34248987 PMCID: PMC8264453 DOI: 10.3389/fimmu.2021.692222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/12/2021] [Indexed: 01/31/2023] Open
Abstract
Imaging techniques have evolved impressively lately, allowing whole new concepts like multimodal imaging, personal medicine, theranostic therapies, and molecular imaging to increase general awareness of possiblities of imaging to medicine field. Here, we have collected the selected (3D) imaging modalities and evaluated the recent findings on preclinical and clinical inflammation imaging. The focus has been on the feasibility of imaging to aid in inflammation precision medicine, and the key challenges and opportunities of the imaging modalities are presented. Some examples of the current usage in clinics/close to clinics have been brought out as an example. This review evaluates the future prospects of the imaging technologies for clinical applications in precision medicine from the pre-clinical development point of view.
Collapse
Affiliation(s)
- Tuula Peñate Medina
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- *Correspondence: Tuula Peñate Medina, ; Jan-Bernd Hövener,
| | - Jan Philip Kolb
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Gereon Hüttmann
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Airway Research Center North (ARCN), Member of the German Center of Lung Research (DZL), Gießen, Germany
| | - Robert Huber
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Oula Peñate Medina
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- Institute for Experimental Cancer Research (IET), University of Kiel, Kiel, Germany
| | - Linh Ha
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein Lübeck (UKSH), Lübeck, Germany
| | - Patricia Ulloa
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Naomi Larsen
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Arianna Ferrari
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
| | - Magdalena Rafecas
- Institute of Medical Engineering (IMT), University of Lübeck, Lübeck, Germany
| | - Mark Ellrichmann
- Interdisciplinary Endoscopy, Medical Department1, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Mariya S. Pravdivtseva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Mariia Anikeeva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
| | - Jana Humbert
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Marcus Both
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jennifer E. Hundt
- Lübeck Institute for Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- *Correspondence: Tuula Peñate Medina, ; Jan-Bernd Hövener,
| |
Collapse
|
26
|
Gao XY, Li Q, Li JR, Zhou Q, Qu JX, Yao ZW. A perfusion territory shift attributable solely to the secondary collaterals in moyamoya patients: a potential risk factor for preoperative hemorrhagic stroke revealed by t-ASL and 3D-TOF-MRA. J Neurosurg 2020; 133:780-788. [PMID: 31398708 DOI: 10.3171/2019.5.jns19803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/01/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors conducted a study to noninvasively and nonradioactively reveal moyamoya disease (MMD) intracerebral perfusion and perfusion territory supplied by the unilateral internal carotid artery (ICA) and external carotid artery (ECA) and bilateral vertebral arteries (VAs) before surgery and to further identify risk factors for preoperative hemorrhage in adult MMD. METHODS Forty-three consecutive adult patients with bilateral MMD underwent unenhanced T1-weighted MRI, territorial arterial spin labeling (t-ASL), and unenhanced 3D time-of-flight MRA (3D-TOF-MRA). Clinical factors, including age, sex, hypertension, diabetes mellitus, hyperlipidemia, current smoking status, and history of taking aspirin, were gathered and stratified. Univariate logistic regression analyses were used to examine the relationship between various risk factors and the occurrence of preoperative hemorrhage. Stepwise multivariate logistic regression analyses were used to determine independent risk factors of preoperative hemorrhage in MMD. RESULTS Among the 86 MMD hemispheres, t-ASL revealed 137 perfusion territory shifts in 79 hemispheres. Five distinct categories of perfusion territory shifts were observed on t-ASL maps. The subtypes of perfusion territory shift on t-ASL maps were further subdivided into 2 different categories, group A and group B, in combination with findings on 3D-TOF-MRA. A perfusion territory shift attributable solely to the secondary collaterals was a potential independent risk factor for preoperative hemorrhage (p = 0.026; 95% CI 1.201-18.615; OR 4.729). After eliminating the influence of the secondary collaterals, the primary collaterals had no significant effect on the risk of preoperative hemorrhage (p = 0.182). CONCLUSIONS t-ASL could reveal comprehensive MMD cerebral blood perfusion and the vivid perfusion territory shifts fed by the unilateral ICA and ECA and bilateral VAs in a noninvasive, straightforward, nonradioactive, and nonenhanced manner. 3D-TOF-MRA could subdivide t-ASL perfusion territory shifts according to their shunt arteries. A perfusion territory shift attributable to the secondary collaterals is a potential independent risk factor for preoperative hemorrhage in MMD patients. A perfusion territory shift fed by the primary collaterals may not have a strong effect on preoperative hemorrhage in MMD patients. These findings make the combined modalities of t-ASL and 3D-TOF-MRA a feasible tool for MMD disease assessment, management, and surgical strategy planning.
Collapse
Affiliation(s)
- Xin-Yi Gao
- 1Department of Radiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province
| | - Qiao Li
- 2Department of Radiology, Shanghai Cancer Center, Fudan University
| | - Jing-Run Li
- 3Department of Neurosurgery, Huashan Hospital, Fudan University
| | - Qian Zhou
- 4Shanghai International Travel Medical Center
| | - Jian-Xun Qu
- 5Department of GE Healthcare China, MR Research China; and
| | - Zhen-Wei Yao
- 6Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Hyperpolarized 129Xe Time-of-Flight MR Imaging of Perfusion and Brain Function. Diagnostics (Basel) 2020; 10:diagnostics10090630. [PMID: 32854196 PMCID: PMC7554935 DOI: 10.3390/diagnostics10090630] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023] Open
Abstract
Perfusion measurements can provide vital information about the homeostasis of an organ and can therefore be used as biomarkers to diagnose a variety of cardiovascular, renal, and neurological diseases. Currently, the most common techniques to measure perfusion are 15O positron emission tomography (PET), xenon-enhanced computed tomography (CT), single photon emission computed tomography (SPECT), dynamic contrast enhanced (DCE) MRI, and arterial spin labeling (ASL) MRI. Here, we show how regional perfusion can be quantitively measured with magnetic resonance imaging (MRI) using time-resolved depolarization of hyperpolarized (HP) xenon-129 (129Xe), and the application of this approach to detect changes in cerebral blood flow (CBF) due to a hemodynamic response in response to brain stimuli. The investigated HP 129Xe Time-of-Flight (TOF) technique produced perfusion images with an average signal-to-noise ratio (SNR) of 10.35. Furthermore, to our knowledge, the first hemodynamic response (HDR) map was acquired in healthy volunteers using the HP 129Xe TOF imaging. Responses to visual and motor stimuli were observed. The acquired HP TOF HDR maps correlated well with traditional proton blood oxygenation level-dependent functional MRI. Overall, this study expands the field of HP MRI with a novel dynamic imaging technique suitable for rapid and quantitative perfusion imaging.
Collapse
|
28
|
Parikh D, Afshari FT, Sherlala K, Ahmed S, Shad A. Utility of Arterial Spin Labeling Magnetic Resonance Imaging in Differentiating Sellar Region Meningiomas from Pituitary Adenomas. World Neurosurg 2020; 142:e407-e412. [PMID: 32673801 DOI: 10.1016/j.wneu.2020.07.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Differentiating sellar region meningiomas from pituitary adenomas on standard magnetic resonance imaging (MRI) sequences can be difficult. Arterial spin labeling (ASL) is a noninvasive technique of magnetic resonance perfusion imaging. The range of applications of ASL in neurosurgery has increased, and the information provided can be unique and complementary to other MRI sequences. Here we investigate the utility of ASL MRI in differentiating between sellar region meningiomas and pituitary adenomas. METHODS This was a retrospective comparison of quantitative assessments on absolute and normalized tumor blood flow in histologically proven meningiomas versus pituitary adenomas. RESULTS A total of 15 patients with sellar region lesions were identified, including 9 meningiomas and 6 pituitary adenomas. Mean absolute tumor blood flow and normalized tumor blood flow were significantly higher in meningiomas (131 mL/100 g/min and 2.22) than adenomas (47 mL/100 g/min and 0.92; P < 0.05). CONCLUSIONS ASL MRI is a useful adjunct sequence in differentiating sellar region meningiomas, which exhibit high perfusion, from pituitary adenomas, which exhibit relatively low perfusion.
Collapse
Affiliation(s)
- Dhruv Parikh
- Department of Neurosurgery, University Hospital of Coventry and Warwickshire, Coventry, United Kingdom
| | - Fardad T Afshari
- Department of Neurosurgery, University Hospital of Coventry and Warwickshire, Coventry, United Kingdom.
| | - Khaled Sherlala
- Department of Radiology, University Hospital of Coventry and Warwickshire, Coventry, United Kingdom
| | - Shahzada Ahmed
- Department of Ear, Nose, and Throat, University Hospital Birmingham, Birmingham, United Kingdom
| | - Amjad Shad
- Department of Neurosurgery, University Hospital of Coventry and Warwickshire, Coventry, United Kingdom
| |
Collapse
|
29
|
Dolgorsuren EA, Harada M, Kanazawa Y, Abe T, Otomo M, Matsumoto Y, Mizobuchi Y, Nakajima K. Correlation and Characteristics of Intravoxel Incoherent Motion and Arterial Spin Labeling Techniques Versus Multiple Parameters Obtained on Dynamic Susceptibility Contrast Perfusion MRI for Brain Tumors. THE JOURNAL OF MEDICAL INVESTIGATION 2020; 66:308-313. [PMID: 31656295 DOI: 10.2152/jmi.66.308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Purpose : To compare data on brain tumors derived from intravoxel incoherent motion (IVIM) and arterial spin labeling (ASL) imaging with multiple parameters obtained on dynamic susceptibility contrast (DSC) perfusion MRI and to clarify the characteristics of IVIM and ASL perfusion data from the viewpoint of cerebral blood flow (CBF) analysis. Methods : ASL-CBF and IVIM techniques as well as DSC examination were performed in 24 patients with brain tumors. The IVIM data were analyzed with the two models. The relative blood flow (rBF), relative blood volume (rBV) corrected relative blood volume (crBV), mean transit time (MTT), and leakage coefficient (K2) were obtained from the DSC MRI data. Results : The ASL-CBF had the same tendency as the perfusion parameters derived from the DSC data, but the permeability from the vessels had less of an effect on the ASL-CBF. The diffusion coefficient of the fast component on IVIM contained more information on permeability than the f value. Conclusion : ASL-CBF is more suitable for the evaluation of perfusion in brain tumors than IVIM parameters. ASL-CBF and IVIM techniques should be carefully selected and the biological significance of each parameter should be understood for the correct comprehension of the pathological status of brain tumors. J. Med. Invest. 66 : 308-313, August, 2019.
Collapse
Affiliation(s)
| | - Masafumi Harada
- Department of Radiology and Radiation Oncology, Tokushima University, Tokushima, Japan
| | - Yuki Kanazawa
- Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takashi Abe
- Department of Radiology and Radiation Oncology, Tokushima University, Tokushima, Japan
| | - Maki Otomo
- Department of Radiology and Radiation Oncology, Tokushima University, Tokushima, Japan
| | - Yuki Matsumoto
- Department of Radiology and Radiation Oncology, Tokushima University, Tokushima, Japan
| | | | - Kohhei Nakajima
- Department of Neurosurgery, Tokushima University, Tokushima, Japan
| |
Collapse
|
30
|
Chiba T, Suzuki H, Yamaguchi S, Nishino K. Usefulness of Post-labeling Delay for the Assessment of Bright Vessel Appearance by Arterial Spin Labeling. JOURNAL OF NEUROENDOVASCULAR THERAPY 2020; 14:345-350. [PMID: 37501673 PMCID: PMC10370909 DOI: 10.5797/jnet.oa.2019-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/24/2020] [Indexed: 07/29/2023]
Abstract
Objective This study was performed to clarify the differences in blood flow strength, blood vessel diameter, and post-labeling delay (PLD) by physical experiments, and to examine whether bright vessel appearance (BVA) can be observed by arterial spin labeling (ASL). Methods We introduced simulated blood flow (25 cm/sec, 12.5 cm/sec) using a specially made phantom of fixed tubes in a plastic container. At each speed, we scanned at several points of PLD using ASL imaging. We measured the signal in the tube to obtain a signal intensity (SI). We revised the T1 level from the SI and obtained SIblood. We used SItissue with normal perfusion measured from obtained clinical images by ASL and compared it with SIblood. Results In tubes with a narrow inner diameter, the signal slightly decreased. SI also decreased under slow flow compared with fast flow. At each flow rate, SIblood significantly exceeded SItissue. Conclusion PLD distinguishes spin in brain tissue from 1525 msec to 2525 msec, and it can be observed. As spin signal decreases when the flow rate is slow, attention is necessary for observation. Assessment at PLD1525-2525 msec where normal perfusion was obtained suggested that BVA can be observed.
Collapse
Affiliation(s)
- Taishi Chiba
- Department of Radiology, Kakunodate General Hospital, Senboku, Akita, Japan
| | - Hayato Suzuki
- Department of Neurosurgery, Kakunodate General Hospital, Senboku, Akita, Japan
| | - Suguru Yamaguchi
- Department of Neurosurgery, Kakunodate General Hospital, Senboku, Akita, Japan
| | - Katsuhiro Nishino
- Department of Neurosurgery, Kakunodate General Hospital, Senboku, Akita, Japan
| |
Collapse
|
31
|
Leeuwis AE, Hooghiemstra AM, Bron EE, Kuipers S, Oudeman EA, Kalay T, Brunner-La Rocca HP, Kappelle LJ, van Oostenbrugge RJ, Greving JP, Niessen WJ, van Buchem MA, van Osch MJP, van Rossum AC, Prins ND, Biessels GJ, Barkhof F, van der Flier WM. Cerebral blood flow and cognitive functioning in patients with disorders along the heart-brain axis: Cerebral blood flow and the heart-brain axis. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12034. [PMID: 32995468 PMCID: PMC7507476 DOI: 10.1002/trc2.12034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION We examined the role of hemodynamic dysfunction in cognition by relating cerebral blood flow (CBF), measured with arterial spin labeling (ASL), to cognitive functioning, in patients with heart failure (HF), carotid occlusive disease (COD), and patients with cognitive complaints and vascular brain injury on magnetic resonance imaging (MRI; ie, possible vascular cognitive impairment [VCI]). METHODS We included 439 participants (124 HF; 75 COD; 127 possible VCI; 113 reference participants) from the Dutch multi-center Heart-Brain Study. We used pseudo-continuous ASL to estimate whole-brain and regional partial volume-corrected CBF. Neuropsychological tests covered global cognition and four cognitive domains. RESULTS CBF values were lowest in COD, followed by VCI and HF, compared to reference participants. This did not explain cognitive impairment, as we did not find an association between CBF and cognitive functioning. DISCUSSION We found that reduced CBF is not the major explanatory factor underlying cognitive impairment in patients with hemodynamic dysfunction along the heart-brain axis.
Collapse
Affiliation(s)
- Anna E Leeuwis
- Alzheimer Center Amsterdam Department of Neurology Amsterdam Neuroscience Amsterdam UMC VU University Medical Center Amsterdam the Netherlands
| | - Astrid M Hooghiemstra
- Alzheimer Center Amsterdam Department of Neurology Amsterdam Neuroscience Amsterdam UMC VU University Medical Center Amsterdam the Netherlands
- Department of Medical Humanities Amsterdam UMC Amsterdam Public Health Research Institute VU University Medical Center Amsterdam the Netherlands
| | - Esther E Bron
- Biomedical Imaging Group Rotterdam Erasmus MC Departments of Medical Informatics and Radiology & Nuclear Medicine Rotterdam the Netherlands
| | - Sanne Kuipers
- Department of Neurology UMC Utrecht Brain Center University Medical Center Utrecht Utrecht the Netherlands
| | - Eline A Oudeman
- Department of Neurology UMC Utrecht Brain Center University Medical Center Utrecht Utrecht the Netherlands
| | - Tugba Kalay
- Department of Neurology Maastricht University Medical Center Maastricht the Netherlands
| | | | - L Jaap Kappelle
- Department of Neurology UMC Utrecht Brain Center University Medical Center Utrecht Utrecht the Netherlands
| | | | - Jacoba P Greving
- Julius Center for Health Sciences and Primary Care University Medical Center Utrecht Utrecht the Netherlands
| | - Wiro J Niessen
- Biomedical Imaging Group Rotterdam Erasmus MC Departments of Medical Informatics and Radiology & Nuclear Medicine Rotterdam the Netherlands
- Imaging Physics Applied Sciences Delft University of Technology Delft the Netherlands
| | - Mark A van Buchem
- Department of Radiology Leiden University Medical Center Leiden the Netherlands
| | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI Department of Radiology Leiden University Medical Center Leiden the Netherlands
| | - Albert C van Rossum
- Department of Cardiology Amsterdam UMC VU University Medical Center Amsterdam the Netherlands
| | - Niels D Prins
- Alzheimer Center Amsterdam Department of Neurology Amsterdam Neuroscience Amsterdam UMC VU University Medical Center Amsterdam the Netherlands
| | - Geert-Jan Biessels
- Department of Neurology UMC Utrecht Brain Center University Medical Center Utrecht Utrecht the Netherlands
| | - Frederik Barkhof
- UCL Institutes of Neurology and Healthcare Engineering London United Kingdom
- Department of Radiology and Nuclear Medicine Amsterdam UMC VU University Medical Center Amsterdam the Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam Department of Neurology Amsterdam Neuroscience Amsterdam UMC VU University Medical Center Amsterdam the Netherlands
- Department of Epidemiology Amsterdam UMC Vrije Universiteit Amsterdam Amsterdam the Netherlands
| |
Collapse
|
32
|
Christensen-Jeffries K, Couture O, Dayton PA, Eldar YC, Hynynen K, Kiessling F, O'Reilly M, Pinton GF, Schmitz G, Tang MX, Tanter M, van Sloun RJG. Super-resolution Ultrasound Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:865-891. [PMID: 31973952 PMCID: PMC8388823 DOI: 10.1016/j.ultrasmedbio.2019.11.013] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 05/02/2023]
Abstract
The majority of exchanges of oxygen and nutrients are performed around vessels smaller than 100 μm, allowing cells to thrive everywhere in the body. Pathologies such as cancer, diabetes and arteriosclerosis can profoundly alter the microvasculature. Unfortunately, medical imaging modalities only provide indirect observation at this scale. Inspired by optical microscopy, ultrasound localization microscopy has bypassed the classic compromise between penetration and resolution in ultrasonic imaging. By localization of individual injected microbubbles and tracking of their displacement with a subwavelength resolution, vascular and velocity maps can be produced at the scale of the micrometer. Super-resolution ultrasound has also been performed through signal fluctuations with the same type of contrast agents, or through switching on and off nano-sized phase-change contrast agents. These techniques are now being applied pre-clinically and clinically for imaging of the microvasculature of the brain, kidney, skin, tumors and lymph nodes.
Collapse
Affiliation(s)
- Kirsten Christensen-Jeffries
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom
| | - Olivier Couture
- Institute of Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS FRE 2031, PSL University, Paris, France.
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Yonina C Eldar
- Department of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Meaghan O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Gianmarco F Pinton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Georg Schmitz
- Chair for Medical Engineering, Faculty for Electrical Engineering and Information Technology, Ruhr University Bochum, Bochum, Germany
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Mickael Tanter
- Institute of Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS FRE 2031, PSL University, Paris, France
| | - Ruud J G van Sloun
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
33
|
Narayanan S, Schmithorst V, Panigrahy A. Arterial Spin Labeling in Pediatric Neuroimaging. Semin Pediatr Neurol 2020; 33:100799. [PMID: 32331614 DOI: 10.1016/j.spen.2020.100799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Perfusion imaging using arterial spin labeling noninvasively evaluates cerebral blood flow utilizing arterial blood water as endogenous tracer. It does not require the need of radiotracer or intravenous contrast and offers unique complimentary information in the imaging of pediatric brain. Common clinical applications include neonatal hypoxic ischemic encephalopathy, pediatric stroke and vascular malformations, epilepsy and brain tumors. Future applications may include evaluation of silent ischemia in sickle cell patients, monitor changes in intracranial pressure in hydrocephalus, provide additional insights in nonaccidental trauma and chronic traumatic brain injury (TBI) and in functional Magnetic resonance imaging (MRI). The purpose of this review article is to evaluate the technical considerations including pitfalls, physiological variations, clinical applications and future directions of arterial spin labeling imaging.
Collapse
Affiliation(s)
- Srikala Narayanan
- Children's Hospital of Pittsburgh of UPMC, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA.
| | - Vincent Schmithorst
- Children's Hospital of Pittsburgh of UPMC, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Ashok Panigrahy
- John F. Caffey Endowed Chair in Pediatric Radiology, Children's Hospital of Pittsburgh of UPMC, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
34
|
Li N, Wingfield MA, Nickerson JP, Pettersson DR, Pollock JM. Anoxic Brain Injury Detection with the Normalized Diffusion to ASL Perfusion Ratio: Implications for Blood-Brain Barrier Injury and Permeability. AJNR Am J Neuroradiol 2020; 41:598-606. [PMID: 32165356 DOI: 10.3174/ajnr.a6461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/28/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Anoxic brain injury is a result of prolonged hypoxia. We sought to describe the nonquantitative arterial spin-labeling perfusion imaging patterns of anoxic brain injury, characterize the relationship of arterial spin-labeling and DWI, and evaluate the normalized diffusion-to-perfusion ratio to differentiate patients with anoxic brain injury from healthy controls. MATERIALS AND METHODS We identified all patients diagnosed with anoxic brain injuries from 2002 to 2019. Twelve ROIs were drawn on arterial spin-labeling with coordinate-matched ROIs identified on DWI. Linear regression analysis was performed to examine the relationship between arterial spin-labeling perfusion and diffusion signal. Normalized diffusion-to-perfusion maps were generated using a custom-built algorithm. RESULTS Thirty-five patients with anoxic brain injuries and 34 healthy controls were identified. Linear regression analysis demonstrated a significant positive correlation between arterial spin-labeling and DWI signal. By means of a combinatory cutoff of slope of >0 and R2 of > 0.78, linear regression using arterial spin-labeling and DWI showed a sensitivity of 0.86 (95% CI, 0.71-0.94) and specificity of 0.82 (95% CI, 0.66-0.92) for anoxic brain injuries. A normalized diffusion-to-perfusion color map demonstrated heterogeneous ratios throughout the brain in healthy controls and homogeneous ratios in patients with anoxic brain injuries. CONCLUSIONS In anoxic brain injuries, a homogeneously positive correlation between qualitative perfusion and DWI signal was identified so that areas of increased diffusion signal showed increased ASL signal. By exploiting this relationship, the normalized diffusion-to-perfusion ratio color map may be a valuable imaging biomarker for diagnosing anoxic brain injury and potentially assessing BBB integrity.
Collapse
Affiliation(s)
- N Li
- From the Department of Radiology (N.L., M.A.W., J.P.N., D.R.P., and J.M.P.), Oregon Health & Science University, Portland, Oregon
| | - M A Wingfield
- From the Department of Radiology (N.L., M.A.W., J.P.N., D.R.P., and J.M.P.), Oregon Health & Science University, Portland, Oregon
| | - J P Nickerson
- From the Department of Radiology (N.L., M.A.W., J.P.N., D.R.P., and J.M.P.), Oregon Health & Science University, Portland, Oregon
| | - D R Pettersson
- From the Department of Radiology (N.L., M.A.W., J.P.N., D.R.P., and J.M.P.), Oregon Health & Science University, Portland, Oregon
| | - J M Pollock
- From the Department of Radiology (N.L., M.A.W., J.P.N., D.R.P., and J.M.P.), Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
35
|
Cerebral hemodynamics associated with fluid-attenuated inversion recovery hyperintense vessels in patients with extracranial carotid artery stenosis. Neuroradiology 2020; 62:677-684. [PMID: 32152648 DOI: 10.1007/s00234-020-02385-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Fluid-attenuated inversion recovery hyperintense vessels (FHVs) are linked to sluggish or disordered blood flow. The purpose of this study is to compare FHVs with digital subtraction angiography (DSA) findings and cerebral hemodynamic changes on acetazolamide challenge SPECT and to determine the clinical and imaging metrics associated with FHVs in patients with extracranial carotid artery stenosis (ECAS). METHODS The subjects were patients with chronic ECAS who underwent carotid artery stenting in our department between March 2011 and October 2018. Relationships of FHVs with age, sex, medical history, cerebral angiographic findings using DSA, and quantitative values of cerebral blood flow (CBF) were examined. The resting CBF (rCBF) and cerebrovascular reactivity (CVR) in the middle cerebral artery territory were measured quantitatively using SPECT with acetazolamide challenge. We used multivariate logistic regression analysis to identify independent predictors of FHVs. RESULTS Of 173 patients included, 92 (53.2%) had FHVs. Patients with FHVs had more severe stenosis (P < 0.01) and more leptomeningeal collateral vessels (P < 0.01). FHV-positive cases had significantly reduced CVR compared with FHV-negative cases (P < 0.01), although there was no significant difference in rCBF between FHV-positive and FHV-negative cases. Logistic regression analysis showed that ipsilateral rCBF and ipsilateral CVR were significant predictors for FHVs (P < 0.01). CONCLUSION In patients with ECAS, cerebral hemodynamic metrics, especially ipsilateral rCBF and ipsilateral CVR, are associated with the presence of FHVs.
Collapse
|
36
|
Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Yamamoto Y, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Nozawa T, Ikeda S, Yokota S, Daniele M, Sassa Y, Kawashima R. Association of iron levels in hair with brain structures and functions in young adults. J Trace Elem Med Biol 2020; 58:126436. [PMID: 31760327 DOI: 10.1016/j.jtemb.2019.126436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 11/02/2019] [Accepted: 11/12/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Iron plays a critical role in normal brain functions and development, but it has also been known to have adverse neurological effects. METHODS Here, we investigated the associations of iron levels in hair with regional gray matter volume (rGMV), regional cerebral blood flow (rCBF), fractional anisotropy (FA), mean diffusivity (MD), and cognitive differences in a study cohort of 590 healthy young adults. RESULTS Our findings showed that high iron levels were associated with lower rGMV in areas including the hippocampus, lower rCBF in the anterior and posterior parts of the brain, greater FA in areas including the part of the splenium of the corpus callosum, lower MD in the overlapping area including the splenium of the corpus callosum, as well as greater MD in the left hippocampus and areas including the frontal lobe. CONCLUSION These results are compatible with the notion that iron plays diverse roles in neural mechanisms in healthy young adults.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Japan; Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan; Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Yuka Kotozaki
- Division of Clinical research, Medical-Industry Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Seishu Nakagawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Division of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Sekiguchi
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kunio Iizuka
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuki Yamamoto
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Sugiko Hanawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Carlos Makoto Miyauchi
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan
| | - Kohei Sakaki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takayuki Nozawa
- Research Center for the Earth Inclusive Sensing Empathizing with Silent Voices, Tokyo Institute of Technology, Tokyo, Japan
| | - Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Magistro Daniele
- Department of Sport Science, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, United Kingdom
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
37
|
Evanoff NG, Mueller BA, Marlatt KL, Geijer JR, Lim KO, Dengel DR. Reproducibility of a ramping protocol to measure cerebral vascular reactivity using functional magnetic resonance imaging. Clin Physiol Funct Imaging 2020; 40:183-189. [PMID: 31984617 DOI: 10.1111/cpf.12621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 12/14/2019] [Accepted: 01/21/2020] [Indexed: 11/29/2022]
Abstract
Though individual differences in arterial carbon dioxide and oxygen levels inherently exist, the degree of their influence on cerebral vascular reactivity (CVR) is less clear. We examined the reproducibility of BOLD signal changes to an iso-oxic ramping Pet CO2 protocol. CVR changes were induced by altering Pet CO2 while holding Pet O2 constant using a computer-controlled sequential gas delivery (SGD) device. Two MRI scans, each including a linear change in Pet CO2 , were performed using a 3-Tesla (3T) scanner. This ramp sequence consisted of 1 min at 30 mmHg followed by 4 min period during where Pet CO2 was linearly increased from 30 to 50 mmHg, 1 min at 51 mmHg, and concluded with 4 min at baseline. The protocol was repeated at a separate visit with 3 days between visits (minimum). Intraclass correlation coefficients (ICC) and coefficients of variation (CV) were used to verify reproducibility. Eleven subjects (6 females; mean age 26.5 ± 5.7 years) completed the full testing protocol. Good reproducibility was observed for the within-visit ramp sequence (Visit 1: ICC = 0.82, CV = 6.5%; Visit 2: ICC = 0.74, CV = 6.4%). Similarly, ramp sequence were reproducible between visits (Scan 1: ICC = 0.74, CV = 6.5%; Scan 2: ICC = 0.66, CV = 6.1%). Establishing reproducible methodologies for measuring BOLD signal changes in response to Pet CO2 alterations using a ramp protocol will allow researchers to study CVR functionality. Finally, adding a ramping protocol to CVR studies could provide information about changes in CVR over a broad range of Pet CO2 .
Collapse
Affiliation(s)
| | - Bryon A Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Kara L Marlatt
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Justin R Geijer
- Department of Health, Exercise and Rehabilitative Sciences, Winona State University, Winona, Minnesota
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Donald R Dengel
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota.,Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
38
|
Greer JS, Wang X, Wang Y, Pinho MC, Maldjian JA, Pedrosa I, Madhuranthakam AJ. Robust pCASL perfusion imaging using a 3D Cartesian acquisition with spiral profile reordering (CASPR). Magn Reson Med 2019; 82:1713-1724. [PMID: 31231894 PMCID: PMC6743738 DOI: 10.1002/mrm.27862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE To improve the robustness of arterial spin-labeled measured perfusion using a novel Cartesian acquisition with spiral profile reordering (CASPR) 3D turbo spin echo (TSE) in the brain and kidneys. METHODS The CASPR view ordering followed a pseudo-spiral trajectory on a Cartesian grid, by sampling the center of k-space at the beginning of each echo train of a segmented 3D TSE acquisition. With institutional review board approval and written informed consent, 14 normal subjects (9 brain and 5 kidneys) were scanned with pCASL perfusion imaging using 3D CASPR and compared against 3D linear TSE (brain and kidneys), the established 2D EPI and 3D gradient and spin echo perfusion (brain), and 2D single-shot turbo spin-echo perfusion (kidneys). The SNR and the quantitative perfusion values were compared among different acquisitions. RESULTS 3D CASPR TSE achieved robust perfusion across all slices compared to 3D linear TSE in the brain and kidneys. Compared to 2D EPI, 3D CASPR TSE showed higher SNR across the brain (P < 0.01), and exhibited good agreement (36.4 ± 4.7 and 36.9 ± 5.3 mL/100 g/min with 2D EPI and 3D CASPR, respectively), and with 3D gradient and spin echo (27.9 ± 7.2 mL/100 g/min). Compared to a single slice 2D single-shot turbo spin-echo acquisition, 3D CASPR TSE achieved robust perfusion across the entire kidneys in similar scan time with comparable quantified perfusion values (154.1 ± 74.6 and 151.7 ± 70.6 mL/100 g/min with 2D single-shot turbo spin-echo and 3D CASPR, respectively). CONCLUSION The CASPR view ordering with 3D TSE achieves robust arterial spin-labeled perfusion in the brain and kidneys because of the sampling of the center of k-space at the beginning of each echo train.
Collapse
Affiliation(s)
- Joshua S. Greer
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX
| | - Xinzeng Wang
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX
| | - Yiming Wang
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX
| | - Marco C. Pinho
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX
| | - Joseph A. Maldjian
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX
| | - Ivan Pedrosa
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX
| | - Ananth J. Madhuranthakam
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
39
|
Karayiannis C, Moran C, Sharman JE, Beare R, Quinn SJ, Phan TG, Wood AG, Thrift AG, Wang WC, Srikanth V. Blood Pressure, Aortic Stiffness, Hemodynamics, and Cognition in Twin Pairs Discordant for Type 2 Diabetes. J Alzheimers Dis 2019; 71:763-773. [DOI: 10.3233/jad-190319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Christopher Karayiannis
- Department of Medicine, Peninsula Health and Monash University, Melbourne, Australia
- Stroke and Ageing Research Centre, Medicine, School of Clinical Sciences, Monash Medical Centre, Monash University, Melbourne, Australia
| | - Chris Moran
- Department of Medicine, Peninsula Health and Monash University, Melbourne, Australia
- Stroke and Ageing Research Centre, Medicine, School of Clinical Sciences, Monash Medical Centre, Monash University, Melbourne, Australia
- Alfred Health, Melbourne, Australia
| | - James E. Sharman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Richard Beare
- Department of Medicine, Peninsula Health and Monash University, Melbourne, Australia
- Stroke and Ageing Research Centre, Medicine, School of Clinical Sciences, Monash Medical Centre, Monash University, Melbourne, Australia
| | - Stephen J. Quinn
- Department of Statistics, Data Science and Epidemiology, Swinburne University of Technology, Melbourne, Australia
| | - Thanh G. Phan
- Stroke and Ageing Research Centre, Medicine, School of Clinical Sciences, Monash Medical Centre, Monash University, Melbourne, Australia
| | - Amanda G. Wood
- Clinical Sciences, Murdoch Children’s Research Institute, Melbourne, Australia
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Amanda G. Thrift
- Stroke and Ageing Research Centre, Medicine, School of Clinical Sciences, Monash Medical Centre, Monash University, Melbourne, Australia
| | - Wei C. Wang
- Department of Medicine, Peninsula Health and Monash University, Melbourne, Australia
| | - Velandai Srikanth
- Department of Medicine, Peninsula Health and Monash University, Melbourne, Australia
- Stroke and Ageing Research Centre, Medicine, School of Clinical Sciences, Monash Medical Centre, Monash University, Melbourne, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| |
Collapse
|
40
|
Strauss SB, Meng A, Ebani EJ, Chiang GC. Imaging Glioblastoma Posttreatment: Progression, Pseudoprogression, Pseudoresponse, Radiation Necrosis. Radiol Clin North Am 2019; 57:1199-1216. [PMID: 31582045 DOI: 10.1016/j.rcl.2019.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Radiographic monitoring of posttreatment glioblastoma is important for clinical trials and determining next steps in management. Evaluation for tumor progression is confounded by the presence of treatment-related radiographic changes, making a definitive determination less straight-forward. The purpose of this article was to describe imaging tools available for assessing treatment response in glioblastoma, as well as to highlight the definitions, pathophysiology, and imaging features typical of true progression, pseudoprogression, pseudoresponse, and radiation necrosis.
Collapse
Affiliation(s)
- Sara B Strauss
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Alicia Meng
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Edward J Ebani
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Gloria C Chiang
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA.
| |
Collapse
|
41
|
Proisy M, Corouge I, Legouhy A, Nicolas A, Charon V, Mazille N, Leroux S, Bruneau B, Barillot C, Ferré JC. Changes in brain perfusion in successive arterial spin labeling MRI scans in neonates with hypoxic-ischemic encephalopathy. Neuroimage Clin 2019; 24:101939. [PMID: 31362150 PMCID: PMC6664197 DOI: 10.1016/j.nicl.2019.101939] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 01/18/2023]
Abstract
The primary objective of this study was to evaluate changes in cerebral blood flow (CBF) using arterial spin labeling MRI between day 4 of life (DOL4) and day 11 of life (DOL11) in neonates with hypoxic-ischemic encephalopathy (HIE) treated with hypothermia. The secondary objectives were to compare CBF values between the different regions of interest (ROIs) and between infants with ischemic lesions on MRI and infants with normal MRI findings. We prospectively included all consecutive neonates with HIE admitted to the neonatal intensive care unit of our institution who were eligible for therapeutic hypothermia. Each neonate systematically underwent two MRI examinations as close as possible to day 4 (early MRI) and day 11 (late MRI) of life. A custom processing pipeline of morphological and perfusion imaging data adapted to neonates was developed to perform automated ROI analysis. Twenty-eight neonates were included in the study between April 2015 and December 2017. There were 16 boys and 12 girls. Statistical analysis was finally performed on 37 MRIs, 17 early MRIs and 20 late MRIs. Eleven neonates had both early and late MRIs of good quality available. Eight out of 17 neonates (47%) had an abnormal on late MRI as performed and 7/20 neonates (35%) had an abnormal late MRI. CBF values in the basal ganglia and thalami (BGT) and temporal lobes were significantly higher on DOL4 than on DOL11. There were no significant differences between DOL4 and DOL11 for the other ROIs. CBF values were significantly higher in the BGT vs. the cortical GM, on both DOL4 and DOL11. On DOL4, the CBF was significantly higher in the cortical GM, the BGT, and the frontal and parietal lobes in subjects with an abnormal MRI compared to those with a normal MRI. On DOL11, CBF values in each ROI were not significantly different between the normal MRI group and the abnormal MRI group, except for the temporal lobes. This article proposes an innovative processing pipeline for morphological and ASL data suited to neonates that enable automated segmentation to obtain CBF values over ROIs. We evaluate CBF on two successive scans within the first 15 days of life in the same subjects. ASL imaging in asphyxiated neonates seems more relevant when used relatively early, in the first days of life. The correlation of intra-subject changes in cerebral perfusion between early and late MRI with neurodevelopmental outcome warrants investigation in a larger cohort, to determine whether the CBF pattern change can provide prognostic information beyond that provided by visible structural abnormalities on conventional MRI.
Collapse
Affiliation(s)
- Maïa Proisy
- Univ Rennes, Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, F-35000 Rennes, France; CHU Rennes, Radiology Department, F-35033 Rennes, France.
| | - Isabelle Corouge
- Univ Rennes, Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, F-35000 Rennes, France
| | - Antoine Legouhy
- Univ Rennes, Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, F-35000 Rennes, France
| | - Amélie Nicolas
- CHU Rennes, Radiology Department, F-35033 Rennes, France
| | - Valérie Charon
- CHU Rennes, Radiology Department, F-35033 Rennes, France
| | - Nadia Mazille
- CHU Rennes, Neonatology Department, F-35033 Rennes, France
| | | | | | - Christian Barillot
- Univ Rennes, Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, F-35000 Rennes, France
| | - Jean-Christophe Ferré
- Univ Rennes, Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, F-35000 Rennes, France; CHU Rennes, Radiology Department, F-35033 Rennes, France
| |
Collapse
|
42
|
Abstract
Advanced neuroimaging techniques are increasingly being implemented in clinical practice as complementary tools to conventional imaging because they can provide crucial functional information about the pathophysiology of a variety of disorders. Therefore, it is important to understand the basic principles underlying them and their role in diagnosis and management. In this review, we will primarily focus on the basic principles and clinical applications of perfusion imaging, diffusion imaging, magnetic resonance spectroscopy, functional MRI, and dual-energy computerized tomography. Our goal is to provide the reader with a basic understanding of these imaging techniques and when they should be used in clinical practice.
Collapse
|
43
|
Abstract
Arterial Spin Labeling (ASL) is a perfusion-based functional magnetic resonance imaging technique that uses water in arterial blood as a freely diffusible tracer to measure regional cerebral blood flow (rCBF) noninvasively. To date its application to the study of pain has been relatively limited. Yet, ASL possesses key features that make it uniquely positioned to study pain in certain paradigms. For instance, ASL is sensitive to very slowly fluctuating brain signals (in the order of minutes or longer). This characteristic makes ASL particularly suitable to the evaluation of brain mechanisms of tonic experimental, post-surgical and ongoing/or continuously varying pain in chronic or acute pain conditions (whereas BOLD fMRI is better suited to detect brain responses to short-lasting or phasic/evoked pain). Unlike positron emission tomography or other perfusion techniques, ASL allows the estimation of rCBF without requiring the administration of radioligands or contrast agents. Thus, ASL is well suited for within-subject longitudinal designs (e.g., to study evolution of pain states over time, or of treatment effects in clinical trials). ASL is also highly versatile, allowing for novel paradigms exploring a flexible array of pain states, plus it can be used to simultaneously estimate not only pain-related alterations in perfusion but also functional connectivity. In conclusion, ASL can be successfully applied in pain paradigms that would be either challenging or impossible to implement using other techniques. Particularly when used in concert with other neuroimaging techniques, ASL can be a powerful tool in the pain imager's toolbox.
Collapse
|
44
|
Krishnamurthy R, Wang DJJ, Cervantes B, McAllister A, Nelson E, Karampinos DC, Hu HH. Recent Advances in Pediatric Brain, Spine, and Neuromuscular Magnetic Resonance Imaging Techniques. Pediatr Neurol 2019; 96:7-23. [PMID: 31023603 DOI: 10.1016/j.pediatrneurol.2019.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 12/21/2022]
Abstract
Magnetic resonance imaging (MRI) is a powerful radiologic tool with the ability to generate a variety of proton-based signal contrast from tissues. Owing to this immense flexibility in signal generation, new MRI techniques are constantly being developed, tested, and optimized for clinical utility. In addition, the safe and nonionizing nature of MRI makes it a suitable modality for imaging in children. In this review article, we summarize a few of the most popular advances in MRI techniques in recent years. In particular, we highlight how these new developments have affected brain, spine, and neuromuscular imaging and focus on their applications in pediatric patients. In the first part of the review, we discuss new approaches such as multiphase and multidelay arterial spin labeling for quantitative perfusion and angiography of the brain, amide proton transfer MRI of the brain, MRI of brachial plexus and lumbar plexus nerves (i.e., neurography), and T2 mapping and fat characterization in neuromuscular diseases. In the second part of the review, we focus on describing new data acquisition strategies in accelerated MRI aimed collectively at reducing the scan time, including simultaneous multislice imaging, compressed sensing, synthetic MRI, and magnetic resonance fingerprinting. In discussing the aforementioned, the review also summarizes the advantages and disadvantages of each method and their current state of commercial availability from MRI vendors.
Collapse
Affiliation(s)
| | - Danny J J Wang
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Barbara Cervantes
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | | | - Eric Nelson
- Center for Biobehavioral Health, Nationwide Children's Hospital, Columbus, Ohio
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | | |
Collapse
|
45
|
Qu Y, Zhou L, Jiang J, Quan G, Wei X. Combination of three-dimensional arterial spin labeling and stretched-exponential model in grading of gliomas. Medicine (Baltimore) 2019; 98:e16012. [PMID: 31232933 PMCID: PMC6636946 DOI: 10.1097/md.0000000000016012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To evaluate the diagnostic value of combining 3D arterial spin labeling (ASL) and stretched-exponential diffusion model in grading of gliomas.A total of 72 patients with histo-pathology proved gliomas (34 low-grade, 38 high-grade) were included in this study. 3D ASL and multi-b diffusion weighted imaging (DWI) images were retrospectively analyzed. The ASL and DWI parameters-tumor blood flow (TBF), distributed diffusion coefficient (DDC), and diffusion heterogeneity α were compared between high-grade and low-grade groups and P < .05 was regarded as statistically significant. TBF was also normalized to the corresponding values in contralateral mirror regions of interest (ROI) (M-TBF), normal grey matter (G-TBF), and white matter (W-TBF) and were compared between high and low-grade tumors.TBF values were significantly higher in high-grade gliomas (P < .001). In stretched-exponential model, the α value of low-grade gliomas showed significant higher than high-grade gliomas group (P < .001), but there was no difference of DDC (P > .05). When TBF values were normalized to contralateral mirror ROI, normal grey matter and white matter, G-TBF showed the highest sensitivity and specificity for differentiation high-grade and low-grade gliomas. The area under area under curve (AUC) of G-TBF and α for glioma grading were 0.926 and 0.892, respectively. The area under AUC of the G-TBF combination with α was 0.960 and corresponding sensitivity and specificity were 94.1% and 98.7%.The combination of 3D ASL and stretched-exponential model parameters can be used to differentiate high-grade and low-grade gliomas. Combination G-TBF and α value can obtain best diagnostic performance.
Collapse
Affiliation(s)
- Yuan Qu
- Department of Radiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi
| | - Lisui Zhou
- Department of Radiology, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu
| | - Jie Jiang
- Department of Radiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi
| | - Guangnan Quan
- MR Enhance Application, GE Healthcare China, Beijing, China
| | - Xiaocheng Wei
- MR Enhance Application, GE Healthcare China, Beijing, China
| |
Collapse
|
46
|
Renal Allograft Rejection: Noninvasive Ultrasound- and MRI-Based Diagnostics. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:3568067. [PMID: 31093027 PMCID: PMC6481101 DOI: 10.1155/2019/3568067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
To date, allogeneic kidney transplantation remains the best available therapeutic option for patients with end-stage renal disease regarding overall survival and quality of life. Despite the advancements in immunosuppressive drugs and protocols, episodes of acute allograft rejection, a sterile inflammatory process, continue to endanger allograft survival. Since effective treatment for acute rejection episodes is available, instant diagnosis of this potentially reversible graft injury is imperative. Although histological examination by invasive core needle biopsy of the graft remains the gold standard for the diagnosis of ongoing rejection, it is always associated with the risk of causing substantial graft injury as a result of the biopsy procedure itself. At the same time, biopsies are not immediately feasible for a considerable number of patients taking anticoagulants due to the high risk of complications such as bleeding and uneven distribution of pathological changes within the graft. This can result in the wrong diagnosis due to the small size of the tissue sample taken. Therefore, there is a need for a tool that overcomes these problems by being noninvasive and capable of assessing the whole organ at the same time for specific and fast detection of acute allograft rejection. In this article, we review current state-of-the-art approaches for noninvasive diagnostics of acute renal transplant inflammation, i.e., rejection. We especially focus on nonradiation-based methods using magnetic resonance imaging (MRI) and ultrasound.
Collapse
|
47
|
Chai Y, Bush AM, Coloigner J, Nederveen AJ, Tamrazi B, Vu C, Choi S, Coates TD, Lepore N, Wood JC. White matter has impaired resting oxygen delivery in sickle cell patients. Am J Hematol 2019; 94:467-474. [PMID: 30697803 PMCID: PMC6874897 DOI: 10.1002/ajh.25423] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/27/2018] [Accepted: 01/22/2019] [Indexed: 12/13/2022]
Abstract
Although modern medical management has lowered overt stroke occurrence in patients with sickle cell disease (SCD), progressive white matter (WM) damage remains common. It is known that cerebral blood flow (CBF) increases to compensate for anemia, but sufficiency of cerebral oxygen delivery, especially in the WM, has not been systematically investigated. Cerebral perfusion was measured by arterial spin labeling in 32 SCD patients (age range: 10-42 years old, 14 males, 7 with HbSC, 25 HbSS) and 25 age and race-matched healthy controls (age range: 15-45 years old, 10 males, 12 with HbAS, 13 HbAA); 8/24 SCD patients were receiving regular blood transfusions and 14/24 non-transfused SCD patients were taking hydroxyurea. Imaging data from control subjects were used to calculate maps for CBF and oxygen delivery in SCD patients and their T-score maps. Whole brain CBF was increased in SCD patients with a mean T-score of 0.5 and correlated with lactate dehydrogenase (r2 = 0.58, P < 0.0001). When corrected for oxygen content and arterial saturation, whole brain and gray matter (GM) oxygen delivery were normal in SCD, but WM oxygen delivery was 35% lower than in controls. Age and hematocrit were the strongest predictors for WM CBF and oxygen delivery in patients with SCD. There was spatial co-localization between regions of low oxygen delivery and WM hyperintensities on T2 FLAIR imaging. To conclude, oxygen delivery is preserved in the GM of SCD patients, but is decreased throughout the WM, particularly in areas prone to WM silent strokes.
Collapse
Affiliation(s)
- Yaqiong Chai
- Department of Biomedical Engineering, University of Southern California Engineering, School, Los Angeles, California
| | - Adam M. Bush
- Department of Radiology, Stanford, University, California
| | - Julie Coloigner
- Univ Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, VISAGES - ERL U 1228, Rennes, France
| | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Benita Tamrazi
- Department of Radiology and Nuclear Medicine, Children’s Hospital Los Angeles,Los Angeles, California
| | - Chau Vu
- Department of Biomedical Engineering, University of Southern California Engineering, School, Los Angeles, California
| | - Soyoung Choi
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California
- Division of Cardiology, Children’s Hospital Los Angeles, Los Angeles, California
| | - Thomas D. Coates
- Section of Hematology, Children’s Hospital Los Angeles, Los Angeles, California
| | - Natasha Lepore
- Department of Biomedical Engineering, University of Southern California Engineering, School, Los Angeles, California
- Department of Radiology and Nuclear Medicine, Children’s Hospital Los Angeles,Los Angeles, California
| | - John C. Wood
- Department of Biomedical Engineering, University of Southern California Engineering, School, Los Angeles, California
- Division of Cardiology, Children’s Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
48
|
MR Imaging of Pediatric Musculoskeletal Tumors:: Recent Advances and Clinical Applications. Magn Reson Imaging Clin N Am 2019; 27:341-371. [PMID: 30910102 DOI: 10.1016/j.mric.2019.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pediatric musculoskeletal tumors comprise approximately 10% of childhood neoplasms, and MR imaging has been used as the imaging evaluation standard for these tumors. The role of MR imaging in these cases includes identification of tumor origin, tissue characterization, and definition of tumor extent and relationship to adjacent structures as well as therapeutic response in posttreatment surveillance. Technical advances have enabled quantitative evaluation of biochemical changes in tumors. This article reviews recent updates to MR imaging of pediatric musculoskeletal tumors, focusing on advanced MR imaging techniques and providing information on the relevant physics of these techniques, clinical applications, and pitfalls.
Collapse
|
49
|
Sokolska M, Bainbridge A, Rojas-Villabona A, Golay X, Thomas DL. Effect of labelling plane angulation and position on labelling efficiency and cerebral blood flow quantification in pseudo-continuous arterial spin labelling. Magn Reson Imaging 2019; 59:61-67. [PMID: 30802487 DOI: 10.1016/j.mri.2019.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/02/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
Pseudo-continuous arterial spin labelling (pCASL) is the MRI method of choice for non-invasive perfusion measurement in research and clinical practice. Knowledge of the labelling efficiency, α, is essential for accurate quantification of cerebral blood flow (CBF). Typically, a theoretical α value is used, based on an idealistic model and an assumption of spins flowing perpendicularly to the labelling plane. The aim of this work was to investigate the effect of violating this assumption, and to characterize the influence of labelling plane angulation with respect to the vessel direction on labelling efficiency and measured CBF. The effect of labelling plane angulation on labelling efficiency was demonstrated using a numerical simulation of spins at different velocities. Acquisitions from healthy volunteers were used to test the effect of a range of angulation offsets. Additional sub-optimal positions of the labelling plane with respect to the vertebral arteries, at locations where the direction of flow changes significantly from the head-foot direction, were also considered. No significant change in the measured CBF was seen when the labelling plane was angled up to 60° to the labelled vessel or when it was placed in sub-optimal positions. This study shows that in adult subjects, the efficiency of pCASL is robust to the angulation and positioning of the labelling plane beyond the range of potential operator error.
Collapse
Affiliation(s)
- Magdalena Sokolska
- Medical Physics and Biomedical Engineering, UCLH Foundation Trust, London, UK.
| | - Alan Bainbridge
- Medical Physics and Biomedical Engineering, UCLH Foundation Trust, London, UK
| | - Alvaro Rojas-Villabona
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, 8-11 Queen Square, London, UK
| | - Xavier Golay
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, 8-11 Queen Square, London, UK
| | - David L Thomas
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, 8-11 Queen Square, London, UK; Leonard Wolfson Experimental Neurology Centre, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
50
|
Kronenburg A, Bulder MMM, Bokkers RPH, Hartkamp NS, Hendrikse J, Vonken EJ, Kappelle LJ, van der Zwan A, Klijn CJM, Braun KPJ. Cerebrovascular Reactivity Measured with ASL Perfusion MRI, Ivy Sign, and Regional Tissue Vascularization in Moyamoya. World Neurosurg 2019; 125:e639-e650. [PMID: 30716498 DOI: 10.1016/j.wneu.2019.01.140] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) may be used to determine brain regions at risk for ischemia in patients with moyamoya vasculopathy and to identify patients who may benefit from surgical revascularization. We aimed to investigate whether 1) the severity of moyamoya is related to the presence of leptomeningeal collaterals and cerebrovascular reactivity (CVR), 2) the presence of collaterals and ivy sign reflects disturbed CVR, and 3) arterial transit artefacts (ATAs) and ivy sign reflect the presence of collaterals. METHODS We determined severity of moyamoya on digital subtraction angiography (DSA) according to the modified Suzuki classification in 20 brain regions and scored regional tissue revascularization using a 4-point scale. Regional CVR and ATAs were assessed on ASL perfusion MRI, ivy sign on fluid attenuation inversion recovery MRI. RESULTS In 11 patients (median age 36 years; 91% female), we studied 203 regions. ATAs were associated with the presence of collaterals on DSA (P < 0.01). Of all regions with clearly visible collateral vessels on DSA, however, only 24% had ATAs. Ivy sign was not related to the presence or absence of collaterals nor to CVR. In 10% of regions with good vascularization on DSA, CVR was poor or showed steal. CONCLUSIONS ATAs were associated with the presence of collaterals on DSA. Although DSA vascularization scores correlated with CVR, 10% of regions with good vascularization on DSA had absent CVR or steal on ASL-MRI. DSA and ivy sign did not provide adequate information on the hemodynamic status of brain tissue in patients with moyamoya vasculopathy.
Collapse
Affiliation(s)
- Annick Kronenburg
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, Utrecht, the Netherlands.
| | - Marcel M M Bulder
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, Utrecht, the Netherlands; Department of Neurology, Bravis Hospital, Bergen op Zoom, the Netherlands
| | - Reinoud P H Bokkers
- Department of Radiology, UMC Utrecht, Utrecht, the Netherlands; Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | | | | - L Jaap Kappelle
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, Utrecht, the Netherlands
| | - Albert van der Zwan
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, Utrecht, the Netherlands
| | - Catharina J M Klijn
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, Utrecht, the Netherlands; Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center for Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kees P J Braun
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, Utrecht, the Netherlands
| |
Collapse
|