1
|
Katoh H, Mitsuma T, Okamoto R, Naito K, Tokito T, Kikuchi M, Sangai T. Pembrolizumab with external radiation therapy effectively controlled TMB-high unresectable recurrent parathyroid cancer: a case report with review of literature. Endocr J 2024; 71:1069-1075. [PMID: 38987211 DOI: 10.1507/endocrj.ej24-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Parathyroid cancer (PC) is extremely resistant to chemotherapy and radiotherapy (RT), but hormonally functional by producing excessive parathyroid hormone (PTH), causing remarkable hypercalcemia even in biochemical disease recurrence. Accordingly, management of hypercalcemia by calcimimetics and bisphosphonates has been main treatment for unresectable PC. Here, we report a case of unresectable tumor mutational burden (TMB)-high recurrent PC that has been effectively controlled by pembrolizumab (PEM) with RT. A 48-year-old male patient, with previous history of left single parathyroidectomy for primary hyperparathyroidism, underwent surgeries for recurrent hyperparathyroidism at 47 and 48 years of age, and was pathologically diagnosed with PC. He was referred to our hospital due to persistent hypercalcemia and elevated PTH. The recurrent tumors were identified in the superior mediastinum and radically resected, then the hyperparathyroidism was improved. A FoundationOne® CDx of the specimen called TMB-high. He demonstrated recurrent hyperparathyroidism at 49 years of age, and underwent a gross curative resection. However, hyperparathyroidism achieved only insufficient improvement, indicating biochemical residual cancer cells. PEM treatment was initiated in combination with RT to the left central-lateral neck and superior mediastinum. He successfully achieved evocalcet and zoledronate withdrawal, and the PTH level improvement was continuously observed for 8 months at present, with only grade 2 subclinical hypothyroidism. Interestingly, leukocyte fraction ratios were reversed corresponding to disease improvement. A combination of PEM and RT is a promising treatment of unresectable TMB-high PC. Recent evidence on the immunomodulatory effect of RT provides the rationale for the combination of RT and PEM.
Collapse
Affiliation(s)
- Hiroshi Katoh
- Department of Breast and Thyroid Surgery, Kitasato University Hospital, Kanagawa 252-0374, Japan
| | - Tomoya Mitsuma
- Department of Breast and Thyroid Surgery, Kitasato University Hospital, Kanagawa 252-0374, Japan
| | - Riku Okamoto
- Department of Breast and Thyroid Surgery, Kitasato University Hospital, Kanagawa 252-0374, Japan
| | - Kanako Naito
- Department of Breast and Thyroid Surgery, Kitasato University Hospital, Kanagawa 252-0374, Japan
| | - Takaaki Tokito
- Department of Breast and Thyroid Surgery, Kitasato University Hospital, Kanagawa 252-0374, Japan
| | - Mariko Kikuchi
- Department of Breast and Thyroid Surgery, Kitasato University Hospital, Kanagawa 252-0374, Japan
| | - Takafumi Sangai
- Department of Breast and Thyroid Surgery, Kitasato University Hospital, Kanagawa 252-0374, Japan
| |
Collapse
|
2
|
Wetterwald L, Papadopoulos S, Tsoumakidou G, Boughdad S, Ferraro D, Koulouris P, Cherix S, Duran R, Digklia A. Abscopal effect induced by cryoablation in a 55-year-old patient with metastatic dedifferentiated liposarcoma: a case report. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:94. [PMID: 39507450 PMCID: PMC11534740 DOI: 10.21037/atm-23-1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/06/2024] [Indexed: 11/08/2024]
Abstract
Background Metastatic dedifferentiated liposarcoma (DDLPS) is primarily managed with chemotherapy, yet with poor response rate. Locoregional therapies, such as radiotherapy and percutaneous cryoablation, can provide palliation for inoperable metastatic sarcomas. In rare instances, those ablative therapies can elicit an immune-mediated regression of untreated metastases in a process named the abscopal effect. With the growing use of immunotherapy, reports on the abscopal effect have become more frequent during the last decade. Case Description A 55-year-old patient with no prior medical history was diagnosed with a stage IV DDLPS. The patient was first treated with induction chemotherapy followed by en bloc resection and adjuvant radiotherapy. After two local relapses treated with chemotherapy, the patient developed a systemic disease progression. While progressing on immunochemotherapy, the patient underwent palliative percutaneous cryoablation. Three months after the procedure, the 18fluorodeoxyglucose positron emission tomography/computed tomography (18FDG PET/CT) showed regression of the distant metastasis alongside the regression of the cryoablated tumor, suggesting an abscopal effect. Conclusions The occurrence of the abscopal effect after progressive disease suggests that cryoablation triggered a systemic immune response, highlighting the potential of this treatment combination. However, it remains a rare phenomenon, and further research and clinical trials are required to determine optimal treatment sequencing.
Collapse
Affiliation(s)
- Laureline Wetterwald
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sotirios Papadopoulos
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Georgia Tsoumakidou
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sarah Boughdad
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Daniela Ferraro
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pantelis Koulouris
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Stephane Cherix
- Department of Orthopaedics and Traumatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Rafael Duran
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Antonia Digklia
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Zhen J, Chen L, Wang H, Li D, Lai M, Ding Y, Yang Y, Li J, Wen X, Cai L, Zhang X. Intrathecal anti-PD-1 treatment in metastatic melanoma patients with leptomeningeal disease (LMD): real-world data and evidence. J Neurooncol 2024:10.1007/s11060-024-04843-8. [PMID: 39422814 DOI: 10.1007/s11060-024-04843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Leptomeningeal disease (LMD) is a severe complication of melanoma with a very poor prognosis. Despite improved treatment strategies and prolonged survival, the incidence of LMD has increased over the past decade. This real-world study aims to evaluate the efficacy and safety of intrathecal anti-PD-1 treatment in melanoma patients with LMD. METHODS Melanoma patients with LMD diagnosed by magnetic resonance imaging (MRI) and/or cerebrospinal fluid (CSF) cytology were treated with intrathecal infusions of nivolumab 20 mg once every 2 weeks (n = 5) or pembrolizumab 20 mg once every 3 weeks (n = 3), alongside systemic therapy. Patients received a median of 5.5 treatment cycles (range 2-9). Efficacy and safety analyses were performed on all treated patients. RESULTS From June 2022 to February 2023, eight patients were treated, including four with cutaneous melanoma, two with acral melanoma, and two with primary leptomeningeal melanoma. All patients exhibited linear or small nodular enhancement of the leptomeninges on MRI. Four patients had concurrent parenchymal brain metastases. Tumor cells were identified in six patients by CSF cytology, and two patients underwent leptomeningeal biopsy for pathological diagnosis. According to the RANO-LM criteria, five patients responded to treatment with symptom improvement and reduction or disappearance of linear enhancement on MRI, while three patients developed progressive disease. With a median follow-up of 20.7 weeks (range 8.1-45.3 weeks), the median OS and median intracranial progression-free survival (IPFS) for intrathecal anti-PD-1 treatment were 21.1 and 16.1 weeks, respectively. All treatment-related adverse events were grade 1-2, including headache (grade 1, n = 1; grade 2, n = 2) and low back pain (grade 1, n = 1). CONCLUSIONS In this real-world study, intrathecal anti-PD-1 treatment demonstrated potential clinical benefits and was well tolerated in metastatic melanoma patients with LMD.
Collapse
Affiliation(s)
- Junjie Zhen
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, 510060, PR China
| | - Linbin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
- Department of Biological Therapy Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Hui Wang
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, 510060, PR China
| | - Dandan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
- Department of Biological Therapy Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Mingyao Lai
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, 510060, PR China
| | - Ya Ding
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
- Department of Biological Therapy Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yanying Yang
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, 510060, PR China
| | - Jingjing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
- Department of Biological Therapy Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xizhi Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
- Department of Biological Therapy Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Linbo Cai
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, 510060, PR China.
| | - Xiaoshi Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
- Department of Biological Therapy Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| |
Collapse
|
4
|
Wang SW, Zheng QY, Hong WF, Tang BF, Hsu SJ, Zhang Y, Zheng XB, Zeng ZC, Gao C, Ke AW, Du SS. Mechanism of immune activation mediated by genomic instability and its implication in radiotherapy combined with immune checkpoint inhibitors. Radiother Oncol 2024; 199:110424. [PMID: 38997092 DOI: 10.1016/j.radonc.2024.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Various genetic and epigenetic changes associated with genomic instability (GI), including DNA damage repair defects, chromosomal instability, and mitochondrial GI, contribute to development and progression of cancer. These alterations not only result in DNA leakage into the cytoplasm, either directly or through micronuclei, but also trigger downstream inflammatory signals, such as the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. Apart from directly inducing DNA damage to eliminate cancer cells, radiotherapy (RT) exerts its antitumor effects through intracellular DNA damage sensing mechanisms, leading to the activation of downstream inflammatory signaling pathways. This not only enables local tumor control but also reshapes the immune microenvironment, triggering systemic immune responses. The combination of RT and immunotherapy has emerged as a promising approach to increase the probability of abscopal effects, where distant tumors respond to treatment due to the systemic immunomodulatory effects. This review emphasizes the importance of GI in cancer biology and elucidates the mechanisms by which RT induces GI remodeling of the immune microenvironment. By elucidating the mechanisms of GI and RT-induced immune responses, we aim to emphasize the crucial importance of this approach in modern oncology. Understanding the impact of GI on tumor biological behavior and therapeutic response, as well as the possibility of activating systemic anti-tumor immunity through RT, will pave the way for the development of new treatment strategies and improve prognosis for patients.
Collapse
Affiliation(s)
- Si-Wei Wang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China
| | - Qiu-Yi Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Wei-Feng Hong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Bu-Fu Tang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Shu-Jung Hsu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Yang Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Xiao-Bin Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Chao Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China.
| | - Ai-Wu Ke
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China.
| | - Shi-Suo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China.
| |
Collapse
|
5
|
Brugiapaglia S, Spagnolo F, Intonti S, Novelli F, Curcio C. Fighting Pancreatic Cancer with a Vaccine-Based Winning Combination: Hope or Reality? Cells 2024; 13:1558. [PMID: 39329742 PMCID: PMC11430323 DOI: 10.3390/cells13181558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Pancreatic adenocarcinoma (PDA) represents the fourth leading cause of cancer-related mortality in the USA. Only 20% of patients present surgically resectable and potentially curable tumors at diagnosis, while 80% are destined for poor survival and palliative chemotherapy. Accordingly, the advancement of innovative and effective therapeutic strategies represents a pivotal medical imperative. It has been demonstrated that targeting the immune system represents an effective approach against several solid tumors. The immunotherapy approach encompasses a range of strategies, including the administration of antibodies targeting checkpoint molecules (immune checkpoint inhibitors, ICIs) to disrupt tumor suppression mechanisms and active immunization approaches that aim to stimulate the host's immune system. While vaccines have proved effective against infectious agents, vaccines for cancer remain an unfulfilled promise. Vaccine-based therapy targeting tumor antigens has the potential to be a highly effective strategy for initiating and maintaining T cell recognition, enhancing the immune response, and ultimately promoting cancer treatment success. In this review, we examined the most recent clinical trials that employed diverse vaccine types to stimulate PDA patients' immune systems, either independently or in combination with chemotherapy, radiotherapy, ICIs, and monoclonal antibodies with the aim of ameliorating PDA patients' quality of life and extend their survival.
Collapse
Affiliation(s)
- Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, 10126 Turin, Italy
| | - Ferdinando Spagnolo
- School of Advanced Defence Studies, Defence Research & Analysis Institute, Piazza della Rovere 83, 00165 Rome, Italy
| | - Simona Intonti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, 10126 Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, 10126 Turin, Italy
| | - Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, 10126 Turin, Italy
| |
Collapse
|
6
|
Nassief G, Anaeme A, Moussa K, Mansour AN, Ansstas G. Recent Advancements in Cell-Based Therapies in Melanoma. Int J Mol Sci 2024; 25:9848. [PMID: 39337333 PMCID: PMC11432154 DOI: 10.3390/ijms25189848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Malignant melanoma outcomes have drastically changed in recent years due to the introduction of immune checkpoint inhibitors (ICIs). However, many patients still experience intolerable side effects, therapy resistance, and disease progression on ICI therapy. Therefore, there remains a need for novel therapeutics that address this gap in treatment options. Cell-based therapies have gained wide attention as a therapeutic option that could address this gap in treatment options for advanced melanoma. These therapies work by extracting certain cell types produced in the human body such as T-cells, modifying them based on a specific target, and transfusing them back into the patient. In the realm of cancer therapy, cell-based therapies utilize immune cells to target tumor cells while sparing healthy cells. Recently, the Food and Drug Administration (FDA) has approved the usage of lifileucel, a tumor-infiltrating lymphocyte (TIL) therapy, in advanced melanoma. This came following recent results from the C-144-01 study (NCT02360579), which demonstrated the efficacy and safety of TILs in metastatic melanoma patients who otherwise failed on standard ICI/targeted therapy. Thus, the results of this trial as well as the recent FDA approval have proven the viability of utilizing cell-based therapies to fill the gap in treatment options for patients with advanced melanoma. This review aims to provide a comprehensive overview of major cell-based therapies that have been utilized in melanoma by delineating results of the most recent multi-center phase II/ III clinical trials that evaluate the efficacy and safety of major cell-based therapies in melanoma. Additionally, we provide a summary of current limitations in each cell-based therapeutic option as well as a future direction of how to further extrapolate these cell-based therapies in advanced melanoma.
Collapse
Affiliation(s)
- George Nassief
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA
| | - Angela Anaeme
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA
| | - Karen Moussa
- UMKC School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Abdallah N Mansour
- Department of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - George Ansstas
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA
| |
Collapse
|
7
|
Capella MP, Pang SA, Magalhaes MA, Esfahani K. A Review of Immunotherapy in Non-Small-Cell Lung Cancer. Curr Oncol 2024; 31:3495-3512. [PMID: 38920741 PMCID: PMC11203112 DOI: 10.3390/curroncol31060258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Cancer immunotherapy in the form of immune checkpoint inhibitors has led to a dramatic increase in the survival of patients with lung cancer across all stages. Over the past decade, the field has experienced rapid maturation; however, several challenges continue to complicate patient management. This review aims to highlight the data that led to this dramatic shift in practice as well as to focus on key challenges. These include determining the optimal therapy duration, managing frail patients or those with brain metastases, addressing the challenges posed by immune-related adverse events, and defining the various patterns of clinical and radiological responses to immunotherapy.
Collapse
Affiliation(s)
- Mariana Pilon Capella
- Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (M.P.C.)
| | - Steph A. Pang
- Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (M.P.C.)
| | - Marcos A. Magalhaes
- Department of Oncology, Hospital Beneficencia Portuguesa de Sao Paulo, São Paulo 01451-010, Brazil;
| | - Khashayar Esfahani
- Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (M.P.C.)
- Department of Oncology, St. Mary’s Hospital, McGill University, Montreal, QC H3T 1M5, Canada
| |
Collapse
|
8
|
Bergman PJ. Cancer Immunotherapy. Vet Clin North Am Small Anim Pract 2024; 54:441-468. [PMID: 38158304 DOI: 10.1016/j.cvsm.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The enhanced understanding of immunology experienced over the last 5 decades afforded through the tools of molecular biology has recently translated into cancer immunotherapy becoming one of the most exciting and rapidly expanding fields. Human cancer immunotherapy is now recognized as one of the pillars of treatment alongside surgery, radiation, and chemotherapy. The field of veterinary cancer immunotherapy has also rapidly advanced in the last decade with a handful of commercially available products and a plethora of investigational cancer immunotherapies, which will hopefully expand our veterinary oncology treatment toolkit over time.
Collapse
Affiliation(s)
- Philip J Bergman
- Clinical Studies, VCA; Katonah Bedford Veterinary Center, Bedford Hills, NY, USA; Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
9
|
Ito M, Abe S, Adachi S, Oshima Y, Takeuchi A, Ohashi W, Iwata T, Ogawa T, Ota A, Kubota Y, Okuda T, Suzuki K. Solid tumours showing oligoprogression to immune checkpoint inhibitors have the potential for abscopal effects. Jpn J Radiol 2024; 42:424-434. [PMID: 38093137 PMCID: PMC10980609 DOI: 10.1007/s11604-023-01516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/16/2023] [Indexed: 04/01/2024]
Abstract
PURPOSE Given the uncertainty surrounding the abscopal effect (AE), it is imperative to identify promising treatment targets. In this study, we aimed to explore the incidence of AE when administering radiotherapy to patients with oligoprogressive solid tumours while they are undergoing treatment with immune checkpoint inhibitors (ICIs). MATERIALS AND METHODS In this multicentre prospective observational study, oligoprogressive disease was defined as a < 20% increase in lesions compared to > 2 months before enrolment. We enrolled patients who requested radiotherapy during the ICI rest period between 2020 and 2023. AE was considered present if ≥ 1 non-irradiated lesion decreased by ≥ 30% before the next line of systemic therapy started. RESULTS Twelve patients were included in this study; the common primary lesions were in the lungs (four patients) and kidneys (three patients). AEs were observed in six (50%) patients, with a median time to onset of 4 (range 2-9) months after radiotherapy. No significant predictors of AEs were identified. Patients in the AE group had a significantly better 1-year progression-free survival (PFS) rate than those in the non-AE group (p = 0.008). Two patients from the AE group were untreated and progression-free at the last follow-up. Four (33%) patients experienced grade 2 toxicity, with two cases attributed to radiotherapy and the other two to ICI treatment. No grade 3 or higher toxicities were observed in any category. CONCLUSION Patients with oligoprogressive disease may be promising targets with potential for AEs. AEs can lead to improved PFS and, in rare cases, to a certain progression-free period without treatment. Irradiating solid tumours in patients with oligoprogressive disease during immune checkpoint inhibitor therapy may be a promising target with the potential for abscopal effects (AEs). AEs can lead to improved progression-free survival and, in rare cases, to a certain progression-free period without treatment.
Collapse
Affiliation(s)
- Makoto Ito
- Department of Radiology, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan.
| | - Souichiro Abe
- Department of Radiology, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Sou Adachi
- Department of Radiology, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Yukihiko Oshima
- Department of Radiology, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Arisa Takeuchi
- Department of Radiation Oncology, Anjo Kosei Hospital Aichi Prefectural Welfare Federation of Agricultural Cooperatives, 28 Higashihirokute, Anjo-Cho, Anjo, Aichi, 446-8602, Japan
| | - Wataru Ohashi
- Department of Biostatistics, Clinical Research Center, Aichi Medical University, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Takashi Iwata
- Department of Oncology Center, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Tetsuya Ogawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Akiko Ota
- Department of Oncology, Toyota Memorial Hospital, 1-1-1 Heiwa-Cho, Toyota, Aichi, 471-8513, Japan
| | - Yasuaki Kubota
- Department of Urology, Toyota Memorial Hospital, 1-1-1 Heiwa-Cho, Toyota, Aichi, 471-8513, Japan
| | - Takahito Okuda
- Department of Radiation Oncology, Toyota Memorial Hospital, 1-1-1 Heiwa-Cho, Toyota, Aichi, 471-8513, Japan
| | - Kojiro Suzuki
- Department of Radiology, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| |
Collapse
|
10
|
Luo X, Zeng M. Combination low-dose cyclophosphamide with check-point blockade and ionizing radiation promote an abscopal effect in mouse models of melanoma. J Cancer Res Ther 2024; 20:718-725. [PMID: 38687945 DOI: 10.4103/jcrt.jcrt_616_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 11/09/2023] [Indexed: 05/02/2024]
Abstract
PURPOSE The complex strategy of hypo-fractionated radiotherapy (HFRT) in combination with an immune checkpoint inhibitor (ICI) can stimulate a potential systemic antitumor response; however, the abscopal effect is always precluded by the tumor microenvironment, which may limit sufficient T-cell infiltration of distant nonirradiated tumors for certain kinds of inhibitory factors, such as regulatory T-cells (Tregs). Additionally, low-dose cyclophosphamide (LD-CYC) can specifically kill regulatory Tregs and strongly synergize antigen-specific immune responses, which could promote an abscopal effect. MATERIALS AND METHODS We explored whether a triple regimen consisting of HFRT, ICI, and LD-CYC could achieve a better systemic antitumor response in bilateral mouse tumor models. RESULT Our data demonstrate that LD-CYC combined with HFRT and antiprogrammed cell death ligand 1 (PDL-1) therapy could enhance the abscopal effect than only HFRT/antiPDL-1 or HFRT alone. Surprisingly, repeat CYC doses cannot further restrain tumor proliferation but can prolong murine overall survival, as revealed by the major pathologic responses. These results are associated with increased CD8 + effector T-cell infiltration, although LD-CYC did not upregulate PDL-1 expression in the tumor. CONCLUSIONS Compared with traditional strategies, for the first time, we demonstrated that a triple treatment strategy remarkably increased the number of radiation-induced tumor-infiltrating CD8 + T-cells, effectively decreasing infiltrating Tregs, and promoting an abscopal effect. Thus, we describe a novel and effective therapeutic approach by combining multiple strategies to target several tumor-mediated immune inhibitory mechanisms.
Collapse
MESH Headings
- Animals
- Cyclophosphamide/pharmacology
- Cyclophosphamide/administration & dosage
- Cyclophosphamide/therapeutic use
- Mice
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/radiation effects
- Tumor Microenvironment/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/radiation effects
- Female
- Combined Modality Therapy
- Disease Models, Animal
- Melanoma, Experimental/pathology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/radiotherapy
- Radiation, Ionizing
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/metabolism
- Antineoplastic Agents, Alkylating/pharmacology
- Antineoplastic Agents, Alkylating/therapeutic use
- Antineoplastic Agents, Alkylating/administration & dosage
- Mice, Inbred C57BL
- Humans
- Cell Line, Tumor
Collapse
Affiliation(s)
- Xing Luo
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
- Clinical Medical School, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
- Department of Oncology, Key Clinical Specialty of Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Ming Zeng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
11
|
Maggiorani D, Le O, Lisi V, Landais S, Moquin-Beaudry G, Lavallée VP, Decaluwe H, Beauséjour C. Senescence drives immunotherapy resistance by inducing an immunosuppressive tumor microenvironment. Nat Commun 2024; 15:2435. [PMID: 38499573 PMCID: PMC10948808 DOI: 10.1038/s41467-024-46769-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
The potential of immune checkpoint inhibitors (ICI) may be limited in situations where immune cell fitness is impaired. Here, we show that the efficacy of cancer immunotherapies is compromised by the accumulation of senescent cells in mice and in the context of therapy-induced senescence (TIS). Resistance to immunotherapy is associated with a decrease in the accumulation and activation of CD8 T cells within tumors. Elimination of senescent cells restores immune homeostasis within the tumor micro-environment (TME) and increases mice survival in response to immunotherapy. Using single-cell transcriptomic analysis, we observe that the injection of ABT263 (Navitoclax) reverses the exacerbated immunosuppressive profile of myeloid cells in the TME. Elimination of these myeloid cells also restores CD8 T cell proliferation in vitro and abrogates immunotherapy resistance in vivo. Overall, our study suggests that the use of senolytic drugs before ICI may constitute a pharmacological approach to improve the effectiveness of cancer immunotherapies.
Collapse
Affiliation(s)
- Damien Maggiorani
- Centre de recherche du CHU Sainte-Justine, Montréal, QC, Canada
- Département de pharmacologie et physiologie (Université de Montréal, Montréal, QC, Canada
| | - Oanh Le
- Centre de recherche du CHU Sainte-Justine, Montréal, QC, Canada
| | - Véronique Lisi
- Centre de recherche du CHU Sainte-Justine, Montréal, QC, Canada
| | | | | | - Vincent Philippe Lavallée
- Centre de recherche du CHU Sainte-Justine, Montréal, QC, Canada
- Département de pédiatrie (Université de Montréal, Montréal, QC, Canada
| | - Hélène Decaluwe
- Centre de recherche du CHU Sainte-Justine, Montréal, QC, Canada
- Département de pédiatrie (Université de Montréal, Montréal, QC, Canada
- Département de microbiologie, immunologie et infectiologie (Université de Montréal, Montréal, QC, Canada
| | - Christian Beauséjour
- Centre de recherche du CHU Sainte-Justine, Montréal, QC, Canada.
- Département de pharmacologie et physiologie (Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
12
|
Zhang H, Xu W, Zhu H, Chen X, Tsai HI. Overcoming the limitations of immunotherapy in pancreatic ductal adenocarcinoma: Combining radiotherapy and metabolic targeting therapy. J Cancer 2024; 15:2003-2023. [PMID: 38434964 PMCID: PMC10905401 DOI: 10.7150/jca.92502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/20/2024] [Indexed: 03/05/2024] Open
Abstract
As a novel anticancer therapy, immunotherapy has demonstrated robust efficacy against a few solid tumors but poor efficacy against pancreatic ductal adenocarcinoma (PDAC). This poor outcome is primarily attributable to the intrinsic cancer cell resistance and T-cell exhaustion, which is also the reason for the failure of conventional therapy. The present review summarizes the current PDAC immunotherapy avenues and the underlying resistance mechanisms. Then, the review discusses synergistic combination therapies, such as radiotherapy (RT) and metabolic targeting. Research suggests that RT boosts the antigen of PDAC, which facilitates the anti-tumor immune cell infiltration and exerts function. Metabolic reprogramming contributes to restoring the exhausted T cell function. The current review will help in tailoring combination regimens to enhance the efficacy of immunotherapy. In addition, it will help provide new approaches to address the limitations of the immunosuppressive tumor microenvironment (TME) by examining the relationship among immunotherapy, RT, and metabolism targeting therapy in PDAC.
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Wenjin Xu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuelian Chen
- Department of Radiology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Popp I, Vaes RDW, Wieten L, Adebahr S, Hendriks L, Bavafaye Haghighi E, Degens J, Schäfer H, Greil C, Peeters S, Waller CF, Houben R, Niedermann G, Rawluk J, Gkika E, Duyster J, Grosu AL, De Ruysscher D. Radiotherapy to reinvigorate immunotherapy activity after acquired resistance in metastatic non-small-cell lung cancer: A pooled analysis of two institutions prospective phase II single arm trials. Radiother Oncol 2024; 190:110048. [PMID: 38070686 DOI: 10.1016/j.radonc.2023.110048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 02/20/2024]
Abstract
AIM The current work aimed to investigate the clinical benefit of radiotherapy in patients with metastatic non-small cell lung cancer (NSCLC) developing acquired resistance to immune checkpoint inhibitors. METHOD We report on a pooled, two-institution, phase II single-arm prospective cohort study. The study included patients with stage IV NSCLC who showed progression of one or more measurable lesions under anti-PD-(L)1 inhibition alone, after initially having achieved at least stable disease. Hypofractionated radiotherapy (hRT) of one to four metastases was performed, while one or more lesions were kept untreated. Following hRT, treatment with immune checkpoint inhibitors was continued unchanged until further evidence of tumor progression or unacceptable toxicity. Primary endpoint of the pooled analysis was progression-free survival (PFS), secondary endpoints included overall survival (OS) and toxicity. RESULTS A total of 48 patients were enrolled: mean age was 67.1 ± 9.3 years, 50 % were male and 72.9 % were PD-L1 positive. Immunotherapy was in 95.8 % of patients the first or second line therapy at time of enrollment. hRT was performed to one (93.8 % of cases) or more lesions (median total dose: 27.5 Gy, median 6.5 Gy/fraction). Forty-five patients (93.8 %) were able to continue immunotherapy for a median of 6.2 months following hRT. Median PFS was 4.4 months, with 62.5 % disease control at three months and 37.5 % at six months. Median OS was 14.9 months. Severe adverse events (grade ≥ 2) were reported in 12 cases (25 %), of which none were radiotherapy-related and four were immunotherapy-related. Salvage therapy consisted of chemotherapy (48.8 %) or repeated irradiation (21.9 %). No further tumor treatment was performed in 29.3 % of patients. CONCLUSIONS The current pooled analysis is a prospective evaluation of the role of radiation therapy for metastatic NSCLC in the setting of newly acquired immunotherapy resistance. Hypofractionated radiotherapy can support the outcome of immune checkpoint inhibitors and thus allow continuation of treatment for a relevant amount of time despite initial tumor progression.
Collapse
Affiliation(s)
- Ilinca Popp
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Rianne D W Vaes
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, GROW School for Oncology and Reproduction. Maastricht University Medical Center, Maastricht, the Netherlands
| | - Sonja Adebahr
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lizza Hendriks
- Department of Respiratory Diseases, GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Juliette Degens
- Department of Respiratory Diseases, Zuyderland Hospital, Sittard-Geleen, the Netherlands
| | - Henning Schäfer
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christine Greil
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stéphanie Peeters
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Cornelius F Waller
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ruud Houben
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Freiburg, Germany
| | - Justyna Rawluk
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Freiburg, Germany
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
14
|
Gerken LRH, Gerdes ME, Pruschy M, Herrmann IK. Prospects of nanoparticle-based radioenhancement for radiotherapy. MATERIALS HORIZONS 2023; 10:4059-4082. [PMID: 37555747 PMCID: PMC10544071 DOI: 10.1039/d3mh00265a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Radiotherapy is a key pillar of solid cancer treatment. Despite a high level of conformal dose deposition, radiotherapy is limited due to co-irradiation of organs at risk and subsequent normal tissue toxicities. Nanotechnology offers an attractive opportunity for increasing the efficacy and safety of cancer radiotherapy. Leveraging the freedom of design and the growing synthetic capabilities of the nanomaterial-community, a variety of engineered nanomaterials have been designed and investigated as radiosensitizers or radioenhancers. While research so far has been primarily focused on gold nanoparticles and other high atomic number materials to increase the absorption cross section of tumor tissue, recent studies are challenging the traditional concept of high-Z nanoparticle radioenhancers and highlight the importance of catalytic activity. This review provides a concise overview on the knowledge of nanoparticle radioenhancement mechanisms and their quantification. It critically discusses potential radioenhancer candidate materials and general design criteria for different radiation therapy modalities, and concludes with research priorities in order to advance the development of nanomaterials, to enhance the efficacy of radiotherapy and to increase at the same time the therapeutic window.
Collapse
Affiliation(s)
- Lukas R H Gerken
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Maren E Gerdes
- Karolinska Institutet, Solnavägen 1, 171 77 Stockholm, Sweden
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
15
|
Liu J, West H, McGee HM, Williams TM, Lee P, Amini A. Challenges in synergizing radiotherapy with immunotherapy to unlock the abscopal effect in metastatic NSCLC: A systematic review. Neoplasia 2023; 43:100914. [PMID: 37348427 PMCID: PMC10314288 DOI: 10.1016/j.neo.2023.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/04/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND With the recent success of immunotherapy, there is a growing interest in combining radiation with immunotherapy to boost abscopal response rates. Several challenges exist in determining how to synergize these two modalities in the treatment of metastatic NSCLC. METHODS References for this review were identified through searches of MEDLINE/PubMed and Clinicaltrials.gov databases with the search terms "abscopal", "radiation OR radiotherapy," "NSCLC", and "lung" on the index date of July 2022 from 2000-2022. This systematic review focuses primarily on clinical papers. DISCUSSION Early work combining radiotherapy with immunotherapy show promise in unlocking the abscopal effect. Preliminary evidence suggests that radiotherapy regimens with <5 fractions and smaller fields may be superior to regimens with 15 fractions and larger fields. There does not appear to be enough evidence to draw conclusions about the optimal timing of radiotherapy in relation to immunotherapy or the optimal anatomical location of radiation to induce the abscopal effect. Several studies suggest selecting patients with a higher absolute lymphocyte count (ALC) and lower neutrophil-to-lymphocyte ratio (NLR) may help to further boost abscopal response rates. Furthermore, selecting tumors with programmed death ligand-1 (PD-L1) expression, mismatch repair deficiency, and higher tumor mutational burden may similarly achieve this goal. Lastly, additional work is needed to minimize and predict for severe toxicity associated with combination therapy.
Collapse
Affiliation(s)
- Jason Liu
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States
| | - Howard West
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States
| | - Heather M McGee
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States; Department of Immuno-Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States
| | - Terence M Williams
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States
| | - Percy Lee
- Department of Radiation Oncology, City of Hope Orange County, Irvine, CA 92618, United States
| | - Arya Amini
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States.
| |
Collapse
|
16
|
Moloudi K, Sarbadhikary P, Abrahamse H, George BP. Understanding the Photodynamic Therapy Induced Bystander and Abscopal Effects: A Review. Antioxidants (Basel) 2023; 12:1434. [PMID: 37507972 PMCID: PMC10376621 DOI: 10.3390/antiox12071434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved minimally/non-invasive treatment modality that has been used to treat various conditions, including cancer. The bystander and abscopal effects are two well-documented significant reactions involved in imparting long-term systemic effects in the field of radiobiology. The PDT-induced generation of reactive oxygen and nitrogen species and immune responses is majorly involved in eliciting the bystander and abscopal effects. However, the results in this regard are unsatisfactory and unpredictable due to several poorly elucidated underlying mechanisms and other factors such as the type of cancer being treated, the irradiation dose applied, the treatment regimen employed, and many others. Therefore, in this review, we attempted to summarize the current knowledge regarding the non-targeted effects of PDT. The review is based on research published in the Web of Science, PubMed, Wiley Online Library, and Google Scholar databases up to June 2023. We have highlighted the current challenges and prospects in relation to obtaining clinically relevant robust, reproducible, and long-lasting antitumor effects, which may offer a clinically viable treatment against tumor recurrence and metastasis. The effectiveness of both targeted and untargeted PDT responses and their outcomes in clinics could be improved with more research in this area.
Collapse
Affiliation(s)
- Kave Moloudi
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Paromita Sarbadhikary
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
17
|
Stagg J, Golden E, Wennerberg E, Demaria S. The interplay between the DNA damage response and ectonucleotidases modulates tumor response to therapy. Sci Immunol 2023; 8:eabq3015. [PMID: 37418547 PMCID: PMC10394739 DOI: 10.1126/sciimmunol.abq3015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
The extracellular nucleoside adenosine reduces tissue inflammation and is generated by irreversible dephosphorylation of adenosine monophosphate (AMP) mediated by the ectonucleotidase CD73. The pro-inflammatory nucleotides adenosine triphosphate, nicotinamide adenine dinucleotide, and cyclic guanosine -monophosphate-AMP (cGAMP), which are produced in the tumor microenvironment (TME) during therapy-induced immunogenic cell death and activation of innate immune signaling, can be converted into AMP by ectonucleotidases CD39, CD38, and CD203a/ENPP1. Thus, ectonucleotidases shape the TME by converting immune-activating signals into an immunosuppressive one. Ectonucleotidases also hinder the ability of therapies including radiation therapy, which enhance the release of pro-inflammatory nucleotides in the extracellular milieu, to induce immune-mediated tumor rejection. Here, we review the immunosuppressive effects of adenosine and the role of different ectonucleotidases in modulating antitumor immune responses. We discuss emerging opportunities to target adenosine generation and/or its ability to signal via adenosine receptors expressed by immune and cancer cells in the context of combination immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- John Stagg
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, 900 St-Denis street, Montreal,
Quebec, Canada, H2X 0A9
| | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, Institute of Cancer
Research, London SM2 5NG, UK
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
- Department of Pathology and Laboratory Medicine, Weill
Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
18
|
Averbeck D. Low-Dose Non-Targeted Effects and Mitochondrial Control. Int J Mol Sci 2023; 24:11460. [PMID: 37511215 PMCID: PMC10380638 DOI: 10.3390/ijms241411460] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Non-targeted effects (NTE) have been generally regarded as a low-dose ionizing radiation (IR) phenomenon. Recently, regarding long distant abscopal effects have also been observed at high doses of IR) relevant to antitumor radiation therapy. IR is inducing NTE involving intracellular and extracellular signaling, which may lead to short-ranging bystander effects and distant long-ranging extracellular signaling abscopal effects. Internal and "spontaneous" cellular stress is mostly due to metabolic oxidative stress involving mitochondrial energy production (ATP) through oxidative phosphorylation and/or anaerobic pathways accompanied by the leakage of O2- and other radicals from mitochondria during normal or increased cellular energy requirements or to mitochondrial dysfunction. Among external stressors, ionizing radiation (IR) has been shown to very rapidly perturb mitochondrial functions, leading to increased energy supply demands and to ROS/NOS production. Depending on the dose, this affects all types of cell constituents, including DNA, RNA, amino acids, proteins, and membranes, perturbing normal inner cell organization and function, and forcing cells to reorganize the intracellular metabolism and the network of organelles. The reorganization implies intracellular cytoplasmic-nuclear shuttling of important proteins, activation of autophagy, and mitophagy, as well as induction of cell cycle arrest, DNA repair, apoptosis, and senescence. It also includes reprogramming of mitochondrial metabolism as well as genetic and epigenetic control of the expression of genes and proteins in order to ensure cell and tissue survival. At low doses of IR, directly irradiated cells may already exert non-targeted effects (NTE) involving the release of molecular mediators, such as radicals, cytokines, DNA fragments, small RNAs, and proteins (sometimes in the form of extracellular vehicles or exosomes), which can induce damage of unirradiated neighboring bystander or distant (abscopal) cells as well as immune responses. Such non-targeted effects (NTE) are contributing to low-dose phenomena, such as hormesis, adaptive responses, low-dose hypersensitivity, and genomic instability, and they are also promoting suppression and/or activation of immune cells. All of these are parts of the main defense systems of cells and tissues, including IR-induced innate and adaptive immune responses. The present review is focused on the prominent role of mitochondria in these processes, which are determinants of cell survival and anti-tumor RT.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France
| |
Collapse
|
19
|
Vonderhaar EP, Dwinell MB, Craig BT. Targeted immune activation in pediatric solid tumors: opportunities to complement local control approaches. Front Immunol 2023; 14:1202169. [PMID: 37426669 PMCID: PMC10325564 DOI: 10.3389/fimmu.2023.1202169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Surgery or radiation therapy is nearly universally applied for pediatric solid tumors. In many cases, in diverse tumor types, distant metastatic disease is present and evades surgery or radiation. The systemic host response to these local control modalities may lead to a suppression of antitumor immunity, with potential negative impact on the clinical outcomes for patients in this scenario. Emerging evidence suggests that the perioperative immune responses to surgery or radiation can be modulated therapeutically to preserve anti-tumor immunity, with the added benefit of preventing these local control approaches from serving as pro-tumorigenic stimuli. To realize the potential benefit of therapeutic modulation of the systemic response to surgery or radiation on distant disease that evades these modalities, a detailed knowledge of the tumor-specific immunology as well as the immune responses to surgery and radiation is imperative. In this Review we highlight the current understanding of the tumor immune microenvironment for the most common peripheral pediatric solid tumors, the immune responses to surgery and radiation, and current evidence that supports the potential use of immune activating agents in the perioperative window. Finally, we define existing knowledge gaps that limit the current translational potential of modulating perioperative immunity to achieve effective anti-tumor outcomes.
Collapse
Affiliation(s)
- Emily P. Vonderhaar
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael B. Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian T. Craig
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
20
|
Salazar A, Chavarria V, Flores I, Ruiz S, Pérez de la Cruz V, Sánchez-García FJ, Pineda B. Abscopal Effect, Extracellular Vesicles and Their Immunotherapeutic Potential in Cancer Treatment. Molecules 2023; 28:molecules28093816. [PMID: 37175226 PMCID: PMC10180522 DOI: 10.3390/molecules28093816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The communication between tumor cells and the microenvironment plays a fundamental role in the development, growth and further immune escape of the tumor. This communication is partially regulated by extracellular vesicles which can direct the behavior of surrounding cells. In recent years, it has been proposed that this feature could be applied as a potential treatment against cancer, since several studies have shown that tumors treated with radiotherapy can elicit a strong enough immune response to eliminate distant metastasis; this phenomenon is called the abscopal effect. The mechanism behind this effect may include the release of extracellular vesicles loaded with damage-associated molecular patterns and tumor-derived antigens which activates an antigen-specific immune response. This review will focus on the recent discoveries in cancer cell communications via extracellular vesicles and their implication in tumor development, as well as their potential use as an immunotherapeutic treatment against cancer.
Collapse
Affiliation(s)
- Aleli Salazar
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Víctor Chavarria
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
- Immunoregulation Lab, Department of Immunology, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Itamar Flores
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Samanta Ruiz
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | | | - Benjamin Pineda
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| |
Collapse
|
21
|
Penninckx S, Thariat J, Mirjolet C. Radiation therapy-activated nanoparticle and immunotherapy: The next milestone in oncology? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:157-200. [PMID: 37438017 DOI: 10.1016/bs.ircmb.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Radiotherapy (RT) is a fundamental treatment at the locoregional or oligometastatic stages of cancer. In various tumors, RT effects may be optimized using synergistic combinations that enhance tumor response. Innovative strategies have been designed that explore the radiation mechanisms, at the physical, chemical and biological levels, to propose precision RT approaches. They consist in combining RT with immunotherapy to revert radiation immunosuppressive effects or to enhance radiation-induced immune defenses against the tumor to favor immunogenic cell death. Radiotherapy-activated nanoparticles are another innovation. By increasing radiation response in situ, nanoparticles improve tumor control locally, and can trigger systemic immune reactions that may be exploited to improve the systemic efficacy of RT. Strong clinical evidence of improved outcomes is now available for combinations of RT and immunotherapy on one hand and RT and nanoparticles on the other hand. The triple combination of RT, immunotherapy and nanoparticles is promising in terms of tolerance, local and systemic anti-tumor control. Yet, significant challenges remain to unravel the complexity of the multiscale mechanisms underlying response to this combination and their associated parameters. Such parameters include patient characteristics, tumor bulk and histology, radiation technique, energy, dose, fractionation, immunotherapy targets and predictive biomarkers, nanoparticle type, size, delivery (intratumoral/intravenous), distribution. The temporal combination is another critical parameter. The mechanisms of response of the combinatorial approaches are reviewed, with a focus on underlying mechanisms based on preclinical, translational and clinical studies. Opportunities for translation of current understanding into precision RT trials combined with immunotherapy and nanoparticles are also discussed.
Collapse
Affiliation(s)
- Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| | - Juliette Thariat
- Laboratoire de physique Corpusculaire IN2P3/ENSICAEN/CNRS UMR 6534, Normandie Université Centre François Baclesse, Caen, France
| | - Céline Mirjolet
- Radiation Oncology Department, Preclinical Radiation Therapy and Radiobiology Unit, Centre Georges-François Leclerc, Unicancer, Dijon, France; TIReCS Team, UMR INSERM 1231, Dijon, France
| |
Collapse
|
22
|
Tomaciello M, Conte M, Montinaro FR, Sabatini A, Cunicella G, Di Giammarco F, Tini P, Gravina GL, Cortesi E, Minniti G, De Vincentis G, Frantellizzi V, Marampon F. Abscopal Effect on Bone Metastases from Solid Tumors: A Systematic Review and Retrospective Analysis of Challenge within a Challenge. Biomedicines 2023; 11:biomedicines11041157. [PMID: 37189775 DOI: 10.3390/biomedicines11041157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Abscopal effect (AE) describes the ability of radiotherapy (RT) to induce immune-mediated responses in nonirradiated distant metastasis. Bone represents the third most frequent site of metastasis and an immunologically favorable environment for the proliferation of cancer cells. We revised the literature, searching documented cases of AE involving bone metastases (BMs) and evaluated the incidence of AE involving BMs in patients requiring palliative RT on BMs or non-BMs treated at our department. METHODS Articles published in the PubMed/MEDLINE database were selected using the following search criteria: ((abscopal effect)) AND ((metastases)). Patients with BMs, who underwent performed bone scintigraphy before and at least 2-3 months after RT, were selected and screened between January 2015 and July 2022. AE was defined as an objective response according to the scan bone index for at least one nonirradiated metastasis at a distance > 10 cm from the irradiated lesion. The primary endpoint was the rate of AE on BMs. RESULTS Ten cases experiencing AE of BMs were identified from the literature and eight among our patients. CONCLUSIONS The analysis performed here suggests the use of hypofractionated radiotherapy as the only triggering factor for AE of BMs through the activation of the immune response.
Collapse
Affiliation(s)
- Miriam Tomaciello
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Radiotherapy, Sapienza University of Rome, 00161 Rome, Italy
| | - Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Nuclear Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Francesca Romana Montinaro
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Radiotherapy, Sapienza University of Rome, 00161 Rome, Italy
| | - Arianna Sabatini
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Oncology, Sapienza University of Rome, 00161 Rome, Italy
| | - Giorgia Cunicella
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Radiotherapy, Sapienza University of Rome, 00161 Rome, Italy
| | - Federico Di Giammarco
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Radiotherapy, Sapienza University of Rome, 00161 Rome, Italy
| | - Paolo Tini
- Radiation Oncology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Enrico Cortesi
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Oncology, Sapienza University of Rome, 00161 Rome, Italy
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Radiotherapy, Sapienza University of Rome, 00161 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Nuclear Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Nuclear Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Division of Radiotherapy, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
23
|
Regenold M, Wang X, Kaneko K, Bannigan P, Allen C. Harnessing immunotherapy to enhance the systemic anti-tumor effects of thermosensitive liposomes. Drug Deliv Transl Res 2023; 13:1059-1073. [PMID: 36577832 DOI: 10.1007/s13346-022-01272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 12/29/2022]
Abstract
Chemotherapy plays an important role in debulking tumors in advance of surgery and/or radiotherapy, tackling residual disease, and treating metastatic disease. In recent years many promising advanced drug delivery strategies have emerged that offer more targeted delivery approaches to chemotherapy treatment. For example, thermosensitive liposome-mediated drug delivery in combination with localized mild hyperthermia can increase local drug concentrations resulting in a reduction in systemic toxicity and an improvement in local disease control. However, the majority of solid tumor-associated deaths are due to metastatic spread. A therapeutic approach focused on a localized target area harbors the risk of overlooking and undertreating potential metastatic spread. Previous studies reported systemic, albeit limited, anti-tumor effects following treatment with thermosensitive liposomal chemotherapy and localized mild hyperthermia. This work explores the systemic treatment capabilities of a thermosensitive liposome formulation of the vinca alkaloid vinorelbine in combination with mild hyperthermia in an immunocompetent murine model of rhabdomyosarcoma. This treatment approach was found to be highly effective at heated, primary tumor sites. However, it demonstrated limited anti-tumor effects in secondary, distant tumors. As a result, the addition of immune checkpoint inhibition therapy was pursued to further enhance the systemic anti-tumor effect of this treatment approach. Once combined with immune checkpoint inhibition therapy, a significant improvement in systemic treatment capability was achieved. We believe this is one of the first studies to demonstrate that a triple combination of thermosensitive liposomes, localized mild hyperthermia, and immune checkpoint inhibition therapy can enhance the systemic treatment capabilities of thermosensitive liposomes.
Collapse
Affiliation(s)
- Maximilian Regenold
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Xuehan Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Kan Kaneko
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Pauric Bannigan
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
24
|
Nelson BE, Adashek JJ, Lin SH, Subbiah V. On target methods to induce abscopal phenomenon for Off-Target effects: From happenstance to happenings. Cancer Med 2023; 12:6451-6465. [PMID: 36411943 PMCID: PMC10067075 DOI: 10.1002/cam4.5454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Although the "abscopal phenomenon" has been described several decades ago, this phenomenon lately has been obtaining momentous traction with the dawn of immune-based therapies. There has been increased cross talk among radiation oncologists, oncologists and immunologists and consequently a surge in the number of prospective clinical trials. This must be coupled with translation work from these clinical trials to aid in eventual identification of patients who may benefit. Abscopal effects may be induced by local and systemic methods, conventional radiotherapy, particle radiation, radionucleotide methods, cryoablation and brachytherapy. These approaches have all been reported to be stimulate abscopal effect. Immune induction by immune checkpoint therapy, immune adjuvants, cellular therapy including CAR and NK cell therapies may generate systemic abscopal response. With increasing recognition of this effect, there remains a lot of work to explore the modalities of inducing abscopal responses and ultimate prediction or prognostication on stratifying who may benefit. Ultimately, there is an urgent need for prospective studies and data to tease apart which one of these modalities can be applied to the appropriate candidate, to the appropriate cancer at the appropriate setting. This review seeks to elucidate readers on the different modalities of radiation, systemic therapies and other techniques rarely explored to potentiate the abscopal effect from a mere coincidence to a finite occurrence.
Collapse
Affiliation(s)
- Blessie Elizabeth Nelson
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jacob J. Adashek
- Department of OncologyThe Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins HospitalBaltimoreMarylandUSA
| | - Steven H. Lin
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Vivek Subbiah
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
25
|
Guilbaud E, Yamazaki T, Galluzzi L. T cell-independent abscopal responses to radiotherapy. Trends Cancer 2023; 9:93-95. [PMID: 36543690 DOI: 10.1016/j.trecan.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
When used according to specific dose/fractionation schedules, focal radiotherapy can elicit a systemic anticancer immune response that limits the growth of distant, non-irradiated tumors. Recent data suggest that, at least in some settings, intratumoral macrophages can be educated by CD47 blockage to promote such an 'abscopal' response independent of CD8+ T cells.
Collapse
Affiliation(s)
- Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
26
|
Mirjolet C, Baude J, Galluzzi L. Dual impact of radiation therapy on tumor-targeting immune responses. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:xiii-xxiv. [PMID: 37438022 DOI: 10.1016/s1937-6448(23)00114-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Affiliation(s)
- Céline Mirjolet
- Radiation Oncology Department, Preclinical Radiation Therapy and Radiobiology Unit, GF Leclerc Centre, Unicancer, Dijon, France; TIReCS Team, UMR INSERM 1231, Dijon, France.
| | - Jérémy Baude
- Radiation Oncology Department, Preclinical Radiation Therapy and Radiobiology Unit, GF Leclerc Centre, Unicancer, Dijon, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States.
| |
Collapse
|
27
|
Yang J, Xing P, Kong Y, Xu M, Zhang L. PD-1 inhibitor combined with radiotherapy and GM-CSF in MSS/pMMR metastatic colon cancer: a case report. Front Oncol 2023; 13:1078915. [PMID: 37188188 PMCID: PMC10176449 DOI: 10.3389/fonc.2023.1078915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Patients with chemo-refractory metastatic colorectal cancer (mCRC) have poor prognoses. The application of programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) inhibitors encouragingly improved the survival of mCRC patients with microsatellite instability-high (MSI-H)/mismatch repair-deficient (dMMR). Unfortunately, it was ineffective for mCRC with microsatellite-stable (MSS)/proficient mismatch repair (pMMR), which accounted for 95% of mCRC. Radiotherapy can promote local control by directly killing tumor cells and inducing positive immune activities, which might help synergistically with immunotherapy. We present the report of an advanced MSS/pMMR mCRC patient who had progressive disease (PD) after first-line chemotherapy, palliative surgery and second-line chemotherapy combined with targeted therapy. Then the patient received the therapy of PD-1 inhibitor combined with radiotherapy and granulocyte-macrophage colony-stimulating factor (GM-CSF). According to Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST1.1), the patient showed a complete response (CR) after triple-combined therapy with progression-free survival (PFS) for more than 2 years so far. The patient had no other significant adverse reactions except for fatigue (Grade 1). The triple-combination therapy provided a promising strategy for metastatic chemo-refractory MSS/pMMR mCRC patients.
Collapse
Affiliation(s)
- Jiabao Yang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengfei Xing
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuehong Kong
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Meiling Xu
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liyuan Zhang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Liyuan Zhang,
| |
Collapse
|
28
|
Abufaraj M, Li R, Meeks J, Shariat SF. Cytoreductive Surgery in Patients with Urothelial Bladder Cancer. Eur Urol Focus 2022; 9:278-279. [PMID: 36509654 DOI: 10.1016/j.euf.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022]
Abstract
Cytoreductive cystectomy appears to have survival advantages as a part of multimodal approach for well-selected patients with bladder cancer. Patient with clinical lymph node metastases might benefit from surgical consolidation after achieving a measurable response to chemotherapy. The exact role of cytoreductive/consolidative cystectomy is yet to be determined in well-designed prospective trials.
Collapse
Affiliation(s)
- Mohammad Abufaraj
- Division of Urology, Department of Special Surgery, The University of Jordan, Amman, Jordan; Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Joshua Meeks
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Shahrokh F Shariat
- Department of Urology, Medical University of Vienna, Vienna, Austria; Department of Urology, University of Texas Southwestern, Dallas, TX, USA; Department of Urology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
29
|
Wang NH, Lei Z, Yang HN, Tang Z, Yang MQ, Wang Y, Sui JD, Wu YZ. Radiation-induced PD-L1 expression in tumor and its microenvironment facilitates cancer-immune escape: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1406. [PMID: 36660640 PMCID: PMC9843429 DOI: 10.21037/atm-22-6049] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Background and Objective Radiotherapy (RT) is one of the fundamental anti-cancer regimens by means of inducing in situ tumor vaccination and driving a systemic anti-tumor immune response. It can affect the tumor microenvironment (TME) components consisting of blood vessels, immunocytes, fibroblasts, and extracellular matrix (ECM), and might subsequently suppress anti-tumor immunity through expression of molecules such as programmed death ligand-1 (PD-L1). Immune checkpoint inhibitors (ICIs), especially anti-programmed cell death 1 (PD-1)/PD-L1 therapies, have been regarded as effective in the reinvigoration of the immune system and another major cancer treatment. Experimentally, combination of RT and ICIs therapy shows a greater synergistic effect than either therapy alone. Methods We performed a narrative review of the literature in the PubMed database. The research string comprised various combinations of "radiotherapy", "programmed death-ligand 1", "microenvironment", "exosome", "myeloid cell", "tumor cell", "tumor immunity". The database was searched independently by two authors. A third reviewer mediated any discordance of the results of the two screeners. Key Content and Findings RT upregulates PD-L1 expression in tumor cells, tumor-derived exosomes (TEXs), myeloid-derived suppressor cells (MDSCs), and macrophages. The signaling pathways correlated to PD-L1 expression in tumor cells include the DNA damage signaling pathway, epidermal growth factor receptor (EGFR) pathway, interferon gamma (IFN-γ) pathway, cGAS-STING pathway, and JAK/STATs pathway. Conclusions PD-L1 upregulation post-RT is found not only in tumor cells but also in the TME and is one of the mechanisms of tumor evasion. Therefore, further studies are necessary to fully comprehend this biological process. Meanwhile, combination of therapies has been shown to be effective, and novel approaches are to be developed as adjuvant to RT and ICIs therapy.
Collapse
Affiliation(s)
- Nuo-Han Wang
- College of Medicine, Chongqing University, Chongqing, China
| | - Zheng Lei
- College of Medicine, Chongqing University, Chongqing, China
| | - Hao-Nan Yang
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Zheng Tang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Meng-Qi Yang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Ying Wang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiang-Dong Sui
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Yong-Zhong Wu
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
30
|
Aoyama M, Shono T, Inui T, Miyamoto N, Sakamoto S, Inoue S, Fujiwara S, Goto M, Toba H, Takizawa H. Abscopal effect in a patient with solitary extramedullary plasmacytoma of the thyroid: case report. Transl Cancer Res 2022; 11:4200-4205. [PMID: 36523308 PMCID: PMC9745354 DOI: 10.21037/tcr-22-1419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/26/2022] [Indexed: 11/06/2022]
Abstract
Background The abscopal effect is a systemic antitumor response that occurs distant to the irradiation site and is induced by local irradiation. We herein describe a case of solitary extramedullary plasmacytoma (SEP) of the thyroid in which bone metastases disappeared after thyroidectomy and cervical radiotherapy (RT). Case Description A 68-year-old man with a right cervical swelling for approximately 10 years visited a hospital with left elbow pain that persisted for 5 months. He was referred to our hospital for more detailed examinations and treatment. An immobile mass of approximately 10 cm in diameter was palpable on the right side of the patient's neck. Computed tomography (CT) showed osteolytic changes in the left humerus and right scapula, and a tumor in the right lobe of the thyroid gland. The patient was diagnosed with widely invasive follicular carcinoma and multiple bone metastases and underwent total thyroidectomy. During surgery, tumor infiltration into the trachea was observed. Shaving between the tumor and trachea was performed. Based on the results of a pathological examination, the patient was diagnosed with primary extramedullary plasmacytoma of the thyroid. After surgery, external beam RT was performed on the neck, which also reduced the pain in the left elbow. Positron emission tomography (PET)-CT showed the decreased accumulation of fluorodeoxyglucose (FDG) in the left humerus and right scapula, and the amelioration of osteolytic changes on CT. Conclusions SEP of the thyroid is rare, and to the best of our knowledge, this is the first case report in which the abscopal effect was observed after thyroidectomy and cervical RT.
Collapse
Affiliation(s)
- Mariko Aoyama
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health, Biosciences, The University of Tokushima, Tokushima, Japan
| | - Takashi Shono
- Department of Surgery, Tokushima Red Cross Hospital, Tokushima, Japan
| | - Tomohiro Inui
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health, Biosciences, The University of Tokushima, Tokushima, Japan
| | - Naoki Miyamoto
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health, Biosciences, The University of Tokushima, Tokushima, Japan
| | - Shinichi Sakamoto
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health, Biosciences, The University of Tokushima, Tokushima, Japan
| | - Seiya Inoue
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health, Biosciences, The University of Tokushima, Tokushima, Japan
| | - Satoshi Fujiwara
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health, Biosciences, The University of Tokushima, Tokushima, Japan
| | - Masakazu Goto
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health, Biosciences, The University of Tokushima, Tokushima, Japan
| | - Hiroaki Toba
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health, Biosciences, The University of Tokushima, Tokushima, Japan
| | - Hiromitsu Takizawa
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health, Biosciences, The University of Tokushima, Tokushima, Japan
| |
Collapse
|
31
|
Sezen D, Barsoumian HB, He K, Hu Y, Wang Q, Abana CO, Puebla-Osorio N, Hsu EY, Wasley M, Masrorpour F, Wang J, Cortez MA, Welsh JW. Pulsed radiotherapy to mitigate high tumor burden and generate immune memory. Front Immunol 2022; 13:984318. [PMID: 36275767 PMCID: PMC9582356 DOI: 10.3389/fimmu.2022.984318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Radiation therapy (XRT) has a well-established role in cancer treatment. Given the encouraging results on immunostimulatory effects, radiation has been increasingly used with immune-check-point inhibitors in metastatic disease, especially when immunotherapy fails due to tumor immune evasion. We hypothesized that using high-dose stereotactic radiation in cycles (pulses) would increase T-cell priming and repertoire with each pulse and build immune memory in an incremental manner. To prove this hypothesis, we studied the combination of anti-CTLA-4 and Pulsed radiation therapy in our 344SQ non-small cell lung adenocarcinoma murine model. Primary and secondary tumors were bilaterally implanted in 129Sv/Ev mice. In the Pulsed XRT group, both primary and secondary tumors received 12Gyx2 radiation one week apart, and blood was collected seven days afterwards for TCR repertoire analysis. As for the delayed-Pulse group, primary tumors received 12Gyx2, and after a window of two weeks, the secondary tumors received 12Gyx2. Blood was collected seven days after the second cycle of radiation. The immunotherapy backbone for both groups was anti-CTLA-4 antibody to help with priming. Treatment with Pulsed XRT + anti-CTLA-4 led to significantly improved survival and resulted in a delayed tumor growth, where we observed enhanced antitumor efficacy at primary tumor sites beyond XRT + anti-CTLA-4 treatment group. More importantly, Pulsed XRT treatment led to increased CD4+ effector memory compared to single-cycle XRT. Pulsed XRT demonstrated superior efficacy to XRT in driving antitumor effects that were largely dependent on CD4+ T cells and partially dependent on CD8+ T cells. These results suggest that combinatorial strategies targeting multiple points of tumor immune evasion may lead to a robust and sustained antitumor response.
Collapse
Affiliation(s)
- Duygu Sezen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Radiation Oncology, Koç University School of Medicine, Istanbul, Turkey
| | - Hampartsoum B. Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kewen He
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Chike O. Abana
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ethan Y. Hsu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mark Wasley
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James W. Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
32
|
Intratumoral electroporation of a self-amplifying RNA expressing IL-12 induces antitumor effects in mouse models of cancer. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:387-399. [PMID: 36035753 PMCID: PMC9386029 DOI: 10.1016/j.omtn.2022.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
Alphavirus vectors based on self-amplifying RNA (saRNA) generate high and transient levels of transgene expression and induce innate immune responses, making them an interesting tool for antitumor therapy. These vectors are usually delivered as viral particles, but it is also possible to administer them as RNA. We evaluated this possibility by in vivo electroporation of Semliki Forest virus (SFV) saRNA for local treatment of murine colorectal MC38 subcutaneous tumors. Optimization of saRNA electroporation conditions in tumors was performed using an SFV vector coding for luciferase. Then we evaluated the therapeutic potential of this approach using an SFV saRNA coding for interleukin-12 (SFV-IL-12), a proinflammatory cytokine with potent antitumor effects. Delivery of SFV-IL-12 saRNA by electroporation led to improvement in tumor control and higher survival compared with mice treated with electroporation or with SFV-IL-12 saRNA alone. The antitumor efficacy of SFV-IL-12 saRNA electroporation increased by combination with systemic PD-1 blockade. This therapy, which was also validated in a hepatocellular carcinoma tumor model, suggests that local delivery of saRNA by electroporation could be an attractive strategy for cancer immunotherapy. This approach could have easy translation to the clinical practice, especially for percutaneously accessible tumors.
Collapse
|
33
|
Pangal DJ, Yarovinsky B, Cardinal T, Cote DJ, Ruzevick J, Attenello FJ, Chang EL, Ye J, Neman J, Chow F, Zada G. The abscopal effect: systematic review in patients with brain and spine metastases. Neurooncol Adv 2022; 4:vdac132. [PMID: 36199973 PMCID: PMC9529003 DOI: 10.1093/noajnl/vdac132] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background The abscopal effect is a rare phenomenon whereby local radiation induces a proposed immune-mediated anti-tumor effect at distant sites. Given the growing use of immunotherapies and systemic immune checkpoint inhibitors in neuro-oncologic practice, we aimed to review prior studies pertaining to this phenomenon in the context of tumor shrinkage both within the central nervous system as well as distant disease sites. Methods A systematic review in accordance with the PRISMA guidelines was conducted to identify all studies which assessed the abscopal effect in patients with treated metastatic cancer to the brain and/or spine. Articles were included if they reported the abscopal effect in patients (case studies) or if the abscopal effect was explicitly analyzed in case series with cohorts of patients with metastatic brain or spine tumors. Laboratory investigations and clinical trials investigating new therapies were excluded. Results Twenty reports met inclusion criteria [16 case reports, 4 case series (n = 160), total n = 174]. Case reports of the abscopal effect were in relation to the following cancers: melanoma (6 patients), breast cancer (3), lung adenocarcinoma (2), non-small-cell lung cancer (2), hepatocellular carcinoma (1), and renal cell carcinoma (1). Eleven patients had irradiation to the brain and 2 to the spine. Patients undergoing whole brain radiotherapy (6) had an average dose of 33.6 Gy over 8-15 fractions, and those undergoing stereotactic radiosurgery (5) had an average dose of 21.5 Gy over 1-5 fractions. One patient had radiation to the body and an intracranial abscopal effect was observed. Most common sites of extracranial tumor reduction were lung and lymph nodes. Ten case studies (57%) showed complete resolution of extra-CNS tumor burden. Median progression-free survival was 13 months following radiation. Four papers investigated incidence of abscopal effects in patients with metastatic melanoma to the brain who received immune checkpoint inhibitor therapy (n = 160); two papers found an abscopal effect in 35% and 52% of patients (n = 16, 21 respectively), and two papers found no evidence of abscopal effects (n = 61, 62). Conclusions Abscopal effects can occur following radiotherapy in patients with brain or spine metastases and is thought to be a result of increased anti-tumor immunity. The potential for immune checkpoint inhibitor therapy to be used in combination with radiotherapy to induce an abscopal effect is an area of active investigation.
Collapse
Affiliation(s)
- Dhiraj J Pangal
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Benjamin Yarovinsky
- Corresponding Author: Dhiraj J. Pangal, BS, USC Department of Neurosurgery, 1200 N State Street, Suite 3300, Los Angeles, CA 90033, USA ()
| | - Tyler Cardinal
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - David J Cote
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jacob Ruzevick
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Frank J Attenello
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Eric L Chang
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jason Ye
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Josh Neman
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Frances Chow
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Gabriel Zada
- USC Brain Tumor Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
34
|
Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther 2022; 7:258. [PMID: 35906199 PMCID: PMC9338328 DOI: 10.1038/s41392-022-01102-y] [Citation(s) in RCA: 196] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Radiotherapy (RT) is delivered for purposes of local control, but can also exert systemic effect on remote and non-irradiated tumor deposits, which is called abscopal effect. The view of RT as a simple local treatment has dramatically changed in recent years, and it is now widely accepted that RT can provoke a systemic immune response which gives a strong rationale for the combination of RT and immunotherapy (iRT). Nevertheless, several points remain to be addressed such as the interaction of RT and immune system, the identification of the best schedules for combination with immunotherapy (IO), the expansion of abscopal effect and the mechanism to amplify iRT. To answer these crucial questions, we roundly summarize underlying rationale showing the whole immune landscape in RT and clinical trials to attempt to identify the best schedules of iRT. In consideration of the rarity of abscopal effect, we propose that the occurrence of abscopal effect induced by radiation can be promoted to 100% in view of molecular and genetic level. Furthermore, the “radscopal effect” which refers to using low-dose radiation to reprogram the tumor microenvironment may amplify the occurrence of abscopal effect and overcome the resistance of iRT. Taken together, RT could be regarded as a trigger of systemic antitumor immune response, and with the help of IO can be used as a radical and systemic treatment and be added into current standard regimen of patients with metastatic cancer.
Collapse
Affiliation(s)
- Zengfu Zhang
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China
| | - Xu Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road, No. 440, Jinan, Shandong, China
| | - Dawei Chen
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| |
Collapse
|
35
|
Ye J, Mills BN, Qin SS, Garrett-Larsen J, Murphy JD, Uccello TP, Han BJ, Vrooman TG, Johnston CJ, Lord EM, Belt BA, Linehan DC, Gerber SA. Toll-like receptor 7/8 agonist R848 alters the immune tumor microenvironment and enhances SBRT-induced antitumor efficacy in murine models of pancreatic cancer. J Immunother Cancer 2022; 10:e004784. [PMID: 35851308 PMCID: PMC9295644 DOI: 10.1136/jitc-2022-004784] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Stereotactic body radiotherapy (SBRT) has been increasingly used as adjuvant therapy in pancreatic ductal adenocarcinoma (PDAC), and induces immunogenic cell death, which leads to the release of tumor antigen and damage-associated molecular patterns. However, this induction often fails to generate sufficient response to overcome pre-existing tumor microenvironment (TME) immunosuppression. Toll-like receptor (TLR) 7/8 ligands, such as R848, can amplify the effect of tumor vaccines, with recent evidence showing its antitumor effect in pancreatic cancer by modulating the immunosuppressive TME. Therefore, we hypothesized that the combination of R848 and SBRT would improve local and systemic antitumor immune responses by potentiating the antitumor effects of SBRT and reversing the immunosuppressive nature of the PDAC TME. METHODS Using murine models of orthotopic PDAC, we assessed the combination of intravenous TLR7/8 agonist R848 and local SBRT on tumor growth and immune response in primary pancreatic tumors. Additionally, we employed a hepatic metastatic model to investigate if the combination of SBRT targeting only the primary pancreatic tumor and systemic R848 is effective in controlling established liver metastases. RESULTS We demonstrated that intravenous administration of the TLR7/8 agonist R848, in combination with local SBRT, leads to superior tumor control compared with either treatment alone. The combination of R848 and SBRT results in significant immune activation of the pancreatic TME, including increased tumor antigen-specific CD8+ T cells, decreased regulatory T cells, and enhanced antigen-presenting cells maturation, as well as increased interferon gamma, granzyme B, and CCL5 along with decreased levels of interleukin 4 (IL-4), IL-6, and IL-10. Importantly, the combination of SBRT and systemic R848 also resulted in similar immunostimulatory changes in liver metastases, leading to improved metastatic control. CD8+ T cell depletion studies highlighted the necessity of these effector cells at both the local and hepatic metastatic sites. T cell receptor (TCR) clonotype analysis indicated that systemic R848 not only diversified the TCR repertoire but also conditioned the metastatic foci to facilitate entry of CD8+ T cells generated by SBRT therapy. CONCLUSIONS These findings suggest that systemic administration of TLR7/8 agonists in combination with SBRT may be a promising avenue for metastatic PDAC treatment.
Collapse
Affiliation(s)
- Jian Ye
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Bradley N Mills
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Shuyang S Qin
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jesse Garrett-Larsen
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Joseph D Murphy
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Taylor P Uccello
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Booyeon J Han
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Tara G Vrooman
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Carl J Johnston
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Edith M Lord
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Brian A Belt
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
| | - David C Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Scott A Gerber
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
36
|
Sanmamed MF, Berraondo P, Rodriguez-Ruiz ME, Melero I. Charting roadmaps towards novel and safe synergistic immunotherapy combinations. NATURE CANCER 2022; 3:665-680. [PMID: 35764745 DOI: 10.1038/s43018-022-00401-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Checkpoint inhibitor-based cancer immunotherapy is often combined in the clinic with other immunotherapy strategies, targeted therapies, chemotherapy or standard-of-care treatments to achieve superior therapeutic efficacy. The large number of immunotherapy combinations that are currently undergoing clinical testing necessitate the establishment of faithful criteria to prioritize optimal combinations with evidence of synergy, to determine their safety and optimal sequence of administration and to identify biomarkers of therapy resistance and response. In this review, we focus on recent developments in immunotherapy combinations and reflect on how combinations should be optimized to maximize the impact of immunotherapy in clinical oncology.
Collapse
Affiliation(s)
- Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Oncology and Immunology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Maria E Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Oncology and Immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Departments of Oncology and Immunology, Clínica Universidad de Navarra, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain.
| |
Collapse
|
37
|
Bekker RA, Kim S, Pilon-Thomas S, Enderling H. Mathematical modeling of radiotherapy and its impact on tumor interactions with the immune system. Neoplasia 2022; 28:100796. [PMID: 35447601 PMCID: PMC9043662 DOI: 10.1016/j.neo.2022.100796] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 11/01/2022]
Abstract
Radiotherapy is a primary therapeutic modality widely utilized with curative intent. Traditionally tumor response was hypothesized to be due to high levels of cell death induced by irreparable DNA damage. However, the immunomodulatory aspect of radiation is now widely accepted. As such, interest into the combination of radiotherapy and immunotherapy is increasing, the synergy of which has the potential to improve tumor regression beyond that observed after either treatment alone. However, questions regarding the timing (sequential vs concurrent) and dose fractionation (hyper-, standard-, or hypo-fractionation) that result in improved anti-tumor immune responses, and thus potentially enhanced tumor inhibition, remain. Here we discuss the biological response to radiotherapy and its immunomodulatory properties before giving an overview of pre-clinical data and clinical trials concerned with answering these questions. Finally, we review published mathematical models of the impact of radiotherapy on tumor-immune interactions. Ranging from considering the impact of properties of the tumor microenvironment on the induction of anti-tumor responses, to the impact of choice of radiation site in the setting of metastatic disease, these models all have an underlying feature in common: the push towards personalized therapy.
Collapse
|
38
|
Tagliaferri L, Lancellotta V, Fionda B, Mangoni M, Casà C, Di Stefani A, Pagliara MM, D’Aviero A, Schinzari G, Chiesa S, Mazzarella C, Manfrida S, Colloca GF, Marazzi F, Morganti AG, Blasi MA, Peris K, Tortora G, Valentini V. Immunotherapy and radiotherapy in melanoma: a multidisciplinary comprehensive review. Hum Vaccin Immunother 2022; 18:1903827. [PMID: 33847208 PMCID: PMC9122308 DOI: 10.1080/21645515.2021.1903827] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Melanoma is an extremely aggressive tumor and is considered to be an extremely immunogenic tumor because compared to other cancers it usually presents a well-expressed lymphoid infiltration. The aim of this paper is to perform a multidisciplinary comprehensive review of the evidence available about the combination of radiotherapy and immunotherapy for melanoma. Radiation, in fact, can increase tumor antigens visibility and promote priming of T cells but can also exert immunosuppressive action on tumor microenvironment. Combining radiotherapy with immunotherapy provides an opportunity to increase immunostimulatory potential of radiation. We therefore provide the latest clinical evidence about radiobiological rationale, radiotherapy techniques, timing, and role both in advanced and systemic disease (with a special focus on ocular melanoma and brain, liver, and bone metastases) with a particular attention also in geriatric patients. The combination of immunotherapy and radiotherapy seems to be a safe therapeutic option, supported by a clear biological rationale, even though the available data confirm that radiotherapy is employed more for metastatic than for non-metastatic disease. Such a combination shows promising results in terms of survival outcomes; however, further studies, hopefully prospective, are needed to confirm such evidence.
Collapse
Affiliation(s)
- Luca Tagliaferri
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Valentina Lancellotta
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Bruno Fionda
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
- CONTACT Bruno Fionda UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli, 8, Roma00168, Italy
| | - Monica Mangoni
- Sezione di Radioterapia Oncologica, Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università di Firenze, Florence, Italy
| | - Calogero Casà
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Alessandro Di Stefani
- UOC Dermatologia, Dipartimento di Scienze mediche e chirurgiche, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Monica Maria Pagliara
- UOC Oncologia Oculare, Dipartimento di Scienze dell'Invecchiamento, neurologiche ortopediche e della testa collo, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Andrea D’Aviero
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Giovanni Schinzari
- UOC Oncologia Medica, Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Roma, Italy
| | - Silvia Chiesa
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Ciro Mazzarella
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Stefania Manfrida
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Giuseppe Ferdinando Colloca
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Fabio Marazzi
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Alessio Giuseppe Morganti
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Settore Scientifico Disciplinare, Università di Bologna, Bologna, Italy
| | - Maria Antonietta Blasi
- UOC Oncologia Oculare, Dipartimento di Scienze dell'Invecchiamento, neurologiche ortopediche e della testa collo, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Roma, Italy
| | - Ketty Peris
- UOC Dermatologia, Dipartimento di Scienze mediche e chirurgiche, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giampaolo Tortora
- UOC Oncologia Medica, Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Roma, Italy
| | - Vincenzo Valentini
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
39
|
Cascone T, Fradette J, Pradhan M, Gibbons DL. Tumor Immunology and Immunotherapy of Non-Small-Cell Lung Cancer. Cold Spring Harb Perspect Med 2022; 12:a037895. [PMID: 34580079 PMCID: PMC8957639 DOI: 10.1101/cshperspect.a037895] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Historically, non-small-cell lung cancer (NSCLC) has been regarded as a nonimmunogenic tumor; however, recent studies have shown that NSCLCs are among the most responsive cancers to monoclonal antibody immune checkpoint inhibitors (ICIs). ICIs have dramatically improved clinical outcomes for a subset of patients (∼20%) with locally advanced and metastatic NSCLC, and they have also demonstrated promise as neoadjuvant therapy for early-stage resectable disease. Nevertheless, the majority of patients with NSCLC are refractory to ICIs for reasons that are poorly understood. Thus, major questions are: how do we initially identify the patients most likely to derive significant clinical benefit from these therapies; how can we increase the number of patients benefiting; what are the mechanisms of primary and acquired resistance to immune-based therapies; are there additional immune checkpoints besides PD-1/PD-L1 and CTLA-4 that can be targeted to provide greater clinical benefit to patients; and how do we best combine ICI therapy with surgery, radiotherapy, chemotherapy, and targeted therapy? To answer these questions, we need to deploy the latest technologies to study tumors and their microenvironment and how they interact with components of the innate and adaptive immune systems. There is also a need for new preclinical model systems to investigate the molecular mechanisms of resistance to treatment and identify novel therapeutic targets. Recent advances in technology are beginning to shed new light on the immune landscape of NSCLC that may uncover biomarkers of response and maximize the clinical benefit of immune-based therapies. Identification of the mechanisms of resistance should lead to the identification of novel targets and the generation of new therapeutic strategies that improve outcomes for a greater number of patients. In the sections below, we discuss the results of studies examining the immune microenvironment in NSCLC, summarize the clinical experience with immunotherapy for NSCLC, and review candidate biomarkers of response to these agents in NSCLC.
Collapse
Affiliation(s)
- Tina Cascone
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jared Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Monika Pradhan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
40
|
Utilizing Carbon Ions to Treat Medulloblastomas that Exhibit Chromothripsis. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Purpose of Review
Novel radiation therapies with accelerated charged particles such as protons and carbon ions have shown encouraging results in oncology. We present recent applications as well as benefits and risks associated with their use.
Recent Findings
We discuss the use of carbon ion radiotherapy to treat a specific type of aggressive pediatric brain tumors, namely medulloblastomas with chromothripsis. Potential reasons for the resistance to conventional treatment, such as the presence of cancer stem cells with unique properties, are highlighted. Finally, advantages of particle radiation alone and in combination with other therapies to overcome resistance are featured.
Summary
Provided that future preclinical studies confirm the evidence of high effectiveness, favorable toxicity profiles, and no increased risk of secondary malignancy, carbon ion therapy may offer a promising tool in pediatric (neuro)oncology and beyond.
Collapse
|
41
|
Suzuki K, Kawamura K, Ujiie R, Nakayama T, Mitsutake N. Characterization of radiation-induced micronuclei associated with premature senescence, and their selective removal by senolytic drug, ABT-263. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503448. [PMID: 35483779 DOI: 10.1016/j.mrgentox.2022.503448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/26/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Radiotherapy is well-recognized as an efficient non-invasive remedy for cancer treatment. Since 10 Gy, a weekly total dose for conventional radiotherapy, was proven to create unreparable and residual DNA double-strand breaks (DSBs), they were found to give rise to mitotic failure, such as mitotic catastrophe, which resulted in multiple micronuclei associated with premature senescence. We demonstrated that pulverization of micronuclear DNA was caspase-dependent and triggered not ATM-dependent but DNA-PK-dependent DNA damage response, including phosphorylation of histone H2AX. Pulverization of micronuclear DNA and senescence-associated secretory phenotype (SASP) worsen tumor microenvironment after radiotherapy, so that senolytic drug was applied to eliminate senescent cancer cells. Prematurely senescent cancer cells with micronuclei caused by 10 Gy of γ-irradiation were subjected to 5 μM of ABT-263, a Bcl-2 family inhibitor, and selective cancer cell death by apoptosis was observed, while ABT-263 had little effect on growing cancer cells. Western blot analysis showed augmented expression of both apoptotic and anti-apoptotic proteins in senescent cells, indicating that increased apoptotic factors are essential for selective apoptotic cell death in combination with ABT-263. Our results suggested that selective elimination of senescent cells alleviates SASP and micronuclei-mediated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) activation, both of which lead to unfavorable adverse effects caused by radiotherapy.
Collapse
Affiliation(s)
- Keiji Suzuki
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Life Sciences and Radiation Research, Graduate School of Biomedical Sciences Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Kasumi Kawamura
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Risa Ujiie
- Life Sciences and Radiation Research, Graduate School of Biomedical Sciences Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Takahumi Nakayama
- Department of Molecular Medicine, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Life Sciences and Radiation Research, Graduate School of Biomedical Sciences Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
42
|
Viswanath DI, Liu HC, Huston DP, Chua CYX, Grattoni A. Emerging biomaterial-based strategies for personalized therapeutic in situ cancer vaccines. Biomaterials 2022; 280:121297. [PMID: 34902729 PMCID: PMC8725170 DOI: 10.1016/j.biomaterials.2021.121297] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023]
Abstract
Landmark successes in oncoimmunology have led to development of therapeutics boosting the host immune system to eradicate local and distant tumors with impactful tumor reduction in a subset of patients. However, current immunotherapy modalities often demonstrate limited success when involving immunologically cold tumors and solid tumors. Here, we describe the role of various biomaterials to formulate cancer vaccines as a form of cancer immunotherapy, seeking to utilize the host immune system to activate and expand tumor-specific T cells. Biomaterial-based cancer vaccines enhance the cancer-immunity cycle by harnessing cellular recruitment and activation against tumor-specific antigens. In this review, we discuss biomaterial-based vaccine strategies to induce lymphocytic responses necessary to mediate anti-tumor immunity. We focus on strategies that selectively attract dendritic cells via immunostimulatory gradients, activate them against presented tumor-specific antigens, and induce effective cross-presentation to T cells in secondary lymphoid organs, thereby generating immunity. We posit that personalized cancer vaccines are promising targets to generate long-term systemic immunity against patient- and tumor-specific antigens to ensure long-term cancer remission.
Collapse
Affiliation(s)
- Dixita Ishani Viswanath
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Texas A&M University College of Medicine, Bryan & Houston, TX, USA
| | - Hsuan-Chen Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - David P Huston
- Texas A&M University College of Medicine, Bryan & Houston, TX, USA
| | | | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
43
|
Eckert F. [Multimodal treatment concepts of local radiation therapy with immunotherapy : Rationale for combination therapy and possible clinical treatment strategies]. UROLOGIE (HEIDELBERG, GERMANY) 2022; 61:1324-1331. [PMID: 36416912 PMCID: PMC9729315 DOI: 10.1007/s00120-022-01966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/24/2022]
Abstract
Immunotherapy has been established in the treatment of cancer in general and specifically in uro-oncology. The rationale to combine these therapies with radiotherapy is based on the biological effects of irradiation, which exceed the "physical" properties of irradiation to kill tumor cells. Depending on radiation dose and fractionation as well as tumor model or tumor entity used, irradiation can lead to immune stimulation or immune inhibition. As immune response is not limited to the local tumor microenvironment but occurs on a systemic level, a successful anticancer immune response after irradiation of one metastasis can lead to systemic tumor control (abscopal effect). Clinical trials test combination regimens in locally advanced tumors in the curative setting to improve survival rates and in the metastatic setting to prolong survival in palliative treatment. In addition, radiotherapy is used for local treatment of oligometastases and oligoprogression under palliative systemic therapy.
Collapse
Affiliation(s)
- Franziska Eckert
- AKH, CCC Wien, Klinik für Radioonkologie, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich.
| |
Collapse
|
44
|
Miyasaka Y, Sato H, Okano N, Kubo N, Kawamura H, Ohno T. A Promising Treatment Strategy for Lung Cancer: A Combination of Radiotherapy and Immunotherapy. Cancers (Basel) 2021; 14:203. [PMID: 35008367 PMCID: PMC8750493 DOI: 10.3390/cancers14010203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide despite advances in treatment. In the past few decades, radiotherapy has achieved outstanding technical advances and is being widely used as a definitive, prophylactic, or palliative treatment of patients with lung cancer. The anti-tumor effects of radiotherapy are considered to result in DNA damage in cancer cells. Moreover, recent evidence has demonstrated another advantage of radiotherapy: the induction of anti-tumor immune responses, which play an essential role in cancer control. In contrast, radiotherapy induces an immunosuppressive response. These conflicting reactions after radiotherapy suggest that maximizing immune response to radiotherapy by combining immunotherapy has potential to achieve more effective anti-tumor response than using each alone. Immune checkpoint molecules, such as cytotoxic T-lymphocyte-associated protein 4, programmed cell death-1/programmed death-ligand 1, and their inhibitors, have attracted significant attention for overcoming the immunosuppressive conditions in patients with cancer. Therefore, the combination of immune checkpoint inhibitors and radiotherapy is promising. Emerging preclinical and clinical studies have demonstrated the rationale for these combination strategies. In this review, we outlined evidence suggesting that combination of radiotherapy, including particle therapy using protons and carbon ions, with immunotherapy in lung cancer treatment could be a promising treatment strategy.
Collapse
Affiliation(s)
- Yuhei Miyasaka
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.M.); (N.O.); (N.K.); (H.K.); (T.O.)
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.M.); (N.O.); (N.K.); (H.K.); (T.O.)
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Naoko Okano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.M.); (N.O.); (N.K.); (H.K.); (T.O.)
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Nobuteru Kubo
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.M.); (N.O.); (N.K.); (H.K.); (T.O.)
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Hidemasa Kawamura
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.M.); (N.O.); (N.K.); (H.K.); (T.O.)
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan; (Y.M.); (N.O.); (N.K.); (H.K.); (T.O.)
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| |
Collapse
|
45
|
Stump CT, Roehle K, Manjarrez Orduno N, Dougan SK. Radiation combines with immune checkpoint blockade to enhance T cell priming in a murine model of poorly immunogenic pancreatic cancer. Open Biol 2021; 11:210245. [PMID: 34784792 PMCID: PMC8595997 DOI: 10.1098/rsob.210245] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023] Open
Abstract
Radiation has been a pillar of cancer therapy for decades. The effects of radiation on the anti-tumour immune response are variable across studies and have not been explicitly defined in poorly immunogenic tumour types. Here, we employed combination checkpoint blockade immunotherapy with stereotactic body radiation therapy and examined the effect on tumour growth and immune infiltrates in subcutaneous and orthotopic mouse models of pancreatic cancer. Although immune checkpoint blockade and radiation were ineffective alone, their combination produced a modest growth delay in both irradiated and non-irradiated tumours that corresponded with significant increases in CD8+ T cells, CD4+ T cells and tumour-specific T cells as identified by IFNγ ELISpot. We conclude that radiation enhances priming of tumour-specific T cells in poorly immunogenic tumours and that the frequency of these T cells can be further increased by combination with immune checkpoint blockade.
Collapse
Affiliation(s)
- Courtney T Stump
- Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Gastroenterology, Massachusetts General Hospital, Boston, MA 02215, USA
| | - Kevin Roehle
- Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | | | - Stephanie K Dougan
- Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
46
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
47
|
Franzese O, Torino F, Giannetti E, Cioccoloni G, Aquino A, Faraoni I, Fuggetta MP, De Vecchis L, Giuliani A, Kaina B, Bonmassar E. Abscopal Effect and Drug-Induced Xenogenization: A Strategic Alliance in Cancer Treatment? Int J Mol Sci 2021; 22:ijms221910672. [PMID: 34639014 PMCID: PMC8509363 DOI: 10.3390/ijms221910672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
The current state of cancer treatment is still far from being satisfactory considering the strong impairment of patients' quality of life and the high lethality of malignant diseases. Therefore, it is critical for innovative approaches to be tested in the near future. In view of the crucial role that is played by tumor immunity, the present review provides essential information on the immune-mediated effects potentially generated by the interplay between ionizing radiation and cytotoxic antitumor agents when interacting with target malignant cells. Therefore, the radiation-dependent abscopal effect (i.e., a biological effect of ionizing radiation that occurs outside the irradiated field), the influence of cancer chemotherapy on the antigenic pattern of target neoplastic cells, and the immunogenic cell death (ICD) caused by anticancer agents are the main topics of this presentation. It is widely accepted that tumor immunity plays a fundamental role in generating an abscopal effect and that anticancer drugs can profoundly influence not only the host immune responses, but also the immunogenic pattern of malignant cells. Remarkably, several anticancer drugs impact both the abscopal effect and ICD. In addition, certain classes of anticancer agents are able to amplify already expressed tumor-associated antigens (TAA). More importantly, other drugs, especially triazenes, induce the appearance of new tumor neoantigens (TNA), a phenomenon that we termed drug-induced xenogenization (DIX). The adoption of the abscopal effect is proposed as a potential therapeutic modality when properly applied concomitantly with drug-induced increase in tumor cell immunogenicity and ICD. Although little to no preclinical or clinical studies are presently available on this subject, we discuss this issue in terms of potential mechanisms and therapeutic benefits. Upcoming investigations are aimed at evaluating how chemical anticancer drugs, radiation, and immunotherapies are interacting and cooperate in evoking the abscopal effect, tumor xenogenization and ICD, paving the way for new and possibly successful approaches in cancer therapy.
Collapse
Affiliation(s)
- Ornella Franzese
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Francesco Torino
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (E.G.)
| | - Elisa Giannetti
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (E.G.)
| | - Giorgia Cioccoloni
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - Angelo Aquino
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Isabella Faraoni
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Maria Pia Fuggetta
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
| | - Liana De Vecchis
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Anna Giuliani
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, D-55131 Mainz, Germany
- Correspondence: (B.K.); (E.B.)
| | - Enzo Bonmassar
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
- Correspondence: (B.K.); (E.B.)
| |
Collapse
|
48
|
Mirjolet C, Truc G. [Abscopal effect: Myth or reality?]. Cancer Radiother 2021; 25:533-536. [PMID: 34462213 DOI: 10.1016/j.canrad.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022]
Abstract
The abscopal effect has been mentioned since 1953. The increase in knowledge about the immune system and the development of immunotherapies support its potential therapeutic interest. While it is accepted that radiotherapy induces an immune response, demonstrating its systemic impact is not easy. The preclinical basis is solid but its clinical validation pending. Radiotherapy rarely induces tumor reduction at a distance from the beams, probably due to its immunosuppressive effect. This is why a synergy between radiotherapy and systemic treatments targeting these immunosuppressive mechanisms was observed. Several parameters can modulate the induction of the abscopal effect. Among these, the fractionation of the dose seems to be determining with currently a pre-eminence of hypofractionated stereotaxis. On the other hand, even if the choice of more immunogenic targets (liver, lung) should be favoured, the optimal number of lesions to be irradiated remains to be defined as well as the minimum volume allowing sufficient release of tumor antigens. The impact of radiation-induced lymphopenia on radiotherapy/immunotherapy efficacy needs to be assessed more precisely, as does the effect of radiotherapy techniques on them. Finally, the choice of immunotherapy(ies) and the combination regimen with radiotherapy remain under discussion. A sequential scheme appears to provide less toxicities but the concomitant would lead to a better response. The study of these different parameters should allow us to deliver optimized radiotherapy/immunotherapy(ies) combinations to our metastatic patients in order to benefit as many people as possible from this abscopal effect.
Collapse
Affiliation(s)
- C Mirjolet
- Department of radiation oncology, Unicancer - Georges-Francois-Leclerc Cancer Center, 21000 Dijon, France; Inserm UMR 1231, 21000 Dijon, France.
| | - G Truc
- Department of radiation oncology, Unicancer - Georges-Francois-Leclerc Cancer Center, 21000 Dijon, France
| |
Collapse
|
49
|
Vidal-Jove J, Serres-Creixams X, Ziemlewicz TJ, Cannata JM. Liver Histotripsy Mediated Abscopal Effect-Case Report. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3001-3005. [PMID: 34310299 DOI: 10.1109/tuffc.2021.3100267] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a case report that shows an abscopal effect in the context of a safety and efficacy clinical trial for histotripsy as ablation technique in liver tumors. The abscopal effect appears in the form of reduction in the volume of nontreated tumor lesions in the same organ, as well as sustained reduction of tumor marker [carcinoembryonic antigen (CEA)] that extends weeks away of the procedure. Histotripsy is a novel noninvasive, nonthermal, and nonionizing precise ablation technique for tissue destruction guided by ultrasonography. We discuss the feasibility of this technique compared with other focal therapies and its possibilities as immune system enhancer.
Collapse
|
50
|
A Brief Overview of the Preclinical and Clinical Radiobiology of Microbeam Radiotherapy. Clin Oncol (R Coll Radiol) 2021; 33:705-712. [PMID: 34454806 DOI: 10.1016/j.clon.2021.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022]
Abstract
Microbeam radiotherapy (MRT) is the delivery of spatially fractionated beams that have the potential to offer significant improvements in the therapeutic ratio due to the delivery of micron-sized high dose and dose rate beams. They build on longstanding clinical experience of GRID radiotherapy and more recently lattice-based approaches. Here we briefly overview the preclinical evidence for MRT efficacy and highlight the challenges for bringing this to clinical utility. The biological mechanisms underpinning MRT efficacy are still unclear, but involve vascular, bystander, stem cell and potentially immune responses. There is probably significant overlap in the mechanisms underpinning MRT responses and FLASH radiotherapy that needs to be further defined.
Collapse
|