1
|
Abéza C, Busse P, Paiva ACF, Chagot ME, Schneider J, Robert MC, Vandermoere F, Schaeffer C, Charpentier B, Sousa PMF, Bandeiras TM, Manival X, Cianferani S, Bertrand E, Verheggen C. The HSP90/R2TP Quaternary Chaperone Scaffolds Assembly of the TSC Complex. J Mol Biol 2024; 436:168840. [PMID: 39490680 DOI: 10.1016/j.jmb.2024.168840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The R2TP chaperone is composed of the RUVBL1/RUVBL2 AAA+ ATPases and two adapter proteins, RPAP3 and PIH1D1. Together with HSP90, it functions in the assembly of macromolecular complexes that are often involved in cell proliferation. Here, proteomic experiments using the isolated PIH domain reveals additional R2TP partners, including the Tuberous Sclerosis Complex (TSC) and many transcriptional complexes. The TSC is a key regulator of mTORC1 and is composed of TSC1, TSC2 and TBC1D7. We show a direct interaction of TSC1 with the PIH phospho-binding domain of PIH1D1, which is, surprisingly, phosphorylation independent. Via the use of mutants and KO cell lines, we observe that TSC2 makes independent interactions with HSP90 and the TPR domains of RPAP3. Moreover, inactivation of PIH1D1 or the RUVBL1/2 ATPase activity inhibits the association of TSC1 with TSC2. Taken together, these data suggest a model in which the R2TP recruits TSC1 via PIH1D1 and TSC2 via RPAP3 and HSP90, and use the chaperone-like activities of RUVBL1/2 to stimulate their assembly.
Collapse
Affiliation(s)
- Claire Abéza
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Philipp Busse
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana C F Paiva
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | - Justine Schneider
- LSMBO, IPHC, Université de Strasbourg, CNRS UMR7178, Strasbourg, France
| | - Marie-Cécile Robert
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France
| | | | | | | | - Pedro M F Sousa
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal
| | - Xavier Manival
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Sarah Cianferani
- LSMBO, IPHC, Université de Strasbourg, CNRS UMR7178, Strasbourg, France
| | - Edouard Bertrand
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France.
| | - Céline Verheggen
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France.
| |
Collapse
|
2
|
Mao YQ, Seraphim TV, Wan Y, Wu R, Coyaud E, Bin Munim M, Mollica A, Laurent E, Babu M, Mennella V, Raught B, Houry WA. DPCD is a regulator of R2TP in ciliogenesis initiation through Akt signaling. Cell Rep 2024; 43:113713. [PMID: 38306274 DOI: 10.1016/j.celrep.2024.113713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/31/2023] [Accepted: 01/12/2024] [Indexed: 02/04/2024] Open
Abstract
R2TP is a chaperone complex consisting of the AAA+ ATPases RUVBL1 and RUVBL2, as well as RPAP3 and PIH1D1 proteins. R2TP is responsible for the assembly of macromolecular complexes mainly acting through different adaptors. Using proximity-labeling mass spectrometry, we identified deleted in primary ciliary dyskinesia (DPCD) as an adaptor of R2TP. Here, we demonstrate that R2TP-DPCD influences ciliogenesis initiation through a unique mechanism by interaction with Akt kinase to regulate its phosphorylation levels rather than its stability. We further show that DPCD is a heart-shaped monomeric protein with two domains. A highly conserved region in the cysteine- and histidine-rich domains-containing proteins and SGT1 (CS) domain of DPCD interacts with the RUVBL2 DII domain with high affinity to form a stable R2TP-DPCD complex both in cellulo and in vitro. Considering that DPCD is one among several CS-domain-containing proteins found to associate with RUVBL1/2, we propose that RUVBL1/2 are CS-domain-binding proteins that regulate complex assembly and downstream signaling.
Collapse
Affiliation(s)
- Yu-Qian Mao
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Thiago V Seraphim
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Yimei Wan
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Ruikai Wu
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Muhammad Bin Munim
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Antonio Mollica
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Estelle Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Mohan Babu
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Vito Mennella
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; MRC Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge CB2 1QR, UK; Department of Pathology, School of Biological Sciences, University of Cambridge, Cambridge CB2 1QP, UK
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
3
|
Qin J, Garus A, Autexier C. The C-terminal extension of dyskerin is a dyskeratosis congenita mutational hotspot that modulates interaction with telomerase RNA and subcellular localization. Hum Mol Genet 2024; 33:318-332. [PMID: 37879098 PMCID: PMC10840380 DOI: 10.1093/hmg/ddad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Dyskerin is a component of the human telomerase complex and is involved in stabilizing the human telomerase RNA (hTR). Many mutations in the DKC1 gene encoding dyskerin are found in X-linked dyskeratosis congenita (X-DC), a premature aging disorder and other related diseases. The C-terminal extension (CTE) of dyskerin contributes to its interaction with the molecular chaperone SHQ1 during the early stage of telomerase biogenesis. Disease mutations in this region were proposed to disrupt dyskerin-SHQ1 interaction and destabilize dyskerin, reducing hTR levels indirectly. However, biochemical evidence supporting this hypothesis is still lacking. In addition, the effects of many CTE disease mutations on hTR have not been examined. In this study, we tested eight dyskerin CTE variants and showed that they failed to maintain hTR levels. These mutants showed slightly reduced but not abolished interaction with SHQ1, and caused defective binding to hTR. Deletion of the CTE further reduced binding to hTR, and perturbed localization of dyskerin to the Cajal bodies and the nucleolus, and the interaction with TCAB1 as well as GAR1. Our findings suggest impaired dyskerin-hTR interaction in cells as a previously overlooked mechanism through which dyskerin CTE mutations cause X-DC and related telomere syndromes.
Collapse
Affiliation(s)
- Jian Qin
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, QC H3A 0C7, Canada
- Lady Davis Institute, Jewish General Hospital, 3755 Chem, de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Alexandre Garus
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, QC H3A 0C7, Canada
- Lady Davis Institute, Jewish General Hospital, 3755 Chem, de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, QC H3A 0C7, Canada
- Lady Davis Institute, Jewish General Hospital, 3755 Chem, de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| |
Collapse
|
4
|
Klump BM, Schmidt JC. Advances in understanding telomerase assembly. Biochem Soc Trans 2023; 51:2093-2101. [PMID: 38108475 PMCID: PMC10754283 DOI: 10.1042/bst20230269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Telomerase is a complex ribonucleoprotein scaffolded by the telomerase RNA (TR). Telomere lengthening by telomerase is essential to maintain the proliferative potential of stem cells and germ cells, and telomerase is inappropriately activated in the majority of cancers. Assembly of TR with its 12 protein co-factors and the maturation of the 5'- and 3'-ends of TR have been the focus of intense research efforts over the past two decades. High-resolution Cryo-EM structures of human telomerase, high-throughput sequencing of the 3' end of TR, and live cell imaging of various telomerase components have significantly advanced our understanding of the molecular mechanisms that govern telomerase biogenesis, yet many important questions remain unaddressed. In this review, we will summarize these recent advances and highlight the remaining key questions with the ultimate goal of targeting telomerase assembly to suppress telomere maintenance in cancer cells or to promote telomerase activity in patients affected by telomere shortening disorders.
Collapse
Affiliation(s)
- Basma M. Klump
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, U.S.A
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, U.S.A
- Cell and Molecular Biology Graduate Program, College of Natural Sciences, Michigan State University, East Lansing, MI, U.S.A
| | - Jens C. Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, U.S.A
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
5
|
Luthuli SD, Shonhai A. The multi-faceted roles of R2TP complex span across regulation of gene expression, translation, and protein functional assembly. Biophys Rev 2023; 15:1951-1965. [PMID: 38192347 PMCID: PMC10771493 DOI: 10.1007/s12551-023-01127-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/27/2023] [Indexed: 01/10/2024] Open
Abstract
Macromolecular complexes play essential roles in various cellular processes. The assembly of macromolecular assemblies within the cell must overcome barriers imposed by a crowded cellular environment which is characterized by an estimated concentration of biological macromolecules amounting to 100-450 g/L that take up approximately 5-40% of the cytoplasmic volume. The formation of the macromolecular assemblies is facilitated by molecular chaperones in cooperation with their co-chaperones. The R2TP protein complex has emerged as a co-chaperone of Hsp90 that plays an important role in macromolecular assembly. The R2TP complex is composed of a heterodimer of RPAP3:P1H1DI that is in turn complexed to members of the ATPase associated with diverse cellular activities (AAA +), RUVBL1 and RUVBL2 (R1 and R2) families. What makes the R2TP co-chaperone complex particularly important is that it is involved in a wide variety of cellular processes including gene expression, translation, co-translational complex assembly, and posttranslational protein complex formation. The functional versatility of the R2TP co-chaperone complex makes it central to cellular development; hence, it is implicated in various human diseases. In addition, their roles in the development of infectious disease agents has become of interest. In the current review, we discuss the roles of these proteins as co-chaperones regulating Hsp90 and its partnership with Hsp70. Furthermore, we highlight the structure-function features of the individual proteins within the R2TP complex and describe their roles in various cellular processes.
Collapse
Affiliation(s)
- Sifiso Duncan Luthuli
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
6
|
Paiva ACF, Lemos AR, Busse P, Martins MT, Silva DO, Freitas MC, Santos SP, Freire F, Barrey EJ, Manival X, Koetzner L, Heinrich T, Wegener A, Grädler U, Bandeiras TM, Schwarz D, Sousa PMF. Extract2Chip-Bypassing Protein Purification in Drug Discovery Using Surface Plasmon Resonance. BIOSENSORS 2023; 13:913. [PMID: 37887106 PMCID: PMC10605449 DOI: 10.3390/bios13100913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Modern drug discovery relies on combinatorial screening campaigns to find drug molecules targeting specific disease-associated proteins. The success of such campaigns often relies on functional and structural information of the selected therapeutic target, only achievable once its purification is mastered. With the aim of bypassing the protein purification process to gain insights on the druggability, ligand binding, and/or characterization of protein-protein interactions, herein, we describe the Extract2Chip method. This approach builds on the immobilization of site-specific biotinylated proteins of interest, directly from cellular extracts, on avidin-coated sensor chips to allow for the characterization of molecular interactions via surface plasmon resonance (SPR). The developed method was initially validated using Cyclophilin D (CypD) and subsequently applied to other drug discovery projects in which the targets of interest were difficult to express, purify, and crystallize. Extract2Chip was successfully applied to the characterization of Yes-associated protein (YAP): Transcriptional enhancer factor TEF (TEAD1) protein-protein interaction inhibitors, in the validation of a ternary complex assembly composed of Dyskerin pseudouridine synthase 1 (DKC1) and RuvBL1/RuvBL2, and in the establishment of a fast-screening platform to select the most suitable NUAK family SNF1-like kinase 2 (NUAK2) surrogate for binding and structural studies. The described method paves the way for a potential revival of the many drug discovery campaigns that have failed to deliver due to the lack of suitable and sufficient protein supply.
Collapse
Affiliation(s)
- Ana C. F. Paiva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana R. Lemos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Philipp Busse
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Madalena T. Martins
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
| | - Diana O. Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Micael C. Freitas
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sandra P. Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Filipe Freire
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Evelyne J. Barrey
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Xavier Manival
- IMoPA, CNRS, Université de Lorraine, F-54000 Nancy, France;
| | - Lisa Koetzner
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Timo Heinrich
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Ansgar Wegener
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Ulrich Grädler
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Tiago M. Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Daniel Schwarz
- Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany; (E.J.B.); (L.K.); (T.H.); (A.W.); (U.G.)
| | - Pedro M. F. Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.C.F.P.); (A.R.L.); (P.B.); (M.T.M.); (D.O.S.); (M.C.F.); (S.P.S.); (F.F.); (T.M.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
7
|
Abstract
Heat shock protein 90 (HSP90) family is a class of proteins known as molecular chaperones that promote client protein folding and translocation in unstressed cells and regulate cellular homeostasis in the stress response. Noncoding RNAs (ncRNAs) are defined as RNAs that do not encode proteins. Previous studies have shown that ncRNAs are key regulators of multiple fundamental cellular processes, such as development, differentiation, proliferation, transcription, post-transcriptional modifications, apoptosis, and cell metabolism. It is known that ncRNAs do not act alone but function via the interactions with other molecules, including co-chaperones, RNAs, DNAs, and so on. As a kind of molecular chaperone, HSP90 is also involved in many biological procedures of ncRNAs. In this review, we systematically analyze the impact of HSP90 on various kinds of ncRNAs, including their synthesis and function, and how ncRNAs influence HSP90 directly and indirectly.
Collapse
Affiliation(s)
- Qing Xu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Haoduo Qiao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Yunfei Xu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Yao Zhao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Nina He
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Jie Zhao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Ying Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| |
Collapse
|
8
|
Chi CS, Tsai CR, Lee HF. Biallelic SHQ1 variants in early infantile hypotonia and paroxysmal dystonia as the leading manifestation. Hum Genet 2023; 142:1029-1041. [PMID: 36847845 DOI: 10.1007/s00439-023-02533-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
Biallelic SHQ1 variant-related neurodevelopmental disorder is extremely rare. To date, only six affected individuals, from four families, have been reported. Here, we report eight individuals, from seven unrelated families, who exhibited neurodevelopmental disorder and/or dystonia, received whole-genome sequencing, and had inherited biallelic SHQ1 variants. The median age at disease onset was 3.5 months old. All eight individuals exhibited normal eye contact, profound hypotonia, paroxysmal dystonia, and brisk deep tendon reflexes at the first visit. Varying degrees of autonomic dysfunction were observed. One individual had cerebellar atrophy at the initial neuroimaging study, however, three individuals showed cerebellar atrophy at follow-up. Seven individuals who underwent cerebral spinal fluid analysis all had a low level of homovanillic acid in neurotransmitter metabolites. Four individuals who received 99mTc-TRODAT-1 scan had moderate to severe decreased uptake of dopamine in the striatum. Four novel SHQ1 variants in 16 alleles were identified: 9 alleles (56%) were c.997C > G (p.L333V); 4 (25%) were c.195T > A (p.Y65X); 2 (13%) were c.812T > A (p.V271E); and 1 (6%) was c.146T > C (p.L49S). The four novel SHQ1 variants transfected into human SH-SY5Y neuronal cells resulted in a retardation in neuronal migration, suggestive of SHQ1 variant correlated with neurodevelopmental disorders. During the follow-up period, five individuals still exhibited hypotonia and paroxysmal dystonia; two showed dystonia; and one had hypotonia only. The complex interactions among movement disorders, dopaminergic pathways, and the neuroanatomic circuit needs further study to clarify the roles of the SHQ1 gene and protein in neurodevelopment.
Collapse
Affiliation(s)
- Ching-Shiang Chi
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung, 407, Taiwan
| | - Chi-Ren Tsai
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung, 407, Taiwan
| | - Hsiu-Fen Lee
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung, 407, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan.
| |
Collapse
|
9
|
Shepelev N, Dontsova O, Rubtsova M. Post-Transcriptional and Post-Translational Modifications in Telomerase Biogenesis and Recruitment to Telomeres. Int J Mol Sci 2023; 24:5027. [PMID: 36902458 PMCID: PMC10003056 DOI: 10.3390/ijms24055027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Telomere length is associated with the proliferative potential of cells. Telomerase is an enzyme that elongates telomeres throughout the entire lifespan of an organism in stem cells, germ cells, and cells of constantly renewed tissues. It is activated during cellular division, including regeneration and immune responses. The biogenesis of telomerase components and their assembly and functional localization to the telomere is a complex system regulated at multiple levels, where each step must be tuned to the cellular requirements. Any defect in the function or localization of the components of the telomerase biogenesis and functional system will affect the maintenance of telomere length, which is critical to the processes of regeneration, immune response, embryonic development, and cancer progression. An understanding of the regulatory mechanisms of telomerase biogenesis and activity is necessary for the development of approaches toward manipulating telomerase to influence these processes. The present review focuses on the molecular mechanisms involved in the major steps of telomerase regulation and the role of post-transcriptional and post-translational modifications in telomerase biogenesis and function in yeast and vertebrates.
Collapse
Affiliation(s)
- Nikita Shepelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Olga Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Maria Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
10
|
AlHargan A, AlMuhaizea MA, Almass R, Alwadei AH, Daghestani M, Arold ST, Kaya N. SHQ1-associated neurodevelopmental disorder: Report of the first homozygous variant in unrelated patients and review of the literature. Hum Genome Var 2023; 10:7. [PMID: 36810590 PMCID: PMC9944922 DOI: 10.1038/s41439-023-00234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 12/13/2022] [Indexed: 02/24/2023] Open
Abstract
Compound heterozygous mutations in SHQ1 have been associated with a rare and severe neurological disorder characterized by global developmental delay (GDD), cerebellar degeneration coupled with seizures, and early-onset dystonia. Currently, only five affected individuals have been documented in the literature. Here, we report three children from two unrelated families harboring a homozygous variant in the gene but with a milder phenotype than previously described. The patients had GDD and seizures. Magnetic resonance imaging analyses revealed diffuse white matter hypomyelination. Sanger sequencing confirmed the whole-exome sequencing results and revealed full segregation of the missense variant (SHQ1:c.833 T > C; p.I278T) in both families. We performed a comprehensive in silico analysis using different prediction classifiers and structural modeling of the variant. Our findings demonstrate that this novel homozygous variant in SHQ1 is likely to be pathogenic and leads to the clinical features observed in our patients.
Collapse
Affiliation(s)
- Aljouhra AlHargan
- Translational Genomics Department, MBC: 26, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, 11211, Saudi Arabia
- Department of Zoology, P.O. Box. 145111, College of Sciences, King Saud University, Riyadh, 11362, Saudi Arabia
| | - Mohammed A AlMuhaizea
- Neuroscience Centre, MBC: 76, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
- College of Medicine, AlFaisal University, Riyadh, Saudi Arabia
| | - Rawan Almass
- Department of Medical Genomics, MBC: 75, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Ali H Alwadei
- Pediatric Neurology Department, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Maha Daghestani
- Department of Zoology, P.O. Box. 145111, College of Sciences, King Saud University, Riyadh, 11362, Saudi Arabia
| | - Stefan T Arold
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université de Montpellier, F-34090, Montpellier, France
| | - Namik Kaya
- Translational Genomics Department, MBC: 26, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
11
|
Webster SF, Ghalei H. Maturation of small nucleolar RNAs: from production to function. RNA Biol 2023; 20:715-736. [PMID: 37796118 PMCID: PMC10557570 DOI: 10.1080/15476286.2023.2254540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Small Nucleolar RNAs (snoRNAs) are an abundant group of non-coding RNAs with well-defined roles in ribosomal RNA processing, folding and chemical modification. Besides their classic roles in ribosome biogenesis, snoRNAs are also implicated in several other cellular activities including regulation of splicing, transcription, RNA editing, cellular trafficking, and miRNA-like functions. Mature snoRNAs must undergo a series of processing steps tightly regulated by transiently associating factors and coordinated with other cellular processes including transcription and splicing. In addition to their mature forms, snoRNAs can contribute to gene expression regulation through their derivatives and degradation products. Here, we review the current knowledge on mechanisms of snoRNA maturation, including the different pathways of processing, and the regulatory mechanisms that control snoRNA levels and complex assembly. We also discuss the significance of studying snoRNA maturation, highlight the gaps in the current knowledge and suggest directions for future research in this area.
Collapse
Affiliation(s)
- Sarah F. Webster
- Biochemistry, Cell, and Developmental Biology Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Homa Ghalei
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Modlin EW, Slavotinek AM, Darling TN, Lipkowitz S, Barr FG, Munster PN, Biesecker LG, Ours CA. Late-onset Proteus syndrome with cerebriform connective tissue nevus and subsequent development of intraductal papilloma. Am J Med Genet A 2022; 188:2766-2771. [PMID: 35441778 PMCID: PMC9519031 DOI: 10.1002/ajmg.a.62761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023]
Abstract
Proteus syndrome (PS) is a rare segmental overgrowth disorder caused by a mosaic activating variant in AKT1. The features of PS are often not present at birth but develop during the first few years of life. We describe a 55-year-old female, whose first symptom of overgrowth, a cerebriform connective tissue nevus, occurred at 19 years of age. We report the identification of the AKT1 c.49G > A p.(Glu17Lys) variant in this progressive lesion, the bony overgrowth, and recurrence after surgical intervention. In the sixth decade of life, this individual developed intraductal papillomas within her right breast which were confirmed to contain the same activating AKT1 variant as the connective tissue nevus. While similar neoplasms have been described in an individual with Proteus syndrome, none has been evaluated for the presence of the AKT1 variant. The tumor also contained two likely pathogenic variants in PIK3R1, c.1392_1403dupTAGATTATATGA p.(Asp464_Tyr467dup) and c.1728_1730delGAG p.(Arg577del). The finding of additional genetic variation putatively affecting the PI3K/AKT pathway in the neoplastic tissue may provide preliminary evidence of a molecular mechanism for tumorigenesis in PS. The late onset of symptoms and molecular characterization of the breast tumor expand the clinical spectrum of this rare disorder.
Collapse
Affiliation(s)
- Emily W. Modlin
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anne M. Slavotinek
- Department of Pediatrics, Division of Genetics, University of California San Francisco, San Francisco, California, USA
| | - Thomas N. Darling
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stanley Lipkowitz
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Frederic G. Barr
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Pamela N. Munster
- Department of Medicine, University of California Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Leslie G. Biesecker
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher A. Ours
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
The Role of Hsp90-R2TP in Macromolecular Complex Assembly and Stabilization. Biomolecules 2022; 12:biom12081045. [PMID: 36008939 PMCID: PMC9406135 DOI: 10.3390/biom12081045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Hsp90 is a ubiquitous molecular chaperone involved in many cell signaling pathways, and its interactions with specific chaperones and cochaperones determines which client proteins to fold. Hsp90 has been shown to be involved in the promotion and maintenance of proper protein complex assembly either alone or in association with other chaperones such as the R2TP chaperone complex. Hsp90-R2TP acts through several mechanisms, such as by controlling the transcription of protein complex subunits, stabilizing protein subcomplexes before their incorporation into the entire complex, and by recruiting adaptors that facilitate complex assembly. Despite its many roles in protein complex assembly, detailed mechanisms of how Hsp90-R2TP assembles protein complexes have yet to be determined, with most findings restricted to proteomic analyses and in vitro interactions. This review will discuss our current understanding of the function of Hsp90-R2TP in the assembly, stabilization, and activity of the following seven classes of protein complexes: L7Ae snoRNPs, spliceosome snRNPs, RNA polymerases, PIKKs, MRN, TSC, and axonemal dynein arms.
Collapse
|
14
|
Zhang G, Wang F, Li S, Cheng KW, Zhu Y, Huo R, Abdukirim E, Kang G, Chou TF. Discovery of small-molecule inhibitors of RUVBL1/2 ATPase. Bioorg Med Chem 2022; 62:116726. [PMID: 35364523 PMCID: PMC9034851 DOI: 10.1016/j.bmc.2022.116726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
RUVBL1 and RUVBL2 are highly conserved AAA ATPases (ATPases Associated with various cellular Activities) and highly relevant to the progression of cancer, which makes them attractive targets for novel therapeutic anticancer drugs. In this work, docking-based virtual screening was performed to identify compounds with activity against the RUVBL1/2 complex. Seven compounds showed inhibitory activity against the complex in both enzymatic and cellular assays. A series of pyrazolo[1,5-a]pyrimidine-3-carboxamide analogs were synthesized based on the scaffold of compound 15 with inhibitory activity and good potential for structural manipulation. Analysis of the structure-activity relationship identified the benzyl group on R2 and aromatic ring-substituted piperazinyl on R4 as essential for inhibitory activity against the RUVBL1/2 complex. Of these, compound 18, which has IC50 values of 6.0 ± 0.6 μM and 7.7 ± 0.9 μM against RUVBL1/2 complex and RUVBL1 respectively, showed the most potent inhibition in cell lines A549, H1795, HCT116, and MDA-MB-231 with IC50 values of 15 ± 1.2 μM, 15 ± 1.8 μM, 11 ± 1.0 μM, and 8.9 ± 0.9 μM respectively. A docking study of the compound was performed to predict the binding mode of pyrazolo[1,5-a]pyrimidine-3-carboxamides. Furthermore, mass spectrometry-based proteomic analysis was employed to explore cellular proteins dysregulated by treatment with compounds 16, 18, and 19. Together, the data from these analyses suggest that that compound 18 could serve as a starting point for structural modifications in order to improve potency, selectivity, and pharmacokinetic parameters of potential therapeutic molecules.
Collapse
Affiliation(s)
- Gang Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| | - Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Yingying Zhu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Ran Huo
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Elyar Abdukirim
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Guifeng Kang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States; Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
15
|
Seraphim TV, Nano N, Cheung YWS, Aluksanasuwan S, Colleti C, Mao YQ, Bhandari V, Young G, Höll L, Phanse S, Gordiyenko Y, Southworth DR, Robinson CV, Thongboonkerd V, Gava LM, Borges JC, Babu M, Barbosa LRS, Ramos CHI, Kukura P, Houry WA. Assembly principles of the human R2TP chaperone complex reveal the presence of R2T and R2P complexes. Structure 2022; 30:156-171.e12. [PMID: 34492227 DOI: 10.1016/j.str.2021.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022]
Abstract
R2TP is a highly conserved chaperone complex formed by two AAA+ ATPases, RUVBL1 and RUVBL2, that associate with PIH1D1 and RPAP3 proteins. R2TP acts in promoting macromolecular complex formation. Here, we establish the principles of R2TP assembly. Three distinct RUVBL1/2-based complexes are identified: R2TP, RUVBL1/2-RPAP3 (R2T), and RUVBL1/2-PIH1D1 (R2P). Interestingly, we find that PIH1D1 does not bind to RUVBL1/RUVBL2 in R2TP and does not function as a nucleotide exchange factor; instead, RPAP3 is found to be the central subunit coordinating R2TP architecture and linking PIH1D1 and RUVBL1/2. We also report that RPAP3 contains an intrinsically disordered N-terminal domain mediating interactions with substrates whose sequences are primarily enriched for Armadillo repeat domains and other helical-type domains. Our work provides a clear and consistent model of R2TP complex structure and gives important insights into how a chaperone machine concerned with assembly of folded proteins into multisubunit complexes might work.
Collapse
Affiliation(s)
- Thiago V Seraphim
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada; Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Nardin Nano
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada
| | - Yiu Wing Sunny Cheung
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada
| | - Siripat Aluksanasuwan
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada; Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Carolina Colleti
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada; Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP 13560-970, Brazil
| | - Yu-Qian Mao
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada
| | - Vaibhav Bhandari
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada
| | - Gavin Young
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Larissa Höll
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada; Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Yuliya Gordiyenko
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94158, USA
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Lisandra M Gava
- Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP 13560-970, Brazil
| | - Júlio C Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Mohan Babu
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Leandro R S Barbosa
- Institute of Physics, University of São Paulo, São Paulo, SP 05508-090, Brazil; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-100, Brazil
| | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
16
|
Abel Y, Charron C, Virciglio C, Bourguignon-Igel V, Quinternet M, Chagot ME, Robert MC, Verheggen C, Branlant C, Bertrand E, Manival X, Charpentier B, Rederstorff M. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2172-2189. [PMID: 35150569 PMCID: PMC8887487 DOI: 10.1093/nar/gkac086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 11/14/2022] Open
Abstract
MicroRNAs silence mRNAs by guiding the RISC complex. RISC assembly occurs following cleavage of pre-miRNAs by Dicer, assisted by TRBP or PACT, and the transfer of miRNAs to AGO proteins. The R2TP complex is an HSP90 co-chaperone involved in the assembly of ribonucleoprotein particles. Here, we show that the R2TP component RPAP3 binds TRBP but not PACT. The RPAP3-TPR1 domain interacts with the TRBP-dsRBD3, and the 1.5 Å resolution crystal structure of this complex identifies key residues involved in the interaction. Remarkably, binding of TRBP to RPAP3 or Dicer is mutually exclusive. Additionally, we found that AGO(1/2), TRBP and Dicer are all sensitive to HSP90 inhibition, and that TRBP sensitivity is increased in the absence of RPAP3. Finally, RPAP3 seems to impede miRNA activity, raising the possibility that the R2TP chaperone might sequester TRBP to regulate the miRNA pathway.
Collapse
Affiliation(s)
| | | | | | | | - Marc Quinternet
- Université de Lorraine, CNRS, INSERM, IBSLOR, F-54000, Nancy, France
| | | | - Marie-Cécile Robert
- IGH, Université de Montpellier, CNRS, F-34090, Montpellier, France
- IGMM, Université de Montpellier, CNRS, F-34090, Montpellier, France
- Equipe labélisée Ligue Nationale contre le Cancer, University of Montpellier, CNRS, F-34090, Montpellier, France
| | - Céline Verheggen
- IGH, Université de Montpellier, CNRS, F-34090, Montpellier, France
- IGMM, Université de Montpellier, CNRS, F-34090, Montpellier, France
- Equipe labélisée Ligue Nationale contre le Cancer, University of Montpellier, CNRS, F-34090, Montpellier, France
| | | | - Edouard Bertrand
- IGH, Université de Montpellier, CNRS, F-34090, Montpellier, France
- IGMM, Université de Montpellier, CNRS, F-34090, Montpellier, France
- Equipe labélisée Ligue Nationale contre le Cancer, University of Montpellier, CNRS, F-34090, Montpellier, France
| | - Xavier Manival
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | | |
Collapse
|
17
|
Garus A, Autexier C. Dyskerin: an essential pseudouridine synthase with multifaceted roles in ribosome biogenesis, splicing, and telomere maintenance. RNA (NEW YORK, N.Y.) 2021; 27:1441-1458. [PMID: 34556550 PMCID: PMC8594475 DOI: 10.1261/rna.078953.121] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dyskerin and its homologs are ancient and conserved enzymes that catalyze the most common post-transcriptional modification found in cells, pseudouridylation. The resulting pseudouridines provide stability to RNA molecules and regulate ribosome biogenesis and splicing events. Dyskerin does not act independently-it is the core component of a protein heterotetramer, which associates with RNAs that contain the H/ACA motif. The variety of H/ACA RNAs that guide the function of this ribonucleoprotein (RNP) complex highlights the diversity of cellular processes in which dyskerin participates. When associated with small nucleolar (sno) RNAs, it regulates ribosomal (r) RNAs and ribosome biogenesis. By interacting with small Cajal body (sca) RNAs, it targets small nuclear (sn) RNAs to regulate pre-mRNA splicing. As a component of the telomerase holoenzyme, dyskerin binds to the telomerase RNA to modulate telomere maintenance. In a disease context, dyskerin malfunction can result in multiple detrimental phenotypes. Mutations in DKC1, the gene that encodes dyskerin, cause the premature aging syndrome X-linked dyskeratosis congenita (X-DC), a still incurable disorder that typically leads to bone marrow failure. In this review, we present the classical and most recent findings on this essential protein, discussing the evolutionary, structural, and functional aspects of dyskerin and the H/ACA RNP. The latest research underscores the role that dyskerin plays in the regulation of gene expression, translation efficiency, and telomere maintenance, along with the impacts that defective dyskerin has on aging, cell proliferation, haematopoietic potential, and cancer.
Collapse
Affiliation(s)
- Alexandre Garus
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| |
Collapse
|
18
|
Herranz-Montoya I, Park S, Djouder N. A comprehensive analysis of prefoldins and their implication in cancer. iScience 2021; 24:103273. [PMID: 34761191 PMCID: PMC8567396 DOI: 10.1016/j.isci.2021.103273] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Prefoldins (PFDNs) are evolutionary conserved co-chaperones, initially discovered in archaea but universally present in eukaryotes. PFDNs are prevalently organized into hetero-hexameric complexes. Although they have been overlooked since their discovery and their functions remain elusive, several reports indicate they act as co-chaperones escorting misfolded or non-native proteins to group II chaperonins. Unlike the eukaryotic PFDNs which interact with cytoskeletal components, the archaeal PFDNs can bind and stabilize a wide range of substrates, possibly due to their great structural diversity. The discovery of the unconventional RPB5 interactor (URI) PFDN-like complex (UPC) suggests that PFDNs have versatile functions and are required for different cellular processes, including an important role in cancer. Here, we summarize their functions across different species. Moreover, a comprehensive analysis of PFDNs genomic alterations across cancer types by using large-scale cancer genomic data indicates that PFDNs are a new class of non-mutated proteins significantly overexpressed in some cancer types.
Collapse
Affiliation(s)
- Irene Herranz-Montoya
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Solip Park
- Computational Cancer Genomics Group, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Nabil Djouder
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| |
Collapse
|
19
|
Maurizy C, Abeza C, Lemmers B, Gabola M, Longobardi C, Pinet V, Ferrand M, Paul C, Bremond J, Langa F, Gerbe F, Jay P, Verheggen C, Tinari N, Helmlinger D, Lattanzio R, Bertrand E, Hahne M, Pradet-Balade B. The HSP90/R2TP assembly chaperone promotes cell proliferation in the intestinal epithelium. Nat Commun 2021; 12:4810. [PMID: 34376666 PMCID: PMC8355188 DOI: 10.1038/s41467-021-24792-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
The R2TP chaperone cooperates with HSP90 to integrate newly synthesized proteins into multi-subunit complexes, yet its role in tissue homeostasis is unknown. Here, we generated conditional, inducible knock-out mice for Rpap3 to inactivate this core component of R2TP in the intestinal epithelium. In adult mice, Rpap3 invalidation caused destruction of the small intestinal epithelium and death within 10 days. Levels of R2TP substrates decreased, with strong effects on mTOR, ATM and ATR. Proliferative stem cells and progenitors deficient for Rpap3 failed to import RNA polymerase II into the nucleus and they induced p53, cell cycle arrest and apoptosis. Post-mitotic, differentiated cells did not display these alterations, suggesting that R2TP clients are preferentially built in actively proliferating cells. In addition, high RPAP3 levels in colorectal tumors from patients correlate with bad prognosis. Here, we show that, in the intestine, the R2TP chaperone plays essential roles in normal and tumoral proliferation.
Collapse
Affiliation(s)
- Chloé Maurizy
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
| | - Claire Abeza
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
| | | | | | | | | | | | | | | | - Francina Langa
- Centre d'Ingénierie Génétique Murine, Institut Pasteur, Paris, France
| | - François Gerbe
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Jay
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Céline Verheggen
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
- IGH, Univ Montpellier, CNRS, Montpellier, France
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | | | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Edouard Bertrand
- IGMM, Univ Montpellier, CNRS, Montpellier, France.
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France.
- IGH, Univ Montpellier, CNRS, Montpellier, France.
| | | | - Bérengère Pradet-Balade
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France.
- CRBM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
20
|
Czekay DP, Kothe U. H/ACA Small Ribonucleoproteins: Structural and Functional Comparison Between Archaea and Eukaryotes. Front Microbiol 2021; 12:654370. [PMID: 33776984 PMCID: PMC7991803 DOI: 10.3389/fmicb.2021.654370] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/18/2021] [Indexed: 01/04/2023] Open
Abstract
During ribosome synthesis, ribosomal RNA is modified through the formation of many pseudouridines and methylations which contribute to ribosome function across all domains of life. In archaea and eukaryotes, pseudouridylation of rRNA is catalyzed by H/ACA small ribonucleoproteins (sRNPs) utilizing different H/ACA guide RNAs to identify target uridines for modification. H/ACA sRNPs are conserved in archaea and eukaryotes, as they share a common general architecture and function, but there are also several notable differences between archaeal and eukaryotic H/ACA sRNPs. Due to the higher protein stability in archaea, we have more information on the structure of archaeal H/ACA sRNPs compared to eukaryotic counterparts. However, based on the long history of yeast genetic and other cellular studies, the biological role of H/ACA sRNPs during ribosome biogenesis is better understood in eukaryotes than archaea. Therefore, this review provides an overview of the current knowledge on H/ACA sRNPs from archaea, in particular their structure and function, and relates it to our understanding of the roles of eukaryotic H/ACA sRNP during eukaryotic ribosome synthesis and beyond. Based on this comparison of our current insights into archaeal and eukaryotic H/ACA sRNPs, we discuss what role archaeal H/ACA sRNPs may play in the formation of ribosomes.
Collapse
Affiliation(s)
- Dominic P Czekay
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| | - Ute Kothe
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
21
|
Qin J, Autexier C. Regulation of human telomerase RNA biogenesis and localization. RNA Biol 2021; 18:305-315. [PMID: 32813614 PMCID: PMC7954027 DOI: 10.1080/15476286.2020.1809196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022] Open
Abstract
Maintenance of telomeres is essential for genome integrity and replicative capacity in eukaryotic cells. Telomerase, the ribonucleoprotein complex that catalyses telomere synthesis is minimally composed of a reverse transcriptase and an RNA component. The sequence and structural domains of human telomerase RNA (hTR) have been extensively characterized, while the regulation of hTR transcription, maturation, and localization, is not fully understood. Here, we provide an up-to-date review of hTR, with an emphasis on current breakthroughs uncovering the mechanisms of hTR maturation and localization.
Collapse
Affiliation(s)
- Jian Qin
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Kiguchi T, Kakihara Y, Yamazaki M, Katsura K, Izumi K, Tanuma JI, Saku T, Takagi R, Saeki M. Identification and characterization of R2TP in the development of oral squamous cell carcinoma. Biochem Biophys Res Commun 2021; 548:161-166. [PMID: 33640610 DOI: 10.1016/j.bbrc.2021.02.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
R2TP is a well-conserved molecular chaperone complex, composed of Pontin, Reptin, RPAP3, and PIH1D, in eukaryotes. Recent studies have suggested an involvement of R2TP in cancer development. However, it remains unclear if it is related to the development of oral squamous cell carcinoma (OSCC), which is the most common type of oral cancer. Here, we identify and investigate the function of R2TP in OSCC development. Immunohistochemical analysis reveals that all of the R2TP components are strongly expressed in normal oral epithelia and OSCC tissues, where actively proliferating cells are abundant. Co-immunoprecipitation assay identifies that R2TP components form a protein complex in OSCC-derived HSC4-cells. Knockdown experiments show that all R2TP components, except for RPAP3, are required for the cell proliferation and migration of HSC-4 cells. Furthermore, we reveal that Pontin contributes to a gain-of-function (GOF) activity of mutp53-R248Q in HSC-4 cells by regulating phosphorylation levels of mutp53 at Ser15 and Ser46. To our knowledge, this study is the first to report the functional involvement of R2TP and its components in the malignant characteristics of OSCC cells.
Collapse
Affiliation(s)
- Tetsuo Kiguchi
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan; Division of Dental Pharmacology, Faculty of Dentistry & Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry & Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.
| | - Manabu Yamazaki
- Division of Oral Pathology, Faculty of Dentistry & Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Kouji Katsura
- Division of Oral and Maxillofacial Radiology, Faculty of Dentistry & Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Kenji Izumi
- Division of Biomimetics, Faculty of Dentistry & Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Jun-Ichi Tanuma
- Division of Oral Pathology, Faculty of Dentistry & Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Takashi Saku
- Faculty of Dentistry, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Ritsuo Takagi
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Makio Saeki
- Division of Dental Pharmacology, Faculty of Dentistry & Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
23
|
Akincilar SC, Chan CHT, Ng QF, Fidan K, Tergaonkar V. Non-canonical roles of canonical telomere binding proteins in cancers. Cell Mol Life Sci 2021; 78:4235-4257. [PMID: 33599797 PMCID: PMC8164586 DOI: 10.1007/s00018-021-03783-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Reactivation of telomerase is a major hallmark observed in 90% of all cancers. Yet paradoxically, enhanced telomerase activity does not correlate with telomere length and cancers often possess short telomeres; suggestive of supplementary non-canonical roles that telomerase might play in the development of cancer. Moreover, studies have shown that aberrant expression of shelterin proteins coupled with their release from shortening telomeres can further promote cancer by mechanisms independent of their telomeric role. While targeting telomerase activity appears to be an attractive therapeutic option, this approach has failed in clinical trials due to undesirable cytotoxic effects on stem cells. To circumvent this concern, an alternative strategy could be to target the molecules involved in the non-canonical functions of telomeric proteins. In this review, we will focus on emerging evidence that has demonstrated the non-canonical roles of telomeric proteins and their impact on tumorigenesis. Furthermore, we aim to address current knowledge gaps in telomeric protein functions and propose future research approaches that can be undertaken to achieve this.
Collapse
Affiliation(s)
- Semih Can Akincilar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Claire Hian Tzer Chan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Qin Feng Ng
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Kerem Fidan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
| |
Collapse
|
24
|
Vos TJ, Kothe U. snR30/U17 Small Nucleolar Ribonucleoprotein: A Critical Player during Ribosome Biogenesis. Cells 2020; 9:cells9102195. [PMID: 33003357 PMCID: PMC7601244 DOI: 10.3390/cells9102195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022] Open
Abstract
The small nucleolar RNA snR30 (U17 in humans) plays a unique role during ribosome synthesis. Unlike most members of the H/ACA class of guide RNAs, the small nucleolar ribonucleoprotein (snoRNP) complex assembled on snR30 does not direct pseudouridylation of ribosomal RNA (rRNA), but instead snR30 is critical for 18S rRNA processing during formation of the small subunit (SSU) of the ribosome. Specifically, snR30 is essential for three pre-rRNA cleavages at the A0/01, A1/1, and A2/2a sites in yeast and humans, respectively. Accordingly, snR30 is the only essential H/ACA guide RNA in yeast. Here, we summarize our current knowledge about the interactions and functions of snR30, discuss what remains to be elucidated, and present two non-exclusive hypotheses on the possible molecular function of snR30 during ribosome biogenesis. First, snR30 might be responsible for recruiting other proteins including endonucleases to the SSU processome. Second, snR30 may contribute to the refolding of pre-rRNA into a required conformation that serves as a checkpoint during ribosome biogenesis facilitating pre-rRNA cleavage. In both scenarios, the snR30 snoRNP may have scaffolding and RNA chaperoning activity. In conclusion, the snR30 snoRNP is a crucial player with an unknown molecular mechanism during ribosome synthesis, posing many interesting future research questions.
Collapse
Affiliation(s)
| | - Ute Kothe
- Correspondence: ; Tel.: +1-403-332-5274
| |
Collapse
|
25
|
Zhu D, Xu L, Wei X, Xia B, Gong Y, Li Q, Chen X. PPARγ enhanced Adiponectin polymerization and trafficking by promoting RUVBL2 expression during adipogenic differentiation. Gene 2020; 764:145100. [PMID: 32877748 DOI: 10.1016/j.gene.2020.145100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/16/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023]
Abstract
Adipocyte differentiation is an essential part of adipose tissue development, and is closely related to obesity and obesity-related diseases. In this study, we found that the expression of PPARγ, RUVBL2 and Adiponectin were concurrently obviously increased in the 5th-7th day of 3T3-L1 cell differentiation. PPARγ overexpression or the PPARγ activator facilitated Adiponectin trafficking and secretion and upregulated RUVBL2 expression as well as AS160 phosphorylation during adipogenic differentiation of 3T3-L1 cells. Consistently RUVBL2 overexpression also enhanced the polymerization and secretion of Adiponectin, in contrast, RUVBL2 knockdown reduced Adiponectin secretion. Further, PPARγ significantly enhanced RUVBL2 promoter activity and transcription. The progressive deletions and mutations of RUVBL2 promoter for PPARγ binding sites suggested that the PPARγ binding motif situated at -804/-781 bp is an essential component required for RUVBL2 promoter activity. Chromatin immunoprecipitation (ChIP) assays determined that PPARγ can directly interact with the RUVBL2 promoter DNA. Taken together, these data suggest that PPARγ promotes the expression, polymerization and secretion of Adiponectin by activating RUVBL2 transcriptionally, which accelerates 3T3-L1 cell differentiation.
Collapse
Affiliation(s)
- Daiyun Zhu
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Le Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xuan Wei
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Benzeng Xia
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuqing Gong
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qinjin Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaodong Chen
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
26
|
Shin SH, Lee JS, Zhang JM, Choi S, Boskovic ZV, Zhao R, Song M, Wang R, Tian J, Lee MH, Kim JH, Jeong M, Lee JH, Petukhov M, Lee SW, Kim SG, Zou L, Byun S. Synthetic lethality by targeting the RUVBL1/2-TTT complex in mTORC1-hyperactive cancer cells. SCIENCE ADVANCES 2020; 6:eaay9131. [PMID: 32789167 PMCID: PMC7399646 DOI: 10.1126/sciadv.aay9131] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/19/2020] [Indexed: 05/08/2023]
Abstract
Despite considerable efforts, mTOR inhibitors have produced limited success in the clinic. To define the vulnerabilities of mTORC1-addicted cancer cells and to find previously unknown therapeutic targets, we investigated the mechanism of piperlongumine, a small molecule identified in a chemical library screen to specifically target cancer cells with a hyperactive mTORC1 phenotype. Sensitivity to piperlongumine was dependent on its ability to suppress RUVBL1/2-TTT, a complex involved in chromatin remodeling and DNA repair. Cancer cells with high mTORC1 activity are subjected to higher levels of DNA damage stress via c-Myc and displayed an increased dependency on RUVBL1/2 for survival and counteracting genotoxic stress. Examination of clinical cancer tissues also demonstrated that high mTORC1 activity was accompanied by high RUVBL2 expression. Our findings reveal a previously unknown role for RUVBL1/2 in cell survival, where it acts as a functional chaperone to mitigate stress levels induced in the mTORC1-Myc-DNA damage axis.
Collapse
Affiliation(s)
- Seung Ho Shin
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji Su Lee
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jia-Min Zhang
- Massachusetts General Hospital Cancer Center, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Sungbin Choi
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Zarko V. Boskovic
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Ran Zhao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Mengqiu Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Rui Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Jie Tian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Mee-Hyun Lee
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Jae Hwan Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Minju Jeong
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jung Hyun Lee
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Michael Petukhov
- Petersburg Nuclear Physics Institute named after B.P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Sam W. Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sang Gyun Kim
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Building 149 13th Street, Charlestown, MA 02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Sanguine Byun
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
27
|
Rodríguez CF, Llorca O. RPAP3 C-Terminal Domain: A Conserved Domain for the Assembly of R2TP Co-Chaperone Complexes. Cells 2020; 9:cells9051139. [PMID: 32384603 PMCID: PMC7290369 DOI: 10.3390/cells9051139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 11/25/2022] Open
Abstract
The Rvb1-Rvb2-Tah1-Pih1 (R2TP) complex is a co-chaperone complex that works together with HSP90 in the activation and assembly of several macromolecular complexes, including RNA polymerase II (Pol II) and complexes of the phosphatidylinositol-3-kinase-like family of kinases (PIKKs), such as mTORC1 and ATR/ATRIP. R2TP is made of four subunits: RuvB-like protein 1 (RUVBL1) and RuvB-like 2 (RUVBL2) AAA-type ATPases, RNA polymerase II-associated protein 3 (RPAP3), and the Protein interacting with Hsp90 1 (PIH1) domain-containing protein 1 (PIH1D1). R2TP associates with other proteins as part of a complex co-chaperone machinery involved in the assembly and maturation of a growing list of macromolecular complexes. Recent progress in the structural characterization of R2TP has revealed an alpha-helical domain at the C-terminus of RPAP3 that is essential to bring the RUVBL1 and RUVBL2 ATPases to R2TP. The RPAP3 C-terminal domain interacts directly with RUVBL2 and it is also known as RUVBL2-binding domain (RBD). Several human proteins contain a region homologous to the RPAP3 C-terminal domain, and some are capable of assembling R2TP-like complexes, which could have specialized functions. Only the RUVBL1-RUVBL2 ATPase complex and a protein containing an RPAP3 C-terminal-like domain are found in all R2TP and R2TP-like complexes. Therefore, the RPAP3 C-terminal domain is one of few components essential for the formation of all R2TP and R2TP-like co-chaperone complexes.
Collapse
Affiliation(s)
| | - Oscar Llorca
- Correspondence: ; Tel.: +34-91-732-8000 (ext. 3000/3033)
| |
Collapse
|
28
|
Saez I, Gerbracht JV, Koyuncu S, Lee HJ, Horn M, Kroef V, Denzel MS, Dieterich C, Gehring NH, Vilchez D. The E3 ubiquitin ligase UBR5 interacts with the H/ACA ribonucleoprotein complex and regulates ribosomal RNA biogenesis in embryonic stem cells. FEBS Lett 2019; 594:175-188. [PMID: 31365120 DOI: 10.1002/1873-3468.13559] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/27/2022]
Abstract
UBR5 is an E3 ubiquitin ligase involved in distinct processes such as transcriptional regulation and development. UBR5 is highly upregulated in embryonic stem cells (ESCs), whereas its expression decreases with differentiation, suggesting a role for UBR5 in ESC function. However, little is known about how UBR5 regulates ESC identity. Here, we define the protein interactome of UBR5 in ESCs and find interactions with distinct components of the H/ACA ribonucleoprotein complex, which is required for proper maturation of ribosomal RNA (rRNA). Notably, loss of UBR5 induces an abnormal accumulation of rRNA processing intermediates, resulting in diminished ribosomal levels. Consequently, lack of UBR5 triggers an increase in p53 levels and a concomitant decrease in cellular proliferation rates. Thus, our results indicate a link between UBR5 and rRNA maturation.
Collapse
Affiliation(s)
- Isabel Saez
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | | | - Seda Koyuncu
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Hyun Ju Lee
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Moritz Horn
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Virginia Kroef
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Martin S Denzel
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus, Tschira Institute for Computational Cardiology, University Hospital, Heidelberg, Germany
| | - Niels H Gehring
- Institute for Genetics, Department of Biology, University of Cologne, Germany
| | - David Vilchez
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| |
Collapse
|
29
|
The R2TP complex regulates paramyxovirus RNA synthesis. PLoS Pathog 2019; 15:e1007749. [PMID: 31121004 PMCID: PMC6532945 DOI: 10.1371/journal.ppat.1007749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022] Open
Abstract
The regulation of paramyxovirus RNA synthesis by host proteins is poorly understood. Here, we identified a novel regulation mechanism of paramyxovirus RNA synthesis by the Hsp90 co-chaperone R2TP complex. We showed that the R2TP complex interacted with the paramyxovirus polymerase L protein and that silencing of the R2TP complex led to uncontrolled upregulation of mumps virus (MuV) gene transcription but not genome replication. Regulation by the R2TP complex was critical for MuV replication and evasion of host innate immune responses. The R2TP complex also regulated measles virus (MeV) RNA synthesis, but its function was inhibitory and not beneficial to MeV, as MeV evaded host innate immune responses in the absence of the R2TP complex. The identification of the R2TP complex as a critical host factor sheds new light on the regulation of paramyxovirus RNA synthesis. The family Paramyxoviridae includes several important human and animal pathogens such as mumps virus (MuV) and measles virus (MeV). Paramyxovirus RNA synthesis is strictly regulated by both viral and host proteins. In this study, we identified the R2TP complex as a novel host factor regulating paramyxovirus RNA synthesis. The R2TP complex is a Hsp90 co-chaperone and is involved in Hsp90-mediated assembly of large protein complexes. We showed that the R2TP complex precisely regulated MuV transcription by interacting with the polymerase L protein. This regulation was critical for MuV evasion of host innate immune responses and for viral replication. We also showed that the R2TP complex regulated MeV RNA synthesis, but that its function was inhibitory and not beneficial to MeV. Our findings support a novel regulation mechanism of paramyxovirus RNA synthesis that is directly relevant to its biology and life cycle, and provide the first evidence linking the R2TP complex to defense against viral infection.
Collapse
|
30
|
Muñoz-Hernández H, Pal M, Rodríguez CF, Fernandez-Leiro R, Prodromou C, Pearl LH, Llorca O. Structural mechanism for regulation of the AAA-ATPases RUVBL1-RUVBL2 in the R2TP co-chaperone revealed by cryo-EM. SCIENCE ADVANCES 2019; 5:eaaw1616. [PMID: 31049401 PMCID: PMC6494491 DOI: 10.1126/sciadv.aaw1616] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/16/2019] [Indexed: 05/04/2023]
Abstract
The human R2TP complex (RUVBL1-RUVBL2-RPAP3-PIH1D1) is an HSP90 co-chaperone required for the maturation of several essential multiprotein complexes, including RNA polymerase II, small nucleolar ribonucleoproteins, and PIKK complexes such as mTORC1 and ATR-ATRIP. RUVBL1-RUVBL2 AAA-ATPases are also primary components of other essential complexes such as INO80 and Tip60 remodelers. Despite recent efforts, the molecular mechanisms regulating RUVBL1-RUVBL2 in these complexes remain elusive. Here, we report cryo-EM structures of R2TP and show how access to the nucleotide-binding site of RUVBL2 is coupled to binding of the client recruitment component of R2TP (PIH1D1) to its DII domain. This interaction induces conformational rearrangements that lead to the destabilization of an N-terminal segment of RUVBL2 that acts as a gatekeeper to nucleotide exchange. This mechanism couples protein-induced motions of the DII domains with accessibility of the nucleotide-binding site in RUVBL1-RUVBL2, and it is likely a general mechanism shared with other RUVBL1-RUVBL2-containing complexes.
Collapse
Affiliation(s)
- Hugo Muñoz-Hernández
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Mohinder Pal
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Carlos F. Rodríguez
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Rafael Fernandez-Leiro
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Chrisostomos Prodromou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Laurence H. Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Corresponding author.
| |
Collapse
|
31
|
Paul A, Tiotiu D, Bragantini B, Marty H, Charpentier B, Massenet S, Labialle S. Bcd1p controls RNA loading of the core protein Nop58 during C/D box snoRNP biogenesis. RNA (NEW YORK, N.Y.) 2019; 25:496-506. [PMID: 30700579 PMCID: PMC6426285 DOI: 10.1261/rna.067967.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Biogenesis of eukaryotic box C/D small nucleolar ribonucleoproteins (C/D snoRNPs) is guided by conserved trans-acting factors that act collectively to assemble the core proteins SNU13/Snu13, NOP58/Nop58, NOP56/Nop56, FBL/Nop1, and box C/D small nucleolar RNAs (C/D snoRNAs), in human and in yeast, respectively. This finely elaborated process involves the sequential interplay of snoRNP-related proteins and RNA through the formation of transient pre-RNP complexes. BCD1/Bcd1 protein is essential for yeast cell growth and for the specific accumulation of box C/D snoRNAs. In this work, chromatin, RNA, and protein immunoprecipitation assays revealed the ordered loading of several snoRNP-related proteins on immature and mature snoRNA species. Our results identify Bcd1p as an assembly factor of C/D snoRNP biogenesis that is likely recruited cotranscriptionally and that directs the loading of the core protein Nop58 on RNA.
Collapse
Affiliation(s)
- Arnaud Paul
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Decebal Tiotiu
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | - Hélène Marty
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | | | | |
Collapse
|
32
|
Schořová Š, Fajkus J, Záveská Drábková L, Honys D, Schrumpfová PP. The plant Pontin and Reptin homologues, RuvBL1 and RuvBL2a, colocalize with TERT and TRB proteins in vivo, and participate in telomerase biogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:195-212. [PMID: 30834599 DOI: 10.1111/tpj.14306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/08/2019] [Accepted: 02/26/2019] [Indexed: 05/15/2023]
Abstract
Telomerase maturation and recruitment to telomeres is regulated by several telomerase- and telomere-associated proteins. Among a number of proteins, human Pontin and Reptin play critical roles in telomerase biogenesis. Here we characterized plant orthologues of Pontin and Reptin, RuvBL1 and RuvBL2a, respectively, and show association of Arabidopsis thaliana RuvBL1 (AtRuvBL1) with the catalytic subunit of telomerase (AtTERT) in the nucleolus in vivo. In contrast to mammals, interactions between AtTERT and AtRuvBL proteins in A. thaliana are not direct and they are rather mediated by one of the Arabidopsis thaliana Telomere Repeat Binding (AtTRB) proteins. We further show that plant orthologue of dyskerin, named AtCBF5, is indirectly associated with AtTRB proteins but not with the AtRuvBL proteins in the plant nucleus/nucleolus, and interacts with the Protection of telomere 1 (AtPOT1a) in the nucleolus or cytoplasmic foci. Our genome-wide phylogenetic analyses identify orthologues in RuvBL protein family within the plant kingdom. Dysfunction of AtRuvBL genes in heterozygous T-DNA insertion A. thaliana mutants results in reduced telomerase activity and indicate the involvement of AtRuvBL in plant telomerase biogenesis.
Collapse
Affiliation(s)
- Šárka Schořová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Lenka Záveská Drábková
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
33
|
Lynham J, Houry WA. The Multiple Functions of the PAQosome: An R2TP- and URI1 Prefoldin-Based Chaperone Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:37-72. [DOI: 10.1007/978-3-030-00737-9_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Viviescas MA, Cano MIN, Segatto M. Chaperones and Their Role in Telomerase Ribonucleoprotein Biogenesis and Telomere Maintenance. CURR PROTEOMICS 2018. [DOI: 10.2174/1570164615666180713103133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Telomere length maintenance is important for genome stability and cell division. In most
eukaryotes, telomeres are maintained by the telomerase ribonucleoprotein (RNP) complex, minimally
composed of the Telomerase Reverse Transcriptase (TERT) and the telomerase RNA (TER) components.
In addition to TERT and TER, other protein subunits are part of the complex and are involved in
telomerase regulation, assembly, disassembly, and degradation. Among them are some molecular
chaperones such as Hsp90 and its co-chaperone p23 which are found associated with the telomerase
RNP complex in humans, yeast and probably in protozoa. Hsp90 and p23 are necessary for the telomerase
RNP assembly and enzyme activity. In budding yeast, the Hsp90 homolog (Hsp82) is also responsible
for the association and dissociation of telomerase from the telomeric DNA by its direct interaction
with a telomere end-binding protein (Cdc13), responsible for regulating telomerase access to telomeres.
In addition, AAA+ ATPases, such as Pontin and Reptin, which are also considered chaperone-
like proteins, associate with the human telomerase complex by the direct interaction of Pontin with
TERT and dyskerin. They are probably responsible for telomerase RNP assembly since their depletion
impairs the accumulation of the complex. Moreover, various RNA chaperones, are also pivotal in the
assembly and migration of the mature telomerase complex and complex intermediates. In this review,
we will focus on the importance of molecular chaperones for telomerase RNP biogenesis and how they
impact telomere length maintenance and cellular homeostasis.
Collapse
Affiliation(s)
- Maria Alejandra Viviescas
- Genetics Department, Biosciences Institute, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Marcela Segatto
- Genetics Department, Biosciences Institute, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
35
|
Silva STN, Brito JA, Arranz R, Sorzano CÓS, Ebel C, Doutch J, Tully MD, Carazo JM, Carrascosa JL, Matias PM, Bandeiras TM. X-ray structure of full-length human RuvB-Like 2 - mechanistic insights into coupling between ATP binding and mechanical action. Sci Rep 2018; 8:13726. [PMID: 30213962 PMCID: PMC6137109 DOI: 10.1038/s41598-018-31997-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/30/2018] [Indexed: 01/27/2023] Open
Abstract
RuvB-Like transcription factors function in cell cycle regulation, development and human disease, such as cancer and heart hyperplasia. The mechanisms that regulate adenosine triphosphate (ATP)-dependent activity, oligomerization and post-translational modifications in this family of enzymes are yet unknown. We present the first crystallographic structure of full-length human RuvBL2 which provides novel insights into its mechanistic action and biology. The ring-shaped hexameric RuvBL2 structure presented here resolves for the first time the mobile domain II of the human protein, which is responsible for protein-protein interactions and ATPase activity regulation. Structural analysis suggests how ATP binding may lead to domain II motion through interactions with conserved N-terminal loop histidine residues. Furthermore, a comparison between hsRuvBL1 and 2 shows differences in surface charge distribution that may account for previously described differences in regulation. Analytical ultracentrifugation and cryo electron microscopy analyses performed on hsRuvBL2 highlight an oligomer plasticity that possibly reflects different physiological conformations of the protein in the cell, as well as that single-stranded DNA (ssDNA) can promote the oligomerization of monomeric hsRuvBL2. Based on these findings, we propose a mechanism for ATP binding and domain II conformational change coupling.
Collapse
Affiliation(s)
- Sara T N Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - José A Brito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Rocío Arranz
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - Carlos Óscar S Sorzano
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - Christine Ebel
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71 avenue des Martyrs CS 10090, 38044, Grenoble, France
| | - James Doutch
- ISIS Pulsed Neutron and Muon Source, STFC, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Mark D Tully
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - José-María Carazo
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - José L Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - Pedro M Matias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal.
| |
Collapse
|
36
|
Maurizy C, Quinternet M, Abel Y, Verheggen C, Santo PE, Bourguet M, C F Paiva A, Bragantini B, Chagot ME, Robert MC, Abeza C, Fabre P, Fort P, Vandermoere F, M F Sousa P, Rain JC, Charpentier B, Cianférani S, Bandeiras TM, Pradet-Balade B, Manival X, Bertrand E. The RPAP3-Cterminal domain identifies R2TP-like quaternary chaperones. Nat Commun 2018; 9:2093. [PMID: 29844425 PMCID: PMC5974087 DOI: 10.1038/s41467-018-04431-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/19/2018] [Indexed: 12/22/2022] Open
Abstract
R2TP is an HSP90 co-chaperone that assembles important macro-molecular machineries. It is composed of an RPAP3-PIH1D1 heterodimer, which binds the two essential AAA+ATPases RUVBL1/RUVBL2. Here, we resolve the structure of the conserved C-terminal domain of RPAP3, and we show that it directly binds RUVBL1/RUVBL2 hexamers. The human genome encodes two other proteins bearing RPAP3-C-terminal-like domains and three containing PIH-like domains. Systematic interaction analyses show that one RPAP3-like protein, SPAG1, binds PIH1D2 and RUVBL1/2 to form an R2TP-like complex termed R2SP. This co-chaperone is enriched in testis and among 68 of the potential clients identified, some are expressed in testis and others are ubiquitous. One substrate is liprin-α2, which organizes large signaling complexes. Remarkably, R2SP is required for liprin-α2 expression and for the assembly of liprin-α2 complexes, indicating that R2SP functions in quaternary protein folding. Effects are stronger at 32 °C, suggesting that R2SP could help compensating the lower temperate of testis. R2TP is an HSP90 co-chaperone composed of an RPAP3-PIH1D1 heterodimer, which binds two essential AAA+ ATPases RUVBL1/RUVBL2. Here authors use a structural approach to study RPAP3 and find an RPAP3-like protein (SPAG1) which also forms a co-chaperone complex with PIH1D2 and RUVBL1/2 enriched in testis.
Collapse
Affiliation(s)
- Chloé Maurizy
- IGMM, CNRS, Université de Montpellier, Montpellier, 34293, France.,Equipe labélisée Ligue Nationale Contre le Cancer, 34293, Montpellier, France
| | - Marc Quinternet
- CNRS, INSERM, IBSLOR, Université de Lorraine, Nancy, F-54000, France
| | - Yoann Abel
- IGMM, CNRS, Université de Montpellier, Montpellier, 34293, France.,Equipe labélisée Ligue Nationale Contre le Cancer, 34293, Montpellier, France
| | - Céline Verheggen
- IGMM, CNRS, Université de Montpellier, Montpellier, 34293, France.,Equipe labélisée Ligue Nationale Contre le Cancer, 34293, Montpellier, France
| | - Paulo E Santo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Maxime Bourguet
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, 67000, France
| | - Ana C F Paiva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | | | | | - Marie-Cécile Robert
- IGMM, CNRS, Université de Montpellier, Montpellier, 34293, France.,Equipe labélisée Ligue Nationale Contre le Cancer, 34293, Montpellier, France
| | - Claire Abeza
- IGMM, CNRS, Université de Montpellier, Montpellier, 34293, France.,Equipe labélisée Ligue Nationale Contre le Cancer, 34293, Montpellier, France
| | - Philippe Fabre
- CNRS, IMoPA, Université de Lorraine, Nancy, F-54000, France
| | - Philippe Fort
- CRBM, University of Montpellier, CNRS, 1919 Route de Mende, Montpellier, 34090, France
| | | | - Pedro M F Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | | | | | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, 67000, France
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | | | - Xavier Manival
- CNRS, IMoPA, Université de Lorraine, Nancy, F-54000, France.
| | - Edouard Bertrand
- IGMM, CNRS, Université de Montpellier, Montpellier, 34293, France. .,Equipe labélisée Ligue Nationale Contre le Cancer, 34293, Montpellier, France.
| |
Collapse
|
37
|
RPAP3 provides a flexible scaffold for coupling HSP90 to the human R2TP co-chaperone complex. Nat Commun 2018; 9:1501. [PMID: 29662061 PMCID: PMC5902453 DOI: 10.1038/s41467-018-03942-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/21/2018] [Indexed: 01/13/2023] Open
Abstract
The R2TP/Prefoldin-like co-chaperone, in concert with HSP90, facilitates assembly and cellular stability of RNA polymerase II, and complexes of PI3-kinase-like kinases such as mTOR. However, the mechanism by which this occurs is poorly understood. Here we use cryo-EM and biochemical studies on the human R2TP core (RUVBL1–RUVBL2–RPAP3–PIH1D1) which reveal the distinctive role of RPAP3, distinguishing metazoan R2TP from the smaller yeast equivalent. RPAP3 spans both faces of a single RUVBL ring, providing an extended scaffold that recruits clients and provides a flexible tether for HSP90. A 3.6 Å cryo-EM structure reveals direct interaction of a C-terminal domain of RPAP3 and the ATPase domain of RUVBL2, necessary for human R2TP assembly but absent from yeast. The mobile TPR domains of RPAP3 map to the opposite face of the ring, associating with PIH1D1, which mediates client protein recruitment. Thus, RPAP3 provides a flexible platform for bringing HSP90 into proximity with diverse client proteins. The R2TP/PFDL co-chaperone facilitates assembly of RNA polymerase II and PI3-kinase-like kinases such as mTOR by a so far unknown mechanism. Here authors provide the cryo-EM structure of human R2TP, which shows how RPAP3 serves as a flexible platform to recruit HSP90 to diverse client proteins.
Collapse
|
38
|
Caton EA, Kelly EK, Kamalampeta R, Kothe U. Efficient RNA pseudouridylation by eukaryotic H/ACA ribonucleoproteins requires high affinity binding and correct positioning of guide RNA. Nucleic Acids Res 2018; 46:905-916. [PMID: 29177505 PMCID: PMC5778458 DOI: 10.1093/nar/gkx1167] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022] Open
Abstract
H/ACA ribonucleoproteins (H/ACA RNPs) are responsible for introducing many pseudouridines into RNAs, but are also involved in other cellular functions. Utilizing a purified and reconstituted yeast H/ACA RNP system that is active in pseudouridine formation under physiological conditions, we describe here the quantitative characterization of H/ACA RNP formation and function. This analysis reveals a surprisingly tight interaction of H/ACA guide RNA with the Cbf5p-Nop10p-Gar1p trimeric protein complex whereas Nhp2p binds comparably weakly to H/ACA guide RNA. Substrate RNA is bound to H/ACA RNPs with nanomolar affinity which correlates with the GC content in the guide-substrate RNA base pairing. Both Nhp2p and the conserved Box ACA element in guide RNA are required for efficient pseudouridine formation, but not for guide RNA or substrate RNA binding. These results suggest that Nhp2p and the Box ACA motif indirectly facilitate loading of the substrate RNA in the catalytic site of Cbf5p by correctly positioning the upper and lower parts of the H/ACA guide RNA on the H/ACA proteins. In summary, this study provides detailed insight into the molecular mechanism of H/ACA RNPs.
Collapse
Affiliation(s)
- Evan A Caton
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Erin K Kelly
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Rajashekhar Kamalampeta
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Ute Kothe
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
39
|
Gauthier MS, Cloutier P, Coulombe B. Role of the PAQosome in Regulating Arrangement of Protein Quaternary Structure in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:25-36. [PMID: 30484151 DOI: 10.1007/978-3-030-00737-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The PAQosome, formerly known as the R2TP/PFDL complex, is an eleven-subunit cochaperone complex that assists HSP90 in the assembly of numerous large multisubunit protein complexes involved in essential cellular functions such as protein synthesis, ribosome biogenesis, transcription, splicing, and others. In this review, we discuss possible mechanisms of action and role of phosphorylation in the assembly of client complexes by the PAQosome as well as its potential role in cancer, ciliogenesis and ciliopathies.
Collapse
Affiliation(s)
| | | | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal, QC, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, QC, Canada.
| |
Collapse
|
40
|
Muñoz-Hernández H, Pal M, Rodríguez CF, Prodromou C, Pearl LH, Llorca O. Advances on the Structure of the R2TP/Prefoldin-like Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:73-83. [DOI: 10.1007/978-3-030-00737-9_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Bizarro J, Meier UT. Inherited SHQ1 mutations impair interaction with NAP57/dyskerin, a major target in dyskeratosis congenita. Mol Genet Genomic Med 2017; 5:805-808. [PMID: 29178645 PMCID: PMC5702568 DOI: 10.1002/mgg3.314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The inherited bone marrow failure syndrome dyskeratosis congenita (DC) is most frequently caused by mutations in DKC1 (MIM# 300126), the gene encoding NAP57 (aka dyskerin). The typically missense mutations modulate the interaction of NAP57 with its chaperone SHQ1, but no DC mutations have been identified in SHQ1 (MIM# 613663). Here, we report on two compound heterozygous mutations in SHQ1 in a patient with a severe neurological disorder including cerebellar degeneration. METHODS The SHQ1 mutations were identified by patient exome sequencing. The impact of the mutations was assessed in pulldown assays with recombinant NAP57. RESULTS The SHQ1 mutations were the only set of mutations consistent with an autosomal recessive mode of inheritance. The mutations map to the SHQ1-NAP57 interface and impair the interaction of the recombinant SHQ1 variants with NAP57. CONCLUSION Intrauterine growth retardation and the neurological phenotype of the patient are reminiscent of the severe clinical variant of DC, the Hoyeraal-Hreidarsson syndrome (HH). Hence, SHQ1 screening may be warranted in patients with inherited bone marrow failure syndromes.
Collapse
Affiliation(s)
- Jonathan Bizarro
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461
| | - U Thomas Meier
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461
| |
Collapse
|
42
|
Ibáñez-Cabellos JS, Pérez-Machado G, Seco-Cervera M, Berenguer-Pascual E, García-Giménez JL, Pallardó FV. Acute telomerase components depletion triggers oxidative stress as an early event previous to telomeric shortening. Redox Biol 2017; 14:398-408. [PMID: 29055871 PMCID: PMC5650655 DOI: 10.1016/j.redox.2017.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/13/2023] Open
Abstract
Loss of function of dyskerin (DKC1), NOP10 and TIN2 are responsible for different inheritance patterns of Dyskeratosis congenita (DC; ORPHA1775). They are key components of telomerase (DKC1 and NOP10) and shelterin (TIN2), and play an important role in telomere homeostasis. They participate in several fundamental cellular processes by contributing to Dyskeratosis congenita through mechanisms that are not fully understood. Presence of oxidative stress was postulated to result from telomerase ablation. However, the resulting disturbed redox status can promote telomere attrition by generating a vicious circle, which promotes cellular senescence. This fact prompted us to study if acute loss of DKC1, NOP10 and TINF2 can promote redox disequilibrium as an early event when telomere shortening has not yet taken place. We generated siRNA-mediated (DKC1, NOP10 and TINF2) cell lines by RNA interference, which was confirmed by mRNA and protein expression analyses. No telomere shortening occurred in any silenced cell line. Depletion of H/ACA ribonucleoproteins DKC1 and NOP10 diminished telomerase activity via TERC down-regulation, and produced alterations in pseudouridylation and ribosomal biogenesis. An increase in the GSSG/GSH ratio, carbonylated proteins and oxidized peroxiredoxin-6 was observed, in addition to MnSOD and TRX1 overexpression in the siRNA DC cells. Likewise, high PARylation levels and high PARP1 protein expression were detected. In contrast, the silenced TINF2 cells did not alter any evaluated oxidative stress marker. Altogether these findings lead us to conclude that loss of DKC1 and NOP10 functions induces oxidative stress in a telomere shortening independent manner. Transient silencing of DKC1 and NOP10 genes produce oxidative stress. Cells depleted of DKC1 and NOP10 are susceptible to DNA damage. Acute DKC1 and NOP10 depletion disrupts RNA maturation. Oxidative stress is an early event previous to telomere shortening.
Collapse
Affiliation(s)
- José Santiago Ibáñez-Cabellos
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| | - Giselle Pérez-Machado
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| | - Marta Seco-Cervera
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| | - Ester Berenguer-Pascual
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| |
Collapse
|
43
|
Tian S, Yu G, He H, Zhao Y, Liu P, Marshall AG, Demeler B, Stagg SM, Li H. Pih1p-Tah1p Puts a Lid on Hexameric AAA+ ATPases Rvb1/2p. Structure 2017; 25:1519-1529.e4. [PMID: 28919439 PMCID: PMC6625358 DOI: 10.1016/j.str.2017.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/11/2017] [Accepted: 08/07/2017] [Indexed: 11/21/2022]
Abstract
The Saccharomyces cerevisiae (Sc) R2TP complex affords an Hsp90-mediated and nucleotide-driven chaperone activity to proteins of small ribonucleoprotein particles (snoRNPs). The current lack of structural information on the ScR2TP complex, however, prevents a mechanistic understanding of this biological process. We characterized the structure of the ScR2TP complex made up of two AAA+ ATPases, Rvb1/2p, and two Hsp90 binding proteins, Tah1p and Pih1p, and its interaction with the snoRNP protein Nop58p by a combination of analytical ultracentrifugation, isothermal titration calorimetry, chemical crosslinking, hydrogen-deuterium exchange, and cryoelectron microscopy methods. We find that Pih1p-Tah1p interacts with Rvb1/2p cooperatively through the nucleotide-sensitive domain of Rvb1/2p. Nop58p further binds Pih1p-Tahp1 on top of the dome-shaped R2TP. Consequently, nucleotide binding releases Pih1p-Tah1p from Rvb1/2p, which offers a mechanism for nucleotide-driven binding and release of snoRNP intermediates.
Collapse
Affiliation(s)
- Shaoxiong Tian
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Ge Yu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Huan He
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Yu Zhao
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Peilu Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Alan G Marshall
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; Ion Cyclotron Resonance Program, The National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Borries Demeler
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Scott M Stagg
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Hong Li
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
44
|
von Morgen P, Burdova K, Flower TG, O'Reilly NJ, Boulton SJ, Smerdon SJ, Macurek L, Hořejší Z. MRE11 stability is regulated by CK2-dependent interaction with R2TP complex. Oncogene 2017; 36:4943-4950. [PMID: 28436950 PMCID: PMC5531254 DOI: 10.1038/onc.2017.99] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/05/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
Abstract
The MRN (MRE11-RAD50-NBS1) complex is essential for repair of DNA double-strand breaks and stalled replication forks. Mutations of the MRN complex subunit MRE11 cause the hereditary cancer-susceptibility disease ataxia-telangiectasia-like disorder (ATLD). Here we show that MRE11 directly interacts with PIH1D1, a subunit of heat-shock protein 90 cochaperone R2TP complex, which is required for the assembly of large protein complexes, such as RNA polymerase II, small nucleolar ribonucleoproteins and mammalian target of rapamycin complex 1. The MRE11-PIH1D1 interaction is dependent on casein kinase 2 (CK2) phosphorylation of two acidic sequences within the MRE11 C terminus containing serines 558/561 and 688/689. Conversely, the PIH1D1 phospho-binding domain PIH-N is required for association with MRE11 phosphorylated by CK2. Consistent with these findings, depletion of PIH1D1 resulted in MRE11 destabilization and affected DNA-damage repair processes dependent on MRE11. Additionally, mutations of serines 688/689, which abolish PIH1D1 binding, also resulted in decreased MRE11 stability. As depletion of R2TP frequently leads to instability of its substrates and as truncation mutation of MRE11 lacking serines 688/689 leads to decreased levels of the MRN complex both in ATLD patients and an ATLD mouse model, our results suggest that the MRN complex is a novel R2TP complex substrate and that their interaction is regulated by CK2 phosphorylation.
Collapse
Affiliation(s)
- P von Morgen
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - K Burdova
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - T G Flower
- Structural Biology of DNA-damage Signalling Laboratory, The Francis Crick Institute, London,UK
| | - N J O'Reilly
- Peptide Chemistry, The Francis Crick Institute, London, UK
| | - S J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - S J Smerdon
- Structural Biology of DNA-damage Signalling Laboratory, The Francis Crick Institute, London,UK
| | - L Macurek
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Z Hořejší
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Centre, Charterhouse Square, London, UK
| |
Collapse
|
45
|
Mao YQ, Houry WA. The Role of Pontin and Reptin in Cellular Physiology and Cancer Etiology. Front Mol Biosci 2017; 4:58. [PMID: 28884116 PMCID: PMC5573869 DOI: 10.3389/fmolb.2017.00058] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022] Open
Abstract
Pontin (RUVBL1, TIP49, TIP49a, Rvb1) and Reptin (RUVBL2, TIP48, TIP49b, Rvb2) are highly conserved ATPases of the AAA+ (ATPases Associated with various cellular Activities) superfamily and are involved in various cellular processes that are important for oncogenesis. First identified as being upregulated in hepatocellular carcinoma and colorectal cancer, their overexpression has since been shown in multiple cancer types such as breast, lung, gastric, esophageal, pancreatic, kidney, bladder as well as lymphatic, and leukemic cancers. However, their exact functions are still quite unknown as they interact with many molecular complexes with vastly different downstream effectors. Within the nucleus, Pontin and Reptin participate in the TIP60 and INO80 complexes important for chromatin remodeling. Although not transcription factors themselves, Pontin and Reptin modulate the transcriptional activities of bona fide proto-oncogenes such as MYC and β-catenin. They associate with proteins involved in DNA damage repair such as PIKK complexes as well as with the core complex of Fanconi anemia pathway. They have also been shown to be important for cell cycle progression, being involved in assembly of telomerase, mitotic spindle, RNA polymerase II, and snoRNPs. When the two ATPases localize to the cytoplasm, they were reported to promote cancer cell invasion and metastasis. Due to their various roles in carcinogenesis, it is not surprising that Pontin and Reptin are proving to be important biomarkers for diagnosis and prognosis of various cancers. They are also current targets for the development of new therapeutic anticancer drugs.
Collapse
Affiliation(s)
- Yu-Qian Mao
- Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - Walid A Houry
- Department of Biochemistry, University of TorontoToronto, ON, Canada.,Department of Chemistry, University of TorontoToronto, ON, Canada
| |
Collapse
|
46
|
Rivera-Calzada A, Pal M, Muñoz-Hernández H, Luque-Ortega JR, Gil-Carton D, Degliesposti G, Skehel JM, Prodromou C, Pearl LH, Llorca O. The Structure of the R2TP Complex Defines a Platform for Recruiting Diverse Client Proteins to the HSP90 Molecular Chaperone System. Structure 2017. [PMID: 28648606 PMCID: PMC5501727 DOI: 10.1016/j.str.2017.05.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The R2TP complex, comprising the Rvb1p-Rvb2p AAA-ATPases, Tah1p, and Pih1p in yeast, is a specialized Hsp90 co-chaperone required for the assembly and maturation of multi-subunit complexes. These include the small nucleolar ribonucleoproteins, RNA polymerase II, and complexes containing phosphatidylinositol-3-kinase-like kinases. The structure and stoichiometry of yeast R2TP and how it couples to Hsp90 are currently unknown. Here, we determine the 3D organization of yeast R2TP using sedimentation velocity analysis and cryo-electron microscopy. The 359-kDa complex comprises one Rvb1p/Rvb2p hetero-hexamer with domains II (DIIs) forming an open basket that accommodates a single copy of Tah1p-Pih1p. Tah1p-Pih1p binding to multiple DII domains regulates Rvb1p/Rvb2p ATPase activity. Using domain dissection and cross-linking mass spectrometry, we identified a unique region of Pih1p that is essential for interaction with Rvb1p/Rvb2p. These data provide a structural basis for understanding how R2TP couples an Hsp90 dimer to a diverse set of client proteins and complexes. Rvb1p-Rvb2p forms a hetero-hexamer with DII domains recruiting a single Tah1p-Pih1p Residues 230–250 in Pih1p are essential to bind Rvb1p-Rvb2p 3D structure of yeast R2TP couples an Hsp90 dimer to client proteins Tah1p-Pih1p binding to flexible DII domains stimulates Rvb1p-Rvb2p ATPase activity
Collapse
Affiliation(s)
- Angel Rivera-Calzada
- Centro de Investigaciones Biológicas (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Mohinder Pal
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Hugo Muñoz-Hernández
- Centro de Investigaciones Biológicas (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Juan R Luque-Ortega
- Centro de Investigaciones Biológicas (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - David Gil-Carton
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | | | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Chrisostomos Prodromou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Laurence H Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Oscar Llorca
- Centro de Investigaciones Biológicas (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
47
|
Massenet S, Bertrand E, Verheggen C. Assembly and trafficking of box C/D and H/ACA snoRNPs. RNA Biol 2017; 14:680-692. [PMID: 27715451 PMCID: PMC5519232 DOI: 10.1080/15476286.2016.1243646] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/09/2016] [Accepted: 09/27/2016] [Indexed: 12/23/2022] Open
Abstract
Box C/D and box H/ACA snoRNAs are abundant non-coding RNAs that localize in the nucleolus and mostly function as guides for nucleotide modifications. While a large pool of snoRNAs modifies rRNAs, an increasing number of snoRNAs could also potentially target mRNAs. ScaRNAs belong to a family of specific RNAs that localize in Cajal bodies and that are structurally similar to snoRNAs. Most scaRNAs are involved in snRNA modification, while telomerase RNA, which contains H/ACA motifs, functions in telomeric DNA synthesis. In this review, we describe how box C/D and H/ACA snoRNAs are processed and assembled with core proteins to form functional RNP particles. Their biogenesis involve several transport factors that first direct pre-snoRNPs to Cajal bodies, where some processing steps are believed to take place, and then to nucleoli. Assembly of core proteins involves the HSP90/R2TP chaperone-cochaperone system for both box C/D and H/ACA RNAs, but also several factors specific for each family. These assembly factors chaperone unassembled core proteins, regulate the formation and disassembly of pre-snoRNP intermediates, and control the activity of immature particles. The AAA+ ATPase RUVBL1 and RUVBL2 belong to the R2TP co-chaperones and play essential roles in snoRNP biogenesis, as well as in the formation of other macro-molecular complexes. Despite intensive research, their mechanisms of action are still incompletely understood.
Collapse
Affiliation(s)
- Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS, 9 Avenue de la forêt de Haye, 54505 Vandoeuvre-les-Nancy Cedex, France, Université de Lorraine, Campus Biologie –Santé, CS 50184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Céline Verheggen
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
48
|
Malinová A, Cvačková Z, Matějů D, Hořejší Z, Abéza C, Vandermoere F, Bertrand E, Staněk D, Verheggen C. Assembly of the U5 snRNP component PRPF8 is controlled by the HSP90/R2TP chaperones. J Cell Biol 2017; 216:1579-1596. [PMID: 28515276 PMCID: PMC5461031 DOI: 10.1083/jcb.201701165] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/22/2017] [Accepted: 04/04/2017] [Indexed: 12/23/2022] Open
Abstract
The pre-mRNA splicing factor PRPF8 is a crucial component of the U5 snRNP. Using quantitative proteomics, Malinová et al. show that assembly of the U5 snRNP is controlled by the HSP90/R2TP chaperones and that Retinitis pigmentosa–associated mutations in PRPF8 impair PRPF8 quality control and U5 snRNP chaperone-mediated assembly. Splicing is catalyzed by the spliceosome, a complex of five major small nuclear ribonucleoprotein particles (snRNPs). The pre-mRNA splicing factor PRPF8 is a crucial component of the U5 snRNP, and together with EFTUD2 and SNRNP200, it forms a central module of the spliceosome. Using quantitative proteomics, we identified assembly intermediates containing PRPF8, EFTUD2, and SNRNP200 in association with the HSP90/R2TP complex, its ZNHIT2 cofactor, and additional proteins. HSP90 and R2TP bind unassembled U5 proteins in the cytoplasm, stabilize them, and promote the formation of the U5 snRNP. We further found that PRPF8 mutants causing Retinitis pigmentosa assemble less efficiently with the U5 snRNP and bind more strongly to R2TP, with one mutant retained in the cytoplasm in an R2TP-dependent manner. We propose that the HSP90/R2TP chaperone system promotes the assembly of a key module of U5 snRNP while assuring the quality control of PRPF8. The proteomics data further reveal new interactions between R2TP and the tuberous sclerosis complex (TSC), pointing to a potential link between growth signals and the assembly of key cellular machines.
Collapse
Affiliation(s)
- Anna Malinová
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic.,Faculty of Science, Charles University in Prague, 128 00 Prague, Czech Republic
| | - Zuzana Cvačková
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Daniel Matějů
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Zuzana Hořejší
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Claire Abéza
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, University of Montpellier, 34293 Montpellier, France
| | - Franck Vandermoere
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, University of Montpellier, 34090 Montpellier, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, University of Montpellier, 34293 Montpellier, France
| | - David Staněk
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Céline Verheggen
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, University of Montpellier, 34293 Montpellier, France
| |
Collapse
|
49
|
Yuan XS, Cao LX, Hu YJ, Bao FC, Wang ZT, Cao JL, Yuan P, Lv W, Hu J. Clinical, cellular, and bioinformatic analyses reveal involvement of WRAP53 overexpression in carcinogenesis of lung adenocarcinoma. Tumour Biol 2017; 39:1010428317694309. [PMID: 28347242 DOI: 10.1177/1010428317694309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung cancer, of which non-small cell lung cancer accounts for 80%, remains a leading cause of cancer-related mortality and morbidity worldwide. Our study revealed that the expression of WD repeat containing antisense to P53 (WRAP53) is higher in lung-adenocarcinoma specimens than in specimens from adjacent non-tumor tissues. The prevalence of WRAP53 overexpression was significantly higher in patients with tumor larger than 3.0 cm than in patients with tumor smaller than 3.0 cm. The depletion of WRAP53 inhibits the proliferation of lung-adenocarcinoma A549 and SPC-A-1 cells via G1/S cell-cycle arrest. Several proteins interacting with WRAP53 were identified through co-immunoprecipitation and liquid chromatography/mass spectrometry. These key proteins indicated previously undiscovered functions of WRAP53. These observations strongly suggested that WRAP53 should be considered a promising target in the prevention or treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiao-Shuai Yuan
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Long-Xiang Cao
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Ye-Ji Hu
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Fei-Chao Bao
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Zhi-Tian Wang
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Jin-Lin Cao
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Ping Yuan
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Wang Lv
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Jian Hu
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
Yuan XS, Wang ZT, Hu YJ, Bao FC, Yuan P, Zhang C, Cao JL, Lv W, Hu J. Downregulation of RUVBL1 inhibits proliferation of lung adenocarcinoma cells by G1/S phase cell cycle arrest via multiple mechanisms. Tumour Biol 2016; 37:10.1007/s13277-016-5452-9. [PMID: 27722820 DOI: 10.1007/s13277-016-5452-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023] Open
Abstract
Lung cancer remains a leading cause of cancer-related mortality and morbidity worldwide, of which non-small cell lung cancer (NSCLC) accounts for 80 %. RUVBL1 is a highly conserved eukaryotic AAA+ adenosine 5'-triphosphatase (ATPase) that has many functions highly relevant to cancer. We therefore attempted to determine the potential role of RUVBL1 in the biogenesis of lung adenocarcinoma and obtained some interesting results. Our study revealed that RUVBL1 expression was higher in lung adenocarcinoma specimens than in those of adjacent non-tumor tissues and in lung cancer cell lines than in normal lung cell lines. RUVBL1 knockdown via siRNA reduced proliferation and caused G1/S phase cell cycle arrest in lung adenocarcinoma cell lines. The G1/S phase cell cycle arrest triggered by RUVBL1 downregulation could be attributed, at least in part, to repression of the AKT/GSK-3β/cyclin D1 pathway and probably to the activation of IRE1α-mediated endoplasmic reticulum (ER) stress. We thus demonstrated for the first time that a knockdown of RUVBL1 could effectively inhibit the proliferation of lung adenocarcinoma A549 and H292 cells through the induction of G1/S phase cell cycle arrest via multiple mechanisms. These observations strongly suggested that RUVBL1 should be considered a promising target for the prevention or therapy of lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiao-Shuai Yuan
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, No.79, Qingchun Road, Hangzhou, China
| | - Zhi-Tian Wang
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, No.79, Qingchun Road, Hangzhou, China
| | - Ye-Ji Hu
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, No.79, Qingchun Road, Hangzhou, China
| | - Fei-Chao Bao
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, No.79, Qingchun Road, Hangzhou, China
| | - Ping Yuan
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, No.79, Qingchun Road, Hangzhou, China
| | - Chong Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, No.79, Qingchun Road, Hangzhou, China
| | - Jin-Lin Cao
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, No.79, Qingchun Road, Hangzhou, China
| | - Wang Lv
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, No.79, Qingchun Road, Hangzhou, China
| | - Jian Hu
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, No.79, Qingchun Road, Hangzhou, China.
| |
Collapse
|