1
|
Behera A, Panigrahi GK, Sahoo A. Nonsense-Mediated mRNA Decay in Human Health and Diseases: Current Understanding, Regulatory Mechanisms and Future Perspectives. Mol Biotechnol 2024:10.1007/s12033-024-01267-7. [PMID: 39264527 DOI: 10.1007/s12033-024-01267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/24/2024] [Indexed: 09/13/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that is conserved across all eukaryotes ensuring the quality of transcripts by targeting messenger RNA (mRNA) harbouring premature stop codons. It regulates the gene expression by targeting aberrant mRNA carrying pre-termination codons (PTCs) and eliminates C-terminal truncated proteins. NMD distinguishes aberrant and non-aberrant transcript by looking after long 3' UTRs and exon-junction complex (EJC) downstream of stop codon that indicate the presence of PTC. Therefore, NMD modulates cellular surveillance and eliminates the truncated proteins but if the PTC escapes the surveillance pathway it can lead to potential negative phenotype resulting in genetic diseases. The alternative splicing also contributes in formation of NMD-sensitive isoforms by introducing PTC. NMD plays a complex role in cancer, it can either aggravate or downregulates the tumour. Some tumours agitate NMD to deteriorate mRNAs encoding tumour suppressor proteins, stress response proteins and neoantigens. In other case, tumours suppress the NMD to encourage the expression of oncoproteins for tumour growth and survival. This mechanism augmented in the development of new therapeutics by PTC read-through mechanism and personalized medicine. Detailed studies on NMD surveillance will possibly lead towards development of strategies for improving human health aligning with United Nations sustainable development goals (SDG 3: Good health and well-being). The potential therapeutic applications of NMD pose a challenge in terms of safe and effective modulation. Understanding the complexities of NMD regulation and its interaction with other cellular processes can lead to the development of new interventions for various diseases.
Collapse
Affiliation(s)
- Amrita Behera
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India
| | - Gagan Kumar Panigrahi
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India.
| | - Annapurna Sahoo
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India.
| |
Collapse
|
2
|
Yellamaty R, Sharma S. Critical Cellular Functions and Mechanisms of Action of the RNA Helicase UAP56. J Mol Biol 2024; 436:168604. [PMID: 38729260 PMCID: PMC11168752 DOI: 10.1016/j.jmb.2024.168604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Posttranscriptional maturation and export from the nucleus to the cytoplasm are essential steps in the normal processing of many cellular RNAs. The RNA helicase UAP56 (U2AF associated protein 56; also known as DDX39B) has emerged as a critical player in facilitating and co-transcriptionally linking these steps. Originally identified as a helicase involved in pre-mRNA splicing, UAP56 has been shown to facilitate formation of the A complex during spliceosome assembly. Additionally, it has been found to be critical for interactions between components of the exon junction and transcription and export complexes to promote the loading of export receptors. Although it appears to be structurally similar to other helicase superfamily 2 members, UAP56's ability to interact with multiple different protein partners allows it to perform its various cellular functions. Herein, we describe the structure-activity relationship studies that identified protein interactions of UAP56 and its human paralog URH49 (UAP56-related helicase 49; also known as DDX39A) and are beginning to reveal molecular mechanisms by which interacting proteins and substrate RNAs may regulate these helicases. We also provide an overview of reports that have demonstrated less well-characterized roles for UAP56, including R-loop resolution and telomere maintenance. Finally, we discuss studies that indicate a potential pathogenic effect of UAP56 in the development of autoimmune diseases and cancer, and identify the association of somatic and genetic mutations in UAP56 with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ryan Yellamaty
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Shalini Sharma
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA.
| |
Collapse
|
3
|
Saha U, Gaine R, Paira S, Das S, Das B. RRM1 and PAB domains of translation initiation factor eIF4G (Tif4631p) play a crucial role in the nuclear degradation of export-defective mRNAs in Saccharomyces cerevisiae. FEBS J 2024; 291:897-926. [PMID: 37994298 DOI: 10.1111/febs.17016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/02/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
In Saccharomyces cerevisiae, the CBC-Tif4631p-dependent exosomal targeting (CTEXT) complex consisting of Cbc1/2p, Tif4631p and Upf3p promotes the exosomal degradation of aberrantly long 3'-extended, export-defective transcripts and a small group of normal (termed 'special') mRNAs. We carried out a systematic analysis of all previously characterized functional domains of the major CTEXT component Tif4631p by deleting each of them and interrogating their involvement in the nuclear surveillance of abnormally long 3'-extended and export-defective messages. Our analyses show that the N-terminal RNA recognition motif 1 (RRM1) and poly(A)-binding protein (PAB) domains of Tif4631p, spanning amino acid residues, 1-82 and 188-299 in its primary structure, respectively, play a crucial role in degrading these aberrant messages. Furthermore, the physical association of the nuclear exosome with the altered/variant CTEXT complex harboring any of the mutant Tif4631p proteins lacking either the RRM1 or PAB domain becomes abolished. This finding indicates that the association between CTEXT and the exosome is accomplished via interaction between these Tif4631p domains with the major exosome component, Rrp6p. Abolition of interaction between altered CTEXT (harboring any of the RRM1/PAB-deleted versions of Tif4631p) and the exosome further leads to the impaired recruitment of the RNA targets to the Rrp6p subunit of the exosome carried out by the RRM1/PAB domains of Tif4631p. When analyzing the Tif4631p-interacting proteins, we identified a DEAD-box RNA helicase (Dbp2p), as an interacting partner that turned out to be a previously unknown component of CTEXT. The present study provides a more complete description of the CTEXT complex and offers insight into the functional relationship of this complex with the nuclear exosome.
Collapse
Grants
- BT/PR27917/BRB/10/1673/2018 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR6078/BRB/10/1114/2012 Department of Biotechnology, Ministry of Science and Technology, India
- 38/1427/16/EMR-II Council of Scientific and Industrial Research, India
- 38/1280/11/EMR-II Council of Scientific and Industrial Research, India
- SR/SO/BB/0066/2012 Department of Science and Technology, Ministry of Science and Technology, India
- Department of Science & Technology and Biotechnology, Government of West Bengal
- SR/WOS-A/LS-1067/2014 Department of Science and Technology, India, WOS-A
Collapse
Affiliation(s)
- Upasana Saha
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Rajlaxmi Gaine
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Sunirmal Paira
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Satarupa Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|
4
|
Das R, Panigrahi GK. Messenger RNA Surveillance: Current Understanding, Regulatory Mechanisms, and Future Implications. Mol Biotechnol 2024:10.1007/s12033-024-01062-4. [PMID: 38411790 DOI: 10.1007/s12033-024-01062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved surveillance mechanism in eukaryotes primarily deployed to ensure RNA quality control by eliminating aberrant transcripts and also involved in modulating the expression of several physiological transcripts. NMD, the mRNA surveillance pathway, is a major form of gene regulation in eukaryotes. NMD serves as one of the most significant quality control mechanisms as it primarily scans the newly synthesized transcripts and differentiates the aberrant and non-aberrant transcripts. The synthesis of truncated proteins is restricted, which would otherwise lead to cellular dysfunctions. The up-frameshift factors (UPFs) play a central role in executing the NMD event, largely by recognizing and recruiting multiple protein factors that result in the decay of non-physiological mRNAs. NMD exhibits astounding variability in its ability across eukaryotes in an array of pathological and physiological contexts. The detailed understanding of NMD and the underlying molecular mechanisms remains blurred. This review outlines our current understanding of NMD, in regulating multifaceted cellular events during development and disease. It also attempts to identify unanswered questions that deserve further investigation.
Collapse
Affiliation(s)
- Rutupurna Das
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India
| | - Gagan Kumar Panigrahi
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India.
| |
Collapse
|
5
|
Arul Nambi Rajan A, Asada R, Montpetit B. Gle1 is required for tRNA to stimulate Dbp5 ATPase activity in vitro and promote Dbp5-mediated tRNA export in vivo in Saccharomyces cerevisiae. eLife 2024; 12:RP89835. [PMID: 38189406 PMCID: PMC10945473 DOI: 10.7554/elife.89835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Cells must maintain a pool of processed and charged transfer RNAs (tRNA) to sustain translation capacity and efficiency. Numerous parallel pathways support the processing and directional movement of tRNA in and out of the nucleus to meet this cellular demand. Recently, several proteins known to control messenger RNA (mRNA) transport were implicated in tRNA export. The DEAD-box Protein 5, Dbp5, is one such example. In this study, genetic and molecular evidence demonstrates that Dbp5 functions parallel to the canonical tRNA export factor Los1. In vivo co-immunoprecipitation data further shows Dbp5 is recruited to tRNA independent of Los1, Msn5 (another tRNA export factor), or Mex67 (mRNA export adaptor), which contrasts with Dbp5 recruitment to mRNA that is abolished upon loss of Mex67 function. However, as with mRNA export, overexpression of Dbp5 dominant-negative mutants indicates a functional ATPase cycle and that binding of Dbp5 to Gle1 is required by Dbp5 to direct tRNA export. Biochemical characterization of the Dbp5 catalytic cycle demonstrates the direct interaction of Dbp5 with tRNA (or double-stranded RNA) does not activate Dbp5 ATPase activity, rather tRNA acts synergistically with Gle1 to fully activate Dbp5. These data suggest a model where Dbp5 directly binds tRNA to mediate export, which is spatially regulated via Dbp5 ATPase activation at nuclear pore complexes by Gle1.
Collapse
Affiliation(s)
- Arvind Arul Nambi Rajan
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, DavisDavisUnited States
| | - Ryuta Asada
- Department of Viticulture and Enology, University of California, DavisDavisUnited States
| | - Ben Montpetit
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, DavisDavisUnited States
- Department of Viticulture and Enology, University of California, DavisDavisUnited States
| |
Collapse
|
6
|
Lang N, Jagtap PKA, Hennig J. Regulation and mechanisms of action of RNA helicases. RNA Biol 2024; 21:24-38. [PMID: 39435974 PMCID: PMC11498004 DOI: 10.1080/15476286.2024.2415801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
RNA helicases are an evolutionary conserved class of nucleoside triphosphate dependent enzymes found in all kingdoms of life. Their cellular functions range from transcription regulation up to maintaining genomic stability and viral defence. As dysregulation of RNA helicases has been shown to be involved in several cancers and various diseases, RNA helicases are potential therapeutic targets. However, for selective targeting of a specific RNA helicase, it is crucial to develop a detailed understanding about its dynamics and regulation on a molecular and structural level. Deciphering unique features of specific RNA helicases is of fundamental importance not only for future drug development but also to deepen our understanding of RNA helicase regulation and function in cellular processes. In this review, we discuss recent insights into regulation mechanisms of RNA helicases and highlight models which demonstrate the interplay between helicase structure and their functions.
Collapse
Affiliation(s)
- Nina Lang
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Pravin Kumar Ankush Jagtap
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Janosch Hennig
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Rajan AAN, Asada R, Montpetit B. Gle1 is required for tRNA to stimulate Dbp5 ATPase activity in vitro and to promote Dbp5 mediated tRNA export in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547072. [PMID: 37425677 PMCID: PMC10327206 DOI: 10.1101/2023.06.29.547072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cells must maintain a pool of processed and charged transfer RNAs (tRNA) to sustain translation capacity and efficiency. Numerous parallel pathways support the processing and directional movement of tRNA in and out of the nucleus to meet this cellular demand. Recently, several proteins known to control messenger RNA (mRNA) transport were implicated in tRNA export. The DEAD-box Protein 5, Dbp5, is one such example. In this study, genetic and molecular evidence demonstrates that Dbp5 functions parallel to the canonical tRNA export factor Los1. In vivo co-immunoprecipitation data further shows Dbp5 is recruited to tRNA independent of Los1, Msn5 (another tRNA export factor), or Mex67 (mRNA export adaptor), which contrasts with Dbp5 recruitment to mRNA that is abolished upon loss of Mex67 function. However, as with mRNA export, overexpression of Dbp5 dominant-negative mutants indicates a functional ATPase cycle and that binding of Dbp5 to Gle1 is required by Dbp5 to direct tRNA export. Biochemical characterization of the Dbp5 catalytic cycle demonstrates the direct interaction of Dbp5 with tRNA (or double stranded RNA) does not activate Dbp5 ATPase activity, rather tRNA acts synergistically with Gle1 to fully activate Dbp5. These data suggest a model where Dbp5 directly binds tRNA to mediate export, which is spatially regulated via Dbp5 ATPase activation at nuclear pore complexes by Gle1.
Collapse
Affiliation(s)
- Arvind Arul Nambi Rajan
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, CA, USA
| | - Ryuta Asada
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Ben Montpetit
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, CA, USA
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| |
Collapse
|
8
|
Xie Y, Gao S, Zhang K, Bhat P, Clarke BP, Batten K, Mei M, Gazzara M, Shay JW, Lynch KW, Angelos AE, Hill PS, Ivey AL, Fontoura BMA, Ren Y. Structural basis for high-order complex of SARNP and DDX39B to facilitate mRNP assembly. Cell Rep 2023; 42:112988. [PMID: 37578863 PMCID: PMC10508174 DOI: 10.1016/j.celrep.2023.112988] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/10/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023] Open
Abstract
mRNA in eukaryotic cells is packaged into highly compacted ribonucleoprotein particles (mRNPs) in the nucleus and exported to the cytoplasm for translation. mRNP packaging and export require the evolutionarily conserved transcription-export (TREX) complex. TREX facilitates loading of various RNA-binding proteins on mRNA through the action of its DDX39B subunit. SARNP (Tho1 [transcriptional defect of Hpr1 by overexpression 1] in yeast) is shown to interact with DDX39B and affect mRNA export. The molecular mechanism of how SARNP recognizes DDX39B and functions in mRNP assembly is unclear. Here, we determine the crystal structure of a Tho1/DDX39B/RNA complex, revealing a multivalent interaction mediated by tandem DDX39B interacting motifs in SARNP/Tho1. The high-order complex of SARNP and DDX39B is evolutionarily conserved, and human SARNP can engage with five DDX39B molecules. RNA sequencing (RNA-seq) from SARNP knockdown cells shows the most affected RNAs in export are GC rich. Our work suggests the role of the high-order SARNP/DDX39B/RNA complex in mRNP assembly and export.
Collapse
Affiliation(s)
- Yihu Xie
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Shengyan Gao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Ke Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Prasanna Bhat
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Bradley P Clarke
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Kimberly Batten
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Menghan Mei
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Matthew Gazzara
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexia E Angelos
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Pate S Hill
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Austin L Ivey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Beatriz M A Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA.
| | - Yi Ren
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| |
Collapse
|
9
|
Khreiss A, Capeyrou R, Lebaron S, Albert B, Bohnsack K, Bohnsack M, Henry Y, Henras A, Humbert O. The DEAD-box protein Dbp6 is an ATPase and RNA annealase interacting with the peptidyl transferase center (PTC) of the ribosome. Nucleic Acids Res 2023; 51:744-764. [PMID: 36610750 PMCID: PMC9881158 DOI: 10.1093/nar/gkac1196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/21/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Ribosomes are ribozymes, hence correct folding of the rRNAs during ribosome biogenesis is crucial to ensure catalytic activity. RNA helicases, which can modulate RNA-RNA and RNA/protein interactions, are proposed to participate in rRNA tridimensional folding. Here, we analyze the biochemical properties of Dbp6, a DEAD-box RNA helicase required for the conversion of the initial 90S pre-ribosomal particle into the first pre-60S particle. We demonstrate that in vitro, Dbp6 shows ATPase as well as annealing and clamping activities negatively regulated by ATP. Mutations in Dbp6 core motifs involved in ATP binding and ATP hydrolysis are lethal and impair Dbp6 ATPase activity but increase its RNA binding and RNA annealing activities. These data suggest that correct regulation of these activities is important for Dbp6 function in vivo. Using in vivo cross-linking (CRAC) experiments, we show that Dbp6 interacts with 25S rRNA sequences located in the 5' domain I and in the peptidyl transferase center (PTC), and also crosslinks to snoRNAs hybridizing to the immature PTC. We propose that the ATPase and RNA clamping/annealing activities of Dbp6 modulate interactions of snoRNAs with the immature PTC and/or contribute directly to the folding of this region.
Collapse
Affiliation(s)
- Ali Khreiss
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Régine Capeyrou
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Simon Lebaron
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Benjamin Albert
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany,Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Yves Henry
- Correspondence may also be addressed to Yves Henry. Tel: +33 5 61 33 59 53; Fax: +33 5 61 33 58 86;
| | - Anthony K Henras
- Correspondence may also be addressed to Anthony Henras. Tel: +33 5 61 33 59 55; Fax: +33 5 61 33 58 86;
| | - Odile Humbert
- To whom correspondence should be addressed. Tel: +33 5 61 33 59 52; Fax: +33 5 61 33 58 86;
| |
Collapse
|
10
|
Mailliot J, Vivoli-Vega M, Schaffitzel C. No-nonsense: insights into the functional interplay of nonsense-mediated mRNA decay factors. Biochem J 2022; 479:973-993. [PMID: 35551602 PMCID: PMC9162471 DOI: 10.1042/bcj20210556] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Nonsense-mediated messenger RNA decay (NMD) represents one of the main surveillance pathways used by eukaryotic cells to control the quality and abundance of mRNAs and to degrade viral RNA. NMD recognises mRNAs with a premature termination codon (PTC) and targets them to decay. Markers for a mRNA with a PTC, and thus NMD, are a long a 3'-untranslated region and the presence of an exon-junction complex (EJC) downstream of the stop codon. Here, we review our structural understanding of mammalian NMD factors and their functional interplay leading to a branched network of different interconnected but specialised mRNA decay pathways. We discuss recent insights into the potential impact of EJC composition on NMD pathway choice. We highlight the coexistence and function of different isoforms of up-frameshift protein 1 (UPF1) with an emphasis of their role at the endoplasmic reticulum and during stress, and the role of the paralogs UPF3B and UPF3A, underscoring that gene regulation by mammalian NMD is tightly controlled and context-dependent being conditional on developmental stage, tissue and cell types.
Collapse
Affiliation(s)
- Justine Mailliot
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Mirella Vivoli-Vega
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, U.K
| |
Collapse
|
11
|
Venus S, Jankowsky E. Measuring the impact of cofactors on RNA helicase activities. Methods 2022; 204:376-385. [PMID: 35429628 PMCID: PMC9306305 DOI: 10.1016/j.ymeth.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 12/25/2022] Open
Abstract
RNA helicases are the largest class of enzymes in eukaryotic RNA metabolism. In cells, protein cofactors regulate RNA helicase functions and impact biochemical helicase activities. Understanding how cofactors affect enzymatic activities of RNA helicases is thus critical for delineating physical roles and regulation of RNA helicases in cells. Here, we discuss approaches and conceptual considerations for the design of experiments to interrogate cofactor effects on RNA helicase activities in vitro. We outline the mechanistic frame for helicase reactions, discuss optimization of experimental setup and reaction parameters for measuring cofactor effects on RNA helicase activities, and provide basic guides to data analysis and interpretation. The described approaches are also instructive for determining the impact of small molecule inhibitors of RNA helicases.
Collapse
|
12
|
Weis K, Hondele M. The Role of DEAD-Box ATPases in Gene Expression and the Regulation of RNA-Protein Condensates. Annu Rev Biochem 2022; 91:197-219. [PMID: 35303788 DOI: 10.1146/annurev-biochem-032620-105429] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DEAD-box ATPases constitute a very large protein family present in all cells, often in great abundance. From bacteria to humans, they play critical roles in many aspects of RNA metabolism, and due to their widespread importance in RNA biology, they have been characterized in great detail at both the structural and biochemical levels. DEAD-box proteins function as RNA-dependent ATPases that can unwind short duplexes of RNA, remodel ribonucleoprotein (RNP) complexes, or act as clamps to promote RNP assembly. Yet, it often remains enigmatic how individual DEAD-box proteins mechanistically contribute to specific RNA-processing steps. Here, we review the role of DEAD-box ATPases in the regulation of gene expression and propose that one common function of these enzymes is in the regulation of liquid-liquid phase separation of RNP condensates. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Karsten Weis
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland;
| | - Maria Hondele
- Biozentrum, University of Basel, Basel, Switzerland;
| |
Collapse
|
13
|
Analysis of the conformational space and dynamics of RNA helicases by single-molecule FRET in solution and on surfaces. Methods Enzymol 2022; 673:251-310. [DOI: 10.1016/bs.mie.2022.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Emerging molecular functions and novel roles for the DEAD-box protein Dbp5/DDX19 in gene expression. Cell Mol Life Sci 2020; 78:2019-2030. [PMID: 33205304 DOI: 10.1007/s00018-020-03680-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
Abstract
The DEAD-box protein (DBP) Dbp5, a member of the superfamily II (SFII) helicases, has multiple reported roles in gene expression. First identified as an essential regulator of mRNA export in Saccharomyces cerevisiae, the enzyme now has reported functions in non-coding RNA export, translation, transcription, and DNA metabolism. Localization of the protein to various cellular compartments (nucleoplasm, nuclear envelope, and cytoplasm) highlights the ability of Dbp5 to modulate different stages of the RNA lifecycle. While Dbp5 has been well studied for > 20 years, several critical questions remain regarding the mechanistic principles that govern Dbp5 localization, substrate selection, and functions in gene expression. This review aims to take a holistic view of the proposed functions of Dbp5 and evaluate models that accommodate current published data.
Collapse
|
15
|
Obrdlik A, Lin G, Haberman N, Ule J, Ephrussi A. The Transcriptome-wide Landscape and Modalities of EJC Binding in Adult Drosophila. Cell Rep 2020; 28:1219-1236.e11. [PMID: 31365866 DOI: 10.1016/j.celrep.2019.06.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022] Open
Abstract
Exon junction complex (EJC) assembles after splicing at specific positions upstream of exon-exon junctions in mRNAs of all higher eukaryotes, affecting major regulatory events. In mammalian cell cytoplasm, EJC is essential for efficient RNA surveillance, while in Drosophila, EJC is essential for localization of oskar mRNA. Here we developed a method for isolation of protein complexes and associated RNA targets (ipaRt) to explore the EJC RNA-binding landscape in a transcriptome-wide manner in adult Drosophila. We find the EJC at canonical positions, preferably on mRNAs from genes comprising multiple splice sites and long introns. Moreover, EJC occupancy is highest at junctions adjacent to strong splice sites, CG-rich hexamers, and RNA structures. Highly occupied mRNAs tend to be maternally localized and derive from genes involved in differentiation or development. These modalities, which have not been reported in mammals, specify EJC assembly on a biologically coherent set of transcripts in Drosophila.
Collapse
Affiliation(s)
- Ales Obrdlik
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Gen Lin
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nejc Haberman
- Department for Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Jernej Ule
- Department for Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Anne Ephrussi
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| |
Collapse
|
16
|
Powers KT, Szeto JYA, Schaffitzel C. New insights into no-go, non-stop and nonsense-mediated mRNA decay complexes. Curr Opin Struct Biol 2020; 65:110-118. [PMID: 32688260 DOI: 10.1016/j.sbi.2020.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 11/26/2022]
Abstract
Eukaryotes possess a variety of translational control mechanisms which function in the surveillance of mRNAs, discriminating between normal and aberrant translation elongation and termination, triggering mRNA decay. The three major evolutionarily conserved eukaryotic pathways are No-Go, Non-Stop and Nonsense-Mediated mRNA Decay. Recent findings suggest that stalling of the ribosome, due to mRNA secondary structure or translation into poly(A)-stretches, leads to ribosome collisions which are detected by No-Go/Non-Stop mRNA decay factors. Subsequent ribosome ubiquitination at the interface of two collided ribosomes is considered the signal for mRNA decay. Similarly, translation termination at a premature stop codon is slower than normal, leading to recruitment and activation of nonsense-mediated mRNA decay factors, including SMG1-8-9. Here, we detail new insights into the molecular mechanisms of these pathways.
Collapse
Affiliation(s)
- Kyle T Powers
- University of Bristol, School of Biochemistry, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Jenn-Yeu Alvin Szeto
- University of Bristol, School of Biochemistry, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Christiane Schaffitzel
- University of Bristol, School of Biochemistry, University Walk, Bristol, BS8 1TD, United Kingdom.
| |
Collapse
|
17
|
Yamaguchi T, Fukuzaki S. ATP effects on response of human erythrocyte membrane to high pressure. Biophys Physicobiol 2019; 16:158-166. [PMID: 31788397 PMCID: PMC6878981 DOI: 10.2142/biophysico.16.0_158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
Phosphorylation of membrane proteins in human erythrocytes is mediated by intracellular ATP levels. Such phosphorylation modulates the interactions of the bilayer with the cytoskeleton and affects the membrane stability under high pressure. In erythrocytes with high intracellular ATP levels, the bilayer-cytoskeleton interaction was weakened. Compression of such erythrocytes induced the release of large vesicles due to the suppression of fragmentation and resulted in the enhanced hemolysis. On the other hand, in ATP-depleted erythrocytes the interaction between the bilayer and the cytoskeleton was strengthened. Upon compression of these erythrocytes, the release of small vesicles due to the facilitation of vesiculation resulted in suppression of hemolysis. Taken together, these results suggest that the responses, i.e., vesiculation, fragmentation, and hemolysis, of the erythrocytes to high pressure are largely modulated by the bilayer-cytoskeleton interaction, which is mediated by intracellular ATP levels.
Collapse
Affiliation(s)
- Takeo Yamaguchi
- Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Shunji Fukuzaki
- Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
18
|
Liao SE, Kandasamy SK, Zhu L, Fukunaga R. DEAD-box RNA helicase Belle posttranscriptionally promotes gene expression in an ATPase activity-dependent manner. RNA (NEW YORK, N.Y.) 2019; 25:825-839. [PMID: 30979781 PMCID: PMC6573787 DOI: 10.1261/rna.070268.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Drosophila Belle (human ortholog DDX3) is a conserved DEAD-box RNA helicase implicated in regulating gene expression. However, the molecular mechanisms by which Belle/DDX3 regulates gene expression are poorly understood. Here we performed systematic mutational analysis to determine the contributions of conserved motifs within Belle to its in vivo function. We found that Belle RNA-binding and RNA-unwinding activities and intrinsically disordered regions (IDRs) are required for Belle in vivo function. Expression of Belle ATPase mutants that cannot bind, hydrolyze, or release ATP resulted in dominant toxic phenotypes. Mechanistically, we discovered that Belle up-regulates reporter protein level when tethered to reporter mRNA, without corresponding changes at the mRNA level, indicating that Belle promotes translation of mRNA that it binds. Belle ATPase activity and amino-terminal IDR were required for this translational promotion activity. We also found that ectopic ovary expression of dominant Belle ATPase mutants decreases levels of cyclin proteins, including Cyclin B, without corresponding changes in their mRNA levels. Finally, we found that Belle binds endogenous cyclin B mRNA. We propose that Belle promotes translation of specific target mRNAs, including cyclin B mRNA, in an ATPase activity-dependent manner.
Collapse
Affiliation(s)
- Susan E Liao
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Suresh K Kandasamy
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Li Zhu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
19
|
Mazloomian A, Araki S, Ohori M, El-Naggar AM, Yap D, Bashashati A, Nakao S, Sorensen PH, Nakanishi A, Shah S, Aparicio S. Pharmacological systems analysis defines EIF4A3 functions in cell-cycle and RNA stress granule formation. Commun Biol 2019; 2:165. [PMID: 31069274 PMCID: PMC6499833 DOI: 10.1038/s42003-019-0391-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
The RNA helicase EIF4A3 regulates the exon junction complex and nonsense-mediated mRNA decay functions in RNA transcript processing. However, a transcriptome-wide network definition of these functions has been lacking, in part due to the lack of suitable pharmacological inhibitors. Here we employ short-duration graded EIF4A3 inhibition using small molecule allosteric inhibitors to define the transcriptome-wide dependencies of EIF4A3. We thus define conserved cellular functions, such as cell cycle control, that are EIF4A3 dependent. We show that EIF4A3-dependent splicing reactions have a distinct genome-wide pattern of associated RNA-binding protein motifs. We also uncover an unanticipated role of EIF4A3 in the biology of RNA stress granules, which sequester and silence the translation of most mRNAs under stress conditions and are implicated in cell survival and tumour progression. We show that stress granule induction and maintenance is suppressed on the inhibition of EIF4A3, in part through EIF4A3-associated regulation of G3BP1 and TIA1 scaffold protein expression.
Collapse
Affiliation(s)
- Alborz Mazloomian
- Department of Molecular Oncology, BC Cancer, part of the Provincial Health Services Authority, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
- Department of Pathology and Laboratory Medicine, G227-2211 Wesbrook Mall, University of British Columbia, Vancouver, BC V6T 2B5 Canada
| | - Shinsuke Araki
- Research Department, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Momoko Ohori
- Research Department, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Amal M. El-Naggar
- Department of Molecular Oncology, BC Cancer, part of the Provincial Health Services Authority, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
- Department of Pathology and Laboratory Medicine, G227-2211 Wesbrook Mall, University of British Columbia, Vancouver, BC V6T 2B5 Canada
- Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia Governorate, Egypt
| | - Damian Yap
- Department of Molecular Oncology, BC Cancer, part of the Provincial Health Services Authority, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
- Department of Pathology and Laboratory Medicine, G227-2211 Wesbrook Mall, University of British Columbia, Vancouver, BC V6T 2B5 Canada
| | - Ali Bashashati
- Department of Molecular Oncology, BC Cancer, part of the Provincial Health Services Authority, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
- Department of Pathology and Laboratory Medicine, G227-2211 Wesbrook Mall, University of British Columbia, Vancouver, BC V6T 2B5 Canada
| | - Shoichi Nakao
- Research Department, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Poul H. Sorensen
- Department of Molecular Oncology, BC Cancer, part of the Provincial Health Services Authority, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
- Department of Pathology and Laboratory Medicine, G227-2211 Wesbrook Mall, University of British Columbia, Vancouver, BC V6T 2B5 Canada
| | - Atsushi Nakanishi
- Research Department, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Sohrab Shah
- Department of Molecular Oncology, BC Cancer, part of the Provincial Health Services Authority, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
- Department of Pathology and Laboratory Medicine, G227-2211 Wesbrook Mall, University of British Columbia, Vancouver, BC V6T 2B5 Canada
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, 417 E68th St, New York, NY 10065 USA
| | - Samuel Aparicio
- Department of Molecular Oncology, BC Cancer, part of the Provincial Health Services Authority, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
- Department of Pathology and Laboratory Medicine, G227-2211 Wesbrook Mall, University of British Columbia, Vancouver, BC V6T 2B5 Canada
| |
Collapse
|
20
|
Genome-Wide Discovery of DEAD-Box RNA Helicase Targets Reveals RNA Structural Remodeling in Transcription Termination. Genetics 2019; 212:153-174. [PMID: 30902808 DOI: 10.1534/genetics.119.302058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/19/2019] [Indexed: 11/18/2022] Open
Abstract
RNA helicases are a class of enzymes that unwind RNA duplexes in vitro but whose cellular functions are largely enigmatic. Here, we provide evidence that the DEAD-box protein Dbp2 remodels RNA-protein complex (RNP) structure to facilitate efficient termination of transcription in Saccharomyces cerevisiae via the Nrd1-Nab3-Sen1 (NNS) complex. First, we find that loss of DBP2 results in RNA polymerase II accumulation at the 3' ends of small nucleolar RNAs and a subset of mRNAs. In addition, Dbp2 associates with RNA sequence motifs and regions bound by Nrd1 and can promote its recruitment to NNS-targeted regions. Using Structure-seq, we find altered RNA/RNP structures in dbp2∆ cells that correlate with inefficient termination. We also show a positive correlation between the stability of structures in the 3' ends and a requirement for Dbp2 in termination. Taken together, these studies provide a role for RNA remodeling by Dbp2 and further suggests a mechanism whereby RNA structure is exploited for gene regulation.
Collapse
|
21
|
Baek W, Lim CW, Lee SC. A DEAD-box RNA helicase, RH8, is critical for regulation of ABA signalling and the drought stress response via inhibition of PP2CA activity. PLANT, CELL & ENVIRONMENT 2018; 41:1593-1604. [PMID: 29574779 DOI: 10.1111/pce.13200] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/07/2018] [Accepted: 03/19/2018] [Indexed: 05/21/2023]
Abstract
Abscisic acid (ABA) is major plant hormone involved in regulating abiotic stress responses. Several studies have established that an ABA-signalling transduction pathway-from ABA perception to response-functions in plant cells. The group A PP2Cs constitute core components of ABA signalling, and they negatively regulate ABA signalling and stress responses. Recent studies have identified and functionally analysed regulators of PP2C activity; however, the precise regulatory mechanisms remain unclear. In the present study, we used a yeast 2-hybrid (Y2H) screening analysis to identify the DEAD-box RNA helicase RH8, which interacted with PP2CA in the nucleus. rh8 knockout mutants exhibited ABA hyposensitivity and drought-susceptible phenotypes characterized by high levels of transpirational water loss via reduced stomatal closure and decreased leaf temperatures. However, rh8/pp2ca double mutants showed ABA hypersensitivity and drought-tolerant phenotypes, indicating that RH8 and PP2CA function in the same ABA-signalling pathway in the drought stress response; moreover, RH8 functions upstream of PP2CA. In vitro phosphatase and kinase assays revealed that RH8 inhibits PP2CA phosphatase activity. Our data indicate that RH8 and its interacting partner PP2CA modulate the drought stress response via ABA-dependent signalling.
Collapse
Affiliation(s)
- Woonhee Baek
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, 06974, South Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, 06974, South Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, 06974, South Korea
| |
Collapse
|
22
|
Wong EV, Gray S, Cao W, Montpetit R, Montpetit B, De La Cruz EM. Nup159 Weakens Gle1 Binding to Dbp5 But Does Not Accelerate ADP Release. J Mol Biol 2018; 430:2080-2095. [PMID: 29782832 DOI: 10.1016/j.jmb.2018.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/03/2018] [Accepted: 05/15/2018] [Indexed: 12/17/2022]
Abstract
Dbp5, DDX19 in humans, is an essential DEAD-box protein involved in mRNA export, which has also been linked to other cellular processes, including rRNA export and translation. Dbp5 ATPase activity is regulated by several factors, including RNA, the nucleoporin proteins Nup159 and Gle1, and the endogenous small-molecule inositol hexakisphosphate (InsP6). To better understand how these factors modulate Dbp5 activity and how this modulation relates to in vivo RNA metabolism, a detailed characterization of the Dbp5 mechanochemical cycle in the presence of those regulators individually or together is necessary. In this study, we test the hypothesis that Nup159 controls the ADP-bound state of Dbp5. In addition, the contributions of Mg2+ to the kinetics and thermodynamics of ADP binding to Dbp5 were assessed. Using a solution based in vitro approach, Mg2+ was found to slow ADP and ATP release from Dbp5 and increased the overall ADP and ATP affinities, as observed with other NTPases. Furthermore, Nup159 did not accelerate ADP release, while Gle1 actually slowed ADP release independent of Mg2+. These findings are not consistent with Nup159 acting as a nucleotide exchange factor to promote ADP release and Dbp5 ATPase cycling. Instead, in the presence of Nup159, the interaction between Gle1 and ADP-bound Dbp5 was found to be reduced by ~18-fold, suggesting that Nup159 alters the Dbp5-Gle1 interaction to aid Gle1 release from Dbp5.
Collapse
Affiliation(s)
- Emily V Wong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Shawn Gray
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Rachel Montpetit
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA
| | - Ben Montpetit
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA.
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
23
|
Hammond JA, Zhou L, Lamichhane R, Chu HY, Millar DP, Gerace L, Williamson JR. A Survey of DDX21 Activity During Rev/RRE Complex Formation. J Mol Biol 2018; 430:537-553. [PMID: 28705764 PMCID: PMC5762417 DOI: 10.1016/j.jmb.2017.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 01/17/2023]
Abstract
HIV-1 requires a specialized nuclear export pathway to transport unspliced and partially spliced viral transcripts to the cytoplasm. Central to this pathway is the viral protein Rev, which binds to the Rev response element in stem IIB located on unspliced viral transcripts and subsequently oligomerizes in a cooperative manner. Previous work identified a number of cellular DEAD-box helicases as in vivo binding partners of Rev, and siRNA experiments indicated a functional role for many in the HIV replication cycle. Two DEAD-box proteins, DDX1 and DDX3, had previously been shown to play a role in HIV pathogenesis. In this study, another protein identified in that screen, DDX21, is tested for protein and RNA binding and subsequent enzymatic activities in the context of the Rev/RRE pathway. We found that DDX21 can bind to the RRE with high affinity, and this binding stimulates ATPase activity with an enzymatic efficiency similar to DDX1. Furthermore, DDX21 is both an ATP-dependent and ATP-independent helicase, and both ATPase and ATP-dependent helicase activities are inhibited by Rev in a dose-dependent manner, although ATP-independent helicase activity is not. A conserved binding interaction between DDX protein's DEAD domain and Rev was identified, with Rev's nuclear diffusion inhibitory signal motif playing a significant role in binding. Finally, DDX21 was shown to enhance Rev binding to the RRE in a manner similar to that previously described for DDX1, although DDX3 does not. These data indicate that DDX1 and DDX21 have similar biochemical activities with regard to the Rev/RRE system, while DDX3 differs.
Collapse
Affiliation(s)
- John A Hammond
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Li Zhou
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rajan Lamichhane
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hui-Yi Chu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David P Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Larry Gerace
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
24
|
The exon junction complex: structural insights into a faithful companion of mammalian mRNPs. Biochem Soc Trans 2018; 46:153-161. [PMID: 29351963 DOI: 10.1042/bst20170059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
Abstract
During splicing, the exon junction complex (EJC) is deposited upstream of exon-exon boundaries. The EJC and its peripheral bound proteins play an essential role in mediating mRNA export, translation and turnover. However, the exact sequence of EJC assembly and the involved factors during splicing remain elusive. Recently published structures of the human C* spliceosome clarified the position of the EJC at this phase of splicing and have given insight into previously unidentified interactions between the EJC and spliceosomal proteins. Here, these new observations are presented and the significance for EJC assembly is discussed. Furthermore, the vast landscape of EJC interacting proteins and their manifold functions are described. Finally, the factors involved in EJC disassembly and recycling are recapitulated. This review aims to integrate structural, biochemical and physiological data to obtain a comprehensive picture of EJC components during the lifetime of the EJC.
Collapse
|
25
|
Neuwald AF, Aravind L, Altschul SF. Inferring joint sequence-structural determinants of protein functional specificity. eLife 2018; 7. [PMID: 29336305 PMCID: PMC5770160 DOI: 10.7554/elife.29880] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/22/2017] [Indexed: 01/05/2023] Open
Abstract
Residues responsible for allostery, cooperativity, and other subtle but functionally important interactions remain difficult to detect. To aid such detection, we employ statistical inference based on the assumption that residues distinguishing a protein subgroup from evolutionarily divergent subgroups often constitute an interacting functional network. We identify such networks with the aid of two measures of statistical significance. One measure aids identification of divergent subgroups based on distinguishing residue patterns. For each subgroup, a second measure identifies structural interactions involving pattern residues. Such interactions are derived either from atomic coordinates or from Direct Coupling Analysis scores, used as surrogates for structural distances. Applying this approach to N-acetyltransferases, P-loop GTPases, RNA helicases, synaptojanin-superfamily phosphatases and nucleases, and thymine/uracil DNA glycosylases yielded results congruent with biochemical understanding of these proteins, and also revealed striking sequence-structural features overlooked by other methods. These and similar analyses can aid the design of drugs targeting allosteric sites.
Collapse
Affiliation(s)
- Andrew F Neuwald
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, United States.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Stephen F Altschul
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| |
Collapse
|
26
|
Distinct RNA-unwinding mechanisms of DEAD-box and DEAH-box RNA helicase proteins in remodeling structured RNAs and RNPs. Biochem Soc Trans 2017; 45:1313-1321. [PMID: 29150525 DOI: 10.1042/bst20170095] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 01/03/2023]
Abstract
Structured RNAs and RNA-protein complexes (RNPs) fold through complex pathways that are replete with misfolded traps, and many RNAs and RNPs undergo extensive conformational changes during their functional cycles. These folding steps and conformational transitions are frequently promoted by RNA chaperone proteins, notably by superfamily 2 (SF2) RNA helicase proteins. The two largest families of SF2 helicases, DEAD-box and DEAH-box proteins, share evolutionarily conserved helicase cores, but unwind RNA helices through distinct mechanisms. Recent studies have advanced our understanding of how their distinct mechanisms enable DEAD-box proteins to disrupt RNA base pairs on the surfaces of structured RNAs and RNPs, while some DEAH-box proteins are adept at disrupting base pairs in the interior of RNPs. Proteins from these families use these mechanisms to chaperone folding and promote rearrangements of structured RNAs and RNPs, including the spliceosome, and may use related mechanisms to maintain cellular messenger RNAs in unfolded or partially unfolded conformations.
Collapse
|
27
|
Götze M, Dufourt J, Ihling C, Rammelt C, Pierson S, Sambrani N, Temme C, Sinz A, Simonelig M, Wahle E. Translational repression of the Drosophila nanos mRNA involves the RNA helicase Belle and RNA coating by Me31B and Trailer hitch. RNA (NEW YORK, N.Y.) 2017; 23:1552-1568. [PMID: 28701521 PMCID: PMC5602113 DOI: 10.1261/rna.062208.117] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/10/2017] [Indexed: 05/10/2023]
Abstract
Translational repression of maternal mRNAs is an essential regulatory mechanism during early embryonic development. Repression of the Drosophila nanos mRNA, required for the formation of the anterior-posterior body axis, depends on the protein Smaug binding to two Smaug recognition elements (SREs) in the nanos 3' UTR. In a comprehensive mass spectrometric analysis of the SRE-dependent repressor complex, we identified Smaug, Cup, Me31B, Trailer hitch, eIF4E, and PABPC, in agreement with earlier data. As a novel component, the RNA-dependent ATPase Belle (DDX3) was found, and its involvement in deadenylation and repression of nanos was confirmed in vivo. Smaug, Cup, and Belle bound stoichiometrically to the SREs, independently of RNA length. Binding of Me31B and Tral was also SRE-dependent, but their amounts were proportional to the length of the RNA and equimolar to each other. We suggest that "coating" of the RNA by a Me31B•Tral complex may be at the core of repression.
Collapse
Affiliation(s)
- Michael Götze
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Jérémy Dufourt
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34396 Montpellier Cedex 5, France
| | - Christian Ihling
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Christiane Rammelt
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Stephanie Pierson
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34396 Montpellier Cedex 5, France
| | - Nagraj Sambrani
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34396 Montpellier Cedex 5, France
| | - Claudia Temme
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Martine Simonelig
- Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 34396 Montpellier Cedex 5, France
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
28
|
Woodward LA, Mabin JW, Gangras P, Singh G. The exon junction complex: a lifelong guardian of mRNA fate. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 28008720 DOI: 10.1002/wrna.1411] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/27/2016] [Accepted: 11/09/2016] [Indexed: 12/28/2022]
Abstract
During messenger RNA (mRNA) biogenesis and processing in the nucleus, many proteins are imprinted on mRNAs assembling them into messenger ribonucleoproteins (mRNPs). Some of these proteins remain stably bound within mRNPs and have a long-lasting impact on their fate. One of the best-studied examples is the exon junction complex (EJC), a multiprotein complex deposited primarily 24 nucleotides upstream of exon-exon junctions as a consequence of pre-mRNA splicing. The EJC maintains a stable, sequence-independent, hold on the mRNA until its removal during translation in the cytoplasm. Acting as a molecular shepherd, the EJC travels with mRNA across the cellular landscape coupling pre-mRNA splicing to downstream, posttranscriptional processes such as mRNA export, mRNA localization, translation, and nonsense-mediated mRNA decay (NMD). In this review, we discuss our current understanding of the EJC's functions during these processes, and expound its newly discovered functions (e.g., pre-mRNA splicing). Another focal point is the recently unveiled in vivo EJC interactome, which has shed new light on the EJC's location on the spliced RNAs and its intimate relationship with other mRNP components. We summarize new strides being made in connecting the EJC's molecular function with phenotypes, informed by studies of human disorders and model organisms. The progress toward understanding EJC functions has revealed, in its wake, even more questions, which are discussed throughout. WIREs RNA 2017, 8:e1411. doi: 10.1002/wrna.1411 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Lauren A Woodward
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Justin W Mabin
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Pooja Gangras
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Guramrit Singh
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
29
|
Schumann S, Jackson BR, Yule I, Whitehead SK, Revill C, Foster R, Whitehouse A. Targeting the ATP-dependent formation of herpesvirus ribonucleoprotein particle assembly as an antiviral approach. Nat Microbiol 2016; 2:16201. [PMID: 27798559 DOI: 10.1038/nmicrobiol.2016.201] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/01/2016] [Indexed: 12/16/2022]
Abstract
Human herpesviruses are responsible for a range of debilitating acute and recurrent diseases, including a number of malignancies. Current treatments are limited to targeting the herpesvirus DNA polymerases, but with emerging viral resistance and little efficacy against the oncogenic herpesviruses, there is an urgent need for new antiviral strategies. Here, we describe a mechanism to inhibit the replication of the oncogenic herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV), by targeting the ATP-dependent formation of viral ribonucleoprotein particles (vRNPs). We demonstrate that small-molecule inhibitors which selectively inhibit the ATPase activity of the cellular human transcription/export complex (hTREX) protein UAP56 result in effective inhibition of vRNP formation, viral lytic replication and infectious virion production. Strikingly, as all human herpesviruses use conserved mRNA processing pathways involving hTREX components, we demonstrate the feasibility of this approach for pan-herpesvirus inhibition.
Collapse
Affiliation(s)
- Sophie Schumann
- School of Molecular and Cellular Biology, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, Leeds LS2 9JT, UK
| | - Brian R Jackson
- School of Molecular and Cellular Biology, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, Leeds LS2 9JT, UK
| | - Ian Yule
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | | | | | - Richard Foster
- Astbury Centre for Structural Molecular Biology, Leeds LS2 9JT, UK
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, Leeds LS2 9JT, UK
| |
Collapse
|
30
|
Khoshnevis S, Askenasy I, Johnson MC, Dattolo MD, Young-Erdos CL, Stroupe ME, Karbstein K. The DEAD-box Protein Rok1 Orchestrates 40S and 60S Ribosome Assembly by Promoting the Release of Rrp5 from Pre-40S Ribosomes to Allow for 60S Maturation. PLoS Biol 2016; 14:e1002480. [PMID: 27280440 PMCID: PMC4900678 DOI: 10.1371/journal.pbio.1002480] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/10/2016] [Indexed: 12/25/2022] Open
Abstract
DEAD-box proteins are ubiquitous regulators of RNA biology. While commonly dubbed “helicases,” their activities also include duplex annealing, adenosine triphosphate (ATP)-dependent RNA binding, and RNA-protein complex remodeling. Rok1, an essential DEAD-box protein, and its cofactor Rrp5 are required for ribosome assembly. Here, we use in vivo and in vitro biochemical analyses to demonstrate that ATP-bound Rok1, but not adenosine diphosphate (ADP)-bound Rok1, stabilizes Rrp5 binding to 40S ribosomes. Interconversion between these two forms by ATP hydrolysis is required for release of Rrp5 from pre-40S ribosomes in vivo, thereby allowing Rrp5 to carry out its role in 60S subunit assembly. Furthermore, our data also strongly suggest that the previously described accumulation of snR30 upon Rok1 inactivation arises because Rrp5 release is blocked and implicate a previously undescribed interaction between Rrp5 and the DEAD-box protein Has1 in mediating snR30 accumulation when Rrp5 release from pre-40S subunits is blocked. During ribosomal biogenesis, Rrp5 is unusual in being required for assembly of both small and large subunits. This study demonstrates a role for ATP hydrolysis by the DEAD-box protein Rok1 in releasing Rrp5 from pre-40S subunits. Assembly of the small and large ribosomal subunits requires two separate machineries. The assembly factor Rrp5 is unusual in being one of only three proteins required for assembly of both subunits. While it binds cotranscriptionally during early stages of small subunit assembly, it departs with large subunit intermediates after the separation of these precursors. How Rrp5 switches from interacting with small subunit precursors to binding large subunit precursors remains unknown but is potentially important, as it could regulate the interplay between small and large subunit assembly. Here, we show that the DEAD-box protein Rok1, a member of a ubiquitous class of RNA-dependent ATPases, releases Rrp5 from assembling small subunits to allow for its function in large subunit assembly. We show that a complex of Rrp5, Rok1, and adenosine triphosphate (ATP) binds small subunits or mimics of ribosomal RNA more tightly than does a complex of Rrp5, Rok1, and adenosine diphosphate (ADP). In cells, interconversion between the ATP and the ADP-form of Rok1 is required for release of Rrp5 from nascent small subunits and for binding to assembling large subunits. Furthermore, we show that the release of snR30, which leads to formation of a large substructure on small subunits, also requires Rok1-mediated release of Rrp5.
Collapse
MESH Headings
- Adenosine Diphosphate/metabolism
- Adenosine Triphosphate/metabolism
- Binding Sites/genetics
- DEAD-box RNA Helicases/chemistry
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Hydrolysis
- Models, Molecular
- Molecular Conformation
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Binding
- Protein Domains
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/chemistry
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/chemistry
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Sohail Khoshnevis
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Isabel Askenasy
- Department of Biological Science and the Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Matthew C. Johnson
- Department of Biological Science and the Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Maria D. Dattolo
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
- The Benjamin School, Palm Beach Gardens, Florida, United States of America
| | - Crystal L. Young-Erdos
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - M. Elizabeth Stroupe
- Department of Biological Science and the Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
- * E-mail: (MES); (KK)
| | - Katrin Karbstein
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail: (MES); (KK)
| |
Collapse
|
31
|
Rudolph MG, Klostermeier D. When core competence is not enough: functional interplay of the DEAD-box helicase core with ancillary domains and auxiliary factors in RNA binding and unwinding. Biol Chem 2016; 396:849-65. [PMID: 25720120 DOI: 10.1515/hsz-2014-0277] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/04/2015] [Indexed: 11/15/2022]
Abstract
DEAD-box helicases catalyze RNA duplex unwinding in an ATP-dependent reaction. Members of the DEAD-box helicase family consist of a common helicase core formed by two RecA-like domains. According to the current mechanistic model for DEAD-box mediated RNA unwinding, binding of RNA and ATP triggers a conformational change of the helicase core, and leads to formation of a compact, closed state. In the closed conformation, the two parts of the active site for ATP hydrolysis and of the RNA binding site, residing on the two RecA domains, become aligned. Closing of the helicase core is coupled to a deformation of the RNA backbone and destabilization of the RNA duplex, allowing for dissociation of one of the strands. The second strand remains bound to the helicase core until ATP hydrolysis and product release lead to re-opening of the core. The concomitant disruption of the RNA binding site causes dissociation of the second strand. The activity of the helicase core can be modulated by interaction partners, and by flanking N- and C-terminal domains. A number of C-terminal flanking regions have been implicated in RNA binding: RNA recognition motifs (RRM) typically mediate sequence-specific RNA binding, whereas positively charged, unstructured regions provide binding sites for structured RNA, without sequence-specificity. Interaction partners modulate RNA binding to the core, or bind to RNA regions emanating from the core. The functional interplay of the helicase core and ancillary domains or interaction partners in RNA binding and unwinding is not entirely understood. This review summarizes our current knowledge on RNA binding to the DEAD-box helicase core and the roles of ancillary domains and interaction partners in RNA binding and unwinding by DEAD-box proteins.
Collapse
|
32
|
Cilano K, Mazanek Z, Khan M, Metcalfe S, Zhang XN. A New Mutation, hap1-2, Reveals a C Terminal Domain Function in AtMago Protein and Its Biological Effects in Male Gametophyte Development in Arabidopsis thaliana. PLoS One 2016; 11:e0148200. [PMID: 26867216 PMCID: PMC4750992 DOI: 10.1371/journal.pone.0148200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/14/2016] [Indexed: 01/02/2023] Open
Abstract
The exon-exon junction complex (EJC) is a conserved eukaryotic multiprotein complex that examines the quality of and determines the availability of messenger RNAs (mRNAs) posttranscriptionally. Four proteins, MAGO, Y14, eIF4AIII and BTZ, function as core components of the EJC. The mechanisms of their interactions and the biological indications of these interactions are still poorly understood in plants. A new mutation, hap1-2. leads to premature pollen death and a reduced seed production in Arabidopsis. This mutation introduces a viable truncated transcript AtMagoΔC. This truncation abolishes the interaction between AtMago and AtY14 in vitro, but not the interaction between AtMago and AteIF4AIII. In addition to a strong nuclear presence of AtMago, both AtMago and AtMagoΔC exhibit processing-body (P-body) localization. This indicates that AtMagoΔC may replace AtMago in the EJC when aberrant transcripts are to be degraded. When introducing an NMD mutation, upf3-1, into the existing HAP1/hap1-2 mutant, plants showed a severely reduced fertility. However, the change of splicing pattern of a subset of SR protein transcripts is mostly correlated with the sr45-1 and upf3-1 mutations, not the hap1-2 mutation. These results imply that the C terminal domain (CTD) of AtMago is required for the AtMago-AtY14 heterodimerization during EJC assembly, UPF3-mediated NMD pathway and the AtMago-AtY14 heterodimerization work synergistically to regulate male gametophyte development in plants.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Arabidopsis/genetics
- Arabidopsis/physiology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/physiology
- Base Sequence
- Cloning, Molecular
- Crosses, Genetic
- DNA Primers/genetics
- DNA, Complementary/metabolism
- Dimerization
- Exons
- Genes, Plant
- Germ Cells, Plant
- Humans
- Microscopy, Confocal
- Molecular Sequence Data
- Mutation
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Plants, Genetically Modified
- Pollen/physiology
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA Processing, Post-Transcriptional
- RNA Splicing
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/metabolism
- Seeds/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Kevin Cilano
- Department of Biology, Saint Bonaventure University, Saint Bonaventure, New York, United States of America
| | - Zachary Mazanek
- Biochemistry Program, Saint Bonaventure University, Saint Bonaventure, New York, United States of America
| | - Mahmuda Khan
- Department of Biology, Saint Bonaventure University, Saint Bonaventure, New York, United States of America
| | - Sarah Metcalfe
- Biochemistry Program, Saint Bonaventure University, Saint Bonaventure, New York, United States of America
| | - Xiao-Ning Zhang
- Department of Biology, Saint Bonaventure University, Saint Bonaventure, New York, United States of America
- Biochemistry Program, Saint Bonaventure University, Saint Bonaventure, New York, United States of America
- * E-mail:
| |
Collapse
|
33
|
Hir HL, Saulière J, Wang Z. The exon junction complex as a node of post-transcriptional networks. Nat Rev Mol Cell Biol 2015; 17:41-54. [DOI: 10.1038/nrm.2015.7] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Lu J, Jiang C, Li X, Jiang L, Li Z, Schneider-Poetsch T, Liu J, Yu K, Liu JO, Jiang H, Luo C, Dang Y. A gating mechanism for Pi release governs the mRNA unwinding by eIF4AI during translation initiation. Nucleic Acids Res 2015; 43:10157-67. [PMID: 26464436 PMCID: PMC4666354 DOI: 10.1093/nar/gkv1033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/30/2015] [Indexed: 01/18/2023] Open
Abstract
Eukaryotic translation initiation factor eIF4AI, the founding member of DEAD-box helicases, undergoes ATP hydrolysis-coupled conformational changes to unwind mRNA secondary structures during translation initiation. However, the mechanism of its coupled enzymatic activities remains unclear. Here we report that a gating mechanism for Pi release controlled by the inter-domain linker of eIF4AI regulates the coupling between ATP hydrolysis and RNA unwinding. Molecular dynamic simulations and experimental results revealed that, through forming a hydrophobic core with the conserved SAT motif of the N-terminal domain and I357 from the C-terminal domain, the linker gated the release of Pi from the hydrolysis site, which avoided futile hydrolysis cycles of eIF4AI. Further mutagenesis studies suggested this linker also plays an auto-inhibitory role in the enzymatic activity of eIF4AI, which may be essential for its function during translation initiation. Overall, our results reveal a novel regulatory mechanism that controls eIF4AI-mediated mRNA unwinding and can guide further mechanistic studies on other DEAD-box helicases.
Collapse
Affiliation(s)
- Junyan Lu
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chenxiao Jiang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaojing Li
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lizhi Jiang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zengxia Li
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | | | - Jianwei Liu
- Department of Chemistry, Shanghai Key Lab of Chemical Biology for Protein Research & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Kunqian Yu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jun O Liu
- Department of Pharmacology & Molecular Sciences and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
35
|
Abstract
The original purification of the heterotrimeric eIF4F was published over 30 years ago (Grifo, J. A., Tahara, S. M., Morgan, M. A., Shatkin, A. J., and Merrick, W. C. (1983) J. Biol. Chem. 258, 5804-5810). Since that time, numerous studies have been performed with the three proteins specifically required for the translation initiation of natural mRNAs, eIF4A, eIF4B, and eIF4F. These have involved enzymatic and structural studies of the proteins and a number of site-directed mutagenesis studies. The regulation of translation exhibited through the mammalian target of rapamycin (mTOR) pathway is predominately seen as the phosphorylation of 4E-BP, an inhibitor of protein synthesis that functions by binding to the cap binding subunit of eIF4F (eIF4E). A hypothesis that requires the disassembly of eIF4F during translation initiation to yield free subunits (eIF4A, eIF4E, and eIF4G) is presented.
Collapse
Affiliation(s)
- William C Merrick
- From the Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4935
| |
Collapse
|
36
|
Frege T, Uversky VN. Intrinsically disordered proteins in the nucleus of human cells. Biochem Biophys Rep 2015; 1:33-51. [PMID: 29124132 PMCID: PMC5668563 DOI: 10.1016/j.bbrep.2015.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/11/2015] [Indexed: 12/16/2022] Open
Abstract
Intrinsically disordered proteins are known to perform a variety of important functions such as macromolecular recognition, promiscuous binding, and signaling. They are crucial players in various cellular pathway and processes, where they often have key regulatory roles. Among vital cellular processes intimately linked to the intrinsically disordered proteins is transcription, an intricate biological performance predominantly developing inside the cell nucleus. With this work, we gathered information about proteins that exist in various compartments and sub-nuclear bodies of the nucleus of the human cells, with the goal of identifying which ones are highly disordered and which functions are ascribed to the disordered nuclear proteins.
Collapse
Affiliation(s)
- Telma Frege
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- GenomeNext LLC, 175 South 3rd Street, Suite 200, Columbus OH 43215, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer׳s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Biology, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
- Correspondence to: Department of Molecular, Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, MDC07, Tampa, FL 33612, USA. Tel.: +1 813 974 5816; fax: +1 813 974 7357.
| |
Collapse
|
37
|
Abstract
In eukaryotic organisms, the orthologs of the DEAD-box RNA helicase Ded1p from yeast and DDX3 from human form a well-defined subfamily that is characterized by high sequence conservation in their helicase core and their N- and C- termini. Individual members of this Ded1/DDX3 subfamily perform multiple functions in RNA metabolism in both nucleus and cytoplasm. Ded1/DDX3 subfamily members have also been implicated in cellular signaling pathways and are targeted by diverse viruses. In this review, we discuss the considerable body of work on the biochemistry and biology of these proteins, including the recently discovered link of human DDX3 to tumorigenesis.
Collapse
Affiliation(s)
- Deepak Sharma
- Center for RNA Molecular Biology & Department of Biochemistry, School of Medicine, Case Western Reserve University , Cleveland, OH , USA
| | | |
Collapse
|
38
|
Kellner JN, Reinstein J, Meinhart A. Synergistic effects of ATP and RNA binding to human DEAD-box protein DDX1. Nucleic Acids Res 2015; 43:2813-28. [PMID: 25690890 PMCID: PMC4357711 DOI: 10.1093/nar/gkv106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNA helicases of the DEAD-box protein family form the largest group of helicases. The human DEAD-box protein 1 (DDX1) plays an important role in tRNA and mRNA processing, is involved in tumor progression and is also hijacked by several virus families such as HIV-1 for replication and nuclear export. Although important in many cellular processes, the mechanism of DDX1′s enzymatic function is unknown. We have performed equilibrium titrations and transient kinetics to determine affinities for nucleotides and RNA. We find an exceptional tight binding of DDX1 to adenosine diphosphate (ADP), one of the strongest affinities observed for DEAD-box helicases. ADP binds tighter by three orders of magnitude when compared to adenosine triphosphate (ATP), arresting the enzyme in a potential dead-end ADP conformation under physiological conditions. We thus suggest that a nucleotide exchange factor leads to DDX1 recycling. Furthermore, we find a strong cooperativity in binding of RNA and ATP to DDX1 that is also reflected in ATP hydrolysis. We present a model in which either ATP or RNA binding alone can partially shift the equilibrium from an ‘open’ to a ‘closed’-state; this shift appears to be not further pronounced substantially even in the presence of both RNA and ATP as the low rate of ATP hydrolysis does not change.
Collapse
Affiliation(s)
- Julian N Kellner
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Jochen Reinstein
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Anton Meinhart
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
39
|
Ozgur S, Buchwald G, Falk S, Chakrabarti S, Prabu JR, Conti E. The conformational plasticity of eukaryotic RNA-dependent ATPases. FEBS J 2015; 282:850-63. [PMID: 25645110 DOI: 10.1111/febs.13198] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 12/22/2022]
Abstract
RNA helicases are present in all domains of life and participate in almost all aspects of RNA metabolism, from transcription and processing to translation and decay. The diversity of pathways and substrates that they act on is reflected in the diversity of their individual functions, structures, and mechanisms. However, RNA helicases also share hallmark properties. At the functional level, they promote rearrangements of RNAs and RNP particles by coupling nucleic acid binding and release with ATP hydrolysis. At the molecular level, they contain two domains homologous to the bacterial RecA recombination protein. This conserved catalytic core is flanked by additional domains, which typically regulate the ATPase activity in cis. Binding to effector proteins targets or regulates the ATPase activity in trans. Structural and biochemical studies have converged on the plasticity of RNA helicases as a fundamental property that is used to control their timely activation in the cell. In this review, we focus on the conformational regulation of conserved eukaryotic RNA helicases.
Collapse
Affiliation(s)
- Sevim Ozgur
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
RNA helicases of the DEAD-box family are found in all eukaryotes, most bacteria and many archaea. They play important roles in rearranging RNA-RNA and RNA-protein interactions. DEAD-box proteins are ATP-dependent RNA binding proteins and RNA-dependent ATPases. The first helicases of this large family of proteins were described in the 1980s. Since then our perception of these proteins has dramatically changed. From bona fide helicases, they became RNA binding proteins that separate duplex RNAs, in a local manner, by binding and bending the target RNA. In the present review we describe some of the experiments that were important milestones in the life of DEAD-box proteins since their birth 25 years ago.
Collapse
Affiliation(s)
- Patrick Linder
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Genève 4, 1211, Switzerland,
| | | |
Collapse
|
41
|
Lulchev P, Klostermeier D. Reverse gyrase--recent advances and current mechanistic understanding of positive DNA supercoiling. Nucleic Acids Res 2014; 42:8200-13. [PMID: 25013168 PMCID: PMC4117796 DOI: 10.1093/nar/gku589] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reverse gyrases are topoisomerases that introduce positive supercoils into DNA in an ATP-dependent reaction. They consist of a helicase domain and a topoisomerase domain that closely cooperate in catalysis. The mechanism of the functional cooperation of these domains has remained elusive. Recent studies have shown that the helicase domain is a nucleotide-regulated conformational switch that alternates between an open conformation with a low affinity for double-stranded DNA, and a closed state with a high double-stranded DNA affinity. The conformational cycle leads to transient separation of DNA duplexes by the helicase domain. Reverse gyrase-specific insertions in the helicase module are involved in binding to single-stranded DNA regions, DNA unwinding and supercoiling. Biochemical and structural data suggest that DNA processing by reverse gyrase is not based on sequential action of the helicase and topoisomerase domains, but rather the result of an intricate cooperation of both domains at all stages of the reaction. This review summarizes the recent advances of our understanding of the reverse gyrase mechanism. We put forward and discuss a refined, yet simple model in which reverse gyrase directs strand passage toward increasing linking numbers and positive supercoiling by controlling the conformation of a bound DNA bubble.
Collapse
Affiliation(s)
- Pavel Lulchev
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| | - Dagmar Klostermeier
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| |
Collapse
|
42
|
Khan A, Garbelli A, Grossi S, Florentin A, Batelli G, Acuna T, Zolla G, Kaye Y, Paul LK, Zhu JK, Maga G, Grafi G, Barak S. The Arabidopsis STRESS RESPONSE SUPPRESSOR DEAD-box RNA helicases are nucleolar- and chromocenter-localized proteins that undergo stress-mediated relocalization and are involved in epigenetic gene silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:28-43. [PMID: 24724701 DOI: 10.1111/tpj.12533] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 05/03/2023]
Abstract
DEAD-box RNA helicases are involved in many aspects of RNA metabolism and in diverse biological processes in plants. Arabidopsis thaliana mutants of two DEAD-box RNA helicases, STRESS RESPONSE SUPPRESSOR1 (STRS1) and STRS2 were previously shown to exhibit tolerance to abiotic stresses and up-regulated stress-responsive gene expression. Here, we show that Arabidopsis STRS-overexpressing lines displayed a less tolerant phenotype and reduced expression of stress-induced genes confirming the STRSs as attenuators of Arabidopsis stress responses. GFP-STRS fusion proteins exhibited localization to the nucleolus, nucleoplasm and chromocenters and exhibited relocalization in response to abscisic acid (ABA) treatment and various stresses. This relocalization was reversed when stress treatments were removed. The STRS proteins displayed mis-localization in specific gene-silencing mutants and exhibited RNA-dependent ATPase and RNA-unwinding activities. In particular, STRS2 showed mis-localization in three out of four mutants of the RNA-directed DNA methylation (RdDM) pathway while STRS1 was mis-localized in the hd2c mutant that is defective in histone deacetylase activity. Furthermore, heterochromatic RdDM target loci displayed reduced DNA methylation and increased expression in the strs mutants. Taken together, our findings suggest that the STRS proteins are involved in epigenetic silencing of gene expression to bring about suppression of the Arabidopsis stress response.
Collapse
Affiliation(s)
- Asif Khan
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ostareck DH, Naarmann-de Vries IS, Ostareck-Lederer A. DDX6 and its orthologs as modulators of cellular and viral RNA expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:659-78. [PMID: 24788243 DOI: 10.1002/wrna.1237] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 12/21/2022]
Abstract
DDX6 (Rck/p54), a member of the DEAD-box family of helicases, is highly conserved from unicellular eukaryotes to vertebrates. Functions of DDX6 and its orthologs in dynamic ribonucleoproteins contribute to global and transcript-specific messenger RNA (mRNA) storage, translational repression, and decay during development and differentiation in the germline and somatic cells. Its role in pathways that promote mRNA-specific alternative translation initiation has been shown to be linked to cellular homeostasis, deregulated tissue development, and the control of gene expression in RNA viruses. Recently, DDX6 was found to participate in mRNA regulation mediated by miRNA-mediated silencing. DDX6 and its orthologs have versatile functions in mRNA metabolism, which characterize them as important post-transcriptional regulators of gene expression.
Collapse
Affiliation(s)
- Dirk H Ostareck
- Experimental Research Unit, Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, Aachen, Germany
| | | | | |
Collapse
|
44
|
Abstract
Cells use messenger RNAs (mRNAs) to ensure the accurate dissemination of genetic information encoded by DNA. Given that mRNAs largely direct the synthesis of a critical effector of cellular phenotype, i.e., proteins, tight regulation of both the quality and quantity of mRNA is a prerequisite for effective cellular homeostasis. Here, we review nonsense-mediated mRNA decay (NMD), which is the best-characterized posttranscriptional quality control mechanism that cells have evolved in their cytoplasm to ensure transcriptome fidelity. We use protein quality control as a conceptual framework to organize what is known about NMD, highlighting overarching similarities between these two polymer quality control pathways, where the protein quality control and NMD pathways intersect, and how protein quality control can suggest new avenues for research into mRNA quality control.
Collapse
Affiliation(s)
- Maximilian Wei-Lin Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642;
| | | |
Collapse
|
45
|
Abstract
The eIF4A (eukaryotic initiation factor 4A) proteins belong to the extensive DEAD-box RNA helicase family, the members of which are involved in many aspects of RNA metabolism by virtue of their RNA-binding capacity and ATPase activity. Three eIF4A proteins have been characterized in vertebrates: eIF4A1 and eIF4A2 are cytoplasmic, whereas eIF4A3 is nuclear-localized. Although highly similar, they have been shown to possess rather diverse roles in the mRNA lifecycle. Their specific and diverse functions are often regulated and dictated by interacting partner proteins. The key differences between eIF4A family members are discussed in the present review.
Collapse
|
46
|
Molecular dynamics simulation of the allosteric regulation of eIF4A protein from the open to closed state, induced by ATP and RNA substrates. PLoS One 2014; 9:e86104. [PMID: 24465900 PMCID: PMC3900488 DOI: 10.1371/journal.pone.0086104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/05/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Eukaryotic initiation factor 4A (eIF4A) plays a key role in the process of protein translation initiation by facilitating the melting of the 5' proximal secondary structure of eukaryotic mRNA for ribosomal subunit attachment. It was experimentally postulated that the closed conformation of the eIF4A protein bound by the ATP and RNA substrates is coupled to RNA duplex unwinding to promote protein translation initiation, rather than an open conformation in the absence of ATP and RNA substrates. However, the allosteric process of eIF4A from the open to closed state induced by the ATP and RNA substrates are not yet fully understood. METHODOLOGY In the present work, we constructed a series of diplex and ternary models of the eIF4A protein bound by the ATP and RNA substrates to carry out molecular dynamics simulations, free energy calculations and conformation analysis and explore the allosteric properties of eIF4A. RESULTS The results showed that the eIF4A protein completes the conformational transition from the open to closed state via two allosteric processes of ATP binding followed by RNA and vice versa. Based on cooperative allosteric network analysis, the ATP binding to the eIF4A protein mainly caused the relative rotation of two domains, while the RNA binding caused the proximity of two domains via the migration of RNA bases in the presence of ATP. The cooperative binding of ATP and RNA for the eIF4A protein plays a key role in the allosteric transition.
Collapse
|
47
|
Liu F, Putnam AA, Jankowsky E. DEAD-box helicases form nucleotide-dependent, long-lived complexes with RNA. Biochemistry 2014; 53:423-33. [PMID: 24367975 DOI: 10.1021/bi401540q] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DEAD-box RNA helicases bind and remodel RNA and RNA-protein complexes in an ATP-dependent fashion. Several lines of evidence suggest that DEAD-box RNA helicases can also form stable, persistent complexes with RNA in a process referred to as RNA clamping. The molecular basis of RNA clamping is not well understood. Here we show that the yeast DEAD-box helicase Ded1p forms exceptionally long-lived complexes with RNA and the nonhydrolyzable ATP ground-state analogue ADP-BeFx or the nonhydrolyzable ATP transition state analogue ADP-AlFx. The complexes have lifetimes of several hours, and neither nucleotide nor Mg(2+) is released during this period. Mutation of arginine 489, which stabilizes the transition state, prevents formation of long-lived complexes with the ATP transition state analogue, but not with the ground state analogue. We also show that two other yeast DEAD-box helicases, Mss116p and Sub2p, form comparably long-lived complexes with RNA and ADP-BeFx. Like Ded1p, Mss116p forms long-lived complexes with ADP-AlFx, but Sub2p does not. These data suggest that the ATP transition state might vary for distinct DEAD-box helicases, or that the transition state triggers differing RNA binding properties in these proteins. In the ATP ground state, however, all tested DEAD-box helicases establish a persistent grip on RNA, revealing an inherent capacity of the enzymes to function as potent, ATP-dependent RNA clamps.
Collapse
Affiliation(s)
- Fei Liu
- College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu, 210095, China
| | | | | |
Collapse
|
48
|
Insights into mRNA export-linked molecular mechanisms of human disease through a Gle1 structure-function analysis. Adv Biol Regul 2013; 54:74-91. [PMID: 24275432 DOI: 10.1016/j.jbior.2013.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/23/2013] [Accepted: 10/28/2013] [Indexed: 02/02/2023]
Abstract
A critical step during gene expression is the directional export of nuclear messenger (m)RNA through nuclear pore complexes (NPCs) to the cytoplasm. During export, Gle1 in conjunction with inositol hexakisphosphate (IP6) spatially regulates the activity of the DEAD-box protein Dbp5 at the NPC cytoplasmic face. GLE1 mutations are causally linked to the human diseases lethal congenital contracture syndrome 1 (LCCS-1) and lethal arthrogryposis with anterior horn cell disease (LAAHD). Here, structure prediction and functional analysis provide strong evidence to suggest that the LCCS-1 and LAAHD disease mutations disrupt the function of Gle1 in mRNA export. Strikingly, direct fluorescence microscopy in living cells reveals a dramatic loss of steady-state NPC localization for GFP-gle1 proteins expressed from human gle1 genes harboring LAAHD and LCCS-1 mutations. The potential significance of these residues is further clarified by analyses of sequence and predicted structural conservation. This work offers insights into the perturbed mechanisms underlying human LCCS-1 and LAAHD disease states and emphasizes the potential impact of altered mRNA transport and gene expression in human disease.
Collapse
|
49
|
Ma WK, Cloutier SC, Tran EJ. The DEAD-box protein Dbp2 functions with the RNA-binding protein Yra1 to promote mRNP assembly. J Mol Biol 2013; 425:3824-38. [PMID: 23721653 DOI: 10.1016/j.jmb.2013.05.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/01/2013] [Accepted: 05/18/2013] [Indexed: 11/25/2022]
Abstract
Eukaryotic gene expression involves numerous biochemical steps that are dependent on RNA structure and ribonucleoprotein (RNP) complex formation. The DEAD-box class of RNA helicases plays fundamental roles in formation of RNA and RNP structure in every aspect of RNA metabolism. In an effort to explore the diversity of biological roles for DEAD-box proteins, our laboratory recently demonstrated that the DEAD-box protein Dbp2 associates with actively transcribing genes and is required for normal gene expression in Saccharomyces cerevisiae. We now provide evidence that Dbp2 interacts genetically and physically with the mRNA export factor Yra1. In addition, we find that Dbp2 is required for in vivo assembly of mRNA-binding proteins Yra1, Nab2, and Mex67 onto poly(A)+ RNA. Strikingly, we also show that Dbp2 is an efficient RNA helicase in vitro and that Yra1 decreases the efficiency of ATP-dependent duplex unwinding. We provide a model whereby messenger ribonucleoprotein (mRNP) assembly requires Dbp2 unwinding activity and once the mRNP is properly assembled, inhibition by Yra1 prevents further rearrangements. Both Yra1 and Dbp2 are conserved in multicellular eukaryotes, suggesting that this constitutes a broadly conserved mechanism for stepwise assembly of mature mRNPs in the nucleus.
Collapse
Affiliation(s)
- Wai Kit Ma
- Department of Biochemistry, Purdue University, BCHM 305, 175 South University Street, West Lafayette, IN 47907-2063, USA; Purdue University Center for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 South University Street, West Lafayette, IN 47907-2064, USA
| | | | | |
Collapse
|
50
|
Linder P, Fuller-Pace FV. Looking back on the birth of DEAD-box RNA helicases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:750-5. [PMID: 23542735 DOI: 10.1016/j.bbagrm.2013.03.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 12/20/2022]
Abstract
DEAD-box proteins represent the largest family of RNA helicases, present in all three kingdoms of life. They are involved in a variety of processes involving RNA metabolism and in some instances also in processes that use guide RNAs. Since their first descriptions in the late 1980s, the perception of their molecular activities has dramatically changed. At the time when only eight proteins with 9 conserved motifs constituted the DEAD-box protein family, it was the biochemical characterization of mammalian eIF4A that first suggested a local unwinding activity. This was confirmed in vitro using partially double stranded RNA substrates with the unexpected result of a bidirectional unwinding activity. A real change of paradigm from the classical helicase activity to localized RNA unwinding occurred with the publication of the vasa•RNA structure with a bend in the RNA substrate and the insightful work from several laboratories demonstrating local unwinding without translocation. Finally, elegant work on the exon-junction complex revealed how DEAD-box proteins can bind to RNA to serve as clamps to function as nucleation centers to form RNP complexes. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Patrick Linder
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|