1
|
Sessa R, Trombetti S, Bianco AL, Amendola G, Catapano R, Cesaro E, Petruzziello F, D'Armiento M, Maruotti GM, Menna G, Izzo P, Grosso M. miR-1202 acts as anti-oncomiR in myeloid leukaemia by down-modulating GATA-1 S expression. Open Biol 2024; 14:230319. [PMID: 38350611 PMCID: PMC10864098 DOI: 10.1098/rsob.230319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/21/2023] [Indexed: 02/15/2024] Open
Abstract
Transient abnormal myelopoiesis (TAM) is a Down syndrome-related pre-leukaemic condition characterized by somatic mutations in the haematopoietic transcription factor GATA-1 that result in exclusive production of its shorter isoform (GATA-1S). Given the common hallmark of altered miRNA expression profiles in haematological malignancies and the pro-leukaemic role of GATA-1S, we aimed to search for miRNAs potentially able to modulate the expression of GATA-1 isoforms. Starting from an in silico prediction of miRNA binding sites in the GATA-1 transcript, miR-1202 came into our sight as potential regulator of GATA-1 expression. Expression studies in K562 cells revealed that miR-1202 directly targets GATA-1, negatively regulates its expression, impairs GATA-1S production, reduces cell proliferation, and increases apoptosis sensitivity. Furthermore, data from TAM and myeloid leukaemia patients provided substantial support to our study by showing that miR-1202 down-modulation is accompanied by increased GATA-1 levels, with more marked effects on GATA-1S. These findings indicate that miR-1202 acts as an anti-oncomiR in myeloid cells and may impact leukaemogenesis at least in part by down-modulating GATA-1S levels.
Collapse
Affiliation(s)
- Raffaele Sessa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Silvia Trombetti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Alessandra Lo Bianco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giovanni Amendola
- Department of Pediatrics and Intensive Care Unit, Umberto I Hospital, Nocera Inferiore, Italy
| | - Rosa Catapano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Fara Petruzziello
- Department of Pediatric Hemato-Oncology, AORN Santobono-Pausilipon, Naples, Italy
| | - Maria D'Armiento
- Department of Public Health, Section of Pathology, University of Naples Federico II, Naples, Italy
| | - Giuseppe Maria Maruotti
- Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Giuseppe Menna
- Department of Pediatric Hemato-Oncology, AORN Santobono-Pausilipon, Naples, Italy
| | - Paola Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate 'Franco Salvatore', Naples, Italy
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate 'Franco Salvatore', Naples, Italy
| |
Collapse
|
2
|
Bai Y, Li Y, Qin Y, Yang X, Tseng GC, Kim S, Park HJ. The microRNA target site profile is a novel biomarker in the immunotherapy response. Front Oncol 2023; 13:1225221. [PMID: 38188295 PMCID: PMC10771317 DOI: 10.3389/fonc.2023.1225221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
MicroRNAs (miRNAs) bind on the 3' untranslated region (3'UTR) of messenger RNAs (mRNAs) and regulate mRNA expression in physiological and pathological conditions, including cancer. Thus, studies have identified miRNAs as potential biomarkers by correlating the miRNA expression with the expression of important mRNAs and/or clinical outcomes in cancers. However, tumors undergo pervasive 3'UTR shortening/lengthening events through alternative polyadenylation (APA), which varies the number of miRNA target sites in mRNA, raising the number of miRNA target sites (numTS) as another important regulatory axis of the miRNA binding effects. In this study, we developed the first statistical method, BIOMATA-APA, to identify predictive miRNAs based on numTS features. Running BIOMATA-APA on The Cancer Genome Atlas (TCGA) and independent cohort data both with immunotherapy and no immunotherapy, we demonstrated for the first time that the numTS feature 1) distinguishes different cancer types, 2) predicts tumor proliferation and immune infiltration status, 3) explains more variation in the proportion of tumor-infiltrating immune cells, 4) predicts response to immune checkpoint blockade (ICB) therapy, and 5) adds prognostic power beyond clinical and miRNA expression. To the best of our knowledge, this is the first pan-cancer study to systematically demonstrate numTS as a novel type of biomarker representing the miRNA binding effects underlying tumorigenesis and pave the way to incorporate miRNA target sites for miRNA biomarker identification. Another advantage of examining the miRNA binding effect using numTS is that it requires only RNA-Seq data, not miRNAs, thus resulting in high power in the miRNA biomarker identification.
Collapse
Affiliation(s)
- Yulong Bai
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yujia Li
- Statistics-Oncology, Eli Lilly and Company, Indianapolis, IN, United States
| | - Yidi Qin
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xinshuo Yang
- Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ, United States
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Soyeon Kim
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hyun Jung Park
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Anilkumar KV, Rema LP, John MC, Vanesa John T, George A. miRNAs in the prognosis of triple-negative breast cancer: A review. Life Sci 2023; 333:122183. [PMID: 37858714 DOI: 10.1016/j.lfs.2023.122183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Triple-Negative Breast Cancer (TNBC) is a highly aggressive and invasive type of breast cancer (BC) with high mortality rate wherein effective target medicaments are lacking. It is a very heterogeneous group with several subtypes that account for 10-20% of cancer among women globally, being negative for three most important receptors (estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2)), with an early and high recurrence resulting in poor survival rate. Therefore, a more thorough knowledge on carcinogenesis of TNBC is required for the development of personalized treatment options. miRNAs can either promote or suppress tumorigenesis and have been linked to a number of features of cancer progression, including proliferation, metastasis, apoptosis, and epithelial-mesenchymal transition (EMT). Recent miRNA research shows that there is great potential for the development of novel biomarkers as they have emerged as drivers of tumorigenesis and provide opportunities to target various components involved in TNBC, thus helping to solve this difficult-to-treat disease. In this review, we summarize the most relevant miRNAs that play an essential role in TNBC biology. Their role with regard to molecular mechanisms underlying TNBC progression has been discussed, and their potential use as therapeutic or prognostic markers to unravel the intricacy of TNBC based on the pieces of evidence obtained from various works of literature has been briefly addressed.
Collapse
Affiliation(s)
- Kavya V Anilkumar
- PG and Research Department of Zoology, Maharaja's College, Ernakulam, 682011, India; Cell and Molecular Biology Facility, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - L P Rema
- PG and Research Department of Zoology, Maharaja's College, Ernakulam, 682011, India
| | - Mithun Chacko John
- Department of Medical Oncology, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - T Vanesa John
- Department of Pathology, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Alex George
- Cell and Molecular Biology Facility, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India.
| |
Collapse
|
4
|
Gabbianelli R, Shahar E, de Simone G, Rucci C, Bordoni L, Feliziani G, Zhao F, Ferrati M, Maggi F, Spinozzi E, Mahajna J. Plant-Derived Epi-Nutraceuticals as Potential Broad-Spectrum Anti-Viral Agents. Nutrients 2023; 15:4719. [PMID: 38004113 PMCID: PMC10675658 DOI: 10.3390/nu15224719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Although the COVID-19 pandemic appears to be diminishing, the emergence of SARS-CoV-2 variants represents a threat to humans due to their inherent transmissibility, immunological evasion, virulence, and invulnerability to existing therapies. The COVID-19 pandemic affected more than 500 million people and caused over 6 million deaths. Vaccines are essential, but in circumstances in which vaccination is not accessible or in individuals with compromised immune systems, drugs can provide additional protection. Targeting host signaling pathways is recommended due to their genomic stability and resistance barriers. Moreover, targeting host factors allows us to develop compounds that are effective against different viral variants as well as against newly emerging virus strains. In recent years, the globe has experienced climate change, which may contribute to the emergence and spread of infectious diseases through a variety of factors. Warmer temperatures and changing precipitation patterns can increase the geographic range of disease-carrying vectors, increasing the risk of diseases spreading to new areas. Climate change may also affect vector behavior, leading to a longer breeding season and more breeding sites for disease vectors. Climate change may also disrupt ecosystems, bringing humans closer to wildlife that transmits zoonotic diseases. All the above factors may accelerate the emergence of new viral epidemics. Plant-derived products, which have been used in traditional medicine for treating pathological conditions, offer structurally novel therapeutic compounds, including those with anti-viral activity. In addition, plant-derived bioactive substances might serve as the ideal basis for developing sustainable/efficient/cost-effective anti-viral alternatives. Interest in herbal antiviral products has increased. More than 50% of approved drugs originate from herbal sources. Plant-derived compounds offer diverse structures and bioactive molecules that are candidates for new drug development. Combining these therapies with conventional drugs could improve patient outcomes. Epigenetics modifications in the genome can affect gene expression without altering DNA sequences. Host cells can use epigenetic gene regulation as a mechanism to silence incoming viral DNA molecules, while viruses recruit cellular epitranscriptomic (covalent modifications of RNAs) modifiers to increase the translational efficiency and transcript stability of viral transcripts to enhance viral gene expression and replication. Moreover, viruses manipulate host cells' epigenetic machinery to ensure productive viral infections. Environmental factors, such as natural products, may influence epigenetic modifications. In this review, we explore the potential of plant-derived substances as epigenetic modifiers for broad-spectrum anti-viral activity, reviewing their modulation processes and anti-viral effects on DNA and RNA viruses, as well as addressing future research objectives in this rapidly emerging field.
Collapse
Affiliation(s)
- Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Ehud Shahar
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| | - Gaia de Simone
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Chiara Rucci
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Giulia Feliziani
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Fanrui Zhao
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Marta Ferrati
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Eleonora Spinozzi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| |
Collapse
|
5
|
Anoushirvani AA, Jafarian Yazdi A, Amirabadi S, Asouri SA, Shafabakhsh R, Sheida A, Hosseini Khabr MS, Jafari A, Tamehri Zadeh SS, Hamblin MR, Kalantari L, Talaei Zavareh SA, Mirzaei H. Role of non-coding RNAs in neuroblastoma. Cancer Gene Ther 2023; 30:1190-1208. [PMID: 37217790 DOI: 10.1038/s41417-023-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/25/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Neuroblastoma is known as the most prevalent extracranial malignancy in childhood with a neural crest origin. It has been widely accepted that non-coding RNAs (ncRNAs) play important roles in many types of cancer, including glioma and gastrointestinal cancers. They may regulate the cancer gene network. According to recent sequencing and profiling studies, ncRNAs genes are deregulated in human cancers via deletion, amplification, abnormal epigenetic, or transcriptional regulation. Disturbances in the expression of ncRNAs may act either as oncogenes or as anti-tumor suppressor genes, and can lead to the induction of cancer hallmarks. ncRNAs can be secreted from tumor cells inside exosomes, where they can be transferred to other cells to affect their function. However, these topics still need more study to clarify their exact roles, so the present review addresses different roles and functions of ncRNAs in neuroblastoma.
Collapse
Affiliation(s)
- Ali Arash Anoushirvani
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Sanaz Amirabadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX: 15179/64311, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran.
| |
Collapse
|
6
|
Hackl LM, Fenn A, Louadi Z, Baumbach J, Kacprowski T, List M, Tsoy O. Alternative splicing impacts microRNA regulation within coding regions. NAR Genom Bioinform 2023; 5:lqad081. [PMID: 37705830 PMCID: PMC10495541 DOI: 10.1093/nargab/lqad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/04/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that bind to target sites in different gene regions and regulate post-transcriptional gene expression. Approximately 95% of human multi-exon genes can be spliced alternatively, which enables the production of functionally diverse transcripts and proteins from a single gene. Through alternative splicing, transcripts might lose the exon with the miRNA target site and become unresponsive to miRNA regulation. To check this hypothesis, we studied the role of miRNA target sites in both coding and non-coding regions using six cancer data sets from The Cancer Genome Atlas (TCGA) and Parkinson's disease data from PPMI. First, we predicted miRNA target sites on mRNAs from their sequence using TarPmiR. To check whether alternative splicing interferes with this regulation, we trained linear regression models to predict miRNA expression from transcript expression. Using nested models, we compared the predictive power of transcripts with miRNA target sites in the coding regions to that of transcripts without target sites. Models containing transcripts with target sites perform significantly better. We conclude that alternative splicing does interfere with miRNA regulation by skipping exons with miRNA target sites within the coding region.
Collapse
Affiliation(s)
- Lena Maria Hackl
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
| | - Amit Fenn
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Zakaria Louadi
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
- Computational BioMedicine Lab, University of Southern Denmark, Campusvej 50, 5230 Odense, Denmark
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Rebenring 56, 38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Olga Tsoy
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
| |
Collapse
|
7
|
Arabkari V, Sultana A, Barua D, Webber M, Smith T, Gupta A, Gupta S. UPR-Induced miR-616 Inhibits Human Breast Cancer Cell Growth and Migration by Targeting c-MYC. Int J Mol Sci 2023; 24:13034. [PMID: 37685841 PMCID: PMC10487498 DOI: 10.3390/ijms241713034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
C/EBP homologous protein (CHOP), also known as growth arrest and DNA damage-inducible protein 153 (GADD153), belongs to the CCAAT/enhancer-binding protein (C/EBP) family. CHOP expression is induced by unfolded protein response (UPR), and sustained CHOP activation acts as a pivotal trigger for ER stress-induced apoptosis. MicroRNA-616 is located within an intron of the CHOP gene. However, the regulation of miR-616 expression during UPR and its function in breast cancer is not clearly understood. Here we show that the expression of miR-616 and CHOP (host gene of miR-616) is downregulated in human breast cancer. Both miR-5p/-3p arms of miR-616 are expressed with levels of the 5p arm higher than the 3p arm. During conditions of ER stress, the expression of miR-616-5p and miR-616-3p arms was concordantly increased primarily through the PERK pathway. Our results show that ectopic expression of miR-616 significantly suppressed cell proliferation and colony formation, whereas knockout of miR-616 increased it. We found that miR-616 represses c-MYC expression via binding sites located in its protein coding region. Furthermore, we show that miR-616 exerted growth inhibitory effects on cells by suppressing c-MYC expression. Our results establish a new role for the CHOP locus by providing evidence that miR-616 can inhibit cell proliferation by targeting c-MYC. In summary, our results suggest a dual function for the CHOP locus, where CHOP protein and miR-616 can cooperate to inhibit cancer progression.
Collapse
Affiliation(s)
- Vahid Arabkari
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland; (V.A.); (A.S.); (D.B.); (M.W.)
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Afrin Sultana
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland; (V.A.); (A.S.); (D.B.); (M.W.)
| | - David Barua
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland; (V.A.); (A.S.); (D.B.); (M.W.)
| | - Mark Webber
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland; (V.A.); (A.S.); (D.B.); (M.W.)
| | - Terry Smith
- Molecular Diagnostic Research Group, College of Science, University of Galway, H91 TK33 Galway, Ireland;
| | - Ananya Gupta
- Discipline of Physiology, School of Medicine, University of Galway, H91 TK33 Galway, Ireland;
| | - Sanjeev Gupta
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland; (V.A.); (A.S.); (D.B.); (M.W.)
| |
Collapse
|
8
|
Sahafnejad Z, Ramazi S, Allahverdi A. An Update of Epigenetic Drugs for the Treatment of Cancers and Brain Diseases: A Comprehensive Review. Genes (Basel) 2023; 14:genes14040873. [PMID: 37107631 PMCID: PMC10137918 DOI: 10.3390/genes14040873] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/28/2022] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Epigenetics has long been recognized as a significant field in biology and is defined as the investigation of any alteration in gene expression patterns that is not attributed to changes in the DNA sequences. Epigenetic marks, including histone modifications, non-coding RNAs, and DNA methylation, play crucial roles in gene regulation. Numerous studies in humans have been carried out on single-nucleotide resolution of DNA methylation, the CpG island, new histone modifications, and genome-wide nucleosome positioning. These studies indicate that epigenetic mutations and aberrant placement of these epigenetic marks play a critical role in causing the disease. Consequently, significant development has occurred in biomedical research in identifying epigenetic mechanisms, their interactions, and changes in health and disease conditions. The purpose of this review article is to provide comprehensive information about the different types of diseases caused by alterations in epigenetic factors such as DNA methylation and histone acetylation or methylation. Recent studies reported that epigenetics could influence the evolution of human cancer via aberrant methylation of gene promoter regions, which is associated with reduced gene function. Furthermore, DNA methyltransferases (DNMTs) in the DNA methylation process as well as histone acetyltransferases (HATs)/histone deacetylases (HDACs) and histone methyltransferases (HMTs)/demethylases (HDMs) in histone modifications play important roles both in the catalysis and inhibition of target gene transcription and in many other DNA processes such as repair, replication, and recombination. Dysfunction in these enzymes leads to epigenetic disorders and, as a result, various diseases such as cancers and brain diseases. Consequently, the knowledge of how to modify aberrant DNA methylation as well as aberrant histone acetylation or methylation via inhibitors by using epigenetic drugs can be a suitable therapeutic approach for a number of diseases. Using the synergistic effects of DNA methylation and histone modification inhibitors, it is hoped that many epigenetic defects will be treated in the future. Numerous studies have demonstrated a link between epigenetic marks and their effects on brain and cancer diseases. Designing appropriate drugs could provide novel strategies for the management of these diseases in the near future.
Collapse
Affiliation(s)
- Zahra Sahafnejad
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| | - Shahin Ramazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| |
Collapse
|
9
|
Alvanou M, Lysandrou M, Christophi P, Psatha N, Spyridonidis A, Papadopoulou A, Yannaki E. Empowering the Potential of CAR-T Cell Immunotherapies by Epigenetic Reprogramming. Cancers (Basel) 2023; 15:1935. [PMID: 37046597 PMCID: PMC10093039 DOI: 10.3390/cancers15071935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
T-cell-based, personalized immunotherapy can nowadays be considered the mainstream treatment for certain blood cancers, with a high potential for expanding indications. Chimeric antigen receptor T cells (CAR-Ts), an ex vivo genetically modified T-cell therapy product redirected to target an antigen of interest, have achieved unforeseen successes in patients with B-cell hematologic malignancies. Frequently, however, CAR-T cell therapies fail to provide durable responses while they have met with only limited success in treating solid cancers because unique, unaddressed challenges, including poor persistence, impaired trafficking to the tumor, and site penetration through a hostile microenvironment, impede their efficacy. Increasing evidence suggests that CAR-Ts' in vivo performance is associated with T-cell intrinsic features that may be epigenetically altered or dysregulated. In this review, we focus on the impact of epigenetic regulation on T-cell differentiation, exhaustion, and tumor infiltration and discuss how epigenetic reprogramming may enhance CAR-Ts' memory phenotype, trafficking, and fitness, contributing to the development of a new generation of potent CAR-T immunotherapies.
Collapse
Affiliation(s)
- Maria Alvanou
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, 570 10 Thessaloniki, Greece
- Bone Marrow Transplantation Unit, Institute of Cell Therapy, University of Patras, 265 04 Rio, Greece
| | - Memnon Lysandrou
- Bone Marrow Transplantation Unit, Institute of Cell Therapy, University of Patras, 265 04 Rio, Greece
| | - Panayota Christophi
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, 570 10 Thessaloniki, Greece
- Bone Marrow Transplantation Unit, Institute of Cell Therapy, University of Patras, 265 04 Rio, Greece
| | - Nikoleta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 570 10 Thessaloniki, Greece
| | - Alexandros Spyridonidis
- Bone Marrow Transplantation Unit, Institute of Cell Therapy, University of Patras, 265 04 Rio, Greece
| | - Anastasia Papadopoulou
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, 570 10 Thessaloniki, Greece
| | - Evangelia Yannaki
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, 570 10 Thessaloniki, Greece
- Department of Medicine, University of Washington, Seattle, WA 98195-2100, USA
| |
Collapse
|
10
|
Hunter DJ, James LS, Hussey B, Ferguson RA, Lindley MR, Mastana SS. Impacts of Eccentric Resistance Exercise on DNA Methylation of Candidate Genes for Inflammatory Cytokines in Skeletal Muscle and Leukocytes of Healthy Males. Genes (Basel) 2023; 14:478. [PMID: 36833405 PMCID: PMC9957508 DOI: 10.3390/genes14020478] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Physical inactivity and a poor diet increase systemic inflammation, while chronic inflammation can be reduced through exercise and nutritional interventions. The mechanisms underlying the impacts of lifestyle interventions on inflammation remain to be fully explained; however, epigenetic modifications may be critical. The purpose of our study was to investigate the impacts of eccentric resistance exercise and fatty acid supplementation on DNA methylation and mRNA expression of TNF and IL6 in skeletal muscle and leukocytes. Eight non-resistance exercise-trained males completed three bouts of isokinetic eccentric contractions of the knee extensors. The first bout occurred at baseline, the second occurred following a three-week supplementation of either omega-3 polyunsaturated fatty acid or extra virgin olive oil and the final bout occurred after eight-weeks of eccentric resistance training and supplementation. Acute exercise decreased skeletal muscle TNF DNA methylation by 5% (p = 0.031), whereas IL6 DNA methylation increased by 3% (p = 0.01). Leukocyte DNA methylation was unchanged following exercise (p > 0.05); however, three hours post-exercise the TNF DNA methylation decreased by 2% (p = 0.004). In skeletal muscle, increased TNF and IL6 mRNA expression levels were identified immediately post-exercise (p < 0.027); however, the leukocyte mRNA expression was unchanged. Associations between DNA methylation and markers of exercise performance, inflammation and muscle damage were identified (p < 0.05). Acute eccentric resistance exercise is sufficient to induce tissue-specific DNA methylation modifications to TNF and IL6; however, neither eccentric training nor supplementation was sufficient to further modify the DNA methylation.
Collapse
Affiliation(s)
- David John Hunter
- Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Lynsey S. James
- Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Bethan Hussey
- Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Richard A. Ferguson
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Martin R. Lindley
- Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- School of Biomedical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sarabjit S. Mastana
- Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| |
Collapse
|
11
|
Zhang R, Zhang S, Li T, Li H, Zhang H, Zheng W. RNA sequencing identifies an ovary-enriched microRNA, miR-311-3p, involved in ovarian development and fecundity by targeting Endophilin B1 in Bactrocera dorsalis. PEST MANAGEMENT SCIENCE 2023; 79:688-700. [PMID: 36239581 DOI: 10.1002/ps.7236] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The oriental fruit fly, Bactrocera dorsalis, is a highly invasive pest in East Asia and the Pacific. With the development of pesticides resistance, environment-friendly pesticides are urgently needed. MicroRNAs (miRNAs) are critical regulators of numerous biological processes, including reproduction. Thus, it is significant to identify reproductive-related miRNAs in this notorious pest to facilitate its control, such as RNAi-based biopesticides targeting essential miRNAs. RESULTS A high-throughput sequencing was carried out to identify miRNAs involved in reproduction from the ovary and fat body at four developmental stages [1 day (d), 5, 9, and 13 days post-eclosion] in female B. dorsalis. Results showed that 98 and 74 miRNAs were differentially expressed in ovary and fat body, respectively, during sexual maturation. Gene ontology analysis showed that target genes involved in oogenesis and lipid particle accounted for 33% and 15% of the total targets, respectively. Among these differentially expressed miRNAs, we found by qPCR that miR-311-3p was enriched in the ovary and down-regulated during sexual maturation. Injection of agomir-miR-311-3p resulted in arrested ovarian development, reduced egg deposition and progeny viability. Endophilin B1 was confirmed to be the target of miR-311-3p, via dual-luciferase assay and expression profiling. Knockdown of Endophilin B1 resulted in reproductive defects similar to those caused by injection of miR-311-3p agomir. Thus, miR-311-3p might play a critical role in female reproduction by targeting Endophilin B1. CONCLUSION Our data not only provides knowledge on the abundance of reproductive-related miRNAs and target genes, but also promotes new control strategies for this pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengfeng Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tianran Li
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haozhe Li
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Hua X, Li Y, Pentaparthi SR, McGrail DJ, Zou R, Guo L, Shrawat A, Cirillo KM, Li Q, Bhat A, Xu M, Qi D, Singh A, McGrath F, Andrews S, Aung KL, Das J, Zhou Y, Lodi A, Mills GB, Eckhardt SG, Mendillo ML, Tiziani S, Wu E, Huang JH, Sahni N, Yi SS. Landscape of MicroRNA Regulatory Network Architecture and Functional Rerouting in Cancer. Cancer Res 2023; 83:59-73. [PMID: 36265133 PMCID: PMC9811166 DOI: 10.1158/0008-5472.can-20-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 12/15/2020] [Accepted: 10/14/2022] [Indexed: 02/05/2023]
Abstract
Somatic mutations are a major source of cancer development, and many driver mutations have been identified in protein coding regions. However, the function of mutations located in miRNA and their target binding sites throughout the human genome remains largely unknown. Here, we built detailed cancer-specific miRNA regulatory networks across 30 cancer types to systematically analyze the effect of mutations in miRNAs and their target sites in 3' untranslated region (3' UTR), coding sequence (CDS), and 5' UTR regions. A total of 3,518,261 mutations from 9,819 samples were mapped to miRNA-gene interactions (mGI). Mutations in miRNAs showed a mutually exclusive pattern with mutations in their target genes in almost all cancer types. A linear regression method identified 148 candidate driver mutations that can significantly perturb miRNA regulatory networks. Driver mutations in 3'UTRs played their roles by altering RNA binding energy and the expression of target genes. Finally, mutated driver gene targets in 3' UTRs were significantly downregulated in cancer and functioned as tumor suppressors during cancer progression, suggesting potential miRNA candidates with significant clinical implications. A user-friendly, open-access web portal (mGI-map) was developed to facilitate further use of this data resource. Together, these results will facilitate novel noncoding biomarker identification and therapeutic drug design targeting the miRNA regulatory networks. SIGNIFICANCE A detailed miRNA-gene interaction map reveals extensive miRNA-mediated gene regulatory networks with mutation-induced perturbations across multiple cancers, serving as a resource for noncoding biomarker discovery and drug development.
Collapse
Affiliation(s)
- Xu Hua
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yongsheng Li
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Sairahul R. Pentaparthi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Daniel J. McGrail
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raymond Zou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Guo
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aditya Shrawat
- College of Natural Sciences, The University of Texas at Austin, Austin, Texas
| | - Kara M. Cirillo
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qing Li
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Akshay Bhat
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Min Xu
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
| | - Dan Qi
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
| | - Ashok Singh
- Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Francis McGrath
- Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Steven Andrews
- Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Kyaw Lwin Aung
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Jishnu Das
- Center for Systems Immunology, Department of Immunology, and Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yunyun Zhou
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Gordon B. Mills
- Department of Cell, Developmental and Cancer Biology, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Precision Oncology, Knight Cancer Institute, Portland, Oregon
| | - S. Gail Eckhardt
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), The University of Texas at Austin, Austin, Texas
| | - Marc L. Mendillo
- Department of Biochemistry and Molecular Genetics, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Stefano Tiziani
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), The University of Texas at Austin, Austin, Texas
| | - Erxi Wu
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
- Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, Texas
- Department of Pharmaceutical Sciences, Texas A & M University Health Science Center, College of Pharmacy, College Station, Texas
| | - Jason H. Huang
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
- Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, Texas
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, Texas
| | - S. Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), The University of Texas at Austin, Austin, Texas
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, Texas
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
13
|
Zhang W, Jiang T, Xie K. Epigenetic reprogramming in pancreatic premalignancy and clinical implications. Front Oncol 2023; 13:1024151. [PMID: 36874143 PMCID: PMC9978013 DOI: 10.3389/fonc.2023.1024151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Pancreatic cancer (PC) is the most lethal human cancer, with less than 10% 5-year survival. Pancreatic premalignancy is a genetic and epigenomic disease and is linked to PC initiation. Pancreatic premalignant lesions include pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN), with pancreatic acinar-to-ductal metaplasia (ADM) as the major source of pancreatic premalignant lesions. Emerging evidence reveals that an epigenetic dysregulation is an early event in pancreatic tumorigenesis. The molecular mechanisms of epigenetic inheritance include chromatin remodeling; modifications in histone, DNA, and RNA; non-coding RNA expression; and alternative splicing of RNA. Changes in those epigenetic modifications contribute to the most notable alterations in chromatin structure and promoter accessibility, thus leading to the silence of tumor suppressor genes and/or activation of oncogenes. The expression profiles of various epigenetic molecules provide a promising opportunity for biomarker development for early diagnosis of PC and novel targeted treatment strategies. However, how the alterations in epigenetic regulatory machinery regulate epigenetic reprogramming in pancreatic premalignant lesions and the different stages of their initiation needs further investigation. This review will summarize the current knowledge of epigenetic reprogramming in pancreatic premalignant initiation and progression, and its clinical applications as detection and diagnostic biomarkers and therapeutic targets in PC.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| |
Collapse
|
14
|
Lai KP, Tim Leung CC, Boncan DAT, Tam N, Lin X, Wang SY, Chan TF, Sun Wu RS, Chong Kong RY. Hypoxia-induced epigenetic transgenerational miRNAs dysregulation involved in reproductive impairment of ovary. Chem Biol Interact 2022; 367:110176. [PMID: 36096162 DOI: 10.1016/j.cbi.2022.110176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/03/2022]
Abstract
Hypoxia is a potent endocrine disruptor that is posing serious problems to the fish reproductive systems. Our previous studies reported that hypoxia could cause a transgenerational impairment of ovarian development and interfere hatching success in F2 offspring of marine medaka fish (Oryzias melastigma) through epigenetic regulation. As part of the epigenetic regulation, we investigated the involvement of microRNAs (miRNAs) in hypoxia-induced transgenerational reproductive impairments. In the present study, we used comparative small RNA sequencing to reveal that hypoxia caused miRNA dysregulation in ovaries of F0 hypoxia group and F2 transgenerational group. We found 4 common dysregulated miRNA in the F0 and F2 generations. Furthermore, integrated miRNA-mRNA analysis, followed by gene ontology enrichment analysis on the hypoxia-dysregulated miRNA-target genes further highlighted the importance of these dysregulated miRNAs in biological processes related to reproduction. More importantly, we identified 3 miRNA-mRNA pairs (novel miRNA-525-DIAPH2, novel miRNA-525-MYOCD, and novel miRNA-525-RAI14) that might play epigenetic roles in hypoxia-induced reproductive impairment. For the first time, our findings suggested the involvement of miRNA in hypoxia-induced reproductive impairments may be inherited via a transgenerational manner.
Collapse
Affiliation(s)
- Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, China; Department of Chemistry, The City University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, The City University of Hong Kong, Hong Kong SAR, China.
| | | | - Delbert Almerick T Boncan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nathan Tam
- Department of Chemistry, The City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, USA
| | - Simon Yuan Wang
- Division of Newborn Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA, 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rudolf Shiu Sun Wu
- State Key Laboratory of Marine Pollution, The City University of Hong Kong, Hong Kong SAR, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, China
| | - Richard Yuen Chong Kong
- Department of Chemistry, The City University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, The City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
15
|
miR-539-5p regulates Srebf1 transcription in the skeletal muscle of diabetic mice by targeting DNA methyltransferase 3b. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:718-732. [PMID: 36090753 PMCID: PMC9439965 DOI: 10.1016/j.omtn.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 08/10/2022] [Indexed: 11/24/2022]
Abstract
Aberrant DNA methylation is associated with diabetes, but the precise regulatory events that control the levels and activity of DNA methyltransferases (DNMTs) is not well understood. Here we show that miR-539-5p targets Dnmt3b and regulates its cellular levels. miR-539-5p and Dnmt3b show inverse patterns of expression in skeletal muscle of diabetic mice. By binding to the 3′ UTR of Dnmt3b, miR-539-5p downregulates its levels in C2C12 cells and in human primary skeletal muscle cells. miR-539-5p-Dnmt3b interaction regulates Srebf1 transcription by altering methylation at CpG islands within Srebf1 in C2C12 cells. Dnmt3b inhibition alone was sufficient to upregulate Srebf1 transcription. In vivo antagonism of miR-539-5p in normal mice induced hyperglycemia and hyperinsulinemia and impaired oral glucose tolerance. These mice had elevated Dnmt3b and decreased Srebf1 levels in skeletal muscle. db/db mice injected with miR-539-5p mimics showed improved circulatory glucose and cholesterol levels. Oral glucose tolerance improved together with normalization of Dnmt3b and Srebf1 levels in skeletal muscle. Our results support a critical role of miR-539-5p and Dnmt3b in aberrant skeletal muscle metabolism during diabetes by regulating Srebf1 transcription; modulating the miR-539-5p-Dnmt3b axis might have therapeutic potential for addressing altered skeletal muscle physiology during insulin resistance and type 2 diabetes.
Collapse
|
16
|
Singh S, Shyamal S, Panda AC. Detecting RNA-RNA interactome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1715. [PMID: 35132791 DOI: 10.1002/wrna.1715] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The last decade has seen a robust increase in various types of novel RNA molecules and their complexity in gene regulation. RNA molecules play a critical role in cellular events by interacting with other biomolecules, including protein, DNA, and RNA. It has been established that RNA-RNA interactions play a critical role in several biological processes by regulating the biogenesis and function of RNA molecules. Interestingly, RNA-RNA interactions regulate the biogenesis of diverse RNA molecules, including mRNAs, microRNAs, tRNAs, and circRNAs, through splicing or backsplicing. Structured RNAs like rRNA, tRNA, and snRNAs achieve their functional conformation by intramolecular RNA-RNA interactions. In addition, functional consequences of many intermolecular RNA-RNA interactions have been extensively studied in the regulation of gene expression. Hence, it is essential to understand the mechanism and functions of RNA-RNA interactions in eukaryotes. Conventionally, RNA-RNA interactions have been identified through diverse biochemical methods for decades. The advent of high-throughput RNA-sequencing technologies has revolutionized the identification of global RNA-RNA interactome in cells and their importance in RNA structure and function in gene expression regulation. Although these technologies revealed tens of thousands of intramolecular and intermolecular RNA-RNA interactions, we further look forward to future unbiased and quantitative high-throughput technologies for detecting transcriptome-wide RNA-RNA interactions. With the ability to detect RNA-RNA interactome, we expect that future studies will reveal the higher-order structures of RNA molecules and multi-RNA hybrids impacting human health and diseases. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Suman Singh
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
- Regional Center for Biotechnology, Faridabad, India
| | | | - Amaresh C Panda
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
| |
Collapse
|
17
|
Makowska M, Smolarz B, Romanowicz H. microRNAs in Subarachnoid Hemorrhage (Review of Literature). J Clin Med 2022; 11:jcm11154630. [PMID: 35956244 PMCID: PMC9369929 DOI: 10.3390/jcm11154630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, many studies have shown that microRNAs (miRNAs) in extracellular bioliquids are strongly associated with subarachnoid hemorrhage (SAH) and its complications. The article presents issues related to the occurrence of subarachnoid hemorrhage (epidemiology, symptoms, differential diagnosis, examination, and treatment of the patient) and a review of current research on the correlation between miRNAs and the complications of SAH. The potential use of miRNAs as biomarkers in the treatment of SAH is presented.
Collapse
Affiliation(s)
- Marianna Makowska
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
- Correspondence: ; Tel.: +48-42-271-12-90
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| |
Collapse
|
18
|
Yedigaryan L, Gatti M, Marini V, Maraldi T, Sampaolesi M. Shared and Divergent Epigenetic Mechanisms in Cachexia and Sarcopenia. Cells 2022; 11:2293. [PMID: 35892590 PMCID: PMC9332174 DOI: 10.3390/cells11152293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
Significant loss of muscle mass may occur in cachexia and sarcopenia, which are major causes of mortality and disability. Cachexia represents a complex multi-organ syndrome associated with cancer and chronic diseases. It is often characterized by body weight loss, inflammation, and muscle and adipose wasting. Progressive muscle loss is also a hallmark of healthy aging, which is emerging worldwide as a main demographic trend. A great challenge for the health care systems is the age-related decline in functionality which threatens the independence and quality of life of elderly people. This biological decline can also be associated with functional muscle loss, known as sarcopenia. Previous studies have shown that microRNAs (miRNAs) play pivotal roles in the development and progression of muscle wasting in both cachexia and sarcopenia. These small non-coding RNAs, often carried in extracellular vesicles, inhibit translation by targeting messenger RNAs, therefore representing potent epigenetic modulators. The molecular mechanisms behind cachexia and sarcopenia, including the expression of specific miRNAs, share common and distinctive trends. The aim of the present review is to compile recent evidence about shared and divergent epigenetic mechanisms, particularly focusing on miRNAs, between cachexia and sarcopenia to understand a facet in the underlying muscle wasting associated with these morbidities and disclose potential therapeutic interventions.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
| | - Martina Gatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (T.M.)
| | - Vittoria Marini
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (T.M.)
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
- Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
19
|
Dogan S, Spahiu E, Cilic A. Structural Analysis of microRNAs in Myeloid Cancer Reveals Consensus Motifs. Genes (Basel) 2022; 13:genes13071152. [PMID: 35885935 PMCID: PMC9316571 DOI: 10.3390/genes13071152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that function in post-transcriptional gene silencing and mRNA regulation. Although the number of nucleotides of miRNAs ranges from 17 to 27, they are mostly made up of 22 nucleotides. The expression of miRNAs changes significantly in cancer, causing protein alterations in cancer cells by preventing some genes from being translated into proteins. In this research, a structural analysis of 587 miRNAs that are differentially expressed in myeloid cancer was carried out. Length distribution studies revealed a mean and median of 22 nucleotides, with an average of 21.69 and a variance of 1.65. We performed nucleotide analysis for each position where Uracil was the most observed nucleotide and Adenine the least observed one with 27.8% and 22.6%, respectively. There was a higher frequency of Adenine at the beginning of the sequences when compared to Uracil, which was more frequent at the end of miRNA sequences. The purine content of each implicated miRNA was also assessed. A novel motif analysis script was written to detect the most frequent 3–7 nucleotide (3–7n) long motifs in the miRNA dataset. We detected CUG (42%) as the most frequent 3n motif, CUGC (15%) as a 4n motif, AGUGC (6%) as a 5n motif, AAGUGC (4%) as a 6n motif, and UUUAGAG (4%) as a 7n motif. Thus, in the second part of our study, we further characterized the motifs by analyzing whether these motifs align at certain consensus sequences in our miRNA dataset, whether certain motifs target the same genes, and whether these motifs are conserved within other species. This thorough structural study of miRNA sequences provides a novel strategy to study the implications of miRNAs in health and disease. A better understanding of miRNA structure is crucial to developing therapeutic settings.
Collapse
Affiliation(s)
- Senol Dogan
- Faculty of Physics and Earth Sciences, Peter Debye Institute, Leipzig University, 04103 Leipzig, Germany
- Correspondence:
| | - Emrulla Spahiu
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
| | - Anis Cilic
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, 35392 Giessen, Germany;
| |
Collapse
|
20
|
Selvam M, Bandi V, Ponne S, Ashok C, Baluchamy S. microRNA-150 targets major epigenetic repressors and inhibits cell proliferation. Exp Cell Res 2022; 415:113110. [DOI: 10.1016/j.yexcr.2022.113110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/06/2022] [Accepted: 03/20/2022] [Indexed: 11/29/2022]
|
21
|
Anobile DP, Montenovo G, Pecoraro C, Franczak M, Ait Iddouch W, Peters GJ, Riganti C, Giovannetti E. Splicing deregulation, microRNA and Notch aberrations: fighting the three-headed dog to overcome drug resistance in malignant mesothelioma. Expert Rev Clin Pharmacol 2022; 15:305-322. [PMID: 35533249 DOI: 10.1080/17512433.2022.2074835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Malignant mesothelioma (MMe) is an aggressive rare cancer of the mesothelium, associated with asbestos exposure. MMe is currently an incurable disease at all stages mainly due to resistance to treatments. It is therefore necessary to elucidate key mechanisms underlying chemoresistance, in an effort to exploit them as novel therapeutic targets. AREAS COVERED Chemoresistance is frequently elicited by microRNA (miRNA) alterations and splicing deregulations. Indeed, several miRNAs, such as miR-29c, have been shown to exert oncogenic or oncosuppressive activity. Alterations in the splicing machinery might also be involved in chemoresistance. Moreover, the Notch signaling pathway, often deregulated in MMe, plays a key role in cancer stem cells formation and self-renewal, leading to drug resistance and relapses. EXPERT OPINION The prognosis of MMe in patients varies among different tumors and patient characteristics, and novel biomarkers and therapies are warranted. This work aims at giving an overview of MMe, with a special focus on state-of-the-art treatments and new therapeutic strategies against vulnerabilities emerging from studies on epigenetics factors. Besides, this review is also the first to discuss the interplay between miRNAs and alternative splicing as well as the role of Notch as new promising frontiers to overcome drug resistance in MMe.
Collapse
Affiliation(s)
- Dario P Anobile
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, Netherlands.,Department of Oncology, University of Torino, 10043 Orbassano, Italy
| | - Giulia Montenovo
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, Netherlands.,Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Camilla Pecoraro
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, Netherlands.,Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Marika Franczak
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, Netherlands.,Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Widad Ait Iddouch
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, Netherlands.,Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10043 Orbassano, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, Netherlands.,Fondazione Pisana per la Scienza Pisa, 56100 Pisa, Italy
| |
Collapse
|
22
|
MicroRNAs and drug resistance in colorectal cancer with special focus on 5-fluorouracil. Mol Biol Rep 2022; 49:5165-5178. [PMID: 35212928 DOI: 10.1007/s11033-022-07227-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023]
Abstract
Colorectal cancer is globally one of the most common cancers in all age groups. The current chemotherapy combinations for colorectal cancer treatment include 5-fluorouracil-based regimens; however, drug resistance remains one of the main reasons for chemotherapy failure and disease recurrence. Many studies have determined colorectal cancer chemoresistance mechanisms such as drug efflux, cell cycle arrest, DNA damage repair, apoptosis, autophagy, vital enzymes, epigenetic, epithelial-mesenchymal transition, stem cells, and immune system suppression. Several microRNAs affect drug resistance by regulating the drug resistance-related target genes in colorectal cancer. These drug resistance-related miRNAs may be used as promising biomarkers for predicting drug response or as potential therapeutic targets for treating patients with colorectal cancer. This work reviews and discuss the role of selected microRNAs in 5-fluorouracil resistance and their molecular mechanisms in colorectal cancer.
Collapse
|
23
|
Gutman-Ido E, Reif S, Musseri M, Schabes T, Golan-Gerstl R. Oxytocin Regulates the Expression of Selected Colostrum-derived microRNAs. J Pediatr Gastroenterol Nutr 2022; 74:e8-e15. [PMID: 34371509 DOI: 10.1097/mpg.0000000000003277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE The highly expressed microRNAs (miRNAs) in milk are known as beneficial miRNAs, such as mir148a-3p, which is related to immune system development and disease prevention. There is a need to study their expression and secretion regulatory mechanism in breast milk. We hypothesize that oxytocin can be involved in the regulation of expression and secretion of milk-derived miRNAs. METHODS Initially, oxytocin's effect on miRNA expression in human mammary cells was analyzed. Secondly, the expression of selected miRNAs in mothers' colostrum treated or not with oxytocin before, during, or after labor was compared. MiRNA expression was analyzed by quantitative real-time PCR. RESULTS The expression of miR-148a was significantly upregulated, and miR-320 downregulated in oxytocin-treated mammary cells as well as their secreted extracellular vesicles to the media, compared with untreated cells. MiR-148a was found to be upregulated, and miR-320 was downregulated in the human colostrum of exogenous oxytocin-treated mothers. Moreover, miR-320 was highly expressed compared with miR-148a in the colostrum of mothers that did not receive exogenous oxytocin. In contrast, in the milk of mothers who received exogenous oxytocin, the expression of miRNA-148-3p was highly expressed compared with miR-320. CONCLUSIONS This study shows that oxytocin modulates the expression of main milk-derived miRNAs. Our findings provide a novel insight into oxytocin's role in milk composition by regulating miRNA expression. Our results implicate that oxytocin increases miRNA expression in mammary epithelial cells and human milk, affecting human milk composition and may contribute to further infant health.
Collapse
Affiliation(s)
| | - Shimon Reif
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Mirit Musseri
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Talia Schabes
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Regina Golan-Gerstl
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
24
|
Crosstalk between non-coding RNAs expression profile, drug resistance and immune response in breast cancer. Pharmacol Res 2021; 176:106041. [PMID: 34952200 DOI: 10.1016/j.phrs.2021.106041] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022]
Abstract
Drug resistance is one of the most critical challenges facing researchers in treating breast cancer. Despite numerous treatments for breast cancer, including conventional chemical drugs, monoclonal antibodies, and immunotherapeutic drugs known as immune checkpoint inhibitors (ICI), many patients resist various approaches. In recent years, the relationship between gene expression profiles and drug resistance phenotypes has attracted much attention. Non-coding RNAs (ncRNAs) are regulatory molecules that have been shown to regulate gene expression and cell transcriptome. Two categories, microRNAs and long non-coding RNAs have been more considered and studied among these ncRNAs. Studying the role of different ncRNAs in chemical drug resistance and ICI resistance together can be beneficial in selecting more effective treatments for breast cancer. Changing the expression and action mechanism of these regulatory molecules on drug resistance phenotypes is the main topic of this review article.
Collapse
|
25
|
Ali A, Mahla SB, Reza V, Alireza F. Predicting the possible effect of miR-203a-3p and miR-29a-3p on DNMT3B and GAS7 genes expression. J Integr Bioinform 2021; 19:jib-2021-0016. [PMID: 34914337 PMCID: PMC9069646 DOI: 10.1515/jib-2021-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant expression of genes involved in methylation, including DNA methyltransferase 3 Beta (DNMT3B), can cause hypermethylation of various tumor suppressor genes. In this regard, various molecular factors such as microRNAs can play a critical role in regulating these methyltransferase enzymes and eventually downstream genes such as growth arrest specific 7 (GAS7). Accordingly, in the present study we aimed to predict regulatory effect of miRNAs on DNMT3B and GAS7 genes expression in melanoma cell line. hsa-miR-203a-3p and hsa-miR-29a-3p were predicted and selected using bioinformatics software. The Real-time PCR technique was performed to investigate the regulatory effect of these molecules on the DNMT3B and GAS7 genes expression. Expression analysis of DNMT3B gene in A375 cell line showed that there was a significant increase compared to control (p value = 0.0015). Analysis of hsa-miR-203a-3p and hsa-miR-29a-3p indicated the insignificant decreased expression in melanoma cell line compared to control (p value < 0.05). Compared to control, the expression of GAS7 gene in melanoma cells showed a significant decrease (p value = 0.0323). Finally, our findings showed that the decreased expression of hsa-miR-203a-3p and hsa-miR-29a-3p can hypothesize that their aberrant expression caused DNMT3B dysfunction, possible methylation of the GAS7 gene, and ultimately decreased its expression. However, complementary studies are necessary to definite comment.
Collapse
Affiliation(s)
- Afgar Ali
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Sattarzadeh Bardsiri Mahla
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahidi Reza
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Farsinejad Alireza
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
26
|
Head and Neck Cancers Are Not Alike When Tarred with the Same Brush: An Epigenetic Perspective from the Cancerization Field to Prognosis. Cancers (Basel) 2021; 13:cancers13225630. [PMID: 34830785 PMCID: PMC8616074 DOI: 10.3390/cancers13225630] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Squamous cell carcinomas affect different head and neck subsites and, although these tumors arise from the same epithelial lining and share risk factors, they differ in terms of clinical behavior and molecular carcinogenesis mechanisms. Differences between HPV-negative and HPV-positive tumors are those most frequently explored, but further data suggest that the molecular heterogeneity observed among head and neck subsites may go beyond HPV infection. In this review, we explore how alterations of DNA methylation and microRNA expression contribute to head and neck squamous cell carcinoma (HNSCC) development and progression. The association of these epigenetic alterations with risk factor exposure, early carcinogenesis steps, transformation risk, and prognosis are described. Finally, we discuss the potential application of the use of epigenetic biomarkers in HNSCC. Abstract Head and neck squamous cell carcinomas (HNSCC) are among the ten most frequent types of cancer worldwide and, despite all efforts, are still diagnosed at late stages and show poor overall survival. Furthermore, HNSCC patients often experience relapses and the development of second primary tumors, as a consequence of the field cancerization process. Therefore, a better comprehension of the molecular mechanisms involved in HNSCC development and progression may enable diagnosis anticipation and provide valuable tools for prediction of prognosis and response to therapy. However, the different biological behavior of these tumors depending on the affected anatomical site and risk factor exposure, as well as the high genetic heterogeneity observed in HNSCC are major obstacles in this pursue. In this context, epigenetic alterations have been shown to be common in HNSCC, to discriminate the tumor anatomical subsites, to be responsive to risk factor exposure, and show promising results in biomarker development. Based on this, this review brings together the current knowledge on alterations of DNA methylation and microRNA expression in HNSCC natural history, focusing on how they contribute to each step of the process and on their applicability as biomarkers of exposure, HNSCC development, progression, and response to therapy.
Collapse
|
27
|
Colorectal cancer promoter methylation alteration affects the expression of glutamate ionotropic receptor AMPA type subunit 4 alternative isoforms potentially relevant in colon tissue. Hum Cell 2021; 35:310-319. [PMID: 34719006 PMCID: PMC8732896 DOI: 10.1007/s13577-021-00640-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/23/2021] [Indexed: 11/02/2022]
Abstract
DNA methylation alterations are early events during tumourigenesis, affecting genes involved in the crosstalk between cells and surroundings in colorectal cancer (CRC). Among these genes, GRIA4, Glutamate Ionotropic Receptor AMPA Type Subunit 4, displays hypermethylation in the promoter region, and is an early diagnostic biomarker. It is well known that methylation can also affect alternative transcription. The purpose of this study is to evaluate the expression, at transcript and protein level, of GRIA4 main isoforms (the canonical one and a short variant) in 23 CRC and matched normal samples, of which we previously verified the methylation status. We further predicted miRNA/transcript target interactions as a possible post-transcriptional regulation using bioinformatics tools. As expected, downregulation of both variants has been observed in tumours. Interestingly, in contrast to what observed at transcriptional level, the GluR4 protein short isoform displayed higher expression than the canonical one either in normal or tumoural tissues. This may be explained by miRNA specifically targeting the canonical isoform. Our study is the first one that shows the expression of both isoforms in colon tissues. To note, the evident expression of the short isoform suggests a functional role in intestinal cell biology.
Collapse
|
28
|
Gurbuz V, Sozen S, Bilen CY, Konac E. miR-148a, miR-152 and miR-200b promote prostate cancer metastasis by targeting DNMT1 and PTEN expression. Oncol Lett 2021; 22:805. [PMID: 34630712 PMCID: PMC8488332 DOI: 10.3892/ol.2021.13066] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs) modulate the expression of target genes in the signal pathway on transcriptome level. The present study investigated the ‘epigenetic-based miRNA (epi-miRNA)-mRNA’ regulatory network of miR-34b, miR-34c, miR-148a, miR-152, miR-200a and miR-200b epi-miRNAs and their target genes, DNA methyltransferase (DNMT1, 3a and 3b), phosphate and tensin homolog (PTEN) and NK3 Homeobox 1 (NKX3.1), in prostate cancer (PCa) using reverse transcription-quantitative PCR. The expression level of NKX3.1 were not significantly different between the PCa, Met-PCa and control groups. However, in the PCa and Met-PCa groups, the expression level of DNMT1 was upregulated, while DNMT3a, DNMT3b and PTEN were downregulated. Overexpression of DNMT1 (~5 and ~6-fold increase in the PCa and Met-PCa groups respectively) was accompanied by a decreased expression in PTEN, indicating a potential negative association. Both groups indicated that a high level of DNMT1 is associated with the aggressiveness of cancer, and there is a a directly proportional relationship between this gene and PSA, GS and TNM staging. A significant ~2 to ~5-fold decrease in the expression levels of DNMT3a and DNMT3b was found in both groups. In the PCa group, significant associations were identified between miR-34b and DNMT1/DNMT3b; between miR-34c/miR-148a and all target genes; between miR-152 and DNMT1/DNMT3b and PTEN; and between miR-200a/b and DNMT1. In the Met-PCa group, miR-148a, miR-152 and miR-200b exhibited a significant association with all target genes. A significant negative association was identified between PTEN and DNMT1 in the Met-PCa group. It was also revealed that that miR-148a, miR-152 and miR-200b increased the expression of DNMT1 and suppressed PTEN. Furthermore, the ‘epi-miRNA-mRNA’ bidirectional feedback loop was emphasised and the methylation pattern in PCa anti-cancer therapeutics was highlighted.
Collapse
Affiliation(s)
- Venhar Gurbuz
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Sinan Sozen
- Department of Urology, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Cenk Y Bilen
- Department of Urology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Ece Konac
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| |
Collapse
|
29
|
Thai SF, Jones CP, Robinette BL, Ren H, Vallant B, Fisher A, Kitchin KT. Effects of Copper Nanoparticles on mRNA and Small RNA Expression in Human Hepatocellular Carcinoma (HepG2) Cells. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5083-5098. [PMID: 33875094 PMCID: PMC10803003 DOI: 10.1166/jnn.2021.19328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the advancement of nanotechnology, nanoparticles are widely used in many different industrial processes and consumer products. Copper nanoparticles (Cu NPs) are among the most toxic nanomaterials. We investigated Cu NPs toxicity in Human Hepatocellular carcinoma (HepG2) cells by examining signaling pathways, and microRNA/mRNA interactions. We compared the effects of exposures to Cu NPs at various concentrations and CuCl₂ was used as a control. The number of differentially expressed mRNA did not follow a linear dose-response relationship for either Cu NPs or CuCl₂ treatments. The most significantly altered genes and pathways by Cu NPs exposure were NRF2 (nuclear factor erythroid 2 related factor 2)-mediated oxidative stress response, protein ubiquitination, Tumor protein p53 (p53), phase I and II metabolizing enzymes, antioxidant proteins and phase III detoxifying gene pathways.Messenger RNA-microRNA interaction from MicroRNA Target Filter Analyses revealed more signaling pathways altered in Cu NPs treated samples than transcriptomics alone, including cell proliferation, DNA methylation, endoplasmic reticulum (ER) stress, apoptosis, autophagy, reactive oxygen species, inflammation, tumorigenesis, extracellular matrix/angiogenesis and protein synthesis. In contrast, in the control (CuCl₂) treated samples showed mostly changes in inflammation mainly through regulation of the Nuclear Factor Kappa-light-chain-enhancer of Activated B-cells (NFκB). Further, some RNA based parameters that showed promise as biomarkers of Cu NPs exposure including both well and lesser known genes: heme oxygenase 1 (HMOX1), heat shock protein, c-Fos proto-oncogene, DNA methyltransferases, and glutamate-cysteine ligase modifier subunit (GCLM, part of the glutathione synthesis pathway). The differences in signaling pathways altered by the Cu NPs and CuCl₂ treatments suggest that the effects of the Cu NPs were not the results of nanomaterial dissolution to soluble copper ions.
Collapse
Affiliation(s)
- Sheau-Fung Thai
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Carlton P Jones
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Brian L Robinette
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Hongzu Ren
- Center for Public Health and Environmental Assessment, US Environmental Production Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Beena Vallant
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Anna Fisher
- Center for Public Health and Environmental Assessment, US Environmental Production Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | | |
Collapse
|
30
|
Li W, Guan X. PUF60 of Japanese flounder is regulated by pol-miR-novel_395 and involved in pathogen infection, autophagy, and apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104170. [PMID: 34144120 DOI: 10.1016/j.dci.2021.104170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are evolutionary conserved, non-coding small RNAs that have been shown to regulate diverse biological processes including immunity. In a previous study, a novel miRNA of Japanese flounder (Paralichthys olivaceus), pol-miR-novel_395, was found to be responsive in expression to the infection of the bacterial pathogen Edwardsiella tarda. In the present study, we examined the regulation and immune effect of pol-miR-novel_395 and its target gene. We found that pol-miR-novel_395 expression was regulated by E. tarda and megalocytivirus, and pol-miR-novel_395 targeted the gene of PUF60 (poly (U)-binding-splicing factor 60 kDa) of flounder (named PoPUF60). Constitutive expression of PoPUF60 occurred in relatively high levels in the heart and liver of flounder. Bacterial infection upregulated PoPUF60 expression, whereas viral infection downregulated PoPUF60 expression. Interference with PoPUF60 expression or overexpression of pol-miR-novel_395 in flounder cells strongly potentiated E. tarda infection. Consistently, in vivo knockdown of PoPUF60 enhanced bacterial dissemination in the tissues of flounder but blocked viral replication, whereas in vivo overexpression of PoPUF60 inhibited bacterial dissemination but facilitated viral replication. Additionally, pol-miR-novel_395 and PoPUF60 were involved in the process of autophagy and apoptosis. Collectively, these results indicated that PoPUF60 and pol-miR-novel_395 play an important role in pathogen infection, autophagy, and apoptosis.
Collapse
Affiliation(s)
- Wenrui Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolu Guan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
31
|
Ribeiro AO, de Oliveira AC, Costa JM, Nachtigall PG, Herkenhoff ME, Campos VF, Delella FK, Pinhal D. MicroRNA roles in regeneration: Multiple lessons from zebrafish. Dev Dyn 2021; 251:556-576. [PMID: 34547148 DOI: 10.1002/dvdy.421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs with pivotal roles in the control of gene expression. By comparing the miRNA profiles of uninjured vs. regenerating tissues and structures, several studies have found that miRNAs are potentially involved in the regenerative process. By inducing miRNA overexpression or inhibition, elegant experiments have directed regenerative responses validating relevant miRNA-to-target interactions. The zebrafish (Danio rerio) has been the epicenter of regenerative research because of its exceptional capability to self-repair damaged tissues and body structures. In this review, we discuss recent discoveries that have improved our understanding of the impact of gene regulation mediated by miRNAs in the context of the regeneration of fins, heart, retina, and nervous tissue in zebrafish. We compiled what is known about the miRNA control of regeneration in these tissues and investigated the links among up-regulated and down-regulated miRNAs, their putative or validated targets, and the regenerative process. Finally, we briefly discuss the forthcoming prospects, highlighting directions and the potential for further development of this field.
Collapse
Affiliation(s)
- Amanda Oliveira Ribeiro
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Arthur Casulli de Oliveira
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Juliana Mara Costa
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Pedro Gabriel Nachtigall
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil.,Laboratório Especial de Toxicologia Aplicada (LETA), CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | - Marcos Edgar Herkenhoff
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil.,Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Flávia Karina Delella
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Danillo Pinhal
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
32
|
Li W, Guan X, Sun B, Sun L. A Novel microRNA of Japanese Flounder Regulates Antimicrobial Immunity Involving a Bacteria-Binding CSF3. Front Immunol 2021; 12:723401. [PMID: 34489973 PMCID: PMC8417112 DOI: 10.3389/fimmu.2021.723401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate diverse biological processes including immunity. In a previous high-throughput RNA sequencing study, a novel miRNA, pol-miR-novel_642, was identified from Japanese flounder (Paralichthys olivaceus), a farmed fish species with important economic value. In this study, we investigated the regulatory mechanism and the function of pol-miR-novel_642 and its target gene. We found that pol-miR-novel_642 targeted, in a sequence-specific manner, a flounder gene encoding an uncharacterized protein that is a structural homologue of murine granulocyte colony stimulating factor 3 (CSF3). The expression of pol-miR-novel_642 and its target gene (named PoCSF3-1) was regulated, in different manners, by the bacterial pathogen Edwardsiella tarda and the viral pathogen megalocytivirus. Overexpression of pol-miR-novel_642 or interference with PoCSF3-1 expression in flounder cells strongly potentiated E. tarda infection. Consistently, in vivo knockdown of PoCSF3-1 enhanced bacterial dissemination in flounder tissues but blocked viral replication, whereas in vivo overexpression of PoCSF3-1 inhibited bacterial dissemination and facilitated viral infection. Overexpression/knockdown of PoCSF3-1 and pol-miR-novel_642 also affected the activation of autophagy. Recombinant PoCSF3-1 (rPoCSF3-1) interacted with and inhibited the growth of Gram-negative bacteria in a manner relying on a PoCSF3-1-characteristic structural motif that is absent in mouse CSF3. rPoCSF3-1 also regulated the proliferation, inflammatory response, and immune defense of flounder head kidney leukocytes in a structure-dependent fashion. Together, these results reveal the function of a novel miRNA-CSF3 regulatory system of flounder, and add new insights into the role and mechanism of fish miRNA and CSF3 in antimicrobial immunity.
Collapse
Affiliation(s)
- Wenrui Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolu Guan
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Bin Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Anelli L, Zagaria A, Specchia G, Musto P, Albano F. Dysregulation of miRNA in Leukemia: Exploiting miRNA Expression Profiles as Biomarkers. Int J Mol Sci 2021; 22:ijms22137156. [PMID: 34281210 PMCID: PMC8269043 DOI: 10.3390/ijms22137156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Micro RNAs (miRNAs) are a class of small non-coding RNAs that have a crucial role in cellular processes such as differentiation, proliferation, migration, and apoptosis. miRNAs may act as oncogenes or tumor suppressors; therefore, they prevent or promote tumorigenesis, and abnormal expression has been reported in many malignancies. The role of miRNA in leukemia pathogenesis is still emerging, but several studies have suggested using miRNA expression profiles as biomarkers for diagnosis, prognosis, and response to therapy in leukemia. In this review, the role of miRNAs most frequently involved in leukemia pathogenesis is discussed, focusing on the class of circulating miRNAs, consisting of cell-free RNA molecules detected in several body fluids. Circulating miRNAs could represent new potential non-invasive diagnostic and prognostic biomarkers of leukemia that are easy to isolate and characterize. The dysregulation of some miRNAs involved in both myeloid and lymphoid leukemia, such as miR-155, miR-29, let-7, and miR-15a/miR-16-1 clusters is discussed, showing their possible employment as therapeutic targets.
Collapse
Affiliation(s)
- Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
| | - Giorgina Specchia
- School of Medicine, University of Bari ‘Aldo Moro’, 70100 Bari, Italy;
| | - Pellegrino Musto
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
- Correspondence: ; Tel.: +39(0)-80-547-8031; Fax: +39-(0)80-559-3471
| |
Collapse
|
34
|
Maternal effects in mammals: Broadening our understanding of offspring programming. Front Neuroendocrinol 2021; 62:100924. [PMID: 33992652 DOI: 10.1016/j.yfrne.2021.100924] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
The perinatal period is a sensitive time in mammalian development that can have long-lasting consequences on offspring phenotype via maternal effects. Maternal effects have been most intensively studied with respect to two major conditions: maternal diet and maternal stress. In this review, we shift the focus by discussing five major additional maternal cues and their influence on offspring phenotype: maternal androgen levels, photoperiod (melatonin), microbiome, immune regulation, and milk composition. We present the key findings for each of these topics in mammals, their mechanisms of action, and how they interact with each other and with the maternal influences of diet and stress. We explore their impacts in the contexts of both predictive adaptive responses and the developmental origins of disease, identify knowledge gaps and research opportunities in the field, and place a particular emphasis on the application and consideration of these effects in non-model species and natural ecological systems.
Collapse
|
35
|
Corrao G, Zaffaroni M, Bergamaschi L, Augugliaro M, Volpe S, Pepa M, Bonizzi G, Pece S, Amodio N, Mistretta FA, Luzzago S, Musi G, Alessi S, La Fauci FM, Tordonato C, Tosoni D, Cattani F, Gandini S, Petralia G, Pravettoni G, De Cobelli O, Viale G, Orecchia R, Marvaso G, Jereczek-Fossa BA. Exploring miRNA Signature and Other Potential Biomarkers for Oligometastatic Prostate Cancer Characterization: The Biological Challenge behind Clinical Practice. A Narrative Review. Cancers (Basel) 2021; 13:cancers13133278. [PMID: 34208918 PMCID: PMC8267686 DOI: 10.3390/cancers13133278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The oligometastatic prostate cancer state is defined as the presence of a number of lesions ≤ 5 and has been significantly correlated with better survival if compared to a number of metastases > 5. In particular, patients in an oligometastatic setting could benefit from a metastates directed therapy, which could control the disease delaying the start of systemic therapies. For this reason, the selection of true-oligometastatic patients who could benefit from such approach is particularly important in this setting. The aim of the present narrative review is to report the current state of the art on the liquid biopsy-derived analytes and their reliability as biomarkers in the clinics for the identification of true-oligometastatic patients. This kind of molecular profiling could refine current developments in the era of precision oncology allowing patients’ stratification and leading to more refined therapeutic strategies. Abstract In recent years, a growing interest has been directed towards oligometastatic prostate cancer (OMPC), as patients with three to five metastatic lesions have shown a significantly better survival as compared with those harboring a higher number of lesions. The efficacy of local ablative treatments directed on metastatic lesions (metastases-directed treatments) was extensively investigated, with the aim of preventing further disease progression and delaying the start of systemic androgen deprivation therapies. Definitive diagnosis of prostate cancer is traditionally based on histopathological analysis. Nevertheless, a bioptic sample—static in nature—inevitably fails to reflect the dynamics of the tumor and its biological response due to the dynamic selective pressure of cancer therapies, which can profoundly influence spatio-temporal heterogeneity. Furthermore, even with new imaging technologies allowing an increasingly early detection, the diagnosis of oligometastasis is currently based exclusively on radiological investigations. Given these premises, the development of minimally-invasive liquid biopsies was recently promoted and implemented as predictive biomarkers both for clinical decision-making at pre-treatment (baseline assessment) and for monitoring treatment response during the clinical course of the disease. Through liquid biopsy, different biomarkers, commonly extracted from blood, urine or saliva, can be characterized and implemented in clinical routine to select targeted therapies and assess treatment response. Moreover, this approach has the potential to act as a tissue substitute and to accelerate the identification of novel and consistent predictive analytes cost-efficiently. However, the utility of tumor profiling is currently limited in OMPC due to the lack of clinically validated predictive biomarkers. In this scenario, different ongoing trials, such as the RADIOSA trial, might provide additional insights into the biology of the oligometastatic state and on the identification of novel biomarkers for the outlining of true oligometastatic patients, paving the way towards a wider ideal approach of personalized medicine. The aim of the present narrative review is to report the current state of the art on the solidity of liquid biopsy-related analytes such as CTCs, cfDNA, miRNA and epi-miRNA, and to provide a benchmark for their further clinical implementation. Arguably, this kind of molecular profiling could refine current developments in the era of precision oncology and lead to more refined therapeutic strategies in this subset of oligometastatic patients.
Collapse
Affiliation(s)
- Giulia Corrao
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
| | - Mattia Zaffaroni
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
| | - Luca Bergamaschi
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
| | - Matteo Augugliaro
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
- Correspondence:
| | - Stefania Volpe
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
| | - Matteo Pepa
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
| | - Giuseppina Bonizzi
- Department of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Salvatore Pece
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
- Novel Diagnostics Program, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | | | - Stefano Luzzago
- Department of Urology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (F.A.M.); (S.L.)
| | - Gennaro Musi
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
- Department of Urology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (F.A.M.); (S.L.)
| | - Sarah Alessi
- Division of Radiology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Francesco Maria La Fauci
- Unit of Medical Physics IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (F.M.L.F.); (F.C.)
| | - Chiara Tordonato
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Daniela Tosoni
- Novel Diagnostics Program, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Federica Cattani
- Unit of Medical Physics IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (F.M.L.F.); (F.C.)
| | - Sara Gandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
- Division of Radiology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Gabriella Pravettoni
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Ottavio De Cobelli
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
- Department of Urology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (F.A.M.); (S.L.)
| | - Giuseppe Viale
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
- Department of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Roberto Orecchia
- Scientific Direction, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Giulia Marvaso
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
| |
Collapse
|
36
|
Alvanegh AG, Ganji SM, Kamel A, Tavallaie M, Rafati A, Arpanaei A, Dorostkar R, Ghaleh HEG. Comparison of oncolytic virotherapy and nanotherapy as two new miRNA delivery approaches in lung cancer. Biomed Pharmacother 2021; 140:111755. [PMID: 34044282 DOI: 10.1016/j.biopha.2021.111755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is known as the second leading cause of cancer death. Finding ways to detect early-stage lung cancer can remarkably increase the survival rate. Biomarkers such as microRNAs can be helpful in cancer diagnosis, predicting its prognosis, and patients' chances of survival. Numerous studies have confirmed the correlation between microRNA expression and the likelihood of patients surviving after treatment. Consequently, it is necessary to study the expression profile of microRNAs during and after treatment. Oncolytic virotherapy and nanotherapy are two neoteric methods that use various vectors to deliver microRNAs into cancer cells. Although these treatments have not yet entered into the clinical trials, much progress has been made in this area. Analyzing the expression profile of microRNAs after applying nanotherapy and oncolytic virotherapy can evaluate the effectiveness of these methods. This review refers to the studies conducted about these two approaches. The advantages and disadvantages of these methods in delivery and affecting microRNA expression patterns are discussed below.
Collapse
Affiliation(s)
- Akbar Ghorbani Alvanegh
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Shahla Mohammad Ganji
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Kamel
- Cellular and Molecular Research Center, Basic health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmood Tavallaie
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Rafati
- Instructor of Human Genetics, Laboratory Sciences, School of Medical Sciences, Sirjan Faculty of Medical Sciences, Sirjan, Iran
| | - Ayyoob Arpanaei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | | |
Collapse
|
37
|
Leroux C, Chervet ML, German JB. Perspective: Milk microRNAs as Important Players in Infant Physiology and Development. Adv Nutr 2021; 12:1625-1635. [PMID: 34022770 PMCID: PMC8483967 DOI: 10.1093/advances/nmab059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Evolutionary selective pressure on lactation has resulted in milk that provides far more than simply essential nutrients, delivering a complex repertoire of agents from hormones to intact cells. Human infants are born with low barrier integrity of their gut, which means that many of the complex biopolymer components of milk enter and circulate in lymph and blood, reaching organs throughout the body. Due to this state of gut maturation, all components of milk are potentially part of the crosstalk between mother and infants. This article highlights the functions of milk's complex biopolymers, more specifically the potential role of microRNAs (miRNAs) contained in extracellular vesicles in human milk. miRNAs are key effectors in the regulation of many biological processes during early-age development, and consequently milk-sourced miRNAs must be considered to provide unique biological assets to the infant during breastfeeding. This article interprets the evidence of the potential action of human milk miRNAs on infant development, taking into account their abundance in milk based on the literature and current knowledge. Human milk miRNAs appear to influence lipid and glucose metabolism, gut maturation, neurogenesis, and immunity. We also show growing evidence that human milk miRNAs are epigenetic modulators that play a pivotal role in the regulation of tissue-specific gene expression throughout life. Furthermore, this article addresses the ongoing debate regarding the potential influence of human milk miRNAs on viral infection as a new research area. This article highlights that these bioactive molecules are now being incorporated into our overall understanding of nutrient needs for healthy infant development, preparing each individual infant to succeed as a healthy and protected adult throughout its life. In essence, miRNAs are a new language in the Rosetta stone of health that is mammalian lactation.
Collapse
Affiliation(s)
| | - Mathilde Lea Chervet
- Foods for Health Institute, Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - J Bruce German
- Foods for Health Institute, Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
38
|
Schell SL, Rahman ZSM. miRNA-Mediated Control of B Cell Responses in Immunity and SLE. Front Immunol 2021; 12:683710. [PMID: 34079558 PMCID: PMC8165268 DOI: 10.3389/fimmu.2021.683710] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Loss of B cell tolerance is central to autoimmune diseases such as systemic lupus erythematosus (SLE). As such, the mechanisms involved in B cell development, maturation, activation, and function that are aberrantly regulated in SLE are of interest in the design of targeted therapeutics. While many factors are involved in the generation and regulation of B cell responses, miRNAs have emerged as critical regulators of these responses within the last decade. To date, miRNA involvement in B cell responses has largely been studied in non-autoimmune, immunization-based systems. However, miRNA profiles have also been strongly associated with SLE in human patients and these molecules have proven critical in both the promotion and regulation of disease in mouse models and in the formation of autoreactive B cell responses. Functionally, miRNAs are small non-coding RNAs that bind to complementary sequences located in target mRNA transcripts to mediate transcript degradation or translational repression, invoking a post-transcriptional level of genetic regulation. Due to their capacity to target a diverse range of transcripts and pathways in different immune cell types and throughout the various stages of development and response, targeting miRNAs is an interesting potential therapeutic avenue. Herein, we focus on what is currently known about miRNA function in both normal and SLE B cell responses, primarily highlighting miRNAs with confirmed functions in mouse models. We also discuss areas that should be addressed in future studies and whether the development of miRNA-centric therapeutics may be a viable alternative for the treatment of SLE.
Collapse
Affiliation(s)
- Stephanie L Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
39
|
Ramzan F, Vickers MH, Mithen RF. Epigenetics, microRNA and Metabolic Syndrome: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22095047. [PMID: 34068765 PMCID: PMC8126218 DOI: 10.3390/ijms22095047] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetics refers to the DNA chemistry changes that result in the modification of gene transcription and translation independently of the underlying DNA coding sequence. Epigenetic modifications are reported to involve various molecular mechanisms, including classical epigenetic changes affecting DNA methylation and histone modifications and small RNA-mediated processes, particularly that of microRNAs. Epigenetic changes are reversible and are closely interconnected. They are recognised to play a critical role as mediators of gene regulation, and any alteration in these mechanisms has been identified to mediate various pathophysiological conditions. Moreover, genetic predisposition and environmental factors, including dietary alterations, lifestyle or metabolic status, are identified to interact with the human epigenome, highlighting the importance of epigenetic factors as underlying processes in the aetiology of various diseases such as MetS. This review will reflect on how both the classical and microRNA-regulated epigenetic changes are associated with the pathophysiology of metabolic syndrome. We will then focus on the various aspects of epigenetic-based strategies used to modify MetS outcomes, including epigenetic diet, epigenetic drugs, epigenome editing tools and miRNA-based therapies.
Collapse
|
40
|
Melnik BC, Schmitz G. Pasteurized non-fermented cow's milk but not fermented milk is a promoter of mTORC1-driven aging and increased mortality. Ageing Res Rev 2021; 67:101270. [PMID: 33571703 DOI: 10.1016/j.arr.2021.101270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/16/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Recent epidemiological studies in Sweden, a country with traditionally high milk consumption, revealed that the intake of non-fermented pasteurized milk increased all-cause mortality in a dose-dependent manner. In contrast, the majority of epidemiological and clinical studies report beneficial health effects of fermented milk products, especially of yogurt. It is the intention of this review to delineate potential molecular aging mechanisms related to the intake of non-fermented milk versus yogurt on the basis of mechanistic target of rapamycin complex 1 (mTORC1) signaling. Non-fermented pasteurized milk via its high bioavailability of insulinotropic branched-chain amino acids (BCAAs), abundance of lactose (glucosyl-galactose) and bioactive exosomal microRNAs (miRs) enhances mTORC1 signaling, which shortens lifespan and increases all-cause mortality. In contrast, fermentation-associated lactic acid bacteria metabolize BCAAs and degrade galactose and milk exosomes including their mTORC1-activating microRNAs. The Industrial Revolution, with the introduction of pasteurization and refrigeration of milk, restricted the action of beneficial milk-fermenting bacteria, which degrade milk's BCAAs, galactose and bioactive miRs that synergistically activate mTORC1. This unrecognized behavior change in humans after the Neolithic revolution increased aging-related over-activation of mTORC1 signaling in humans, who persistently consume large quantities of non-fermented pasteurized cow's milk, a potential risk factor for aging and all-cause mortality.
Collapse
|
41
|
Reolid A, Muñoz-Aceituno E, Abad-Santos F, Ovejero-Benito MC, Daudén E. Epigenetics in Non-tumor Immune-Mediated Skin Diseases. Mol Diagn Ther 2021; 25:137-161. [PMID: 33646564 DOI: 10.1007/s40291-020-00507-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 02/08/2023]
Abstract
Epigenetics is the study of the mechanisms that regulate gene expression without modifying DNA sequences. Knowledge of and evidence about how epigenetics plays a causative role in the pathogenesis of many skin diseases is increasing. Since the epigenetic changes present in tumor diseases have been thoroughly reviewed, we believe that knowledge of the new epigenetic findings in non-tumor immune-mediated dermatological diseases should be of interest to the general dermatologist. Hence, the purpose of this review is to summarize the recent literature on epigenetics in most non-tumor dermatological pathologies, focusing on psoriasis. Hyper- and hypomethylation of DNA methyltransferases and methyl-DNA binding domain proteins are the most common and studied methylation mechanisms. The acetylation and methylation of histones H3 and H4 are the most frequent and well-characterized histone modifications and may be associated with disease severity parameters and serve as therapeutic response markers. Many specific microRNAs dysregulated in non-tumor dermatological disease have been reviewed. Deepening the study of how epigenetic mechanisms influence non-tumor immune-mediated dermatological diseases might help us better understand the role of interactions between the environment and the genome in the physiopathogenesis of these diseases.
Collapse
Affiliation(s)
- Alejandra Reolid
- Dermatology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Diego de León, 62, 28006, Madrid, Spain.
| | - E Muñoz-Aceituno
- Dermatology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Diego de León, 62, 28006, Madrid, Spain
| | - F Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - M C Ovejero-Benito
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - E Daudén
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| |
Collapse
|
42
|
Luo J, Hou Y, Ma W, Xie M, Jin Y, Xu L, Li C, Wang Y, Chen J, Chen W, Zheng Y, Yu D. A novel mechanism underlying alcohol dehydrogenase expression: hsa-miR-148a-3p promotes ADH4 expression via an AGO1-dependent manner in control and ethanol-exposed hepatic cells. Biochem Pharmacol 2021; 189:114458. [PMID: 33556337 DOI: 10.1016/j.bcp.2021.114458] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
The alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases (ALDHs) play critical roles in alcoholism development and alcohol toxicology; however, few studies have focused on the miRNA-mediated mechanisms underlying the expressions of alcohol-metabolizing enzymes. In the present study, we showed the expression changes of each alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in the liver samples of alcoholic hepatitis (AH) patients, and predicted the miRNAs targeting the dysregulated alcohol-metabolizing genes by a systematic in silico analysis. 13 miRNAs were predicted to regulate the expressions of ADH1A, ADH4, and ALDH2, respectively, with hsa-miR-148a-3p (miR-148a) showing the most significant down-regulation in AH patients. Following experimental evidence using HepG2 cells proved that miR-148a promoted ADH4 expression by directly binding to the coding sequence of ADH4 and increasing the mRNA stability via an AGO1-dependent manner. Additional assays showed that secondary structure of ADH4 transcript affected the target accessibility and binding of miR-148a-3p. In sum, our results suggest that the expressions of key alcohol-metabolizing enzymes are repressed in AH patients, and the non-canonical positive regulation of miR-148a on ADH4 reveals a new regulationary mechanism for ADH genes.
Collapse
Affiliation(s)
- Jiao Luo
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yufei Hou
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Mengyue Xie
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Lin Xu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Ying Wang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jing Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Wendi Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
43
|
Sharma AR, Patagi S, Uk AR, Shetty R, Umakanth S, Satyamoorthy K, Rai PS. MirSNPs in clopidogrel metabolism genes predict cardiovascular disease risk: a case-control study and meta-analysis. Pharmacogenomics 2020; 22:99-113. [PMID: 33356544 DOI: 10.2217/pgs-2020-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The present study was conducted to decipher the inter-relationship of SNPs and miRNAs involved in pharmacogenomics of clopidogrel on predisposition to cardiovascular diseases (CVDs). Materials & methods: A case-control study was conducted on 410 cases and 386 controls to analyze the association of 13 mirSNPs on CVDs risk. Genotyping was performed by tetra-primer amplification refractory mutation system PCR and validated using Sanger DNA sequencing. miRNA expression analysis was performed using TaqMan assays. A meta-analysis was performed for PON1 rs662 with coronary artery disease. Results & conclusion: PON1 rs662, PON1 rs3917577, CYP3A5 rs15524, COL4A1 rs874204 and PTGIR rs1126510 polymorphisms showed association with CVDs. The miRNA hsa-miR-224-5p showed differential expression in the PON1 rs3917577 GG genotype. The meta-analysis showed the population-specific impact of PON1 rs662 on South Asian and Middle East populations.
Collapse
Affiliation(s)
- Anu Radha Sharma
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sourav Patagi
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Abdul Razak Uk
- Department of Cardiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ranjan Shetty
- Department of Cardiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shashikiran Umakanth
- Department of Medicine, Dr. T.M.A. Pai Rotary Hospital, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
44
|
Shin E, Jin H, Suh D, Luo Y, Ha H, Kim TH, Hahn Y, Hyun S, Lee K, Bae J. An alternative miRISC targets a cancer-associated coding sequence mutation in FOXL2. EMBO J 2020; 39:e104719. [PMID: 33215742 PMCID: PMC7737606 DOI: 10.15252/embj.2020104719|] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recent evidence suggests that animal microRNAs (miRNAs) can target coding sequences (CDSs); however, the pathophysiological importance of such targeting remains unknown. Here, we show that a somatic heterozygous missense mutation (c.402C>G; p.C134W) in FOXL2, a feature shared by virtually all adult-type granulosa cell tumors (AGCTs), introduces a target site for miR-1236, which causes haploinsufficiency of the tumor-suppressor FOXL2. This miR-1236-mediated selective degradation of the variant FOXL2 mRNA is preferentially conducted by a distinct miRNA-loaded RNA-induced silencing complex (miRISC) directed by the Argonaute3 (AGO3) and DHX9 proteins. In both patients and a mouse model of AGCT, abundance of the inversely regulated variant FOXL2 with miR-1236 levels is highly correlated with malignant features of AGCT. Our study provides a molecular basis for understanding the conserved FOXL2 CDS mutation-mediated etiology of AGCT, revealing the existence of a previously unidentified mechanism of miRNA-targeting disease-associated mutations in the CDS by forming a non-canonical miRISC.
Collapse
Affiliation(s)
| | - Hanyong Jin
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| | - Dae‐Shik Suh
- Department of Obstetrics and GynecologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Yongyang Luo
- School of PharmacyChung‐Ang UniversitySeoulKorea
| | - Hye‐Jeong Ha
- School of PharmacyChung‐Ang UniversitySeoulKorea
| | - Tae Heon Kim
- Department of PathologyBundang CHA HospitalCHA UniversitySeongnamKorea
| | - Yoonsoo Hahn
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| | - Seogang Hyun
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| | - Kangseok Lee
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| | - Jeehyeon Bae
- School of PharmacyChung‐Ang UniversitySeoulKorea
| |
Collapse
|
45
|
Kumar S, Gonzalez EA, Rameshwar P, Etchegaray JP. Non-Coding RNAs as Mediators of Epigenetic Changes in Malignancies. Cancers (Basel) 2020; 12:E3657. [PMID: 33291485 PMCID: PMC7762117 DOI: 10.3390/cancers12123657] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are untranslated RNA molecules that regulate gene expressions. NcRNAs include small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), circular RNAs (cRNAs) and piwi-interacting RNAs (piRNAs). This review focuses on two types of ncRNAs: microRNAs (miRNAs) or short interfering RNAs (siRNAs) and long non-coding RNAs (lncRNAs). We highlight the mechanisms by which miRNAs and lncRNAs impact the epigenome in the context of cancer. Both miRNAs and lncRNAs have the ability to interact with numerous epigenetic modifiers and transcription factors to influence gene expression. The aberrant expression of these ncRNAs is associated with the development and progression of tumors. The primary reason for their deregulated expression can be attributed to epigenetic alterations. Epigenetic alterations can cause the misregulation of ncRNAs. The experimental evidence indicated that most abnormally expressed ncRNAs impact cellular proliferation and apoptotic pathways, and such changes are cancer-dependent. In vitro and in vivo experiments show that, depending on the cancer type, either the upregulation or downregulation of ncRNAs can prevent the proliferation and progression of cancer. Therefore, a better understanding on how ncRNAs impact tumorigenesis could serve to develop new therapeutic treatments. Here, we review the involvement of ncRNAs in cancer epigenetics and highlight their use in clinical therapy.
Collapse
Affiliation(s)
- Subhasree Kumar
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Edward A. Gonzalez
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Pranela Rameshwar
- Department of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Jean-Pierre Etchegaray
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| |
Collapse
|
46
|
Shin E, Jin H, Suh DS, Luo Y, Ha HJ, Kim TH, Hahn Y, Hyun S, Lee K, Bae J. An alternative miRISC targets a cancer-associated coding sequence mutation in FOXL2. EMBO J 2020; 39:e104719. [PMID: 33215742 PMCID: PMC7737606 DOI: 10.15252/embj.2020104719] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 12/16/2022] Open
Abstract
Recent evidence suggests that animal microRNAs (miRNAs) can target coding sequences (CDSs); however, the pathophysiological importance of such targeting remains unknown. Here, we show that a somatic heterozygous missense mutation (c.402C>G; p.C134W) in FOXL2, a feature shared by virtually all adult-type granulosa cell tumors (AGCTs), introduces a target site for miR-1236, which causes haploinsufficiency of the tumor-suppressor FOXL2. This miR-1236-mediated selective degradation of the variant FOXL2 mRNA is preferentially conducted by a distinct miRNA-loaded RNA-induced silencing complex (miRISC) directed by the Argonaute3 (AGO3) and DHX9 proteins. In both patients and a mouse model of AGCT, abundance of the inversely regulated variant FOXL2 with miR-1236 levels is highly correlated with malignant features of AGCT. Our study provides a molecular basis for understanding the conserved FOXL2 CDS mutation-mediated etiology of AGCT, revealing the existence of a previously unidentified mechanism of miRNA-targeting disease-associated mutations in the CDS by forming a non-canonical miRISC.
Collapse
Affiliation(s)
| | - Hanyong Jin
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Dae-Shik Suh
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yongyang Luo
- School of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Hye-Jeong Ha
- School of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Tae Heon Kim
- Department of Pathology, Bundang CHA Hospital, CHA University, Seongnam, Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Seogang Hyun
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul, Korea
| |
Collapse
|
47
|
Loaeza-Loaeza J, Beltran AS, Hernández-Sotelo D. DNMTs and Impact of CpG Content, Transcription Factors, Consensus Motifs, lncRNAs, and Histone Marks on DNA Methylation. Genes (Basel) 2020; 11:genes11111336. [PMID: 33198240 PMCID: PMC7696963 DOI: 10.3390/genes11111336] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
DNA methyltransferases (DNMTs) play an essential role in DNA methylation and transcriptional regulation in the genome. DNMTs, along with other poorly studied elements, modulate the dynamic DNA methylation patterns of embryonic and adult cells. We summarize the current knowledge on the molecular mechanism of DNMTs’ functional targeting to maintain genome-wide DNA methylation patterns. We focus on DNMTs’ intrinsic characteristics, transcriptional regulation, and post-transcriptional modifications. Furthermore, we focus special attention on the DNMTs’ specificity for target sites, including key cis-regulatory factors such as CpG content, common motifs, transcription factors (TF) binding sites, lncRNAs, and histone marks to regulate DNA methylation. We also review how complexes of DNMTs/TFs or DNMTs/lncRNAs are involved in DNA methylation in specific genome regions. Understanding these processes is essential because the spatiotemporal regulation of DNA methylation modulates gene expression in health and disease.
Collapse
Affiliation(s)
- Jaqueline Loaeza-Loaeza
- Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, NC 39087 Chilpancingo, Mexico;
| | - Adriana S. Beltran
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Daniel Hernández-Sotelo
- Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, NC 39087 Chilpancingo, Mexico;
- Correspondence:
| |
Collapse
|
48
|
The Tumor Suppressive mir-148a Is Epigenetically Inactivated in Classical Hodgkin Lymphoma. Cells 2020; 9:cells9102292. [PMID: 33066457 PMCID: PMC7602210 DOI: 10.3390/cells9102292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 01/06/2023] Open
Abstract
DNA methylation was shown previously to be a crucial mechanism responsible for transcriptional deregulation in the pathogenesis of classical Hodgkin lymphoma (cHL). To identify epigenetically inactivated miRNAs in cHL, we have analyzed the set of miRNAs downregulated in cHL cell lines using bisulfite pyrosequencing. We focused on miRNAs with promoter regions located within or <1000 bp from a CpG island. Most promising candidate miRNAs were further studied in primary Hodgkin and Reed-Sternberg (HRS) cells obtained by laser capture microdissection. Last, to evaluate the function of identified miRNAs, we performed a luciferase reporter assay to confirm miRNA: mRNA interactions and therefore established cHL cell lines with stable overexpression of selected miRNAs for proliferation tests. We found a significant reverse correlation between DNA methylation and expression levels of mir-339-3p, mir-148a-3p, mir-148a-5p and mir-193a-5 demonstrating epigenetic regulation of these miRNAs in cHL cell lines. Moreover, we demonstrated direct interaction between miR-148a-3p and IL15 and HOMER1 transcripts as well as between mir-148a-5p and SUB1 and SERPINH1 transcripts. Furthermore, mir-148a overexpression resulted in reduced cell proliferation in the KM-H2 cell line. In summary, we report that mir-148a is a novel tumor suppressor inactivated in cHL and that epigenetic silencing of miRNAs is a common phenomenon in cHL.
Collapse
|
49
|
Denham J, McCluskey M, Denham MM, Sellami M, Davie AJ. Epigenetic control of exercise adaptations in the equine athlete: Current evidence and future directions. Equine Vet J 2020; 53:431-450. [PMID: 32671871 DOI: 10.1111/evj.13320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/04/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
Horses (Equus ferus caballus) have evolved over the past 300 years in response to man-made selection for particular athletic traits. Some of the selected traits were selected based on the size and horses' muscular power (eg Clydesdales), whereas other breeds were bred for peak running performance (eg Thoroughbred and Arabian). Although the physiological changes and some of the cellular adaptations responsible for athletic potential of horses have been identified, the molecular mechanisms are only just beginning to be comprehensively investigated. The purpose of this review was to outline and discuss the current understanding of the molecular mechanisms underpinning the athletic performance and cardiorespiratory fitness in athletic breeds of horses. A brief review of the biology of epigenetics is provided, including discussion on DNA methylation, histone modifications and small RNAs, followed by a summary and critical review of the current work on the exercise-induced epigenetic and transcriptional changes in horses. Important unanswered questions and currently unexplored areas that deserve attention are highlighted. Finally, a rationale for the analysis of epigenetic modifications in the context with exercise-related traits and ailments associated with athletic breeds of horses is outlined in order to help guide future research.
Collapse
Affiliation(s)
- Joshua Denham
- RMIT University, School of Health and Biomedical Sciences, Melbourne, VIC, Australia
| | | | | | - Maha Sellami
- Qatar University, College of Arts and Sciences (CAS), Sport Science Program (SSP), Doha, Qatar
| | - Allan J Davie
- Australian Equine Racing and Research Centre (AERR), Ballina, NSW, Australia
| |
Collapse
|
50
|
Epigenomic Dysregulation in Schizophrenia: In Search of Disease Etiology and Biomarkers. Cells 2020; 9:cells9081837. [PMID: 32764320 PMCID: PMC7463953 DOI: 10.3390/cells9081837] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia is a severe psychiatric disorder with a complex array of signs and symptoms that causes very significant disability in young people. While schizophrenia has a strong genetic component, with heritability around 80%, there is also a very significant range of environmental exposures and stressors that have been implicated in disease development and neuropathology, such as maternal immune infection, obstetric complications, childhood trauma and cannabis exposure. It is postulated that epigenetic factors, as well as regulatory non-coding RNAs, mediate the effects of these environmental stressors. In this review, we explore the most well-known epigenetic marks, including DNA methylation and histone modification, along with emerging RNA mediators of epigenomic state, including miRNAs and lncRNAs, and discuss their collective potential for involvement in the pathophysiology of schizophrenia implicated through the postmortem analysis of brain tissue. Given that peripheral tissues, such as blood, saliva, and olfactory epithelium have the same genetic composition and are exposed to many of the same environmental exposures, we also examine some studies supporting the application of peripheral tissues for epigenomic biomarker discovery in schizophrenia. Finally, we provide some perspective on how these biomarkers may be utilized to capture a signature of past events that informs future treatment.
Collapse
|