1
|
Zimerman J, Niño OMS, da Costa CS, Zanol JF, Comério M, da Gama de Souza LN, Miranda-Alves L, Miranda RA, Lisboa PC, Camilo TA, Rorato R, Alves GA, Frazão R, Zomer HD, Freitas-Lima LC, Graceli JB. Subacute high-refined carbohydrate diet leads to abnormal reproductive control of the hypothalamic-pituitary axis in female rats. Reprod Toxicol 2023; 119:108410. [PMID: 37211340 DOI: 10.1016/j.reprotox.2023.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
We previously reported that female rats placed on a diet containing refined carbohydrates (HCD) resulted in obesity and reproductive abnormalities, such as high serum LH concentration and abnormal ovarian function. However, the impacts at the hypothalamic-pituitary (HP) function, specifically regarding pathways linked to reproductive axis modulation are unknown. In this study, we assessed whether subacute feeding with HCD results in abnormal reproductive control in the HP axis. Female rats were fed with HCD for 15 days and reproductive HP axis morphophysiology was assessed. HCD reduced hypothalamic mRNA expression (Kiss1, Lepr, and Amhr2) and increased pituitary LHβ+ cells. These changes likely contribute to the increase in serum LH concentration observed in HCD. Blunted estrogen negative feedback was observed in HCD, with increased kisspeptin protein expression in the arcuate nucleus of the hypothalamus (ARH), lower LHβ+ cells and LH concentration in ovariectomized (OVX)+HCD rats. Thus, these data suggest that HCD feeding led to female abnormal reproductive control of HP axis.
Collapse
Affiliation(s)
- Jeanini Zimerman
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Oscar M S Niño
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil; Faculty of Human Sciences and Education, Universidad de los Llanos, Villavicencio, Meta, Colombia
| | - Charles S da Costa
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Jordana F Zanol
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Milena Comério
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, UFRJ, RJ, Brazil
| | - Rosiane A Miranda
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Patrícia C Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Tays A Camilo
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Rodrigo Rorato
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Guilherme Andrade Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Renata Frazão
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Helena D Zomer
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | | | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil.
| |
Collapse
|
2
|
Tsuchida H, Nonogaki M, Takizawa M, Inoue N, Uenoyama Y, Tsukamura H. Enkephalin-δ Opioid Receptor Signaling Mediates Glucoprivic Suppression of LH Pulse and Gluconeogenesis in Female Rats. Endocrinology 2023; 164:6967063. [PMID: 36592113 DOI: 10.1210/endocr/bqac216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Energy availability is an important regulator of reproductive function at various reproductive phases in mammals. Glucoprivation induced by 2-deoxy-D-glucose (2DG), an inhibitor of glucose utilization, as an experimental model of malnutrition suppresses the pulsatile release of GnRH/LH and induces gluconeogenesis. The present study was performed with the aim of examining whether enkephalin-δ-opioid receptor (DOR) signaling mediates the suppression of pulsatile GnRH/LH release and gluconeogenesis during malnutrition. The administration of naltrindole hydrochloride (NTI), a selective DOR antagonist, into the third ventricle blocked the suppression of LH pulses and part of gluconeogenesis induced by IV 2DG administration in ovariectomized rats treated with a negative feedback level of estradiol-17 β (OVX + low E2). The IV 2DG administration significantly increased the number of Penk (enkephalin gene)-positive cells coexpressing fos (neuronal activation marker gene) in the paraventricular nucleus (PVN), but not in the arcuate nucleus (ARC) in OVX + low E2 rats. Furthermore, double in situ hybridization for Penk/Pdyn (dynorphin gene) in the PVN revealed that approximately 35% of the PVN Penk-expressing cells coexpressed Pdyn. Double in situ hybridization for Penk/Crh (corticotropin-releasing hormone gene) in the PVN and Penk/Kiss1 (kisspeptin gene) in the ARC revealed that few Penk-expressing cells coexpressed Crh and Kiss1. Taken together, these results suggest that central enkephalin-DOR signaling mediates the suppression of pulsatile LH release during malnutrition. Moreover, the current study suggests that central enkephalin-DOR signaling is also involved in gluconeogenesis during malnutrition in female rats.
Collapse
Affiliation(s)
- Hitomi Tsuchida
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Miku Nonogaki
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Marina Takizawa
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
3
|
The Effect of Alternating High-Sucrose and Sucrose Free-Diets, and Intermittent One-Day Fasting on the Estrous Cycle and Sex Hormones in Female Rats. Nutrients 2022; 14:nu14204350. [DOI: 10.3390/nu14204350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Relationships between diet, sex hormone concentrations, and the estrous cycle are important from the perspective of infertility and estrogen-dependent disease prevention and treatment. Four dietary interventions reflecting modern eating behaviors were explored. The study involved 50 female rats divided into five feeding groups. The impact of the amount of sucrose consumed (9% and 18% of the dietary energy content), alternating high-sucrose and sucrose-free diets, and a high-sucrose diet combined with intermittent one-day fasting on the estrous cycle and sex hormone concentrations in female rats was assessed. Even low amounts of dietary sucrose (9% of the dietary energy content) were found to lead to increased estradiol (E2) concentrations and decreased progesterone (Pg) concentrations. A high-sucrose diet, even when periodically applied, additionally led to a reduced concentration of luteinizing hormone (LH). The largest changes in the hormones tested were observed with one-day fasting coupled with the high-sucrose diet; in addition, the estrous phase was shortened and the estrous cycle was disrupted. The results of this study show that both the amount of dietary sucrose and also its uptake pattern affect the estrous cycle and sex hormone concentrations in female rats.
Collapse
|
4
|
Grindstaff JL, Beaty LE, Ambardar M, Luttbeg B. Integrating theoretical and empirical approaches for a robust understanding of endocrine flexibility. J Exp Biol 2022; 225:274311. [PMID: 35258612 PMCID: PMC8987727 DOI: 10.1242/jeb.243408] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is growing interest in studying hormones beyond single 'snapshot' measurements, as recognition that individual variation in the endocrine response to environmental change may underlie many rapid, coordinated phenotypic changes. Repeated measures of hormone levels in individuals provide additional insight into individual variation in endocrine flexibility - that is, how individuals modulate hormone levels in response to the environment. The ability to quickly and appropriately modify phenotype is predicted to be favored by selection, especially in unpredictable environments. The need for repeated samples from individuals can make empirical studies of endocrine flexibility logistically challenging, but methods based in mathematical modeling can provide insights that circumvent these challenges. Our Review introduces and defines endocrine flexibility, reviews existing studies, makes suggestions for future empirical work, and recommends mathematical modeling approaches to complement empirical work and significantly advance our understanding. Mathematical modeling is not yet widely employed in endocrinology, but can be used to identify innovative areas for future research and generate novel predictions for empirical testing.
Collapse
Affiliation(s)
| | - Lynne E Beaty
- School of Science, Penn State Erie - The Behrend College, Erie, PA 16563, USA
| | - Medhavi Ambardar
- Department of Biological Sciences, Fort Hays State University, Hays, KS 67601, USA
| | - Barney Luttbeg
- Department of Integrative Biology, Oklahoma State University, OK 74078, USA
| |
Collapse
|
5
|
Ikegami K, Watanabe Y, Nakamura S, Goto T, Inoue N, Uenoyama Y, Tsukamura H. Cellular and molecular mechanisms regulating the KNDy neuronal activities to generate and modulate GnRH pulse in mammals. Front Neuroendocrinol 2022; 64:100968. [PMID: 34808231 DOI: 10.1016/j.yfrne.2021.100968] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/18/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022]
Abstract
Accumulating findings during the past decades have demonstrated that the hypothalamic arcuate kisspeptin neurons are supposed to be responsible for pulsatile release of gonadotropin-releasing hormone (GnRH) to regulate gametogenesis and steroidogenesis in mammals. The arcuate kisspeptin neurons express neurokinin B (NKB) and dynorphin A (Dyn), thus, the neurons are also referred to as KNDy neurons. In the present article, we mainly focus on the cellular and molecular mechanisms underlying GnRH pulse generation, that is focused on the action of NKB and Dyn and an interaction between KNDy neurons and astrocytes to control GnRH pulse generation. Then, we also discuss the factors that modulate the activity of KNDy neurons and consequent pulsatile GnRH/LH release in mammals.
Collapse
Affiliation(s)
- Kana Ikegami
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Youki Watanabe
- Graduate School of Applied Life Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Sho Nakamura
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Teppei Goto
- RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
6
|
Porteous R, Haden P, Hackwell ECR, Singline A, Herde MK, Desai R, Handelsman DJ, Grattan DR, Herbison AE. Reformulation of PULSAR for Analysis of Pulsatile LH Secretion and a Revised Model of Estrogen-Negative Feedback in Mice. Endocrinology 2021; 162:6349057. [PMID: 34383026 DOI: 10.1210/endocr/bqab165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 11/19/2022]
Abstract
The recent use of the tail-tip bleeding approach in mice has enabled researchers to generate detailed pulse and surge profiles of luteinizing hormone (LH) secretion in mice. However, the analysis of pulsatile LH secretion is piecemeal across the field with each laboratory using their own methodology. We have reformulated the once-popular PULSAR algorithm of Merriam and Wachter to operate on contemporary computer systems and provide downloadable and online pulse analysis platforms. As it is now possible to record the activity of the gonadotropin-releasing hormone pulse generator in freely behaving mice, we have been able to unambiguously define LH pulses in intact and gonadectomized male and female mice. These data sets were used to determine the appropriate PULSAR parameter sets for analyzing pulsatile LH secretion in the mouse. This was then used to establish an accurate model of estrogen negative feedback in the mouse. Intact and ovariectomized mice given Silastic capsules containing 1, 2, and 4 μg 17-β-estradiol/20 g body weight were tail-tip bled at 6-min intervals, and the resultant LH profiles were analyzed with PULSAR. Only the 4 μg 17-β-estradiol capsule treatment was found to return LH pulse amplitude and frequency to that of intact diestrous mice. Ultrasensitive mass spectrometry analysis showed that the 4 μg 17-β-estradiol capsule generated circulating estradiol levels equivalent to that of diestrous mice. It is hoped that the reformulation of PULSAR and generation of a realistic model of estrogen-negative feedback will provide a platform for the more uniform assessment of pulsatile hormone secretion in mice.
Collapse
Affiliation(s)
- Robert Porteous
- Department of Physiology, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Patricia Haden
- RTIS Scientific Programming, University of Otago, Dunedin, New Zealand
| | - Eleni C R Hackwell
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Aaron Singline
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Michel K Herde
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Reena Desai
- ANZAC Research Institute, Andrology Department, Concord Hospital, Sydney, Australia
| | - David J Handelsman
- ANZAC Research Institute, Andrology Department, Concord Hospital, Sydney, Australia
| | - David R Grattan
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Allan E Herbison
- Department of Physiology, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Tsuchida H, Kawai N, Yamada K, Takizawa M, Inoue N, Uenoyama Y, Tsukamura H. Central µ-Opioid Receptor Antagonism Blocks Glucoprivic LH Pulse Suppression and Gluconeogenesis/Feeding in Female Rats. Endocrinology 2021; 162:6322534. [PMID: 34270714 DOI: 10.1210/endocr/bqab140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 12/27/2022]
Abstract
Energetic status often affects reproductive function, glucose homeostasis, and feeding in mammals. Malnutrition suppresses pulsatile release of the gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) and increases gluconeogenesis and feeding. The present study aims to examine whether β-endorphin-μ-opioid receptor (MOR) signaling mediates the suppression of pulsatile GnRH/LH release and an increase in gluconeogenesis/feeding induced by malnutrition. Ovariectomized female rats treated with a negative feedback level of estradiol-17β (OVX + low E2) receiving 2-deoxy-D-glucose (2DG), an inhibitor of glucose utilization, intravenously (iv) were used as a malnutrition model. An administration of D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), a selective MOR antagonist, into the third ventricle blocked the suppression of the LH pulse and increase in gluconeogenesis/feeding induced by iv 2DG administration. Histological analysis revealed that arcuate Kiss1 (kisspeptin gene)-expressing cells and preoptic Gnrh1 (GnRH gene)-expressing cells co-expressed little Oprm1 (MOR gene), while around 10% of arcuate Slc17a6 (glutamatergic marker gene)-expressing cells co-expressed Oprm1. Further, the CTOP treatment decreased the number of fos-positive cells in the paraventricular nucleus (PVN) in OVX + low E2 rats treated with iv 2DG but failed to affect the number of arcuate fos-expressing Slc17a6-positive cells. Taken together, these results suggest that the central β-endorphin-MOR signaling mediates the suppression of pulsatile LH release and that the β-endorphin may indirectly suppress the arcuate kisspeptin neurons, a master regulator for GnRH/LH pulses during malnutrition. Furthermore, the current study suggests that central β-endorphin-MOR signaling is also involved in gluconeogenesis and an increase in food intake by directly or indirectly acting on the PVN neurons during malnutrition in female rats.
Collapse
Affiliation(s)
- Hitomi Tsuchida
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Narumi Kawai
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Koki Yamada
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Marina Takizawa
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Sato M, Minabe S, Sakono T, Magata F, Nakamura S, Watanabe Y, Inoue N, Uenoyama Y, Tsukamura H, Matsuda F. Morphological Analysis of the Hindbrain Glucose Sensor-Hypothalamic Neural Pathway Activated by Hindbrain Glucoprivation. Endocrinology 2021; 162:6308440. [PMID: 34161572 DOI: 10.1210/endocr/bqab125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Indexed: 01/06/2023]
Abstract
Lowered glucose availability, sensed by the hindbrain, has been suggested to enhance gluconeogenesis and food intake as well as suppress reproductive function. In fact, our previous histological and in vitro studies suggest that hindbrain ependymal cells function as a glucose sensor. The present study aimed to clarify the hindbrain glucose sensor-hypothalamic neural pathway activated in response to hindbrain glucoprivation to mediate counterregulatory physiological responses. Administration of 2-deoxy-D-glucose (2DG), an inhibitor of glucose utilization, into the fourth ventricle (4V) of male rats for 0.5 hour induced messenger RNA (mRNA) expression of c-fos, a marker for cellular activation, in ependymal cells in the 4V, but not in the lateral ventricle, the third ventricle or the central canal without a significant change in blood glucose and testosterone levels. Administration of 2DG into the 4V for 1 hour significantly increased blood glucose levels, food intake, and decreased blood testosterone levels. Simultaneously, the expression of c-Fos protein was detected in the 4V ependymal cells; dopamine β-hydroxylase-immunoreactive cells in the C1, C2, and A6 regions; neuropeptide Y (NPY) mRNA-positive cells in the C2; corticotropin-releasing hormone (CRH) mRNA-positive cells in the hypothalamic paraventricular nucleus (PVN); and NPY mRNA-positive cells in the arcuate nucleus (ARC). Taken together, these results suggest that lowered glucose availability, sensed by 4V ependymal cells, activates hindbrain catecholaminergic and/or NPY neurons followed by CRH neurons in the PVN and NPY neurons in the ARC, thereby leading to counterregulatory responses, such as an enhancement of gluconeogenesis, increased food intake, and suppression of sex steroid secretion.
Collapse
Affiliation(s)
- Marimo Sato
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shiori Minabe
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takahiro Sakono
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Fumie Magata
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Sho Nakamura
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Youki Watanabe
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Fuko Matsuda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
9
|
Tsuchida H, Mostari P, Yamada K, Miyazaki S, Enomoto Y, Inoue N, Uenoyama Y, Tsukamura H. Paraventricular Dynorphin A Neurons Mediate LH Pulse Suppression Induced by Hindbrain Glucoprivation in Female Rats. Endocrinology 2020; 161:5902463. [PMID: 32894768 DOI: 10.1210/endocr/bqaa161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
Abstract
Malnutrition suppresses reproductive functions in mammals, which is considered to be mostly due to the inhibition of pulsatile gonadotropin-releasing hormone (GnRH)/gonadotropin secretion. Accumulating evidence suggests that kisspeptin neurons in the arcuate nucleus (ARC) play a critical role in the regulation of pulsatile GnRH/gonadotropin release. The present study aimed to examine if the hypothalamic dynorphin A (Dyn) neurons mediate the suppression of GnRH/luteinizing hormone (LH) pulses during malnutrition. Ovariectomized rats treated with a negative feedback level of estradiol-17β-treated (OVX+E2) were administered with intravenous (iv) or fourth cerebroventricle (4V) 2-deoxy-D-glucose (2DG), an inhibitor of glucose utilization, to serve as a malnutrition model. Central administration of a Dyn receptor antagonist blocked the iv- or 4V-2DG-induced suppression of LH pulses in OVX+E2 rats. The 4V 2DG administration significantly increased the number of Pdyn (Dyn gene)-positive cells co-expressing fos in the paraventricular nucleus (PVN), but not in the ARC and supraoptic nucleus (SON), and the iv 2DG treatment significantly increased the number of fos and Pdyn-co-expressing cells in the PVN and SON, but decreased it in the ARC. The E2 treatment significantly increased Pdyn expression in the PVN, but not in the ARC and SON. Double in situ hybridization for Kiss1 (kisspeptin gene) and Oprk1 (Dyn receptor gene) revealed that around 60% of ARC Kiss1-expressing cells co-expressed Oprk1. These results suggest that the PVN Dyn neurons, at least in part, mediate LH pulse suppression induced by the hindbrain or peripheral glucoprivation, and Dyn neurons may directly suppress the ARC kisspeptin neurons in female rats.
Collapse
Affiliation(s)
- Hitomi Tsuchida
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Parvin Mostari
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Koki Yamada
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sae Miyazaki
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yuki Enomoto
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
10
|
Negrón AL, Radovick S. High-Fat Diet Alters LH Secretion and Pulse Frequency in Female Mice in an Estrous Cycle-Dependent Manner. Endocrinology 2020; 161:5897032. [PMID: 32841330 PMCID: PMC7486692 DOI: 10.1210/endocr/bqaa146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/12/2020] [Indexed: 01/08/2023]
Abstract
Reproductive fitness in females is susceptible to obesogenic diets. Energy balance and reproduction are tightly regulated, in part, by hypothalamic neurons in the arcuate nucleus (ARC), and high-fat diet (HFD) can steadily increase estradiol levels in rodents. Estradiol regulates the reproductive axis via negative feedback mechanisms in ARC neurons by modulating pulsatile release of the gonadotropin luteinizing hormone (LH). However, it is unclear how the circulating estradiol milieu of adult females interacts with a state of high-caloric fat intake to alter LH pulse dynamics. Here, we used serial tail-tip blood sampling to measure pulsatile LH release at different estrous cycle stages in mice fed a HFD. Starting at 21 days of age, female C57BL/6J mice were freely fed with either regular chow diet (RD) or 60% kcal HFD for 12 weeks. Blood samples were collected once at diestrus, and then again at estrus. LH was measured in 10-minute intervals for 3 hours and analyzed for pulse frequency, amplitude, and mean and basal LH levels. Compared with RD-fed controls, mice fed HFD displayed significantly increased pulse frequency at diestrus, but not at estrus. HFD-fed mice also had lower mean and basal LH levels compared with RD-fed controls, but only during estrus. These data suggest that circulating estradiol can variably contribute to the impact that HFD has on LH pulsatile release and also provide insight into how obesity impacts women's reproductive health when ovarian estradiol levels drastically change, such as during menopause or with hormone replacement therapy.
Collapse
Affiliation(s)
- Ariel L Negrón
- Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Correspondence: Ariel L. Negrón, PhD, Department of Pediatrics, Rutgers–Robert Wood Johnson Medical School, Clinical Academic Building, Room 7110, Lab A, 125 Paterson St., New Brunswick, NJ 08901, USA. E-mail:
| | - Sally Radovick
- Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
11
|
Minabe S, Nakamura S, Fukushima E, Sato M, Ikegami K, Goto T, Sanbo M, Hirabayashi M, Tomikawa J, Imamura T, Inoue N, Uenoyama Y, Tsukamura H, Maeda KI, Matsuda F. Inducible Kiss1 knockdown in the hypothalamic arcuate nucleus suppressed pulsatile secretion of luteinizing hormone in male mice. J Reprod Dev 2020; 66:369-375. [PMID: 32336702 PMCID: PMC7470898 DOI: 10.1262/jrd.2019-164] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence suggests that kisspeptin-GPR54 signaling is indispensable for gonadotropin-releasing hormone (GnRH)/gonadotropin secretion and consequent reproductive functions in mammals. Conventional Kiss1 knockout (KO) mice and rats are reported to be infertile. To date, however, no study has investigated the effect of inducible central Kiss1 KO/knockdown on pulsatile gonadotropin release in male mammals. Here we report an in vivo analysis of inducible conditional Kiss1 knockdown male mice. The mice were generated by a bilateral injections of either adeno-associated virus (AAV) vectors driving Cre recombinase (AAV-Cre) or AAV vectors driving GFP (AAV-GFP, control) into the hypothalamic arcuate nucleus (ARC) of Kiss1-floxed male mice, in which exon 3 of the Kiss1 gene were floxed with loxP sites. Four weeks after the AAV-Cre injection, the mice showed a profound decrease in the both number of ARC Kiss1-expressing cells and the luteinizing hormone (LH) pulse frequency. Interestingly, pulsatile LH secretion was apparent 8 weeks after the AAV-Cre injection despite the suppression of ARC Kiss1 expression. The control Kiss1-floxed mice infected with AAV-GFP showed apparent LH pulses and Kiss1 expression in the ARC at both 4 and 8 weeks after the AAV-GFP injection. These results with an inducible conditional Kiss1 knockdown in the ARC of male mice suggest that ARC kisspeptin neurons are responsible for pulsatile LH secretion in male mice, and indicate the possibility of a compensatory mechanism that restores GnRH/LH pulse generation.
Collapse
Affiliation(s)
- Shiori Minabe
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Sho Nakamura
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Eri Fukushima
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Marimo Sato
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kana Ikegami
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Teppei Goto
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Junko Tomikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Takuya Imamura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Kei-Ichiro Maeda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Fuko Matsuda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
12
|
Ikegami K, Goto T, Nakamura S, Watanabe Y, Sugimoto A, Majarune S, Horihata K, Nagae M, Tomikawa J, Imamura T, Sanbo M, Hirabayashi M, Inoue N, Maeda KI, Tsukamura H, Uenoyama Y. Conditional kisspeptin neuron-specific Kiss1 knockout with newly generated Kiss1-floxed and Kiss1-Cre mice replicates a hypogonadal phenotype of global Kiss1 knockout mice. J Reprod Dev 2020; 66:359-367. [PMID: 32307336 PMCID: PMC7470906 DOI: 10.1262/jrd.2020-026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The present study aimed to evaluate whether novel conditional kisspeptin neuron-specific Kiss1 knockout (KO) mice utilizing the Cre-loxP system could recapitulate
the infertility of global Kiss1 KO models, thereby providing further evidence for the fundamental role of hypothalamic kisspeptin neurons in regulating mammalian
reproduction. We generated Kiss1-floxed mice and hypothalamic kisspeptin neuron-specific Cre-expressing transgenic mice and then crossed these two
lines. The conditional Kiss1 KO mice showed pubertal failure along with a suppression of gonadotropin secretion and ovarian atrophy. These results indicate that
newly-created hypothalamic Kiss1 KO mice obtained by the Cre-loxP system recapitulated the infertility of global Kiss1 KO models, suggesting that
hypothalamic kisspeptin, but not peripheral kisspeptin, is critical for reproduction. Importantly, these Kiss1-floxed mice are now available and will be a valuable
tool for detailed analyses of roles of each population of kisspeptin neurons in the brain and peripheral kisspeptin-producing cells by the spatiotemporal-specific manipulation of
Cre expression.
Collapse
Affiliation(s)
- Kana Ikegami
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Teppei Goto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.,Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Sho Nakamura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Youki Watanabe
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Arisa Sugimoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Sutisa Majarune
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kei Horihata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Mayuko Nagae
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Junko Tomikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Takuya Imamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kei-Ichiro Maeda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
13
|
Nakamura S, Noda K, Miwa M, Minabe S, Hagiwara T, Hirasawa A, Matsuyama S, Moriyama R. Colocalization of GPR120 and anterior pituitary hormone-producing cells in female Japanese Black cattle. J Reprod Dev 2019; 66:135-141. [PMID: 31902805 PMCID: PMC7175391 DOI: 10.1262/jrd.2019-111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Negative energy balance in domestic animals suppresses their reproductive function. These animals commonly use long-chain fatty acids (LCFAs) from adipocytes as an energy source under
states of malnutrition. The G-protein coupled receptor, GPR120, is a specific receptor for LCFAs, but its role in reproductive function remains unknown in domestic animals. The purpose of
this study was to examine whether GPR120 is involved in the reproductive system of cattle. GPR120 mRNA expression was evaluated in brain, pituitary, and ovarian tissue
samples by RT-PCR. GPR120 gene expression was detected with high intensity only in the anterior pituitary sample, and GPR120-immunoreactive cells were found in the anterior
pituitary gland. Double immunohistochemistry of GPR120 in the anterior pituitary hormone-producing cells, such as gonadotropes, thyrotropes, lactotropes, somatotropes, and corticotropes, was
performed to clarify the distribution of GPR120 in the anterior pituitary gland of ovariectomized heifers. Luteinizing hormone β subunit (LHβ)- and follicle-stimulating hormone β subunit
(FSHβ)-immunoreactive cells demonstrated GPR120 immunoreactivity at 80.7% and 85.9%, respectively. Thyrotropes, lactotropes, somatotropes, and corticotropes coexpressed GPR120 at 21.1%,
5.4%, 13.6%, and 14.5%, respectively. In conclusion, the present study suggests that GPR120 in the anterior pituitary gland might mediate LCFA signaling to regulate gonadotrope functions,
such as hormone secretion or production, in cattle.
Collapse
Affiliation(s)
- Sho Nakamura
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO-ILGS), Tochigi 329-2793, Japan.,Faculty of Veterinary Medicine, Okayama University of Science, Ehime 794-8555, Japan
| | - Kohei Noda
- Laboratory of Environmental physiology, Department of Life Science, Kindai University, Osaka 577-8502, Japan
| | - Masafumi Miwa
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO-ILGS), Tochigi 329-2793, Japan
| | - Shiori Minabe
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Teruki Hagiwara
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Kindai University, Osaka 577-8502, Japan
| | - Akira Hirasawa
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| | - Shuichi Matsuyama
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO-ILGS), Tochigi 329-2793, Japan.,Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Ryutaro Moriyama
- Laboratory of Environmental physiology, Department of Life Science, Kindai University, Osaka 577-8502, Japan
| |
Collapse
|
14
|
Herbison AE. The Gonadotropin-Releasing Hormone Pulse Generator. Endocrinology 2018; 159:3723-3736. [PMID: 30272161 DOI: 10.1210/en.2018-00653] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/20/2018] [Indexed: 12/18/2022]
Abstract
The pulsatile release of GnRH and LH secretion is essential for fertility in all mammals. Pulses of LH occur approximately every hour in follicular-phase females and every 2 to 3 hours in luteal-phase females and males. Many studies over the last 50 years have sought to identify the nature and mechanism of the "GnRH pulse generator" responsible for pulsatile LH release. This review examines the characteristics of pulsatile hormone release and summarizes investigations that have led to our present understanding of the GnRH pulse generator. There is presently little compelling evidence for an intrinsic mechanism of pulse generation involving interactions between GnRH neuron cell bodies. Rather, data support the presence of an extrinsic pulse generator located within the arcuate nucleus, and attention has focused on the kisspeptin neurons and their projections to GnRH neuron dendrons concentrated around the median eminence. Sufficient evidence has been gathered in rodents to conclude that a subpopulation of arcuate kisspeptin neurons is, indeed, the GnRH pulse generator. Findings in other species are generally compatible with this view and suggest that arcuate/infundibular kisspeptin neurons represent the mammalian GnRH pulse generator. With hindsight, it is likely that past arcuate nucleus multiunit activity recordings have been from kisspeptin neurons. Despite advances in identifying the cells forming the pulse generator, almost nothing is known about their mechanisms of synchronicity and the afferent hormonal and transmitter modulation required to establish the normal patterns of LH pulsatility in mammals.
Collapse
Affiliation(s)
- Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Uenoyama Y, Inoue N, Maeda KI, Tsukamura H. The roles of kisspeptin in the mechanism underlying reproductive functions in mammals. J Reprod Dev 2018; 64:469-476. [PMID: 30298825 PMCID: PMC6305848 DOI: 10.1262/jrd.2018-110] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kisspeptin, identified as a natural ligand of GPR54 in 2001, is now considered as a master regulator of puberty and subsequent reproductive functions in mammals. Our previous studies using
Kiss1 knockout (KO) rats clearly demonstrated the indispensable role of kisspeptin in gonadotropin-releasing hormone (GnRH)/gonadotropin secretion. In addition, behavioral
analyses of Kiss1 KO rats revealed an organizational effect of kisspeptin on neural circuits controlling sexual behaviors. Our studies using transgenic mice carrying a
region-specific Kiss1 enhancer-driven reporter gene provided a clue as to the mechanism by which estrogen regulates Kiss1 expression in hypothalamic
kisspeptin neurons. Analyses of Kiss1 expression and gonadotropin secretion during the pubertal transition shed light on the mechanism triggering GnRH/gonadotropin secretion
at the onset of puberty in rats. Here, we summarize data obtained from the aforementioned studies and revisit the physiological roles of kisspeptin in the mechanism underlying reproductive
functions in mammals.
Collapse
Affiliation(s)
- Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kei-Ichiro Maeda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
16
|
Dynamics of GnRH Neuron Ionotropic GABA and Glutamate Synaptic Receptors Are Unchanged during Estrogen Positive and Negative Feedback in Female Mice. eNeuro 2017; 4:eN-FTR-0259-17. [PMID: 29109970 PMCID: PMC5672547 DOI: 10.1523/eneuro.0259-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/27/2017] [Accepted: 10/22/2017] [Indexed: 11/21/2022] Open
Abstract
Inputs from GABAergic and glutamatergic neurons are suspected to play an important role in regulating the activity of the gonadotropin-releasing hormone (GnRH) neurons. The GnRH neurons exhibit marked plasticity to control the ovarian cycle with circulating estradiol concentrations having profound "feedback" effects on their activity. This includes "negative feedback" responsible for suppressing GnRH neuron activity and "positive feedback" that occurs at mid-cycle to activate the GnRH neurons to generate the preovulatory luteinizing hormone surge. In the present study, we employed brain slice electrophysiology to question whether synaptic ionotropic GABA and glutamate receptor signaling at the GnRH neuron changed at times of negative and positive feedback. We used a well characterized estradiol (E)-treated ovariectomized (OVX) mouse model to replicate negative and positive feedback. Miniature and spontaneous postsynaptic currents (mPSCs and sPSCs) attributable to GABAA and glutamatergic receptor signaling were recorded from GnRH neurons obtained from intact diestrous, OVX, OVX + E (negative feedback), and OVX + E+E (positive feedback) female mice. Approximately 90% of GnRH neurons exhibited spontaneous GABAA-mPSCs in all groups but no significant differences in the frequency or kinetics of mPSCs were found at the times of negative or positive feedback. Approximately 50% of GnRH neurons exhibited spontaneous glutamate mPSCs but again no differences were detected. The same was true for spontaneous PSCs in all cases. These observations indicate that the kinetics of ionotropic GABA and glutamate receptor synaptic transmission to GnRH neurons remain stable across the different estrogen feedback states.
Collapse
|
17
|
Czieselsky K, Prescott M, Porteous R, Campos P, Clarkson J, Steyn FJ, Campbell RE, Herbison AE. Pulse and Surge Profiles of Luteinizing Hormone Secretion in the Mouse. Endocrinology 2016; 157:4794-4802. [PMID: 27715255 DOI: 10.1210/en.2016-1351] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using a new tail-tip bleeding procedure and a sensitive ELISA, we describe here the patterns of LH secretion throughout the mouse estrous cycle; in ovariectomized mice; in ovariectomized, estradiol-treated mice that model estrogen-negative and -positive feedback; and in transgenic GNR23 mice that exhibit allele-dependent reductions in GnRH neuron number. Pulsatile LH secretion was evident at all stages of the estrous cycle, with LH pulse frequency being approximately one pulse per hour in metestrous, diestrous, and proestrous mice but much less frequent at estrus (less than one pulse per 4 h). Ovariectomy resulted in substantial increases in basal and pulsatile LH secretion with pulses occurring approximately every 21 minutes. Chronic treatment with negative-feedback, estradiol-filled capsules returned LH pulse frequency to intact follicular phase levels, although pulse amplitude remained elevated. On the afternoon of proestrus, the LH surge was found to begin in a highly variable manner over a 4-hour range, lasting for more than 3 hours. In contrast, ovariectomized, estradiol-treated, positive-feedback mice exhibited a relatively uniform surge onset at approximately 0.5 hour prior to lights out. Gonadectomized wild-type and heterozygous GNR23 (∼200 GnRH neurons) male mice exhibited an LH pulse every 60 minutes. Homozygous GNR23 mice (∼80 GnRH neurons) had very low basal LH concentrations but continued to exhibit small amplitude LH pulses every 90 minutes. These studies provide the first characterization in mice of pulse and surge modes of LH secretion across the estrous cycle and demonstrate that very few GnRH neurons are required for pulsatile LH secretion.
Collapse
Affiliation(s)
- Katja Czieselsky
- Centre for Neuroendocrinology and Department of Physiology (K.C., M.P., R.P., P.C., J.C., R.E.C., A.E.H.), Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; and School of Biomedical Sciences and University of Queensland Centre for Clinical Research (F.J.S.), University of Queensland, Queensland 4072, Australia
| | - Mel Prescott
- Centre for Neuroendocrinology and Department of Physiology (K.C., M.P., R.P., P.C., J.C., R.E.C., A.E.H.), Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; and School of Biomedical Sciences and University of Queensland Centre for Clinical Research (F.J.S.), University of Queensland, Queensland 4072, Australia
| | - Robert Porteous
- Centre for Neuroendocrinology and Department of Physiology (K.C., M.P., R.P., P.C., J.C., R.E.C., A.E.H.), Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; and School of Biomedical Sciences and University of Queensland Centre for Clinical Research (F.J.S.), University of Queensland, Queensland 4072, Australia
| | - Pauline Campos
- Centre for Neuroendocrinology and Department of Physiology (K.C., M.P., R.P., P.C., J.C., R.E.C., A.E.H.), Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; and School of Biomedical Sciences and University of Queensland Centre for Clinical Research (F.J.S.), University of Queensland, Queensland 4072, Australia
| | - Jenny Clarkson
- Centre for Neuroendocrinology and Department of Physiology (K.C., M.P., R.P., P.C., J.C., R.E.C., A.E.H.), Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; and School of Biomedical Sciences and University of Queensland Centre for Clinical Research (F.J.S.), University of Queensland, Queensland 4072, Australia
| | - Frederik J Steyn
- Centre for Neuroendocrinology and Department of Physiology (K.C., M.P., R.P., P.C., J.C., R.E.C., A.E.H.), Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; and School of Biomedical Sciences and University of Queensland Centre for Clinical Research (F.J.S.), University of Queensland, Queensland 4072, Australia
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology (K.C., M.P., R.P., P.C., J.C., R.E.C., A.E.H.), Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; and School of Biomedical Sciences and University of Queensland Centre for Clinical Research (F.J.S.), University of Queensland, Queensland 4072, Australia
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology (K.C., M.P., R.P., P.C., J.C., R.E.C., A.E.H.), Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; and School of Biomedical Sciences and University of Queensland Centre for Clinical Research (F.J.S.), University of Queensland, Queensland 4072, Australia
| |
Collapse
|
18
|
Minabe S, Deura C, Ikegami K, Goto T, Sanbo M, Hirabayashi M, Inoue N, Uenoyama Y, Maeda KI, Tsukamura H. Pharmacological and Morphological Evidence of AMPK-Mediated Energy Sensing in the Lower Brain Stem Ependymocytes to Control Reproduction in Female Rodents. Endocrinology 2015; 156:2278-87. [PMID: 25822714 PMCID: PMC4430616 DOI: 10.1210/en.2014-2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ependymocytes are one of the energy-sensing cells that regulate animal reproduction through their responsiveness to changes in extracellular glucose levels and the expression of pancreatic-type glucokinase and glucose transporter 2, which play a critical role in sensing blood glucose levels in pancreatic β-cells. Molecular mechanisms underlying glucose sensing in the ependymocytes remain poorly understood. The AMP-activated protein kinase (AMPK), a serine/threonine kinase highly conserved in all eukaryotic cells, has been suggested to be an intracellular fuel gauge that detects cellular energy status. The present study aims to clarify the role AMPK of the lower brainstem ependymocytes has in sensing glucose levels to regulate reproductive functions. First, we will show that administration of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, an AMPK activator, into the 4th ventricle suppressed pulsatile LH release in female rats. Second, we will demonstrate the presence of AMPK catalytic subunit immunoreactivities in the rat lower brainstem ependymocytes. Third, transgenic mice were generated to visualize the ependymocytes with Venus, a green fluorescent protein, expressed under the control of the mouse vimentin promoter for further in vitro study. The Venus-labeled ependymocytes taken from the lower brainstem of transgenic mice revealed that AMPK activation by 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, an AMPK activator, increased in vitro intracellular calcium concentrations. Taken together, malnutrition-induced AMPK activation of ependymocytes of the lower brainstem might be involved in suppression of GnRH/LH release and then gonadal activities.
Collapse
Affiliation(s)
- Shiori Minabe
- Graduate School of Bioagricultural Sciences (S.M., C.D., K.I., T.G., N.I., Y.U., H.T.), Nagoya University, Nagoya, Aichi 464-8601, Japan; Center for Genetic Analysis of Behavior (M.S., M.H.), National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; and Veterinary Medical Sciences (K.-i.M.), University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Steyn FJ, Wan Y, Clarkson J, Veldhuis JD, Herbison AE, Chen C. Development of a methodology for and assessment of pulsatile luteinizing hormone secretion in juvenile and adult male mice. Endocrinology 2013; 154:4939-45. [PMID: 24092638 PMCID: PMC5398599 DOI: 10.1210/en.2013-1502] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Current methodology to monitor pulsatile LH release in mice is limited by inadequate assay sensitivity, resulting in the need for collection of large blood volumes. Thus, assessment of pulsatile LH secretion in mice remains highly challenging, and observations are limited to adult mice. To address this, we developed a highly sensitive ELISA for assessment of mouse LH concentrations in small fractions of whole blood. We demonstrate that this assay is capable of reliably detecting LH down to a theoretical limit of 0.117 ng/mL in a 2-μL fraction of whole blood. Using an established frequent blood collection procedure, we validated the accuracy of this method by determining the pulsatile LH secretion in early-adult (10 weeks old) C57BL6/J male mice. Data demonstrate regular pulsatile release of LH, with peaks in LH secretion rarely exceeding 3 ng/mL. Moreover, assessment of LH release in Gpr54 knockout mice demonstrates the lack of pulsatile LH release after the loss of kisspeptin-mediated pubertal maturation. We next determined age-associated changes in pulsatile LH secretion by assessment of LH secretion in prepubertal (28 days old) C57BL6/J male mice and repeated assessment in the same mice in adulthood (120 days old). Data demonstrate that the rise in total LH secretion in mice after pubertal maturation occurs along with an overall rise in the pulsatile LH secretion rate. This was coupled with a significant increase in the number of LH secretory events (number of pulses). In addition, we observed a decrease in the clearance (increased half-life) and a decrease in the regularity (approximate entropy) of LH release. This method will be of wide general utility within the field of reproductive biology.
Collapse
Affiliation(s)
- F J Steyn
- School of Biomedical Science, University of Queensland, St Lucia 4072, Brisbane, Queensland, Australia. ; or Dr Frederik Steyn, School of Biomedical Science, University of Queensland, St Lucia 4072, Brisbane, Queensland, Australia. E-mail:
| | | | | | | | | | | |
Collapse
|
20
|
Okamura H, Tsukamura H, Ohkura S, Uenoyama Y, Wakabayashi Y, Maeda KI. Kisspeptin and GnRH pulse generation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:297-323. [PMID: 23550012 DOI: 10.1007/978-1-4614-6199-9_14] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The reproductive neuropeptide gonadotropin-releasing hormone (GnRH) has two modes of secretion. Besides the surge mode, which induces ovulation in females, the pulse mode of GnRH release is essential to cause various reproductive events in both sexes, such as spermatogenesis, follicular development, and sex steroid synthesis. Some environmental cues control gonadal activities through modulating GnRH pulse frequency. Researchers have looked for the anatomical location of the mechanism generating GnRH pulses, the GnRH pulse generator, in the brain, because an artificial manipulation of GnRH pulse frequency is of therapeutic importance to stimulate or suppress gonadal activity. Discoveries of kisspeptin and, consequently, KNDy (kisspeptin/neurokinin B/dynorphin) neurons in the hypothalamus have provided a clue to the possible location of the GnRH pulse generator. Our analyses of hypothalamic multiple-unit activity revealed that KNDy neurons located in the hypothalamic arcuate nucleus might play a central role in the generation of GnRH pulses in goats, and perhaps other mammalian species. This chapter further discusses the possible mechanisms for GnRH pulse generation.
Collapse
Affiliation(s)
- Hiroaki Okamura
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|