1
|
Chien HW, Cheng PH, Chen SY, Yu J, Tsai WB. Low-fouling and functional poly(carboxybetaine) coating via a photo-crosslinking process. Biomater Sci 2017; 5:523-531. [DOI: 10.1039/c6bm00637j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antifouling modification technology is developed for many biomedical applications such as blood-contact devices and biosensors.
Collapse
Affiliation(s)
- Hsiu-Wen Chien
- Department of Chemical Engineering
- National Taiwan University
- Taipei 106
- Taiwan
| | - Po-Hsiu Cheng
- Department of Chemical Engineering
- National Taiwan University
- Taipei 106
- Taiwan
| | - Shao-Yung Chen
- Department of Chemical Engineering
- National Taiwan University
- Taipei 106
- Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering
- National Taiwan University
- Taipei 106
- Taiwan
| | - Wei-Bor Tsai
- Department of Chemical Engineering
- National Taiwan University
- Taipei 106
- Taiwan
| |
Collapse
|
2
|
Huang B, Ning S, Zhuang L, Jiang C, Cui Y, Fan G, Qin L, Liu J. Ethanol Inactivated Mouse Embryonic Fibroblasts Maintain the Self-Renew and Proliferation of Human Embryonic Stem Cells. PLoS One 2015; 10:e0130332. [PMID: 26091287 PMCID: PMC4474813 DOI: 10.1371/journal.pone.0130332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/18/2015] [Indexed: 11/21/2022] Open
Abstract
Conventionally, mouse embryonic fibroblasts (MEFs) inactivated by mitomycin C or irradiation were applied to support the self-renew and proliferation of human embryonic stem cells (hESCs). To avoid the disadvangtages of mitomycin C and irradiation, here MEFs were treated by ethanol (ET). Our data showed that 10% ET-inactivated MEFs (eiMEFs) could well maintain the self-renew and proliferation of hESCs. hESCs grown on eiMEFs expressed stem cell markers of NANOG, octamer-binding protein 4 (OCT4), stage-specific embryonic antigen-4 (SSEA4) and tumour related antigen-1-81 (TRA-1-81), meanwhile maintained normal karyotype after long time culture. Also, hESCs cocultured with eiMEFs were able to form embryoid body (EB) in vitro and develop teratoma in vivo. Moreover, eiMEFs could keep their nutrient functions after long time cryopreservation. Our results indicate that the application of eiMEF in hESCs culture is safe, economical and convenient, thus is a better choice.
Collapse
Affiliation(s)
- Boxian Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210038, China
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Song Ning
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Lili Zhuang
- Department of Pediatrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210029, China
| | - Chunyan Jiang
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, 90095, United States of America
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Jiayin Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210038, China
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
3
|
Chandra P, Lee SJ. Synthetic Extracellular Microenvironment for Modulating Stem Cell Behaviors. Biomark Insights 2015; 10:105-16. [PMID: 26106260 PMCID: PMC4472032 DOI: 10.4137/bmi.s20057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/12/2015] [Accepted: 04/13/2015] [Indexed: 11/30/2022] Open
Abstract
The innate ability of stem cells to self-renew and differentiate into multiple cell types makes them a promising source for tissue engineering and regenerative medicine applications. Their capacity for self-renewal and differentiation is largely influenced by the combination of physical, chemical, and biological signals found in the stem cell niche, both temporally and spatially. Embryonic and adult stem cells are potentially useful for cell-based approaches; however, regulating stem cell behavior remains a major challenge in their clinical use. Most of the current approaches for controlling stem cell fate do not fully address all of the complex signaling pathways that drive stem cell behaviors in their natural microenvironments. To overcome this limitation, a new generation of biomaterials is being developed for use as three-dimensional synthetic microenvironments that can mimic the regulatory characteristics of natural extracellular matrix (ECM) proteins and ECM-bound growth factors. These synthetic microenvironments are currently being investigated as a substrate with surface immobilization and controlled release of bioactive molecules to direct the stem cell fate in vitro, as a tissue template to guide and improve the neo-tissue formation both in vitro and in vivo, and as a delivery vehicle for cell therapy in vivo. The continued advancement of such an intelligent biomaterial system as the synthetic extracellular microenvironment holds the promise of improved therapies for numerous debilitating medical conditions for which no satisfactory cure exists today.
Collapse
Affiliation(s)
- Prafulla Chandra
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
4
|
Joddar B, Ito Y. Artificial niche substrates for embryonic and induced pluripotent stem cell cultures. J Biotechnol 2013; 168:218-28. [DOI: 10.1016/j.jbiotec.2013.04.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/13/2013] [Accepted: 04/29/2013] [Indexed: 01/27/2023]
|
5
|
Sivakumar PM, Zhou D, Son TI, Ito Y. Design and Synthesis of Photoreactive Polymers for Biomedical Applications. Biomimetics (Basel) 2013. [DOI: 10.1002/9781118810408.ch11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
6
|
Byambaa B, Konno T, Ishihara K. Cell adhesion control on photoreactive phospholipid polymer surfaces. Colloids Surf B Biointerfaces 2012; 99:1-6. [DOI: 10.1016/j.colsurfb.2011.08.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 08/30/2011] [Accepted: 08/31/2011] [Indexed: 11/29/2022]
|
7
|
Yue XS, Fujishiro M, Nishioka C, Arai T, Takahashi E, Gong JS, Akaike T, Ito Y. Feeder cells support the culture of induced pluripotent stem cells even after chemical fixation. PLoS One 2012; 7:e32707. [PMID: 22396791 PMCID: PMC3292564 DOI: 10.1371/journal.pone.0032707] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 02/01/2012] [Indexed: 11/18/2022] Open
Abstract
Chemically fixed mouse embryonic fibroblasts (MEFs), instead of live feeder cells, were applied to the maintenance of mouse induced pluripotent stem (miPS) cells. Formaldehyde and glutaraldehyde were used for chemical fixation. The chemically fixed MEF feeders maintained the pluripotency of miPS cells, as well as their undifferentiated state. Furthermore, the chemically fixed MEF feeders were reused several times without affecting their functions. These results indicate that chemical fixation can be applied to modify biological feeders chemically, without losing their original functions. Chemically fixed MEF feeders will be applicable to other stem cell cultures as a reusable extracellular matrix candidate that can be preserved on a long-term basis.
Collapse
Affiliation(s)
- Xiao-Shan Yue
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama, Japan
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama-shi, Kanagawa, Japan
| | - Masako Fujishiro
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama, Japan
| | - Chieko Nishioka
- Support Unit for Animal Resources Development, Research Resources Center, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | - Takashi Arai
- Support Unit for Animal Resources Development, Research Resources Center, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | - Eiki Takahashi
- Support Unit for Animal Resources Development, Research Resources Center, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | - Jian-Sheng Gong
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama, Japan
| | - Toshihiro Akaike
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama-shi, Kanagawa, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama, Japan
- * E-mail:
| |
Collapse
|
8
|
Guan YQ, Zheng Z, Liang L, Li Z, Zhang L, Du J, Liu JM. The apoptosis of OVCAR-3 induced by TNF-α plus IFN-γ co-immobilized polylactic acid copolymers. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm31972a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Guan YQ, Chen JM, Li ZB, Feng QL, Liu JM. Immobilisation of bifenthrin for termite control. PEST MANAGEMENT SCIENCE 2011; 67:244-251. [PMID: 21104824 DOI: 10.1002/ps.2065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
BACKGROUND Termites are worldwide pests causing considerable damage to agriculture, forestry and buildings. While various approaches have been tried to eliminate termite populations, the relevant toxicants are associated with certain risks to the environment and human health. RESULTS In this study, to combine the merits of effective chemical control by bifenthrin and a drug photoimmobilisation technique, silk fibroin was used as a carrier to embed bifenthrin, which was then photoactively immobilised by ultraviolet treatment on the surface of wood (cellulose). The immobilised bifenthrin embedded in the photoactive silk fibroin was characterised by Fourier transform infrared spectroscopy (FTIR), ultraviolet absorption spectroscopy (UV), fluorescence measurement and CHN analysis. The surface structures and biological activity were examined by scanning electron microscopy (SEM), atomic force microscopy (AFM), electron spectroscopy for chemical analysis (ESCA) and bioassays respectively. CONCLUSIONS The results indicate that the embedded and immobilised bifenthrin has been very well protected from free release and has a long-term stability allowing slow release with a high efficiency against termites at a low dose of 1.25 µg cm(-2). This study provides a novel and environmentally benign technique for termite control by photoimmobilising silk-fibroin-embedded bifenthrin on the surface of materials that are otherwise easily attacked by termites.
Collapse
Affiliation(s)
- Yan-Qing Guan
- School of Life Science and MOE Key Laboratory of Laser Life Science, South China Normal University, Guangzhou 510631, China
| | | | | | | | | |
Collapse
|
10
|
Dey S, Kellam B, Alexander MR, Alexander C, Rose FRAJ. Enzyme-passage free culture of mouse embryonic stem cells on thermo-responsive polymer surfaces. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm03993d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Guan YQ, Li Z, Liu JM. Death signal transduction induced by co-immobilized TNF-α plus IFN-γ and the development of polymeric anti-cancer drugs. Biomaterials 2010; 31:9074-85. [DOI: 10.1016/j.biomaterials.2010.08.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 08/19/2010] [Indexed: 01/22/2023]
|
12
|
Fu RH, Wang YC, Liu SP, Huang CM, Kang YH, Tsai CH, Shyu WC, Lin SZ. Differentiation of stem cells: strategies for modifying surface biomaterials. Cell Transplant 2010; 20:37-47. [PMID: 21054953 DOI: 10.3727/096368910x532756] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Stem cells are a natural choice for cellular therapy because of their potential to differentiate into a variety of lineages, their capacity for self-renewal in the repair of damaged organs and tissues in vivo, and their ability to generate tissue constructs in vitro. Determining how to efficiently drive stem cell differentiation to a lineage of choice is critical for the success of cellular therapeutics. Many factors are involved in this process, the extracellular microenvironment playing a significant role in controlling cellular behavior. In recent years, researchers have focused on identifying a variety of biomaterials to provide a microenvironment that is conducive to stem cell growth and differentiation and that ultimately mimics the in vivo situation. Appropriate biomaterials support the cellular attachment, proliferation, and lineage-specific differentiation of stem cells. Tissue engineering approaches have been used to incorporate growth factors and morphogenetic factors-factors known to induce lineage commitment of stem cells-into cultures with scaffolding materials, including synthetic and naturally derived biomaterials. This review focuses on various strategies that have been used in stem cell expansion and examines modifications of natural and synthetic materials, as well as various culture conditions, for the maintenance and lineage-specific differentiation of embryonic and adult stem cells.
Collapse
Affiliation(s)
- Ru-Huei Fu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Embryoid body culture of mouse embryonic stem cells using microwell and micropatterned chips. J Biosci Bioeng 2010; 111:85-91. [PMID: 20863754 DOI: 10.1016/j.jbiosc.2010.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 08/20/2010] [Accepted: 08/23/2010] [Indexed: 12/20/2022]
Abstract
The proliferation and differentiation properties of embryoid bodies (EB) from mouse embryonic stem (ES) cells were compared under two microchip conditions: microwell chip and micropatterned chip. The microwell chip contained 270 microwells (diameter, 600 μm; depth, 600 μm) on a polymethylmethacrylate plate and was surface-modified with polyethylene glycol (PEG) to render it non-adhesive. The micropatterned chip contained 270 gelatin spots (diameter, 200 μm) as the cell adhesion area on a glass plate; the region lacking these spots was PEG-modified to render it non-adhesive. The ES cells spontaneously formed the EBs from cell aggregates in each microwell in the chip. In contrast, cells inoculated onto the patterned chip formed a monolayer on the gelatin spots and gradually proliferated to form EBs. The EBs in the patterned chip maintained the high cell growth rate and the expression of endoderm (TTR and AFP) and mesoderm (Nkx2.5, αMHC, Flk1, and PDGFRβ) markers was increased, and these cell properties were similar to the previous methods (hanging drop and round-bottomed 96-well plate cultures). In contrast, the proliferation of ES cells in the microwell chip was lower than in the patterned chip and previous methods, and the EB differentiation proceeded slowly and only formed a small amount of endoderm. These results indicate that the difference of EB generating process in the microchip cultures may affect to the proliferation and differentiation of ES cells, and the existence of microwell structure in the microchip downregulates the cell proliferation and the differentiated progress of ES cells.
Collapse
|
14
|
ZHANG Y, KANETAKA H, SANO Y, KANO M, KUDO TA, SHIMIZU Y. MPC polymer regulates fibrous tissue formation by modulating cell adhesion to the biomaterial surface. Dent Mater J 2010; 29:518-28. [DOI: 10.4012/dmj.2009-138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
A photoimmobilizable sulfobetaine-based polymer for a nonbiofouling surface. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010; 30:316-322. [DOI: 10.1016/j.msec.2009.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/10/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
|
16
|
Loh XJ, Gong J, Sakuragi M, Kitajima T, Liu M, Li J, Ito Y. Surface Coating with a Thermoresponsive Copolymer for the Culture and Non-Enzymatic Recovery of Mouse Embryonic Stem Cells. Macromol Biosci 2009; 9:1069-79. [DOI: 10.1002/mabi.200900081] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Dawson E, Mapili G, Erickson K, Taqvi S, Roy K. Biomaterials for stem cell differentiation. Adv Drug Deliv Rev 2008; 60:215-28. [PMID: 17997187 DOI: 10.1016/j.addr.2007.08.037] [Citation(s) in RCA: 288] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 08/11/2007] [Indexed: 12/13/2022]
Abstract
The promise of cellular therapy lies in the repair of damaged organs and tissues in vivo as well as generating tissue constructs in vitro for subsequent transplantation. Unfortunately, the lack of available donor cell sources limits its ultimate clinical applicability. Stem cells are a natural choice for cell therapy due to their pluripotent nature and self-renewal capacity. Creating reserves of undifferentiated stem cells and subsequently driving their differentiation to a lineage of choice in an efficient and scalable manner is critical for the ultimate clinical success of cellular therapeutics. In recent years, a variety of biomaterials have been incorporated in stem cell cultures, primarily to provide a conducive microenvironment for their growth and differentiation and to ultimately mimic the stem cell niche. In this review, we examine applications of natural and synthetic materials, their modifications as well as various culture conditions for maintenance and lineage-specific differentiation of embryonic and adult stem cells.
Collapse
Affiliation(s)
- Eileen Dawson
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
18
|
Ito Y, Kawamorita M, Yamabe T, Kiyono T, Miyamoto K. Chemically fixed nurse cells for culturing murine or primate embryonic stem cells. J Biosci Bioeng 2007; 103:113-21. [PMID: 17368392 DOI: 10.1263/jbb.103.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 10/27/2006] [Indexed: 12/31/2022]
Abstract
In current and past practice, murine or primate embryonic stem (ES) cells are usually cultured on live nurse cells for growth that keeps the cells in an undifferentiated state. It is troublesome, however, to prepare nurse cells for each cell culture and it is difficult to completely remove the nurse cells when they are transferred. In this study, mouse and monkey ES cells were therefore grown on chemically fixed mouse embryonic fibroblast (MEF) or human amniotic epithelial (HAE) cells. MEF cells were fixed by incubation in a glutaraldehyde or formaldehyde solution. HAE cells were immortalized by transfection of hTERT and chemically fixed with the same reagents. When mouse ES cells were cultured on these chemically fixed cells, the mouse ES cells grew well and expressed alkaline phosphatase, SSEA-1, and Oct-3/4 as their markers, indicating their undifferentiated state. The monkey ES cells also grew well and expressed alkaline phosphatase, SSEA-4, and Oct-4 as their markers, indicating their undifferentiated state. Freeze-drying HAE or MEF cells did not change their ability to support the undifferentiated growth of ES cells. Additionally, the chemically fixed cells could be utilized repeatedly in the culture of ES cells. These results demonstrate that chemically fixed nurse cells are useful for the maintenance of ES cells in an undifferentiated state in culture.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Regenerative Medical Bioreactor Project, Kanagawa Academy of Science and Technology, KSP East 309, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan.
| | | | | | | | | |
Collapse
|