1
|
Lee HW, Yoon SR, Dang YM, Kang M, Lee K, Ha JH, Bae JW. Presence of an ultra-small microbiome in fermented cabbages. PeerJ 2023; 11:e15680. [PMID: 37483986 PMCID: PMC10358336 DOI: 10.7717/peerj.15680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Background Ultramicrobacteria (UMB), also known as ultra-small bacteria, are tiny bacteria with a size less than 0.1 µm3. They have a high surface-to-volume ratio and are found in various ecosystems, including the human body. UMB can be classified into two types: one formed through cell contraction and the other that maintains a small size. The ultra-small microbiome (USM), which may contain UMB, includes all bacteria less than 0.2 µm in size and is difficult to detect with current methods. However, it poses a potential threat to food hygiene, as it can pass through sterilization filters and exist in a viable but non-culturable (VBNC) state. The data on the USM of foods is limited. Some bacteria, including pathogenic species, are capable of forming UMB under harsh conditions, making it difficult to detect them through conventional culture techniques. Methods The study described above focused on exploring the diversity of USM in fermented cabbage samples from three different countries (South Korea, China, and Germany). The samples of fermented cabbage (kimchi, suancai, and sauerkraut) were purchased and stored in chilled conditions at approximately 4 °C until filtration. The filtration process involved two steps of tangential flow filtration (TFF) using TFF cartridges with different pore sizes (0.2 µm and 100 kDa) to separate normal size bacteria (NM) and USM. The USM and NM isolated via TFF were stored in a refrigerator at 4 °C until DNA extraction. The extracted DNA was then amplified using PCR and the full-length 16S rRNA gene was sequenced using single-molecule-real-time (SMRT) sequencing. The transmission electron microscope (TEM) was used to confirm the presence of microorganisms in the USM of fermented cabbage samples. Results To the best of our knowledge, this is the first study to identify the differences between USM and NM in fermented cabbages. Although the size of the USM (average 2,171,621 bp) was smaller than that of the NM (average 15,727,282 bp), diversity in USM (average H' = 1.32) was not lower than that in NM (average H' = 1.22). In addition, some members in USM probably underwent cell shrinkage due to unfavorable environments, while others maintained their size. Major pathogens were not detected in the USM in fermented cabbages. Nevertheless, several potentially suspicious strains (genera Cellulomonas and Ralstonia) were detected. Our method can be used to screen food materials for the presence of USM undetectable via conventional methods. USM and NM were efficiently separated using tangential flow filtration and analyzed via single-molecule real-time sequencing. The USM of fermented vegetables exhibited differences in size, diversity, and composition compared with the conventional microbiome. This study could provide new insights into the ultra-small ecosystem in fermented foods, including fermented cabbages.
Collapse
Affiliation(s)
- Hae-Won Lee
- Hygienic Safety ⋅ Materials Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - So-Ra Yoon
- Hygienic Safety ⋅ Materials Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Yun-Mi Dang
- Hygienic Safety ⋅ Materials Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Miran Kang
- Practical Technology Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Kwangho Lee
- Center for Research Facilities, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Hyung Ha
- Hygienic Safety ⋅ Materials Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Jin-Woo Bae
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Ruiz‐González C, Rodríguez‐Pie L, Maister O, Rodellas V, Alorda‐Keinglass A, Diego‐Feliu M, Folch A, Garcia‐Orellana J, Gasol JM. High spatial heterogeneity and low connectivity of bacterial communities along a Mediterranean subterranean estuary. Mol Ecol 2022; 31:5745-5764. [PMID: 36112071 PMCID: PMC9827943 DOI: 10.1111/mec.16695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 01/13/2023]
Abstract
Subterranean estuaries are biogeochemically active coastal sites resulting from the underground mixing of fresh aquifer groundwater and seawater. In these systems, microbial activity can largely transform the chemical elements that may reach the sea through submarine groundwater discharge (SGD), but little is known about the microorganisms thriving in these land-sea transition zones. We present the first spatially-resolved characterization of the bacterial assemblages along a coastal aquifer in the NW Mediterranean, considering the entire subsurface salinity gradient. Combining bulk heterotrophic activity measurements, flow cytometry, microscopy and 16S rRNA gene sequencing we find large variations in prokaryotic abundances, cell size, activity and diversity at both the horizontal and vertical scales that reflect the pronounced physicochemical gradients. The parts of the transect most influenced by freshwater were characterized by smaller cells and lower prokaryotic abundances and heterotrophic production, but some activity hotspots were found at deep low-oxygen saline groundwater sites enriched in nitrite and ammonium. Diverse, heterogeneous and highly endemic communities dominated by Proteobacteria, Patescibacteria, Desulfobacterota and Bacteroidota were observed throughout the aquifer, pointing to clearly differentiated prokaryotic niches across these transition zones and little microbial connectivity between groundwater and Mediterranean seawater habitats. Finally, experimental manipulations unveiled large increases in community heterotrophic activity driven by fast growth of some rare and site-specific groundwater Proteobacteria. Our results indicate that prokaryotic communities within subterranean estuaries are highly heterogeneous in terms of biomass, activity and diversity, suggesting that their role in transforming nutrients will also vary spatially within these terrestrial-marine transition zones.
Collapse
Affiliation(s)
| | | | - Olena Maister
- Institut de Ciències del Mar (ICM‐CSIC)BarcelonaSpain
| | - Valentí Rodellas
- Institut de Ciència i Tecnologia Ambientals (ICTA‐UAB)Universitat Autònoma de BarcelonaBellaterraSpain
| | - Aaron Alorda‐Keinglass
- Institut de Ciència i Tecnologia Ambientals (ICTA‐UAB)Universitat Autònoma de BarcelonaBellaterraSpain
| | - Marc Diego‐Feliu
- Institut de Ciència i Tecnologia Ambientals (ICTA‐UAB)Universitat Autònoma de BarcelonaBellaterraSpain,Departament de FísicaUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Albert Folch
- Department of Civil and Environmental EngineeringUniversitat Politècnica de CatalunyaBarcelonaSpain,Associated Unit: Hydrogeology Group (UPC‐CSIC)BarcelonaSpain
| | - Jordi Garcia‐Orellana
- Institut de Ciència i Tecnologia Ambientals (ICTA‐UAB)Universitat Autònoma de BarcelonaBellaterraSpain,Departament de FísicaUniversitat Autònoma de BarcelonaBellaterraSpain
| | | |
Collapse
|
3
|
Reis PCJ, Thottathil SD, Prairie YT. The role of methanotrophy in the microbial carbon metabolism of temperate lakes. Nat Commun 2022; 13:43. [PMID: 35013226 PMCID: PMC8748455 DOI: 10.1038/s41467-021-27718-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022] Open
Abstract
Previous stable isotope and biomarker evidence has indicated that methanotrophy is an important pathway in the microbial loop of freshwater ecosystems, despite the low cell abundance of methane-oxidizing bacteria (MOB) and the low methane concentrations relative to the more abundant dissolved organic carbon (DOC). However, quantitative estimations of the relative contribution of methanotrophy to the microbial carbon metabolism of lakes are scarce, and the mechanism allowing methanotrophy to be of comparable importance to DOC-consuming heterotrophy remained elusive. Using incubation experiments, microscopy, and multiple water column profiles in six temperate lakes, we show that MOB play a much larger role than their abundances alone suggest because of their larger cell size and higher specific activity. MOB activity is tightly constrained by the local methane:oxygen ratio, with DOC-rich lakes with large hypolimnetic volume fraction showing a higher carbon consumption through methanotrophy than heterotrophy at the whole water column level. Our findings suggest that methanotrophy could be a critical microbial carbon consumption pathway in many temperate lakes, challenging the prevailing view of a DOC-centric microbial metabolism in these ecosystems.
Collapse
Affiliation(s)
- Paula C J Reis
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada.
| | - Shoji D Thottathil
- Department of Environmental Science, SRM University AP, Amaravati, Andhra Pradesh, 522 502, India
| | - Yves T Prairie
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada
| |
Collapse
|
4
|
Lingam M. Theoretical Constraints Imposed by Gradient Detection and Dispersal on Microbial Size in Astrobiological Environments. ASTROBIOLOGY 2021; 21:813-830. [PMID: 33902321 DOI: 10.1089/ast.2020.2392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The capacity to sense gradients efficiently and acquire information about the ambient environment confers many advantages such as facilitating movement toward nutrient sources or away from toxic chemicals. The amplified dispersal evinced by organisms endowed with motility is possibly beneficial in related contexts. Hence, the connections between information acquisition, motility, and microbial size are explored from an explicitly astrobiological standpoint. By using prior theoretical models, the constraints on organism size imposed by gradient detection and motility are elucidated in the form of simple heuristic scaling relations. It is argued that environments such as alkaline hydrothermal vents, which are distinguished by the presence of steep gradients, might be conducive to the existence of "small" microbes (with radii of ≳0.1 μm) in principle, when only the above two factors are considered; other biological functions (e.g., metabolism and genetic exchange) could, however, regulate the lower bound on microbial size and elevate it. The derived expressions are potentially applicable to a diverse array of settings, including those entailing solvents other than water; for example, the lakes and seas of Titan. The article concludes with a brief exposition of how this formalism may be of practical and theoretical value to astrobiology.
Collapse
Affiliation(s)
- Manasvi Lingam
- Department of Aerospace, Physics and Space Science, Florida Institute of Technology, Melbourne, Florida, USA
- Institute for Theory and Computation, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Ghuneim LAJ, Distaso MA, Chernikova TN, Bargiela R, Lunev EA, Korzhenkov AA, Toshchakov SV, Rojo D, Barbas C, Ferrer M, Golyshina OV, Golyshin PN, Jones DL. Utilization of low-molecular-weight organic compounds by the filterable fraction of a lotic microbiome. FEMS Microbiol Ecol 2021; 97:fiaa244. [PMID: 33264383 PMCID: PMC7864478 DOI: 10.1093/femsec/fiaa244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/30/2020] [Indexed: 11/14/2022] Open
Abstract
Filterable microorganisms participate in dissolved organic carbon (DOC) cycling in freshwater systems, however their exact functional role remains unknown. We determined the taxonomic identity and community dynamics of prokaryotic microbiomes in the 0.22 µm-filtered fraction and unfiltered freshwater from the Conwy River (North Wales, UK) in microcosms and, using targeted metabolomics and 14C-labelling, examined their role in the utilization of amino acids, organic acids and sugars spiked at environmentally-relevant (nanomolar) concentrations. To identify changes in community structure, we used 16S rRNA amplicon and shotgun sequencing. Unlike the unfiltered water samples where the consumption of DOC was rapid, the filtered fraction showed a 3-day lag phase before the consumption started. Analysis of functional categories of clusters of orthologous groups of proteins (COGs) showed that COGs associated with energy production increased in number in both fractions with substrate addition. The filtered fraction utilized low-molecular-weight (LMW) DOC at much slower rates than the whole community. Addition of nanomolar concentrations of LMW DOC did not measurably influence the composition of the microbial community nor the rate of consumption across all substrate types in either fraction. We conclude that due to their low activity, filterable microorganisms play a minor role in LMW DOC processing within a short residence time of lotic freshwater systems.
Collapse
Affiliation(s)
- Lydia-Ann J Ghuneim
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Marco A Distaso
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
- Centre for Environmental Biotechnology, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Tatyana N Chernikova
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
- Centre for Environmental Biotechnology, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Rafael Bargiela
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
- Centre for Environmental Biotechnology, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Evgenii A Lunev
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Aleksei A Korzhenkov
- Kurchatov Center for Genome Research, National Research Center “Kurchatov Institute”, Moscow, Russian Federation
| | - Stepan V Toshchakov
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russian Federation
| | - David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Madrid, Spain
| | - Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Olga V Golyshina
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
- Centre for Environmental Biotechnology, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Peter N Golyshin
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
- Centre for Environmental Biotechnology, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - David L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
6
|
Ruiz-González C, Rodellas V, Garcia-Orellana J. The microbial dimension of submarine groundwater discharge: current challenges and future directions. FEMS Microbiol Rev 2021; 45:6128669. [PMID: 33538813 PMCID: PMC8498565 DOI: 10.1093/femsre/fuab010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the relevance of submarine groundwater discharge (SGD) for ocean biogeochemistry, the microbial dimension of SGD remains poorly understood. SGD can influence marine microbial communities through supplying chemical compounds and microorganisms, and in turn, microbes at the land–ocean transition zone determine the chemistry of the groundwater reaching the ocean. However, compared with inland groundwater, little is known about microbial communities in coastal aquifers. Here, we review the state of the art of the microbial dimension of SGD, with emphasis on prokaryotes, and identify current challenges and future directions. Main challenges include improving the diversity description of groundwater microbiota, characterized by ultrasmall, inactive and novel taxa, and by high ratios of sediment-attached versus free-living cells. Studies should explore microbial dynamics and their role in chemical cycles in coastal aquifers, the bidirectional dispersal of groundwater and seawater microorganisms, and marine bacterioplankton responses to SGD. This will require not only combining sequencing methods, visualization and linking taxonomy to activity but also considering the entire groundwater–marine continuum. Interactions between traditionally independent disciplines (e.g. hydrogeology, microbial ecology) are needed to frame the study of terrestrial and aquatic microorganisms beyond the limits of their presumed habitats, and to foster our understanding of SGD processes and their influence in coastal biogeochemical cycles.
Collapse
Affiliation(s)
- Clara Ruiz-González
- Institut de Ciències del Mar (ICM-CSIC). Passeig Marítim de la Barceloneta 37-49, E08003 Barcelona, Spain
| | - Valentí Rodellas
- Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, E08193 Bellaterra, Spain
| | - Jordi Garcia-Orellana
- Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, E08193 Bellaterra, Spain.,Departament de Física, Universitat Autònoma de Barcelona, E08193 Bellaterra, Spain
| |
Collapse
|
7
|
Nakai R, Naganuma T, Tazato N, Morohoshi S, Koide T. Cell Plasticity and Genomic Structure of a Novel Filterable Rhizobiales Bacterium that Belongs to a Widely Distributed Lineage. Microorganisms 2020; 8:microorganisms8091373. [PMID: 32906802 PMCID: PMC7564735 DOI: 10.3390/microorganisms8091373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 01/28/2023] Open
Abstract
Rhizobiales bacterium strain IZ6 is a novel filterable bacterium that was isolated from a suspension filtrate (<0.22 µm) of soil collected in Shimane Prefecture, western Japan. Additional closely related isolates were recovered from filterable fractions of terrestrial environmental samples collected from other places in Japan; the Gobi Desert, north-central China; and Svalbard, Arctic Norway. These findings indicate a wide distribution of this lineage. This study reports the cell variation and genomic structure of IZ6. When cultured at lower temperatures (4 °C and 15 °C), this strain contained ultra-small cells and cell-like particles in the filtrate. PacBio sequencing revealed that this chromosome (3,114,641 bp) contained 3150 protein-coding, 51 tRNA, and three rRNA genes. IZ6 showed low 16S rRNA gene sequence identity (<97%) and low average nucleotide identity (<76%) with its closest known relative, Flaviflagellibacter deserti. Unlike the methylotrophic bacteria and nitrogen-fixing bacteria in related genera, there were no genes that encoded enzymes for one-carbon-compound utilization and nitrogen fixation in the IZ6 genome; the genes related to nitrate and nitrite reductase are retained and those related to the cell membrane function tend to be slightly enriched in the genome. This genomic information helps elucidate the eco-physiological function of a phenotypically heterogeneous and diverse Rhizobiales group.
Collapse
Affiliation(s)
- Ryosuke Nakai
- Microbial Ecology and Technology Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-higashi, Toyohira-ku, Sapporo 062-8517, Japan
- Correspondence:
| | - Takeshi Naganuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan;
| | - Nozomi Tazato
- Technical Department, TechnoSuruga Laboratory Co. Ltd., 330 Nagasaki, Shimizu-ku, Shizuoka 424-0065, Japan; (N.T.); (S.M.); (T.K.)
| | - Sho Morohoshi
- Technical Department, TechnoSuruga Laboratory Co. Ltd., 330 Nagasaki, Shimizu-ku, Shizuoka 424-0065, Japan; (N.T.); (S.M.); (T.K.)
| | - Tomomi Koide
- Technical Department, TechnoSuruga Laboratory Co. Ltd., 330 Nagasaki, Shimizu-ku, Shizuoka 424-0065, Japan; (N.T.); (S.M.); (T.K.)
| |
Collapse
|
8
|
Coming-of-Age Characterization of Soil Viruses: A User’s Guide to Virus Isolation, Detection within Metagenomes, and Viromics. SOIL SYSTEMS 2020. [DOI: 10.3390/soilsystems4020023] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The study of soil viruses, though not new, has languished relative to the study of marine viruses. This is particularly due to challenges associated with separating virions from harboring soils. Generally, three approaches to analyzing soil viruses have been employed: (1) Isolation, to characterize virus genotypes and phenotypes, the primary method used prior to the start of the 21st century. (2) Metagenomics, which has revealed a vast diversity of viruses while also allowing insights into viral community ecology, although with limitations due to DNA from cellular organisms obscuring viral DNA. (3) Viromics (targeted metagenomics of virus-like-particles), which has provided a more focused development of ‘virus-sequence-to-ecology’ pipelines, a result of separation of presumptive virions from cellular organisms prior to DNA extraction. This separation permits greater sequencing emphasis on virus DNA and thereby more targeted molecular and ecological characterization of viruses. Employing viromics to characterize soil systems presents new challenges, however. Ones that only recently are being addressed. Here we provide a guide to implementing these three approaches to studying environmental viruses, highlighting benefits, difficulties, and potential contamination, all toward fostering greater focus on viruses in the study of soil ecology.
Collapse
|
9
|
Liu J, Li B, Wang Y, Zhang G, Jiang X, Li X. Passage and community changes of filterable bacteria during microfiltration of a surface water supply. ENVIRONMENT INTERNATIONAL 2019; 131:104998. [PMID: 31330365 DOI: 10.1016/j.envint.2019.104998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/06/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
The omnipresence of filterable bacteria that can pass through 0.22-μm membrane filters demands a change in the sterile filtration practice. In this study, we identified that filterable bacteria enriched from a surface water are members of the Bacteroidetes, Proteobacteria, Spirochaetae, Firmicutes, and Actinobacteria. Filterable bacteria displayed superior filterability during the entire bacterial growth phase, especially at the exponential phase. Maximal passage percentages were comparable at different cell densities, and achieved earlier at high cell density. Furthermore, filter retention for the investigated bacteria is independent of liquid temperature. However, cultivation temperature could affect the growth of some specific filterable bacteria and lead to variability in the passage percentage. Additionally, membrane materials, pore size and filtering flux greatly affected the passage of filterable bacteria. The majority of filterable Hylemonella and SAR324 could pass through 0.1-μm polyvinylidene fluoride and polyethersulfone filters but could not pass through 0.1-μm polycarbonate and mixed cellulose esters filters. Taken together, our results demonstrated that the ultra-small size of filterable bacteria, membrane characteristics and filtration operational conditions could challenge the validity of the 0.22/0.1-μm sterilizing grade filters in providing bio-safety barriers.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, China.
| | - Yingying Wang
- College of Environmental Science and Engineering, Nankai University, China
| | - Guijuan Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, China
| | - Xiaotao Jiang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China.
| |
Collapse
|
10
|
Song Y, Wang Y, Mao G, Gao G, Wang Y. Impact of planktonic low nucleic acid-content bacteria to bacterial community structure and associated ecological functions in a shallow lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:868-878. [PMID: 30678021 DOI: 10.1016/j.scitotenv.2018.12.274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
In this study, 0.45 μm filtration, flow cytometric fingerprint, 16S rRNA amplicon sequencing, and bioinformation tools were adopted to analyze the structural diversity and potential functions of planktonic low nucleic acid (LNA)- content bacteria in a shallow lake. Three bacterial groups, namely, "LNA," "high nucleic acid (HNA)-Small," and "HNA-Large," were classified through flow cytometric fingerprint, among which the "HNA-Small" group was possibly in the proliferation stage of the "LNA" group. Total nitrogen and phosphate were the key factors that influence the growth of LNA bacteria. Results of 16S rRNA amplicon sequencing showed that LNA bacteria were phylogenetically less diverse than HNA bacteria, and Actinobacteria and Proteobacteria (especially Gamma-Proteobacteria) were the dominant phyla in LNA bacterial operational taxonomic units (OTUs). Accordingly, hgcI_clade and Pseudomonas were the most abundant bacterial genera in LNA bacterial OTUs. The fraction of low-abundance LNA bacteria was sensitive to several environmental factors, indicating that environmental factors only determined the fraction distribution of low-abundance bacteria. The prediction of metabolic and ecological functions showed that LNA and HNA bacteria had distinct metabolic and ecological functions, which were mainly attributed to the dominant and exclusive bacterial groups.
Collapse
Affiliation(s)
- Yuhao Song
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yufeng Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guannan Mao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guanghai Gao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
11
|
Manukyan L, Li P, Gustafsson S, Mihranyan A. Growth media filtration using nanocellulose-based virus removal filter for upstream biopharmaceutical processing. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Wang JC, Chi SW, Yang TH, Chuang HS. Label-Free Monitoring of Microorganisms and Their Responses to Antibiotics Based on Self-Powered Microbead Sensors. ACS Sens 2018; 3:2182-2190. [PMID: 30221509 DOI: 10.1021/acssensors.8b00790] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rapid detection of bacteria and their susceptibility to specific antibiotics plays a vital role in microbial infection treatments. Antimicrobial susceptibility testing (AST) is a common measure to select effective drugs. However, the conventional practices, such as broth dilution, E-test, and disk diffusion, in clinical applications require a long turnaround time (∼3 days), thereby compromising treatments and increasing mortality. This study presents self-powered sensors for on-site microorganism monitoring and rapid AST based on functionalized microbeads. The microbead sensors are driven by Brownian motion, rendering external power unnecessary. Fluorescent microbeads ( dp = 2 μm) were coated with vancomycin to capture bacteria. The growth and responses of Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus under antibiotic treatment were evaluated. The method showed stable selective binding despite the presence of some interferential substances, such as proteins and cells. Diffusivity change was strongly related to bacterial concentration. Accordingly, the diffusivity values of microbeads bound with motile and nonmotile bacteria exhibited specific patterns because of extra motility from microbes and increased particle diameter. Only a drop of microbead-bacteria suspension (∼5 μL) was needed in a microchip for each measurement. The microchip provided a steady environment for measurement over a few hours. By distinguishing the slope of the last four data points in the temporal diffusivity curve, bacterial susceptibility or resistance to specific antibiotics could be determined within a time frame of 2 h. The study provides insights into saving more lives by using a fast and robust AST technique in future clinical practice.
Collapse
Affiliation(s)
- Jhih-Cheng Wang
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan City, Taiwan 710
| | | | - Tai-Hua Yang
- Department of Orthopedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan 701
| | | |
Collapse
|
13
|
Ghuneim LAJ, Jones DL, Golyshin PN, Golyshina OV. Nano-Sized and Filterable Bacteria and Archaea: Biodiversity and Function. Front Microbiol 2018; 9:1971. [PMID: 30186275 PMCID: PMC6110929 DOI: 10.3389/fmicb.2018.01971] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/06/2018] [Indexed: 11/13/2022] Open
Abstract
Nano-sized and filterable microorganisms are thought to represent the smallest living organisms on earth and are characterized by their small size (50-400 nm) and their ability to physically pass through <0.45 μm pore size filters. They appear to be ubiquitous in the biosphere and are present at high abundance across a diverse range of habitats including oceans, rivers, soils, and subterranean bedrock. Small-sized organisms are detected by culture-independent and culture-dependent approaches, with most remaining uncultured and uncharacterized at both metabolic and taxonomic levels. Consequently, their significance in ecological roles remain largely unknown. Successful isolation, however, has been achieved for some species (e.g., Nanoarchaeum equitans and "Candidatus Pelagibacter ubique"). In many instances, small-sized organisms exhibit a significant genome reduction and loss of essential metabolic pathways required for a free-living lifestyle, making their survival reliant on other microbial community members. In these cases, the nano-sized prokaryotes can only be co-cultured with their 'hosts.' This paper analyses the recent data on small-sized microorganisms in the context of their taxonomic diversity and potential functions in the environment.
Collapse
Affiliation(s)
- Lydia-Ann J. Ghuneim
- School of Environment, Natural Resources and Geography, Bangor University, Bangor, United Kingdom
| | - David L. Jones
- School of Environment, Natural Resources and Geography, Bangor University, Bangor, United Kingdom
| | - Peter N. Golyshin
- School of Biological Sciences, Bangor University, Bangor, United Kingdom
| | - Olga V. Golyshina
- School of Biological Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
14
|
Lapygina EV, Lysak LV, Kudinova AG. Structure of microbial communities in red ferralitic soils of Varadero National Park (Matanzas, Cuba). BIOL BULL+ 2017. [DOI: 10.1134/s1062359017020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Park JW, Kim HC, Meyer AS, Kim S, Maeng SK. Influences of NOM composition and bacteriological characteristics on biological stability in a full-scale drinking water treatment plant. CHEMOSPHERE 2016; 160:189-198. [PMID: 27376858 DOI: 10.1016/j.chemosphere.2016.06.079] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/19/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
The influences of natural organic matter (NOM) and bacteriological characteristics on the biological stability of water were investigated in a full-scale drinking water treatment plant. We found that prechlorination decreased the hydrophobicity of the organic matter and significantly increased the high-molecular-weight (MW) dissolved organic matter, such as biopolymers and humic substances. High-MW organic matter and structurally complex compounds are known to be relatively slowly biodegradable; however, because of the prechlorination step, the indigenous bacteria could readily utilise these fractions as assimilable organic carbon. Sequential coagulation and sedimentation resulted in the substantial removal of biopolymer (74%), humic substance (33%), bacterial cells (79%), and assimilable organic carbon (67%). Rapid sand and granular activated carbon filtration induced an increase in the low-nucleic-acid content bacteria; however, these bacteria were biologically less active in relation to enzymatic activity and ATP. The granular activated carbon step was essential to securing biological stability (the ability to prevent bacterial growth) by removing the residual assimilable organic carbon that had formed during the ozone treatment. The growth potential of Escherichia coli and indigenous bacteria were found to differ in respect to NOM characteristics. In comparison with E. coli, the indigenous bacteria utilised a broader range of NOM as a carbon source. Principal component analysis demonstrated that the measured biological stability of water could differ, depending on the NOM characteristics, as well as on the bacterial inoculum selected for the analysis.
Collapse
Affiliation(s)
- Ji Won Park
- Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747, Republic of Korea
| | - Hyun-Chul Kim
- Water Resources Research Institute, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747, Republic of Korea
| | - Anne S Meyer
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Sungpyo Kim
- Department of Environmental Engineering, College of Science and Technology, Korea University, Sejong-ro 2511, Sejong 339-700, Republic of Korea; Program in Environmental Technology and Policy, Korea University, Sejong-ro 2511, Sejong 339-700, Republic of Korea
| | - Sung Kyu Maeng
- Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747, Republic of Korea.
| |
Collapse
|
16
|
Jaffe AL, Corel E, Pathmanathan JS, Lopez P, Bapteste E. Bipartite graph analyses reveal interdomain LGT involving ultrasmall prokaryotes and their divergent, membrane-related proteins. Environ Microbiol 2016; 18:5072-5081. [PMID: 27485833 DOI: 10.1111/1462-2920.13477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/27/2016] [Indexed: 12/24/2022]
Abstract
Based on their small size and genomic properties, ultrasmall prokaryotic groups like the Candidate Phyla Radiation have been proposed as possible symbionts dependent on other bacteria or archaea. In this study, we use a bipartite graph analysis to examine patterns of sequence similarity between draft and complete genomes from ultrasmall bacteria and other complete prokaryotic genomes, assessing whether the former group might engage in significant gene transfer (or even endosymbioses) with other community members. Our results provide preliminary evidence for many lateral gene transfers with other prokaryotes, including members of the archaea, and report the presence of divergent, membrane-associated proteins among these ultrasmall taxa. In particular, these divergent genes were found in TM6 relatives of the intracellular parasite Babela massiliensis.
Collapse
Affiliation(s)
- Alexander L Jaffe
- Equipe AIRE, UMR 7138, Laboratoire Evolution Paris-Seine, Université Pierre et Marie Curie, 7 Quai St. Bernard 75005, Paris, France
| | - Eduardo Corel
- Equipe AIRE, UMR 7138, Laboratoire Evolution Paris-Seine, Université Pierre et Marie Curie, 7 Quai St. Bernard 75005, Paris, France
| | - Jananan Sylvestre Pathmanathan
- Equipe AIRE, UMR 7138, Laboratoire Evolution Paris-Seine, Université Pierre et Marie Curie, 7 Quai St. Bernard 75005, Paris, France
| | - Philippe Lopez
- Equipe AIRE, UMR 7138, Laboratoire Evolution Paris-Seine, Université Pierre et Marie Curie, 7 Quai St. Bernard 75005, Paris, France
| | - Eric Bapteste
- Equipe AIRE, UMR 7138, Laboratoire Evolution Paris-Seine, Université Pierre et Marie Curie, 7 Quai St. Bernard 75005, Paris, France
| |
Collapse
|
17
|
Mukhanov VS, Rylkova OA, Sakhon EG, Butina TV, Belykh OI. Transbiome invasions of femtoplankton. CONTEMP PROBL ECOL+ 2016. [DOI: 10.1134/s1995425516030112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Abstract
Global microbial cell numbers in the seabed exceed those in the overlying water column, yet these organisms receive less than 1% of the energy fixed as organic matter in the ocean. The microorganisms of this marine deep biosphere subsist as stable and diverse communities with extremely low energy availability. Growth is exceedingly slow, possibly regulated by virus-induced mortality, and the mean generation times are tens to thousands of years. Intermediate substrates such as acetate are maintained at low micromolar concentrations, yet their turnover time may be several hundred years. Owing to slow growth, a cell community may go through only 10,000 generations from the time it is buried beneath the mixed surface layer until it reaches a depth of tens of meters several million years later. We discuss the efficiency of the energy-conserving machinery of subsurface microorganisms and how they may minimize energy consumption through necessary maintenance, repair, and growth.
Collapse
Affiliation(s)
- Bo Barker Jørgensen
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark; ,
| | - Ian P G Marshall
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark; ,
| |
Collapse
|
19
|
Differences in Bacterial Community Structure in Two Color Morphs of the Hawaiian Reef Coral Montipora capitata. Appl Environ Microbiol 2015; 81:7312-8. [PMID: 26253663 DOI: 10.1128/aem.01935-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/04/2015] [Indexed: 12/20/2022] Open
Abstract
Corals harbor diverse bacterial associations that contribute to the health of the host. Using 16S rRNA pyrosequencing, we compared the bacterial communities of red and orange morphs of the Hawaiian coral Montipora capitata. Although both color morphs shared dominant bacterial genera, weighted and unweighted UniFrac analyses showed distinct bacterial communities. A single operational taxonomic unit (OTU), classified as Vibrio, represented the largest driver of differences between the color morphs. This OTU comprised 35.4% (±5.5%) of the orange morph bacterial community yet comprised 1.1% (±0.6%) of the red morph bacterial community. Cultivable bacteria from the two color morphs were also compared and tested for antibacterial activity. Cultured isolates represented 14 genera (7% of the total genera identified from sequencing data), and all but two cultured isolates had a matching OTU from the sequencing data. Half of the isolates tested (8 out of 16) displayed antibacterial activity against other cultured isolates but not against two known bacterial pathogens of M. capitata. The results from this study demonstrate that the specificity of coral-bacterial associations extends beyond the level of coral species. In addition, culture-dependent methods captured bacterial diversity that was representative of both rare and abundant members of the associated bacterial community, as characterized by culture-independent methods.
Collapse
|
20
|
De Wit R, Gautret P, Bettarel Y, Roques C, Marlière C, Ramonda M, Nguyen Thanh T, Tran Quang H, Bouvier T. Viruses Occur Incorporated in Biogenic High-Mg Calcite from Hypersaline Microbial Mats. PLoS One 2015; 10:e0130552. [PMID: 26115121 PMCID: PMC4482595 DOI: 10.1371/journal.pone.0130552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 05/22/2015] [Indexed: 11/18/2022] Open
Abstract
Using three different microscopy techniques (epifluorescence, electronic and atomic force microscopy), we showed that high-Mg calcite grains in calcifying microbial mats from the hypersaline lake "La Salada de Chiprana", Spain, contain viruses with a diameter of 50-80 nm. Energy-dispersive X-ray spectrometer analysis revealed that they contain nitrogen and phosphorus in a molar ratio of ~9, which is typical for viruses. Nucleic acid staining revealed that they contain DNA or RNA. As characteristic for hypersaline environments, the concentrations of free and attached viruses were high (>10(10) viruses per g of mat). In addition, we showed that acid treatment (dissolution of calcite) resulted in release of viruses into suspension and estimated that there were ~15 × 10(9) viruses per g of calcite. We suggest that virus-mineral interactions are one of the possible ways for the formation of nano-sized structures often described as "nanobacteria" and that viruses may play a role in initiating calcification.
Collapse
Affiliation(s)
- Rutger De Wit
- Centre for Marine Biodiversity, Exploitation and Conservation (MARBEC),Université de Montpellier, CNRS, IRD, Ifremer, Place Eugène Bataillon, Case 093, 34095, Montpellier, France
| | - Pascale Gautret
- Université d’Orléans, ISTO, UMR 7327, 45071, Orléans, France and CNRS, ISTO, UMR 7327, 45071 Orléans, France and BRGM, ISTO, UMR 7327, BP 36009, 45060, Orléans, France
| | - Yvan Bettarel
- Centre for Marine Biodiversity, Exploitation and Conservation (MARBEC),Université de Montpellier, CNRS, IRD, Ifremer, Place Eugène Bataillon, Case 093, 34095, Montpellier, France
| | - Cécile Roques
- Centre for Marine Biodiversity, Exploitation and Conservation (MARBEC),Université de Montpellier, CNRS, IRD, Ifremer, Place Eugène Bataillon, Case 093, 34095, Montpellier, France
| | - Christian Marlière
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Sud, CNRS, Bâtiment 350, Université Paris-Sud, 91405, Orsay Cedex, France
| | - Michel Ramonda
- DRED Services Communs de la Recherche/ Centre Technologique de Montpellier, Université de Montpellier, 34095, Montpellier, France
| | - Thuy Nguyen Thanh
- Nanobiomedicine group, Laboratory Ultrastructure, Department of Virology, National Institute of Hygiene and Epidemiology (NIHE), 1 Yersin Street, Hai Ba Trung, 1000, Hanoi, Vietnam
| | - Huy Tran Quang
- Nanobiomedicine group, Laboratory Ultrastructure, Department of Virology, National Institute of Hygiene and Epidemiology (NIHE), 1 Yersin Street, Hai Ba Trung, 1000, Hanoi, Vietnam
| | - Thierry Bouvier
- Centre for Marine Biodiversity, Exploitation and Conservation (MARBEC),Université de Montpellier, CNRS, IRD, Ifremer, Place Eugène Bataillon, Case 093, 34095, Montpellier, France
| |
Collapse
|
21
|
Luef B, Frischkorn KR, Wrighton KC, Holman HYN, Birarda G, Thomas BC, Singh A, Williams KH, Siegerist CE, Tringe SG, Downing KH, Comolli LR, Banfield JF. Diverse uncultivated ultra-small bacterial cells in groundwater. Nat Commun 2015; 6:6372. [DOI: 10.1038/ncomms7372] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/23/2015] [Indexed: 02/04/2023] Open
|
22
|
Summons RE, Sessions AL, Allwood AC, Barton HA, Beaty DW, Blakkolb B, Canham J, Clark BC, Dworkin JP, Lin Y, Mathies R, Milkovich SM, Steele A. Planning considerations related to the organic contamination of Martian samples and implications for the Mars 2020 Rover. ASTROBIOLOGY 2014; 14:969-1027. [PMID: 25495496 DOI: 10.1089/ast.2014.1244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- R E Summons
- 1 Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ciobanu MC, Burgaud G, Dufresne A, Breuker A, Rédou V, Ben Maamar S, Gaboyer F, Vandenabeele-Trambouze O, Lipp JS, Schippers A, Vandenkoornhuyse P, Barbier G, Jebbar M, Godfroy A, Alain K. Microorganisms persist at record depths in the subseafloor of the Canterbury Basin. THE ISME JOURNAL 2014; 8:1370-80. [PMID: 24430485 PMCID: PMC4069392 DOI: 10.1038/ismej.2013.250] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 11/09/2022]
Abstract
The subsurface realm is colonized by microbial communities to depths of >1000 meters below the seafloor (m.b.sf.), but little is known about overall diversity and microbial distribution patterns at the most profound depths. Here we show that not only Bacteria and Archaea but also Eukarya occur at record depths in the subseafloor of the Canterbury Basin. Shifts in microbial community composition along a core of nearly 2 km reflect vertical taxa zonation influenced by sediment depth. Representatives of some microbial taxa were also cultivated using methods mimicking in situ conditions. These results suggest that diverse microorganisms persist down to 1922 m.b.sf. in the seafloor of the Canterbury Basin and extend the previously known depth limits of microbial evidence (i) from 159 to 1740 m.b.sf. for Eukarya and (ii) from 518 to 1922 m.b.sf. for Bacteria.
Collapse
Affiliation(s)
- Maria-Cristina Ciobanu
- Université de Bretagne Occidentale (UBO, UEB), IUEM—UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Plouzané, France
- CNRS, IUEM—UMR 6197, LMEE, Plouzané, France
- Ifremer, UMR6197, LMEE, Plouzané, France
| | - Gaëtan Burgaud
- Université de Brest, UEB, Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne EA 3882, IFR148 SFR ScInBioS, ESIAB, Plouzané, France
| | - Alexis Dufresne
- Université de Rennes I, CNRS, UMR 6553 ECOBIO, Rennes, France
| | - Anja Breuker
- Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover, Germany
| | - Vanessa Rédou
- Université de Brest, UEB, Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne EA 3882, IFR148 SFR ScInBioS, ESIAB, Plouzané, France
| | - Sarah Ben Maamar
- Université de Bretagne Occidentale (UBO, UEB), IUEM—UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Plouzané, France
| | - Frédéric Gaboyer
- Université de Bretagne Occidentale (UBO, UEB), IUEM—UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Plouzané, France
- CNRS, IUEM—UMR 6197, LMEE, Plouzané, France
- Ifremer, UMR6197, LMEE, Plouzané, France
| | - Odile Vandenabeele-Trambouze
- Université de Bretagne Occidentale (UBO, UEB), IUEM—UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Plouzané, France
- CNRS, IUEM—UMR 6197, LMEE, Plouzané, France
- Ifremer, UMR6197, LMEE, Plouzané, France
| | - Julius Sebastian Lipp
- Organic Geochemistry Group, Department of Geosciences and MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Axel Schippers
- Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover, Germany
| | | | - Georges Barbier
- Université de Brest, UEB, Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne EA 3882, IFR148 SFR ScInBioS, ESIAB, Plouzané, France
| | - Mohamed Jebbar
- Université de Bretagne Occidentale (UBO, UEB), IUEM—UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Plouzané, France
- CNRS, IUEM—UMR 6197, LMEE, Plouzané, France
- Ifremer, UMR6197, LMEE, Plouzané, France
| | - Anne Godfroy
- Université de Bretagne Occidentale (UBO, UEB), IUEM—UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Plouzané, France
- CNRS, IUEM—UMR 6197, LMEE, Plouzané, France
- Ifremer, UMR6197, LMEE, Plouzané, France
| | - Karine Alain
- Université de Bretagne Occidentale (UBO, UEB), IUEM—UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Plouzané, France
- CNRS, IUEM—UMR 6197, LMEE, Plouzané, France
- Ifremer, UMR6197, LMEE, Plouzané, France
| |
Collapse
|
24
|
Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci U S A 2012; 109:16213-6. [PMID: 22927371 DOI: 10.1073/pnas.1203849109] [Citation(s) in RCA: 453] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The global geographic distribution of subseafloor sedimentary microbes and the cause(s) of that distribution are largely unexplored. Here, we show that total microbial cell abundance in subseafloor sediment varies between sites by ca. five orders of magnitude. This variation is strongly correlated with mean sedimentation rate and distance from land. Based on these correlations, we estimate global subseafloor sedimentary microbial abundance to be 2.9⋅10(29) cells [corresponding to 4.1 petagram (Pg) C and ∼0.6% of Earth's total living biomass]. This estimate of subseafloor sedimentary microbial abundance is roughly equal to previous estimates of total microbial abundance in seawater and total microbial abundance in soil. It is much lower than previous estimates of subseafloor sedimentary microbial abundance. In consequence, we estimate Earth's total number of microbes and total living biomass to be, respectively, 50-78% and 10-45% lower than previous estimates.
Collapse
|
25
|
Duda VI, Suzina NE, Polivtseva VN, Boronin AM. Ultramicrobacteria: Formation of the concept and contribution of ultramicrobacteria to biology. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712040054] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Fedotova AV, Belova SE, Kulichevskaya IS, Dedysh SN. Molecular identification of filterable bacteria and archaea in the water of acidic lakes of northern Russia. Microbiology (Reading) 2012. [DOI: 10.1134/s002626171203006x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Nakai R, Abe T, Takeyama H, Naganuma T. Metagenomic analysis of 0.2-μm-passable microorganisms in deep-sea hydrothermal fluid. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:900-908. [PMID: 21279410 DOI: 10.1007/s10126-010-9351-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 12/09/2010] [Indexed: 05/30/2023]
Abstract
We pyrosequenced the bulk DNA extracted from microorganisms that passed through 0.2-μm-pore-size filters and trapped by 0.1-μm-pore-size filters in the hydrothermal fluid of the Mariana Trough. Using the 454-FLX sequencer, we generated 202,648 sequences with an average length of 173.8 bases. Functional profiles were assigned by the SEED Annotation Engine. In the metagenome of the 0.2-μm-passable microorganisms, genes related to membrane function, including potassium homeostasis classified as membrane transport, and multidrug-resistance efflux pumps classified as virulence, were dominant. There was a higher proportion of genes pertinent to the subsystem of membrane transport in our metagenomic library than in other oceanic and hydrothermal vent metagenomes. Genes associated with a RND-type efflux transporter for exogenous substances were specifically identified in the present study. After a comparative analysis with the genome of the known ultramicrobacterium Sphingopyxis alaskensis RB2256, we discovered 1,542 cases of significant hits (E < 1 × 10(-2)) in our metagenome, and 1,172 of those were related to the DNA repair protein RadA. In this way, the microbial functional profile of 0.2-μm-passable fraction in the present study differs from oceanic metagenomes in the 0.2-μm-trapped fractions and hydrothermal vent metagenomes reported in previous research.
Collapse
Affiliation(s)
- Ryosuke Nakai
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | | | | | | |
Collapse
|
28
|
Velimirov B, Milosevic N, Kavka GG, Farnleitner AH, Kirschner AKT. Development of the bacterial compartment along the Danube River: a continuum despite local influences. MICROBIAL ECOLOGY 2011; 61:955-967. [PMID: 21080161 DOI: 10.1007/s00248-010-9768-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 10/28/2010] [Indexed: 05/30/2023]
Abstract
Microbial food webs dominate heterotrophic food webs in large rivers with bacterial metabolism being a key component of carbon processing. Thus, analysis of bacterial population dynamics is critical to understanding patterns and mechanisms of material cycling and energy fluxes in large rivers. Within the frame of the Joint Danube Survey (JDS) 2007, the longitudinal development of the natural bacterial community in the Danube in terms of bacterial numbers, morphotype composition, and heterotrophic production of the suspended and particle-attached fractions was followed at a fine spatial resolution of approximately 30 km for the first time in such a large river along a 2,600-km stretch. Twenty-one major tributaries and branches were also included. This allowed us to investigate whether bacterial standing stock and production undergo continuous, linear changes or whether discontinuities and local processes like the merging of tributaries or the potential impact of sewage input drive the bacterial population in the Danube. The presented investigation revealed surprising continuous patterns of changes of bacterial parameters along the Danube River. Despite the presence of impoundments or hydropower plants, large municipalities, and the discharge of large tributaries, most bacterial parameters (standing stock, morphotype succession, and attached bacterial production) developed gradually, indicating that mainly broad-scale drivers and not local conditions shape and control the bacterial community in the midstream of this large river. As most important broad-scale drivers, nutrients (inorganic and organic) and changes in particle concentrations were identified. These data are also in remarkable accordance with the patterns of changes of the genetic bacterial community composition, observed during the first JDS (2001) 6 years before. In contrast, bacterial activity did not follow a continuous trend and was mainly controlled by the input of sewage from large cities in the middle section, leading to a bloom of phytoplankton. The observed patterns and the comparison between the Danube, its tributaries and other large rivers worldwide indicate that the bacterial community in rivers has a powerful indicator function for estimating the ecological status of large river ecosystems once enough information has been collected at various temporal and spatial scales.
Collapse
Affiliation(s)
- Branko Velimirov
- Institute for Anatomy and Cell Biology, Medical University Vienna, Waehringerstrasse 10, 1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
29
|
Abstract
AIMS To examine the diversity of cultivable 0.2 micron filtrate biofilm forming bacteria from drinking water systems. METHODS AND RESULTS Potable chlorinated drinking water hosts phylogenetically diverse ultramicrocells (UMC) (0.2 and 0.1 microm filterable). UMC (starved or dwarf bacteria) were isolated by cultivation on minimal medium from a flow system wall model with polyvinyl chloride (PVC) pipes. All cultivated cells (25 different isolates) did not maintain their ultra-size after passages on rich media. Cultured UMC were identified by their 16S ribosomal DNA sequences. The results showed that they were closely related to uncultured and cultured members of the Proteobacteria, Actinobacteria and Firmicutes. The isolates of phylum Actinobacteria included representatives of a diverse set of Actinobacterial families: Micrococcaceae, Microbacteriaceae, Dermabacteraceae, Nocardiaceae and Nocardioidaceae. CONCLUSIONS This study is the first to show an abundance of cultivable UMC of various phyla in drinking water system, including a high frequency of bacteria known to be involved in opportunistic infections, such as Stenotrophomonas maltophilia, Microbacterium sp., Pandoraea sp. and Afipia strains. SIGNIFICANCE AND IMPACT OF THE STUDY Chlorinated tap water filtrate (0.2 and 0.1 microm) still harbours opportunistic micro-organisms that can pose some health threat.
Collapse
Affiliation(s)
- F S Silbaq
- Mar Elias Educational Institutions and Mar Elias Campus, Ibillin, Galilee, Israel.
| |
Collapse
|
30
|
Localization and expression of MreB in Vibrio parahaemolyticus under different stresses. Appl Environ Microbiol 2008; 74:7016-22. [PMID: 18820055 DOI: 10.1128/aem.01020-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MreB, the homolog of eukaryotic actin, may play a vital role when prokaryotes cope with stress by altering their spatial organization, including their morphology, subcellular architecture, and localization of macromolecules. This study investigates the behavior of MreB in Vibrio parahaemolyticus under various stresses. The behavior of MreB was probed using a yellow fluorescent protein-MreB conjugate in merodiploid strain SC9. Under normal growth conditions, MreB formed helical filaments in exponential-phase cells. The shape of starved or stationary-phase cells changed from rods to small spheroids. The cells differentiated into the viable but nonculturable (VBNC) state with small spherical cells via a "swelling-waning" process. In all cases, drastic remodeling of the MreB cytoskeleton was observed. MreB helices typically were loosened and fragmented into short filaments, arcs, and spots in bacteria under these stresses. The disintegrated MreB exhibited a strong tendency to attach to the cytoplasmic membrane. The expression of mreB generally declined in bacteria in the stationary phase and under starvation but was upregulated during the initial periods of cold shock and VBNC state differentiation and decreased afterwards. Our findings demonstrated the behavior of MreB in the morphological changes of V. parahaemolyticus under intrinsic or extrinsic stresses and may have important implications for studying the cellular stress response and aging.
Collapse
|
31
|
Yoshiyama K, Klausmeier CA. Optimal cell size for resource uptake in fluids: a new facet of resource competition. Am Nat 2008; 171:59-70. [PMID: 18171151 DOI: 10.1086/523950] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Planktonic microorganisms are affected by various size-dependent processes both from the bottom up and from the top down. We developed a simple resource-consumer model to explore how size-dependent resource uptake and resource loss influence the growth of, and competition between, planktonic microorganisms. We considered three steps of resource uptake: diffusive transport of resource molecules, uptake by membrane transporters, and cellular enzymatic catalysis, and we investigated optimal cell size when one, two, or three of those steps limit resource uptake. Optimal cell size depends negatively on the size of resource molecules when resource uptake is limited by diffusive transport and membrane uptake. When competing for two resources of different molecular sizes, two different-sized consumers can coexist if the inputs of resources and sizes of consumers are correctly chosen. The model suggests that mixtures of various-sized resources can promote coexistence and size diversity of microorganisms even if the availability of one element, such as carbon, nitrogen, or phosphorus, limits the whole community. Model predictions include that bacteria grown on maltose or polysaccharides should be smaller compared with those grown on glucose under carbon limitation. Our results suggest that size of resource molecules can be an important factor in microbial resource competition in aquatic environments.
Collapse
Affiliation(s)
- Kohei Yoshiyama
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, USA.
| | | |
Collapse
|
32
|
Wang Y, Hammes F, Boon N, Egli T. Quantification of the filterability of freshwater bacteria through 0.45, 0.22, and 0.1 microm pore size filters and shape-dependent enrichment of filterable bacterial communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:7080-6. [PMID: 17993151 DOI: 10.1021/es0707198] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Micro-filtration is a standard process for sterilization in scientific research, medical, and industrial applications, and to remove particles in drinking water or wastewater treatment. It is generally assumed, and confirmed by quantifying filtration efficiency by plating, that filters with a 0.1-0.45 microm pore size can retain bacteria. In contrast to this assumption, we have regularly observed the passage of a significant fraction of natural freshwater bacterial communities through 0.45, 0.22, and 0.1 microm pore size filters. Flow cytometry and a regrowth assay were applied in the present study to quantify and cultivate filterable bacteria. Here we show for the first time a systematic quantification of their filterability, especially their ability to pass through 0.1 microm pore size filters. The filtered bacteria were subsequently able to grow on natural assimilable organic carbon (AOC) with specific growth rates up to 0.47 h(-1). We were able to enrich bacteria communities that pass preferentially through all three pore size filters at significantly increased percentages using successive filtration-regrowth cycles. In all instances, the dominant microbial populations comprised slender spirillum-shaped Hylemonella gracilis strains, suggesting shape-dependent selection during the filtration process. This quantification of the omnipresence of microfilterable bacterial in natural freshwater and their regrowth characteristics demand a change in the sterile filtration practice used in industrial and engineering applications as well as scientific research.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), PO Box 611, Uberlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | | | | | | |
Collapse
|
33
|
Naganuma T, Miyoshi T, Kimura H. Phylotype diversity of deep-sea hydrothermal vent prokaryotes trapped by 0.2- and 0.1-microm-pore-size filters. Extremophiles 2007; 11:637-46. [PMID: 17401540 DOI: 10.1007/s00792-007-0070-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
Eleven 16S rRNA gene clone libraries including 34 archaeal and 72 bacterial phylotypes were constructed from total 708 clones of hydrothermal vent prokaryotes trapped by 0.2- and 0.1-microm-pore-size filters. Crenarchaeota and Proteobacteria phylotypes dominated the archaeal and bacterial populations, respectively. Novel unaffiliated phylotypes occurred only in the 0.1-microm-trapped populations.
Collapse
Affiliation(s)
- Takeshi Naganuma
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan.
| | | | | |
Collapse
|
34
|
Walde P. Surfactant assemblies and their various possible roles for the origin(s) of life. ORIGINS LIFE EVOL B 2006; 36:109-50. [PMID: 16642266 DOI: 10.1007/s11084-005-9004-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 11/01/2005] [Indexed: 12/21/2022]
Abstract
A large number of surfactants (surface active molecules) are chemically simple compounds that can be obtained by simple chemical reactions, in some cases even under presumably prebiotic conditions. Surfactant assemblies are self-organized polymolecular aggregates of surfactants, in the simplest case micelles, vesicles, hexagonal and cubic phases. It may be that these different types of surfactant assemblies have played various, so-far underestimated important roles in the processes that led to the formation of the first living systems. Although nucleic acids are key players in the formation of cells as we know them today (RNA world hypothesis), it is still unclear how RNA could have been formed under prebiotic conditions. Surfactants with their self-organizing properties may have assisted, controlled and compartimentalized some of the chemical reactions that eventually led to the formation of molecules like RNA. Therefore, surfactants were possibly very important in prebiotic times in the sense that they may have been involved in different physical and chemical processes that finally led to a transformation of non-living matter to the first cellular form(s) of life. This hypothesis is based on four main experimental observations: (i) Surfactant aggregation can lead to cell-like compartimentation (vesicles). (ii) Surfactant assemblies can provide local reaction conditions that are very different from the bulk medium, which may lead to a dramatic change in the rate of chemical reactions and to a change in reaction product distributions. (iii) The surface properties of surfactant assemblies that may be liquid- or solid-like, charged or neutral, and the elasticity and packing density of surfactant assemblies depend on the chemical structure of the surfactants, on the presence of other molecules, and on the overall environmental conditions (e. g. temperature). This wide range of surface characteristics of surfactant assemblies may allow a control of surface-bound chemical reactions not only by the charge or hydrophobicity of the surface but also by its "softness". (iv) Chiral polymolecular assemblies (helices) may form from chiral surfactants. There are many examples that illustrate the different roles and potential roles of surfactant assemblies in different research areas outside of the field of the origin(s) of life, most importantly in investigations of contemporary living systems, in nanotechnology applications, and in the development of drug delivery systems. Concepts and ideas behind many of these applications may have relevance also in connection to the different unsolved problems in understanding the origin(s) of life.
Collapse
Affiliation(s)
- Peter Walde
- ETH Zürich, Department of Materials, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland.
| |
Collapse
|
35
|
Miyoshi T, Iwatsuki T, Naganuma T. Phylogenetic characterization of 16S rRNA gene clones from deep-groundwater microorganisms that pass through 0.2-micrometer-pore-size filters. Appl Environ Microbiol 2005; 71:1084-8. [PMID: 15691970 PMCID: PMC546738 DOI: 10.1128/aem.71.2.1084-1088.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 247 clones of 16S rRNA genes from microorganisms captured by 0.2- and 0.1-microm-pore-size filters from sedimentary and granite rock aquifers were amplified and yielded 37 operational taxonomic units (OTUs). Fifteen OTUs captured by 0.1-microm-pore-size filters were affiliated with the candidate divisions OD1 and OP11, representing novel lineages. On the other hand, OTUs captured by 0.2-microm-pore-size filters were largely affiliated with Betaproteobacteria.
Collapse
Affiliation(s)
- Tatsuo Miyoshi
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | | | | |
Collapse
|
36
|
Hahn MW, Lünsdorf H, Wu Q, Schauer M, Höfle MG, Boenigk J, Stadler P. Isolation of novel ultramicrobacteria classified as actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol 2003; 69:1442-51. [PMID: 12620827 PMCID: PMC150105 DOI: 10.1128/aem.69.3.1442-1451.2003] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the first freshwater members of the class Actinobacteria that have been isolated. Nine ultramicro-size (<0.1 microm(3)) strains were isolated from five freshwater habitats in Europe and Asia. These habitats represent a broad spectrum of ecosystems, ranging from deep oligotrophic lakes to shallow hypertrophic lakes. Even when the isolated strains were grown in very rich media, the cell size was <0.1 microm(3) and was indistinguishable from the cell sizes of bacteria belonging to the smaller size classes of natural lake bacterioplankton. Hybridization of the isolates with oligonucleotide probes and phylogenetic analysis of the 16S rRNA gene sequences of the isolated strains revealed that they are affiliated with the class Actinobacteria and the family Microbacteriaceae. The previously described species with the highest levels of sequence similarity are Clavibacter michiganensis and Rathayibacter tritici, two phytopathogens of terrestrial plants. The 16S rRNA gene sequences of the nine isolates examined are more closely related to cloned sequences from uncultured freshwater bacteria than to the sequences of any previously isolated bacteria. The nine ultramicrobacteria isolated form, together with several uncultured bacteria, a diverse phylogenetic cluster (Luna cluster) consisting exclusively of freshwater bacteria. Isolates obtained from lakes that are ecologically different and geographically separated by great distances possess identical 16S rRNA gene sequences but have clearly different ecophysiological and phenotypic traits. Predator-prey experiments demonstrated that at least one of the ultramicro-size isolates is protected against predation by the bacterivorous nanoflagellate Ochromonas sp. strain DS.
Collapse
Affiliation(s)
- Martin W Hahn
- Institute for Limnology, Austrian Academy of Sciences, Mondseestrasse 9, A-5310 Mondsee, Austria.
| | | | | | | | | | | | | |
Collapse
|
37
|
Trevors JT, Psenner R. From self-assembly of life to present-day bacteria: a possible role for nanocells. FEMS Microbiol Rev 2001; 25:573-82. [PMID: 11742692 DOI: 10.1111/j.1574-6976.2001.tb00592.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A proposed sequence of major events for the self-assembly of life on Earth is examined. This sequence starts with a construction kit of elements and simple compounds from which a primitive membrane and then a nanocell with a minimal genome is self-assembled. The genome and cell increase in size and complexity and become capable of cell division, similar to present-day bacteria. Another factor to understanding this self-assembly of life is identifying the energy source(s) the first self-assembling nanocells were capable of using. This will also be examined from an evolutionary perspective with hydrogen as the postulated universal energy source [Morita, R. (2000) Microb. Ecol. 38, 307-320].
Collapse
Affiliation(s)
- J T Trevors
- Laboratory of Microbial Technology, Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | |
Collapse
|