1
|
Fan T, Wang W, Wang Y, Zeng M, Liu Y, Zhu S, Yang L. PDE4 inhibitors: potential protective effects in inflammation and vascular diseases. Front Pharmacol 2024; 15:1407871. [PMID: 38915460 PMCID: PMC11194378 DOI: 10.3389/fphar.2024.1407871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Phosphodiesterase 4 (PDE4) inhibitors are effective therapeutic agents for various inflammatory diseases. Roflumilast, apremilast, and crisaborole have been developed and approved for the treatment of chronic obstructive pulmonary disease psoriatic arthritis, and atopic dermatitis. Inflammation underlies many vascular diseases, yet the role of PDE4 inhibitors in these diseases remains inadequately explored. This review elucidates the clinical applications and anti-inflammatory mechanisms of PDE4 inhibitors, as well as their potential protective effects on vascular diseases. Additionally, strategies to mitigate the adverse reactions of PDE4 inhibitors are discussed. This article emphasizes the need for further exploration of the therapeutic potential and clinical applications of PDE4 inhibitors in vascular diseases.
Collapse
Affiliation(s)
- Tianfei Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjing Wang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyao Zhu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Zheng Y, Schupp JC, Adams T, Clair G, Justet A, Ahangari F, Yan X, Hansen P, Carlon M, Cortesi E, Vermant M, Vos R, De Sadeleer LJ, Rosas IO, Pineda R, Sembrat J, Königshoff M, McDonough JE, Vanaudenaerde BM, Wuyts WA, Kaminski N, Ding J. Unagi: Deep Generative Model for Deciphering Cellular Dynamics and In-Silico Drug Discovery in Complex Diseases. RESEARCH SQUARE 2023:rs.3.rs-3676579. [PMID: 38196613 PMCID: PMC10775382 DOI: 10.21203/rs.3.rs-3676579/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Human diseases are characterized by intricate cellular dynamics. Single-cell sequencing provides critical insights, yet a persistent gap remains in computational tools for detailed disease progression analysis and targeted in-silico drug interventions. Here, we introduce UNAGI, a deep generative neural network tailored to analyze time-series single-cell transcriptomic data. This tool captures the complex cellular dynamics underlying disease progression, enhancing drug perturbation modeling and discovery. When applied to a dataset from patients with Idiopathic Pulmonary Fibrosis (IPF), UNAGI learns disease-informed cell embeddings that sharpen our understanding of disease progression, leading to the identification of potential therapeutic drug candidates. Validation via proteomics reveals the accuracy of UNAGI's cellular dynamics analyses, and the use of the Fibrotic Cocktail treated human Precision-cut Lung Slices confirms UNAGI's predictions that Nifedipine, an antihypertensive drug, may have antifibrotic effects on human tissues. UNAGI's versatility extends to other diseases, including a COVID dataset, demonstrating adaptability and confirming its broader applicability in decoding complex cellular dynamics beyond IPF, amplifying its utility in the quest for therapeutic solutions across diverse pathological landscapes.
Collapse
Affiliation(s)
- Yumin Zheng
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jonas C. Schupp
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, United States
| | - Taylor Adams
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, United States
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Aurelien Justet
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, United States
| | - Farida Ahangari
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, United States
| | - Xiting Yan
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, United States
| | - Paul Hansen
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Marianne Carlon
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - Emanuela Cortesi
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - Marie Vermant
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - Laurens J. De Sadeleer
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - Ivan O Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ricardo Pineda
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Melanie Königshoff
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John E. McDonough
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, United States
| | - Bart M. Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - Wim A. Wuyts
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, United States
| | - Jun Ding
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
| |
Collapse
|
3
|
Oubaid EN, Abu-Raghif A, Al-Sudani IM. Ibudilast ameliorates experimentally induced colitis in rats via down-regulation of proinflammatory cytokines and myeloperoxidase enzyme activity. PHARMACIA 2023. [DOI: 10.3897/pharmacia.70.e98715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Objectives: This study was carried out to explore the possible anti-inflammatory effect of ibudilast on acetic acid-induced colitis in rats.
Methods: Fifty adult Wistar rats were separated into 5 groups, including the control group, acetic acid group, acetic acid + vehicle, acetic acid + sulfasalazine (100 mg/kg/day)group, and acetic acid + ibudilast (30 mg/kg/day) group. Colitis was induced in rats by the inter-rectal installation of 2 ml of 4% (v/v) acetic acid. Sulfasalazine and ibudilast were administered orally for ten days after 2 hours of induction.
Results: The treatment with ibudilast significantly reduced disease activity index (DAI), macroscopic colonic scores (MAC), and histopathological changes induced by acetic acid. Also, ibudilast markedly decreased the expression of proinflammatory markers (TNF-α and IL-1β) in colonic tissue. Moreover, ibudilast inhibited myeloperoxidase (MPO) enzyme activity that was increased by acetic acid.
Conclusion: Therefore, ibudilast may have a therapeutic effect in the management of ulcerative colitis.
Collapse
|
4
|
Li X, Liu H. Expression and prognostic value of MIP-1α in neonatal acute respiratory distress syndrome. Am J Transl Res 2022; 14:7889-7897. [PMID: 36505316 PMCID: PMC9730077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the expression and prognostic value of macrophage inflammatory protein 1α (MIP-1α) in neonatal acute respiratory distress syndrome (NRDS). METHODS In this retrospective analysis, 96 newborns with NRDS in Affiliated Lianyungang Hospital of Xuzhou Medical University from January 2018 to June 2021 were included in the experimental group (EG), while the other 60 normal neonates were included as the control group (CG). The concentration of MIP-1α in umbilical cord blood was tested by Elisa method. The clinical value of MIP-1α in diagnosing NRDS was assessed via receiver operating characteristic (ROC) curve. According to the 28-day survival data, children were divided into a survival group and a death group. The prognostic factors were assessed by Cox regression analysis. The correlation between MIP-1α and IL-1β, IL-6, TNF-α, SNAPPE-II scores were evaluated by Pearson test. The relationship between the MIP-1α level and the severity of the disease was assessed. RESULTS The MIF-1α level in cord blood of children in the EG was dramatically higher than that in the CG (P<0.05). Besides, ROC curve further found that the area of MIF-1α under the curve of diagnosing NRSD was 0.949. MIF-1α was positively correlated with the levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α) and SNAPPE-II score (P<0.001). With the increase of NRDS, the serum MIF-1α level increased, showing a positive association (P<0.05). Cox regression analysis revealed that the severity and MIF-1α level were independent prognostic factors of survival (P<0.001). The survival rate of children with MIF-1α <281.58 pg/mL as well as children with I-II grade was higher than those with MIF-1α >281.58 pg/mL as well as children with III-IV grade (P<0.05). CONCLUSION The increase of serum MIP-1α level is relevant to the condition and prognosis of NRDS children. The level of cord blood MIP-1α level is expected to become a potential outcome measure.
Collapse
|
5
|
Barney TM, Vore AS, Deak T. Acute Ethanol Challenge Differentially Regulates Expression of Growth Factors and miRNA Expression Profile of Whole Tissue of the Dorsal Hippocampus. Front Neurosci 2022; 16:884197. [PMID: 35706690 PMCID: PMC9189295 DOI: 10.3389/fnins.2022.884197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 02/02/2023] Open
Abstract
Acute ethanol exposure produces rapid alterations in neuroimmune gene expression that are both time- and cytokine-dependent. Interestingly, adolescent rats, who often consume binge-like quantities of alcohol, displayed reduced neuroimmune responses to acute ethanol challenge. However, it is not known whether growth factors, a related group of signaling factors, respond to ethanol similarly in adults and adolescents. Therefore, Experiment 1 aimed to assess the growth factor response to ethanol in both adolescents and adults. To test this, adolescent (P29-P34) and adult (P70-P80) Sprague Dawley rats of both sexes were injected with either ethanol (3.5 g/kg) or saline, and brains were harvested 3 h post-injection for assessment of growth factor, cytokine, or miRNA expression. As expected, acute ethanol challenge significantly increased IL-6 and IκBα expression in the hippocampus and amygdala, replicating our prior findings. Acute ethanol significantly decreased BDNF and increased FGF2 regardless of age condition. PDGF was unresponsive to ethanol, but showed heightened expression among adolescent males. Because recent work has focused on the PDE4 inhibitor ibudilast for treatment in alcohol use disorder, Experiment 2 tested whether ibudilast would alter ethanol-evoked gene expression changes in cytokines and growth factors in the CNS. Ibudilast (9.0 mg/kg s.c.) administration 1 h prior to ethanol had no effect on ethanol-induced changes in cytokine or growth factor changes in the hippocampus or amygdala. To further explore molecular alterations evoked by acute ethanol challenge in the adult rat hippocampus, Experiment 3 tested whether acute ethanol would change the miRNA expression profile of the dorsal hippocampus using RNASeq, which revealed a rapid suppression of 12 miRNA species 3 h after acute ethanol challenge. Of the miRNA affected by ethanol, the majority were related to inflammation or cell survival and proliferation factors, including FGF2, MAPK, NFκB, and VEGF. Overall, these findings suggest that ethanol-induced, rapid alterations in neuroimmune gene expression were (i) muted among adolescents; (ii) independent of PDE4 signaling; and (iii) accompanied by changes in several growth factors (increased FGF2, decreased BDNF). In addition, ethanol decreased expression of multiple miRNA species, suggesting a dynamic molecular profile of changes in the hippocampus within a few short hours after acute ethanol challenge. Together, these findings may provide important insight into the molecular consequences of heavy drinking in humans.
Collapse
|
6
|
NR4A1 Promotes LPS-Induced Acute Lung Injury through Inhibition of Opa1-Mediated Mitochondrial Fusion and Activation of PGAM5-Related Necroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6638244. [PMID: 35222801 PMCID: PMC8881136 DOI: 10.1155/2022/6638244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/31/2021] [Accepted: 02/03/2022] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction and necroptosis have been perceived as the primary molecular mechanisms underscoring acute lung injury. Meanwhile, nuclear receptor subfamily 4 group A member 1 (NR4A1) is considered a regulator of inflammation-related endothelial injury in lung tissue although the downstream molecular events remain elusive. In this study, we employed NR4A1-/- mice to decipher the role of NR4A1 in the onset and progression of acute lung injury with a focus on mitochondrial damage and necroptosis. Our results demonstrated that NR4A1 was significantly upregulated in lipopolysaccharide- (LPS-) treated lung tissues. Knockout of NR4A1 overtly improved lung tissue morphology, inhibited inflammation, and reduced oxidative stress in LPS-treated lung tissue. A cell signaling study suggested that NR4A1 deletion repressed levels of PGAM5 and attenuated LPS-mediated necroptosis in primary murine alveolar epithelial type II (ATII) cells, the effects of which were mitigated by PGAM5 overexpression. Moreover, LPS-mediated mitochondrial injury including mitochondrial membrane potential collapse and mitochondrial oxidative stress was drastically improved by NR4A1 deletion. Furthermore, NR4A1 deletion preserved mitochondrial homeostasis through activation of Opa1-related mitochondrial fusion. Silencing of Opa1 triggered mitochondrial dysfunction in NR4A1-deleted ATII cells. Taken together, our data identified NR4A1 as a novel regulator of LPS-related acute lung injury through regulation of mitochondrial fusion and necroptosis, indicating therapeutic promises of targeting NR4A1 in the treatment of acute lung injury in clinical practice.
Collapse
|
7
|
Elfarargy MS, Al-Ashmawy GM, Abu-Risha SM, Khattab HA. Inhaled Budesonide in Neonatal Respiratory Distress Syndrome of Near-Term Neonates: A Randomized, Placebo-Controlled Trial. J Pediatr Pharmacol Ther 2022; 27:38-44. [PMID: 35002557 DOI: 10.5863/1551-6776-27.1.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/29/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study evaluates the value of inhaled budesonide (BUD) administration in neonatal respiratory distress syndrome (RDS) cases especially for near-term neonates. METHODS A randomized controlled trial involving 120 neonates with respiratory distress, which was diagnosed as RDS, was conducted from July 2016 to March 2018. The neonates studied were divided into 2 groups: group 1 (the inhaled BUD group), consisting of 60 neonates who received BUD (2 mL, 0.25-mg/mL suspension) inhalation, twice daily for 5 days; and group 2 (the placebo group), consisting of 60 neonates with RDS who received humidified distilled sterile water inhalation (2 mL). Downes score, RDS grades, and interleukin 8 (IL-8) levels were monitored and measured on the first and fifth days of incubation. RESULTS Statistically significant differences (SSDs) in RDS grades, Downes score, and IL-8 levels on the fifth day of admission were observed between groups 1 and 2 (p = 0.001) and between the first and fifth days of incubation in group 1 (p = 0.001). The SSDs in the duration of hospitalization (p = 0.001) and the number of neonates receiving mechanical ventilation (p = 0.032) were found between both groups. CONCLUSIONS Budesonide inhalation is associated with improvements in clinical and laboratory parameters in neonates with RDS.
Collapse
Affiliation(s)
- Mohamed S Elfarargy
- Department of Pediatrics (MSE), Faculty of Medicine, Tanta University, City, Country
| | - Ghada M Al-Ashmawy
- Department of Biochemistry (GMA-A), Faculty of Pharmacy, Tanta University, City, Country
| | - Sally M Abu-Risha
- Department of Pharmacology (SMA-R), Faculty of Pharmacy, Tanta University, City, Country
| | - Haidy A Khattab
- Department of Physiology (HAK), Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
8
|
Peng Y, Tao H, Satyanarayanan SK, Jin K, Su H. A Comprehensive Summary of the Knowledge on COVID-19 Treatment. Aging Dis 2021; 12:155-191. [PMID: 33532135 PMCID: PMC7801274 DOI: 10.14336/ad.2020.1124] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/24/2020] [Indexed: 01/08/2023] Open
Abstract
Currently, the world is challenged by the coronavirus disease 2019 (COVID-19) pandemic. Epidemiologists and researchers worldwide are invariably trying to understand and combat this precarious new disease. Scrutinizing available drug options and developing potential new drugs are urgent needs to subdue this pandemic. Several intervention strategies are being considered and handled worldwide with limited success, and many drug candidates are yet in the trial phase. Despite these limitations, the development of COVID-19 treatment strategies has been accelerated to improve the clinical outcome of patients with COVID-19, and some countries have efficiently kept it under control. Recently, the use of natural and traditional medicine has also set the trend in coronavirus treatment. This review aimed to discuss the prevailing COVID-19 treatment strategies available globally by examining their efficacy, potential mechanisms, limitations, and challenges in predicting a future potential treatment candidate and bridging them with the effective traditional Chinese medicine (TCM). The findings might enrich the knowledge on traditional alternative medication and its complementary role with Western medicine in managing the COVID-19 epidemic.
Collapse
Affiliation(s)
- Yu Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Hongxun Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Senthil Kumaran Satyanarayanan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
9
|
Chen WY, Lin CH, Lee YS, Tsao PC, Jeng MJ. Pathophysiological effects of intravenous phosphodiesterase type 4 inhibitor in addition to surfactant lavage in meconium-injured newborn piglet lungs. Pediatr Pulmonol 2020; 55:2272-2282. [PMID: 32478966 DOI: 10.1002/ppul.24880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs, such as selective phosphodiesterase type 4 (PDE4) inhibitors have potential anti-inflammatory and respiratory smooth muscle relaxation effects. This study aimed to investigate the pathophysiological effects of an intravenous PDE4 inhibitor (rolipram) and surfactant lavage (SL) in a newborn piglet model of meconium aspiration syndrome (MAS). METHODS MAS was induced in 25 newborn piglets, which were randomly divided into control and four SL treatment groups administered with different doses of intravenous rolipram (0, 0.1, 0.5, and 1 mg/kg). Cardiopulmonary variables were monitored and recorded. The experimental time was 4 hours. Serial blood was drawn for blood gas and biomarker analyses. Lung tissue was examined for histological analysis. RESULTS All SL-treated groups revealed improved oxygenation during the 4-hour experiments and had significantly lower peak inspiratory pressure levels than the control group at the end of experiments. All SL plus rolipram-treated groups exhibited significantly higher lung compliance than the control group. However, the animals receiving high-dose (0.5 and 1.0 mg/kg) rolipram demonstrated significantly elevated heart rates. Lung histology of the nondependent sites revealed significantly lower lung injury scores in all SL-treated groups compared with that in the control group, but there were no differences among the rolipram-treated groups. CONCLUSIONS In addition to SL, intravenous PDE4 inhibitors may further improve lung compliance in treating MAS; however, it is necessary to consider cardiovascular adverse effects, primarily tachycardia. Further investigations are required before the clinical application of intravenous PDE4 inhibitor as an anti-inflammatory agent to treat severe MAS.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Department of Pediatrics, Children's Medical Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pediatrics, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Hsueh Lin
- Department of Nutrition, Master Program of BioMedical Nutrition, HungKuang University, Taichung, Taiwan
| | - Yu-Sheng Lee
- Department of Pediatrics, Children's Medical Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Pediatrics, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Chen Tsao
- Department of Pediatrics, Children's Medical Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Pediatrics, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Mei-Jy Jeng
- Department of Pediatrics, Children's Medical Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pediatrics, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|