1
|
Griesel L, Kaleja P, Tholey A, Lettau M, Janssen O. Comparative Analysis of Extracellular Vesicles from Cytotoxic CD8 + αβ T Cells and γδ T Cells. Cells 2024; 13:1745. [PMID: 39451262 PMCID: PMC11506423 DOI: 10.3390/cells13201745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Although belonging to different branches of the immune system, cytotoxic CD8+ αβ T cells and γδ T cells utilize common cytolytic effectors including FasL, granzymes, perforin and granulysin. The effector proteins are stored in different subsets of lysosome-related effector vesicles (LREVs) and released to the immunological synapse upon target cell encounter. Notably, in activated cells, LREVs and potentially other vesicles are continuously produced and released as extracellular vesicles (EVs). Presumably, EVs serve as mediators of intercellular communication in the local microenvironment or at distant sites. METHODS EVs of activated and expanded cytotoxic CD8+ αβ T cells or γδ T cells were enriched from culture supernatants by differential and ultracentrifugation and characterized by nanoparticle tracking analyses and Western blotting. For a comparative proteomic profiling, EV preparations from both cell types were isobaric labeled with tandem mass tags (TMT10plex) and subjected to mass spectrometry analysis. RESULTS 686 proteins were quantified in EV preparations of cytotoxic CD8+ αβ T cells and γδ T cells. Both populations shared a major set of similarly abundant proteins, while much fewer proteins presented higher abundance levels in either CD8+ αβ T cells or γδ T cells. To our knowledge, we provide the first comparative analysis of EVs from cytotoxic CD8+ αβ T cells and γδ T cells.
Collapse
MESH Headings
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/immunology
- Humans
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Proteomics/methods
Collapse
Affiliation(s)
- Lisa Griesel
- Molecular Immunology—Institute for Immunology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Patrick Kaleja
- Systematic Proteomics & Bioanalytics—Institute for Experimental Medicine, University of Kiel, 24105 Kiel, Germany; (P.K.); (A.T.)
| | - Andreas Tholey
- Systematic Proteomics & Bioanalytics—Institute for Experimental Medicine, University of Kiel, 24105 Kiel, Germany; (P.K.); (A.T.)
| | - Marcus Lettau
- Stem Cell Transplantation and Immunotherapy—Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Ottmar Janssen
- Molecular Immunology—Institute for Immunology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
2
|
Singh U, Pawge G, Rani S, Hsiao CHC, Wiemer AJ, Wiemer DF. Diester Prodrugs of a Phosphonate Butyrophilin Ligand Display Improved Cell Potency, Plasma Stability, and Payload Internalization. J Med Chem 2023; 66:15309-15325. [PMID: 37934915 PMCID: PMC10683022 DOI: 10.1021/acs.jmedchem.3c01358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
Activation of Vγ9Vδ2 T cells with butyrophilin 3A1 (BTN3A1) agonists such as (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) has the potential to boost the immune response. Because HMBPP is highly charged and metabolically unstable, prodrugs may be needed to overcome these liabilities, but the prodrugs themselves may be limited by slow payload release or low plasma stability. To identify effective prodrug forms of a phosphonate agonist of BTN3A1, we have prepared a set of diesters bearing one aryl and one acyloxymethyl group. The compounds were evaluated for their ability to stimulate Vγ9Vδ2 T cell proliferation, increase production of interferon γ, resist plasma metabolism, and internalize into leukemia cells. These bioassays have revealed that varied aryl and acyloxymethyl groups can decouple plasma and cellular metabolism and have a significant impact on bioactivity (>200-fold range) and stability (>10 fold range), including some with subnanomolar potency. Our findings increase the understanding of the structure-activity relationships of mixed aryl/acyloxymethyl phosphonate prodrugs.
Collapse
Affiliation(s)
- Umed Singh
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United
States
| | - Girija Pawge
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - Sarita Rani
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - Chia-Hung Christine Hsiao
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - Andrew J. Wiemer
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
- Institute
for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269-3092, United
States
| | - David F. Wiemer
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United
States
- Department
of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1109, United
States
| |
Collapse
|
3
|
Yuan L, Ma X, Yang Y, Qu Y, Li X, Zhu X, Ma W, Duan J, Xue J, Yang H, Huang JW, Yi S, Zhang M, Cai N, Zhang L, Ding Q, Lai K, Liu C, Zhang L, Liu X, Yao Y, Zhou S, Li X, Shen P, Chang Q, Malwal SR, He Y, Li W, Chen C, Chen CC, Oldfield E, Guo RT, Zhang Y. Phosphoantigens glue butyrophilin 3A1 and 2A1 to activate Vγ9Vδ2 T cells. Nature 2023; 621:840-848. [PMID: 37674084 PMCID: PMC10533412 DOI: 10.1038/s41586-023-06525-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
In both cancer and infections, diseased cells are presented to human Vγ9Vδ2 T cells through an 'inside out' signalling process whereby structurally diverse phosphoantigen (pAg) molecules are sensed by the intracellular domain of butyrophilin BTN3A11-4. Here we show how-in both humans and alpaca-multiple pAgs function as 'molecular glues' to promote heteromeric association between the intracellular domains of BTN3A1 and the structurally similar butyrophilin BTN2A1. X-ray crystallography studies visualized that engagement of BTN3A1 with pAgs forms a composite interface for direct binding to BTN2A1, with various pAg molecules each positioned at the centre of the interface and gluing the butyrophilins with distinct affinities. Our structural insights guided mutagenesis experiments that led to disruption of the intracellular BTN3A1-BTN2A1 association, abolishing pAg-mediated Vγ9Vδ2 T cell activation. Analyses using structure-based molecular-dynamics simulations, 19F-NMR investigations, chimeric receptor engineering and direct measurement of intercellular binding force revealed how pAg-mediated BTN2A1 association drives BTN3A1 intracellular fluctuations outwards in a thermodynamically favourable manner, thereby enabling BTN3A1 to push off from the BTN2A1 ectodomain to initiate T cell receptor-mediated γδ T cell activation. Practically, we harnessed the molecular-glue model for immunotherapeutics design, demonstrating chemical principles for developing both small-molecule activators and inhibitors of human γδ T cell function.
Collapse
MESH Headings
- Animals
- Humans
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Butyrophilins/immunology
- Butyrophilins/metabolism
- Camelids, New World/immunology
- Lymphocyte Activation
- Molecular Dynamics Simulation
- Phosphoproteins/immunology
- Phosphoproteins/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Crystallography, X-Ray
- Nuclear Magnetic Resonance, Biomolecular
- Thermodynamics
Collapse
Affiliation(s)
- Linjie Yuan
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xianqiang Ma
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yunyun Yang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yingying Qu
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xin Li
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiwei Ma
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | | | - Jing Xue
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Haoyu Yang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Simin Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Mengting Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Ningning Cai
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Lin Zhang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Qingyang Ding
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Kecheng Lai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Chang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Xinyi Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Yirong Yao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuqi Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xian Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Panpan Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Qing Chang
- School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Technology Center for Protein Sciences, Tsinghua University, Beijing, China
| | - Satish R Malwal
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yuan He
- Research Beyond Borders, Boehringer Ingelheim (China), Shanghai, China
| | - Wenqi Li
- School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Technology Center for Protein Sciences, Tsinghua University, Beijing, China
| | - Chunlai Chen
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China.
| | - Yonghui Zhang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Contreras AV, Wiest DL. Development of γδ T Cells: Soldiers on the Front Lines of Immune Battles. Methods Mol Biol 2023; 2580:71-88. [PMID: 36374451 DOI: 10.1007/978-1-0716-2740-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
While the functions of αβ T cells in host resistance to pathogen infection are understood in far more detail than those of γδ lineage T cells, γδ T cells perform critical, essential functions during immune responses that cannot be compensated for by αβ T cells. Accordingly, it is critical to understand how the development of γδ T cells is controlled so that their generation and function might be manipulated in future for therapeutic benefit. This introductory chapter will focus primarily on the basic processes that underlie γδ T cell development in the thymus, as well as the current understanding of how they are controlled.
Collapse
Affiliation(s)
- Alejandra V Contreras
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Chen RP, Shinoda K, Rampuria P, Jin F, Bartholomew T, Zhao C, Yang F, Chaparro-Riggers J. Bispecific antibodies for immune cell retargeting against cancer. Expert Opin Biol Ther 2022; 22:965-982. [PMID: 35485219 DOI: 10.1080/14712598.2022.2072209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Following the approval of the T-cell engaging bispecific antibody blinatumomab, immune cell retargeting with bispecific or multispecific antibodies has emerged as a promising cancer immunotherapy strategy, offering alternative mechanisms compared to immune checkpoint blockade. As we gain more understanding of the complex tumor microenvironment, rules and design principles have started to take shape on how to best harness the immune system to achieve optimal anti-tumor activities. AREAS COVERED In the present review, we aim to summarize the most recent advances and challenges in using bispecific antibodies for immune cell retargeting and to provide insights into various aspects of antibody engineering. Discussed herein are studies that highlight the importance of considering antibody engineering parameters, such as binding epitope, affinity, valency, and geometry to maximize the potency and mitigate the toxicity of T cell engagers. Beyond T cell engaging bispecifics, other bispecifics designed to recruit the innate immune system are also covered. EXPERT OPINION Diverse and innovative molecular designs of bispecific/multispecific antibodies have the potential to enhance the efficacy and safety of immune cell retargeting for the treatment of cancer. Whether or not clinical data support these different hypotheses, especially in solid tumor settings, remains to be seen.
Collapse
Affiliation(s)
- Rebecca P Chen
- Pfizer BioMedicine Design, Pfizer Inc, San Diego, CA, USA
| | - Kenta Shinoda
- Pfizer BioMedicine Design, Pfizer Inc, Cambridge, MA, USA
| | | | - Fang Jin
- Pfizer BioMedicine Design, Pfizer Inc, Cambridge, MA, USA
| | | | - Chunxia Zhao
- Pfizer BioMedicine Design, Pfizer Inc, Cambridge, MA, USA
| | - Fan Yang
- Pfizer BioMedicine Design, Pfizer Inc, San Diego, CA, USA
| | | |
Collapse
|
6
|
Tomogane M, Omura M, Sano Y, Shimizu D, Toda Y, Hosogi S, Kimura S, Ashihara E. Expression level of BTN3A1 on the surface of CD14 + monocytes is a potential predictor of γδ T cell expansion efficiency. Biochem Biophys Res Commun 2021; 588:47-54. [PMID: 34952469 DOI: 10.1016/j.bbrc.2021.12.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022]
Abstract
Human γδ T cells expressing Vγ9Vδ2 T cell receptors exert a robust response to pathogens and malignant cells. These cells are activated by BTN3A1, which is expressed by pathogen-derived phosphoantigens (pAgs) or host-derived pAgs that accumulate in transformed cells or in cells exposed to aminobisphosphonates. Activated Vδ2 (+) T cells exert multiple effector functions; therefore, they are a promising candidate for immunotherapy. However, not all donors have γδ T cells with adequate proliferative activity. Here, we performed ex vivo culture of γδ T cells from 20 healthy donors and explored factors that may affect their expansion efficiency. Consistent with previous studies, we found that amplification of γδ T cells requires CD14+ monocytes to act as accessory cells. We also show here that surface expression of BTN3A1 by monocytes correlates positively with γδ T cell expansion. Moreover, treatment with BTN3A1-Fc increased the expansion efficiency of peripheral blood mononuclear cells (PBMCs) from donors harboring γδ T cells with poor expansion capacity. Taken together, the data suggest that the level of BTN3A1 expressed on the surface of monocytes is a useful biomarker for predicting the degree of expansion of γδ T cells.
Collapse
Affiliation(s)
- Mako Tomogane
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, 5 Nakauchi, Yamashina, Kyoto, Japan
| | - Maho Omura
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, 5 Nakauchi, Yamashina, Kyoto, Japan
| | - Yusuke Sano
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, 5 Nakauchi, Yamashina, Kyoto, Japan
| | - Daiki Shimizu
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, 5 Nakauchi, Yamashina, Kyoto, Japan
| | - Yuki Toda
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, 5 Nakauchi, Yamashina, Kyoto, Japan
| | - Shigekuni Hosogi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, 5 Nakauchi, Yamashina, Kyoto, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga, Japan
| | - Eishi Ashihara
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, 5 Nakauchi, Yamashina, Kyoto, Japan.
| |
Collapse
|
7
|
Zarobkiewicz MK, Kowalska W, Morawska I, Halczuk P, Rejdak K, Bojarska-Junak A. IL-15 Is Overexpressed in γδ T Cells and Correlates with Disease Severity in Relapsing-Remitting Multiple Sclerosis. J Clin Med 2021; 10:jcm10184174. [PMID: 34575283 PMCID: PMC8467081 DOI: 10.3390/jcm10184174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
Interleukin 15 (IL-15) is known to be involved in the pathogenesis of multiple sclerosis (MS). An animal study revealed a distinct subset of IL-15-producing γδ T cells that correlate with disease severity. The aim of the current study was to test whether such a subset is also present in humans and its importance for the pathogenesis of MS. The peripheral blood from 29 patients with relapsing-remitting MS (including 6 relapses) and 22 controls was stained with monoclonal antibodies and analyzed with flow cytometry. The existence of IL-15+ γδ T cells was confirmed. Moreover, the percentage of IL-15+ γδ T is significantly increased in MS patients and correlates with disease severity. Nevertheless, additional functional studies are needed to fully understand the importance of those cells in multiple sclerosis pathogenesis
Collapse
Affiliation(s)
- Michał K. Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (I.M.)
- Correspondence: (M.K.Z.); (A.B.-J.)
| | - Wioleta Kowalska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (I.M.)
| | - Izabela Morawska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (I.M.)
| | - Paweł Halczuk
- Department of Neurology, Medical University of Lublin, 20-090 Lublin, Poland; (P.H.); (K.R.)
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, 20-080 Lublin, Poland
| | - Konrad Rejdak
- Department of Neurology, Medical University of Lublin, 20-090 Lublin, Poland; (P.H.); (K.R.)
| | - Agnieszka Bojarska-Junak
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (I.M.)
- Correspondence: (M.K.Z.); (A.B.-J.)
| |
Collapse
|
8
|
Abstract
Phosphoantigens (pAgs) are small phosphorus-containing molecules that stimulate Vγ9Vδ2 T cells with sub-nanomolar cellular potency. Recent work has revealed that these compounds work through binding to the transmembrane immunoglobulin butyrophilin 3A1 (BTN3A1) within its intracellular B30.2 domain. Engagement of BTN3A1 is critical to the formation of an immune synapse between cells that contain pAgs and the Vγ9Vδ2 T cells. This minireview summarizes the structure-activity relationships of pAgs and their implications to the mechanisms of butyrophilin 3 activation leading to Vγ9Vδ2 T cell response.
Collapse
Affiliation(s)
- Andrew J Wiemer
- Department of Pharmaceutical Sciences and Institute for Systems Genomics, University of Connecticut, 69N. Eagleville Road, Storrs, CT, 06269, USA
| |
Collapse
|
9
|
Abstract
γδ T cells are a subset of T cells with attributes of both the innate and adaptive arms of the immune system. These cells have long been an enigmatic and poorly understood component of the immune system and many have viewed them as having limited importance in host defense. This perspective persisted for some time both because of critical gaps in knowledge regarding how the development of γδ T cells is regulated and because of the lack of effective and sophisticated approaches through which the function of γδ T cells can be manipulated. Here, we discuss the recent advances in both of these areas, which have brought the importance of γδ T cells in both productive and pathologic immune function more sharply into focus.
Collapse
Affiliation(s)
- Alejandra V. Contreras
- Blood Cell Development and Function Program, Fox Chase Cancer Center, R364, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - David L. Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, R364, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| |
Collapse
|
10
|
Baker FL, Bigley AB, Agha NH, Pedlar CR, O'Connor DP, Bond RA, Bollard CM, Katsanis E, Simpson RJ. Systemic β-Adrenergic Receptor Activation Augments the ex vivo Expansion and Anti-Tumor Activity of Vγ9Vδ2 T-Cells. Front Immunol 2020; 10:3082. [PMID: 32038628 PMCID: PMC6993603 DOI: 10.3389/fimmu.2019.03082] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
TCR-gamma delta (γδ) T-cells are considered important players in the graft-vs.-tumor effect following allogeneic hematopoietic cell transplantation (alloHCT) and have emerged as candidates for adoptive transfer immunotherapy in the treatment of both solid and hematological tumors. Systemic β-adrenergic receptor (β-AR) activation has been shown to mobilize TCR-γδ T-cells to the blood, potentially serving as an adjuvant for alloHCT and TCR-γδ T-cell therapy. We investigated if systemic β-AR activation, using acute dynamic exercise as an experimental model, can increase the mobilization, ex vivo expansion, and anti-tumor activity of TCR-γδ T-cells isolated from the blood of healthy humans. We also sought to investigate the β-AR subtypes involved, by administering a preferential β1-AR antagonist (bisoprolol) and a non-preferential β1 + β2-AR antagonist (nadolol) prior to exercise as part of a randomized placebo controlled cross-over experiment. We found that exercise mobilized TCR-γδ cells to blood and augmented their ex vivo expansion by ~182% compared to resting blood when stimulated with IL-2 and ZOL for 14-days. Exercise also increased the proportion of CD56+, NKG2D+/CD62L-, CD158a/b/e+ and NKG2A- cells among the expanded TCR-γδ cells, and increased their cytotoxic activity against several tumor target cells (K562, U266, 221.AEH) in vitro by 40-60%. Blocking NKG2D on TCR-γδ cells in vitro eliminated the augmented cytotoxic effects of exercise against U266 target cells. Furthermore, administering a β1 + β2-AR (nadolol), but not a β1-AR (bisoprolol) antagonist prior to exercise abrogated the exercise-induced enhancement in TCR-γδ T-cell mobilization and ex vivo expansion. Furthermore, nadolol completely abrogated while bisoprolol partially inhibited the exercise-induced increase in the cytotoxic activity of the expanded TCR-γδ T-cells. We conclude that acute systemic β-AR activation in healthy donors markedly augments the mobilization, ex vivo expansion, and anti-tumor activity of TCR-γδ T-cells and that some of these effects are due to β2-AR signaling and phenotypic shifts that promote a dominant activating signal via NKG2D. These findings highlight β-ARs as potential targets to favorably alter the composition of allogeneic peripheral blood stem cell grafts and improve the potency of TCR-γδ T-cell immune cell therapeutics.
Collapse
Affiliation(s)
- Forrest L. Baker
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Austin B. Bigley
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Nadia H. Agha
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Charles R. Pedlar
- School of Sport, Health and Applied Science, St. Mary's University, London, United Kingdom
| | - Daniel P. O'Connor
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Richard A. Bond
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, United States
| | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children's National Health System and the George Washington University, Washington, DC, United States
| | - Emmanuel Katsanis
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Richard J. Simpson
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
11
|
Oberg HH, Wesch D, Kalyan S, Kabelitz D. Regulatory Interactions Between Neutrophils, Tumor Cells and T Cells. Front Immunol 2019; 10:1690. [PMID: 31379875 PMCID: PMC6657370 DOI: 10.3389/fimmu.2019.01690] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022] Open
Abstract
Apart from their activity in combating infections, neutrophils play an important role in regulating the tumor microenvironment. Neutrophils can directly kill (antibody-coated) cancer cells, and support other immune anti-tumoral strategies. On the other hand, neutrophils can also exert pro-tumorigenic activities via the production of factors which promote cancer growth, angiogenesis and metastasis formation. The balance of anti- and pro-cancer activity is influenced by the particularly delicate interplay that exists between neutrophils and T lymphocytes. In murine models, it has been reported that γδ T cells are a major source of IL-17 that drives the recruitment and pro-tumorigenic differentiation of neutrophils. This, however, contrasts with the well-studied anti-tumor activity of γδ T cells in experimental models and the anti-tumor activity of human γδ T cells. In this article, we first review the reciprocal interactions between neutrophils, tumor cells and T lymphocytes with a special focus on their interplay with γδ T cells, followed by the presentation of our own recent results. We have previously shown that zoledronic acid (ZOL)-activated neutrophils inhibit γδ T-cell proliferation due to the production of reactive oxygen species, arginase-1 and serine proteases. We now demonstrate that killing of ductal pancreatic adenocarcinoma (PDAC) cells by freshly isolated resting human γδ T cells was reduced in the presence of neutrophils and even more pronounced so after activation of neutrophils with ZOL. In contrast, direct T-cell receptor-dependent activation by γδ T cell-specific pyrophosphate antigens or by bispecific antibodies enhanced the cytotoxic activity and cytokine/granzyme B production of resting human γδ T cells, thereby overriding the suppression by ZOL-activated neutrophils. Additionally, the coculture of purified neutrophils with autologous short-term expanded γδ T cells enhanced rather than inhibited γδ T-cell cytotoxicity against PDAC cells. Purified neutrophils alone also exerted a small but reproducible lysis of PDAC cells which was further enhanced in the presence of γδ T cells. The latter set-up was associated with improved granzyme B and IFN-γ release which was further increased in the presence of ZOL. Our present results demonstrate that the presence of neutrophils can enhance the killing capacity of activated γδ T cells. We discuss these results in the broader context of regulatory interactions between neutrophils and T lymphocytes.
Collapse
Affiliation(s)
- Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts-University of Kiel, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts-University of Kiel, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Shirin Kalyan
- Clinical Research Development Laboratory, Department of Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University of Kiel, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
12
|
Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov 2019; 18:585-608. [DOI: 10.1038/s41573-019-0028-1] [Citation(s) in RCA: 493] [Impact Index Per Article: 98.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Yang Y, Li L, Yuan L, Zhou X, Duan J, Xiao H, Cai N, Han S, Ma X, Liu W, Chen CC, Wang L, Li X, Chen J, Kang N, Chen J, Shen Z, Malwal SR, Liu W, Shi Y, Oldfield E, Guo RT, Zhang Y. A Structural Change in Butyrophilin upon Phosphoantigen Binding Underlies Phosphoantigen-Mediated Vγ9Vδ2 T Cell Activation. Immunity 2019; 50:1043-1053.e5. [DOI: 10.1016/j.immuni.2019.02.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 10/24/2018] [Accepted: 02/20/2019] [Indexed: 12/26/2022]
|
14
|
Lentini NA, Foust BJ, Hsiao CHC, Wiemer AJ, Wiemer DF. Phosphonamidate Prodrugs of a Butyrophilin Ligand Display Plasma Stability and Potent Vγ9 Vδ2 T Cell Stimulation. J Med Chem 2018; 61:8658-8669. [PMID: 30199251 PMCID: PMC6703555 DOI: 10.1021/acs.jmedchem.8b00655] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Small organophosphorus compounds stimulate Vγ9 Vδ2 T cells if they serve as ligands of butyrophilin 3A1. Because the most potent natural ligand is ( E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), which is the last intermediate in bacterial biosynthesis of isoprenoids that is not found in mammalian metabolism, activation of these T cells represents an important component of the immune response to bacterial infections. To identify butyrophilin ligands that may have greater plasma stability, and clinical potential, we have prepared a set of aryl phosphonamidate derivatives (9a-i) of the natural ligand. Testing of these new compounds in assays of T cell response has revealed that this strategy can provide compounds with high potency for expansion of Vγ9 Vδ2 T cells (9f, EC50 = 340 pM) and interferon γ production in response to loaded K562 cells (9e, EC50 = 62 nM). Importantly, all compounds of this class display extended plasma stability ( t1/2 > 24 h). These findings increase our understanding of metabolism of butyrophilin ligands and the structure-activity relationships of phosphonamidate prodrugs.
Collapse
Affiliation(s)
- Nicholas A Lentini
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242-1294 , United States
| | - Benjamin J Foust
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242-1294 , United States
| | - Chia-Hung Christine Hsiao
- Department of Pharmaceutical Sciences , University of Connecticut , Storrs , Connecticut 06269-3092 , United States
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences , University of Connecticut , Storrs , Connecticut 06269-3092 , United States
- Institute for Systems Genomics , University of Connecticut , Storrs , Connecticut 06269-3092 , United States
| | - David F Wiemer
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242-1294 , United States
- Department of Pharmacology , University of Iowa , Iowa City , Iowa 52242-1109 , United States
| |
Collapse
|
15
|
Zhao Y, Lin L, Xiao Z, Li M, Wu X, Li W, Li X, Zhao Q, Wu Y, Zhang H, Yin J, Zhang L, Cho CH, Shen J. Protective Role of γδ T Cells in Different Pathogen Infections and Its Potential Clinical Application. J Immunol Res 2018; 2018:5081634. [PMID: 30116753 PMCID: PMC6079409 DOI: 10.1155/2018/5081634] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/10/2018] [Indexed: 12/24/2022] Open
Abstract
γδ T cells, a subgroup of T cells based on the γδ TCR, when compared with conventional T cells (αβ T cells), make up a very small proportion of T cells. However, its various subgroups are widely distributed in different parts of the human body and are attractive effectors for infectious disease immunity. γδ T cells are activated and expanded by nonpeptidic antigens (P-Ags), major histocompatibility complex (MHC) molecules, and lipids which are associated with different kinds of pathogen infections. Activation and proliferation of γδ T cells play a significant role in diverse infectious diseases induced by viruses, bacteria, and parasites and exert their potential effector function to effectively eliminate infection. It is well known that many types of infectious diseases are detrimental to human life and health and give rise to high incidence of illnesses and death rate all over the world. To date, there is no comprehensive understanding of the correlation between γδ T cells and infectious diseases. In this review, we will focus on the various subgroups of γδ T cells (mainly Vδ1 T cells and Vδ2 T cells) which can induce multiple immune responses or effective functions to fight against common pathogen infections, such as Mycobacterium tuberculosis, Listeria monocytogenes, influenza viruses, HIV, EBV, and HBV. Hopefully, the gamma-delta T cell study will provide a novel effective way to treat infectious diseases.
Collapse
Affiliation(s)
- Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Lin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuanlin Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianhua Yin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lingling Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
16
|
Kallemeijn MJ, Kavelaars FG, van der Klift MY, Wolvers-Tettero ILM, Valk PJM, van Dongen JJM, Langerak AW. Next-Generation Sequencing Analysis of the Human TCRγδ+ T-Cell Repertoire Reveals Shifts in Vγ- and Vδ-Usage in Memory Populations upon Aging. Front Immunol 2018; 9:448. [PMID: 29559980 PMCID: PMC5845707 DOI: 10.3389/fimmu.2018.00448] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/19/2018] [Indexed: 12/20/2022] Open
Abstract
Immunological aging remodels the immune system at several levels. This has been documented in particular for the T-cell receptor (TCR)αβ+ T-cell compartment, showing reduced naive T-cell outputs and an accumulation of terminally differentiated clonally expanding effector T-cells, leading to increased proneness to autoimmunity and cancer development at older age. Even though TCRαβ+ and TCRγδ+ T-cells follow similar paths of development involving V(D)J-recombination of TCR genes in the thymus, TCRγδ+ T-cells tend to be more subjected to peripheral rather than central selection. However, the impact of aging in shaping of the peripheral TRG/TRD repertoire remains largely elusive. Next-generation sequencing analysis methods were optimized based on a spike-in method using plasmid vector DNA-samples for accurate TRG/TRD receptor diversity quantification, resulting in optimally defined primer concentrations, annealing temperatures and cycle numbers. Next, TRG/TRD repertoire diversity was evaluated during TCRγδ+ T-cell ontogeny, showing a broad, diverse repertoire in thymic and cord blood samples with Gaussian CDR3-length distributions, in contrast to the more skewed repertoire in mature circulating TCRγδ+ T-cells in adult peripheral blood. During aging the naive repertoire maintained its diversity with Gaussian CDR3-length distributions, while in the central and effector memory populations a clear shift from young (Vγ9/Vδ2 dominance) to elderly (Vγ2/Vδ1 dominance) was observed. Together with less clear Gaussian CDR3-length distributions, this would be highly suggestive of differentially heavily selected repertoires. Despite the apparent age-related shift from Vγ9/Vδ2 to Vγ2/Vδ1, no clear aging effect was observed on the Vδ2 invariant T nucleotide and canonical Vγ9-Jγ1.2 selection determinants. A more detailed look into the healthy TRG/TRD repertoire revealed known cytomegalovirus-specific TRG/TRD clonotypes in a few donors, albeit without a significant aging-effect, while Mycobacterium tuberculosis-specific clonotypes were absent. Notably, in effector subsets of elderly individuals, we could identify reported TRG and TRD receptor chains from TCRγδ+ T-cell large granular lymphocyte leukemia proliferations, which typically present in the elderly population. Collectively, our results point to relatively subtle age-related changes in the human TRG/TRD repertoire, with a clear shift in Vγ/Vδ usage in memory cells upon aging.
Collapse
Affiliation(s)
- Martine J Kallemeijn
- Laboratory for Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - François G Kavelaars
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Michèle Y van der Klift
- Laboratory for Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ingrid L M Wolvers-Tettero
- Laboratory for Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jacques J M van Dongen
- Laboratory for Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Anton W Langerak
- Laboratory for Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
17
|
The potential role of γδ T cells after allogeneic HCT for leukemia. Blood 2018; 131:1063-1072. [PMID: 29358176 DOI: 10.1182/blood-2017-08-752162] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoetic stem cell transplantation (HCT) offers an option for patients with hematologic malignancies, in whom conventional standard therapies failed or are not effective enough to cure the disease. Successful HCT can restore functional hematopoiesis and immune function, and the new donor-derived immune system can exert a graft-versus-leukemia (GVL) effect. However, allogenic HCT can also be associated with serious risks for transplantation-related morbidities or mortalities such as graft-versus-host disease (GVHD) or life-threatening infectious complications. GVHD is caused by alloreactive T lymphocytes, which express the αβ T-cell receptor, whereas lymphocytes expressing the γδ T-cell receptor are not alloreactive and do not induce GVHD but can exhibit potent antileukemia and anti-infectious activities. Therefore, γδ T cells are becoming increasingly interesting in allogeneic HCT, and clinical strategies to exploit the full function of these lymphocytes have been and are being developed. Such strategies comprise the in vivo activation of γδ T cells or subsets after HCT by certain drugs or antibodies or the ex vivo expansion and manipulation of either patient-derived or donor-derived γδ T cells and their subsets and the adoptive transfer of the ex vivo-activated lymphocytes. On the basis of the absence of dysregulated alloreactivity, such approaches could induce potent GVL effects in the absence of GVHD. The introduction of large-scale clinical methods to enrich, isolate, expand, and manipulate γδ T cells will facilitate future clinical studies that aim to exploit the full function of these beneficial nonalloreactive lymphocytes.
Collapse
|
18
|
Hu MD, Edelblum KL. Sentinels at the frontline: the role of intraepithelial lymphocytes in inflammatory bowel disease. ACTA ACUST UNITED AC 2017; 3:321-334. [PMID: 29242771 DOI: 10.1007/s40495-017-0105-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of review Intestinal mucosal immunity is tightly regulated to ensure effective host defense against invasive microorganisms while limiting the potential for aberrant damage. In inflammatory bowel disease (IBD), an imbalance between effector and regulatory T cell populations results in an uncontrolled inflammatory response to commensal bacteria. Intraepithelial lymphocytes (IEL) are perfectly positioned within the intestinal epithelium to provide the first line of mucosal defense against luminal microbes or rapidly respond to epithelial injury. This review will highlight how IELs promote protective intestinal immunity and discuss the evidence indicating that altered IEL responses contribute to the pathogenesis of IBD. Recent findings Although the role of IELs in mucosal homeostasis has been largely underappreciated, many of the same factors that contribute to the dysregulation of host defense in IBD also adversely affect IELs. For example, IL-23 and the endoplasmic reticulum stress response can enhance IEL lytic activity toward enterocytes. Microbial dysbiosis or defective microbial recognition results in the loss of regulatory IELs, further amplifying these pro-inflammatory effects. Migration of T cells into or within the intraepithelial compartment has a profound effect on their differentiation or effector function demonstrating that IELs are exquisitely sensitive to changes in the local intestinal microenvironment. Summary Enhanced mechanistic insight into the regulation of IEL survival, differentiation and effector function may provide useful tools to modulate IEL surveillance or enhance IEL regulatory function. Elucidation of these processes may result in the development of novel therapeutics to reduce intestinal inflammation and reinforce the mucosal barrier in IBD.
Collapse
Affiliation(s)
- Madeleine D Hu
- Center for Immunity and Inflammation, Department of Pathology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Karen L Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Rutgers New Jersey Medical School, Newark, NJ 07103
| |
Collapse
|
19
|
Chitadze G, Oberg HH, Wesch D, Kabelitz D. The Ambiguous Role of γδ T Lymphocytes in Antitumor Immunity. Trends Immunol 2017; 38:668-678. [PMID: 28709825 DOI: 10.1016/j.it.2017.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022]
Abstract
γδ T cells play a role in immune surveillance because they recognize stress-induced surface molecules and metabolic intermediates that are frequently dysregulated in transformed cells. Hence, γδ T cells have attracted much interest as effector cells in cell-based immunotherapy. Recently, however, it has been realized that γδ T cells can also promote tumorigenesis through various mechanisms including regulatory activity and IL-17 production. In this review we outline both the pathways involved in cancer cell recognition and killing by γδ T cells as well as current evidence for their protumorigenic activity in various models. Finally, we discuss strategies to improve the tumor reactivity of γδ T cells and to counteract their protumorigenic activities, which should open improved perspectives for their clinical application.
Collapse
Affiliation(s)
- Guranda Chitadze
- Institute of Immunology, University of Kiel, Arnold-Heller-Strasse 3, Building 17, 24105 Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University of Kiel, Arnold-Heller-Strasse 3, Building 17, 24105 Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, University of Kiel, Arnold-Heller-Strasse 3, Building 17, 24105 Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University of Kiel, Arnold-Heller-Strasse 3, Building 17, 24105 Kiel, Germany.
| |
Collapse
|