1
|
Lorenzo-Capellá I, Ramos-Álvarez JJ, Jiménez-Herranz ME, Maffulli N, de Borba EF, Iuliano E, Calderón-Montero FJ, Ardigò LP, Russo L, Padulo J. Highest oxygen consumption prediction: introducing variable theoretical proportional factors for different sports. Eur J Appl Physiol 2024:10.1007/s00421-024-05625-w. [PMID: 39379729 DOI: 10.1007/s00421-024-05625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE The use of a fixed theoretical-proportional-factor (TPF15) is one of the indirect highest-oxygen-consumptions (HOC) assessment methods, but it may not accurately reflect the physiological differences across various sports (cycling-triathlon-running-football-multisport). The aim of this study is to evaluate the variability of TPF across different sports, proposing a series of sport-specific new TPF values for more accurate HOC estimation. METHODS A sample of 340 adults (26.01 ± 7.18 years) performed a maximal-incremental-test using sport-specific-ergometers. HOC was considered for cycling V ˙ O 2peak , whereas for the other investigated sports it was consideredV ˙ O 2max . HOC was directly measured using a gas-analyzer, and TPF values were calculated using heart rate (HR): the ratio of HRmax/HRrest multiplied for the measured values of HOC. A one-way ANOVA was used to measure differences and Bland-Altman plots were constructed to compare predicted and actual V ˙ O 2max /V ˙ O 2peak . RESULTS Actual HOC was significantly greater than those predicted by the fixed TPF15 (P < 0.001). Sport-specific new TPF values ranged from 16.55 in multisport to 20.15 in cycling, consistently exceeding the old fixed TPF15, and predicting therefore better HOC. The new TPF exhibited a closer agreement with the directly measuredV ˙ O 2max /V ˙ O 2peak compared to the TPF15. Furthermore, the new TPF reduced the typical-measurement-error (14.94-17.78%) compared to TPF15 (15.63-24.13%). CONCLUSION This study suggests that new TPF values predictV ˙ O 2max /V ˙ O 2peak with higher accuracy compared to the traditional method. The use of HRmax and HRrest values allows to customize training programs for different athletes. Future research should focus on validating these findings across larger populations of athletes.
Collapse
Affiliation(s)
| | | | | | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
- Institute of Science and Technology in Medicine, Guy Hilton Research Centre, School of Medicine, Keele University, Stoke-On-Trent, UK
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Surgery, Queen Mary University of London, London, UK
| | | | | | | | - Luca Paolo Ardigò
- Department of Teacher Education, NLA University College, Oslo, Norway
| | - Luca Russo
- eCampus University, 22060, Novedrate, Italy
| | - Johnny Padulo
- Department of Biomedical Sciences for Health (SCIBIS), Università degli Studi di Milano , Milan, Italy.
| |
Collapse
|
2
|
Charrier D, Cerullo G, Carpenito R, Vindigni V, Bassetto F, Simoni L, Moro T, Paoli A. Metabolic and Biochemical Effects of Pyrroloquinoline Quinone (PQQ) on Inflammation and Mitochondrial Dysfunction: Potential Health Benefits in Obesity and Future Perspectives. Antioxidants (Basel) 2024; 13:1027. [PMID: 39334686 PMCID: PMC11429417 DOI: 10.3390/antiox13091027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is defined as a complex, systemic disease characterized by excessive and dysfunctional adipose tissue, leading to adverse health effects. This condition is marked by low-grade inflammation, oxidative stress, and metabolic abnormalities, including mitochondrial dysfunction. These factors promote energy dysregulation and impact body composition not only by increasing body fat but also by promoting skeletal muscle mass atrophy. The decline in muscle mass is associated with an increased risk of all-cause mortality in individuals with this disease. The European Food Safety Authority approved pyrroloquinoline quinone (PQQ), a natural compound, as a dietary supplement in 2018. This narrative review aims to provide a comprehensive overview of the potential role of PQQ, based on its anti-inflammatory and antioxidant properties, in addressing dysfunctional adipose tissue metabolism and related disorders.
Collapse
Affiliation(s)
- Davide Charrier
- Department of Biomedical Sciences, University of Padova, 35122 Padua, Italy; (D.C.); (L.S.); (T.M.); (A.P.)
| | - Giuseppe Cerullo
- Department of Biomedical Sciences, University of Padova, 35122 Padua, Italy; (D.C.); (L.S.); (T.M.); (A.P.)
| | - Roberta Carpenito
- Plastic and Reconstructive Surgery Unit, Department of Neurosciences, University of Padua, 35122 Padua, Italy (V.V.); (F.B.)
| | - Vincenzo Vindigni
- Plastic and Reconstructive Surgery Unit, Department of Neurosciences, University of Padua, 35122 Padua, Italy (V.V.); (F.B.)
| | - Franco Bassetto
- Plastic and Reconstructive Surgery Unit, Department of Neurosciences, University of Padua, 35122 Padua, Italy (V.V.); (F.B.)
| | - Luca Simoni
- Department of Biomedical Sciences, University of Padova, 35122 Padua, Italy; (D.C.); (L.S.); (T.M.); (A.P.)
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, 35122 Padua, Italy; (D.C.); (L.S.); (T.M.); (A.P.)
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, 35122 Padua, Italy; (D.C.); (L.S.); (T.M.); (A.P.)
- Research Center for High Performance Sport, UCAM Catholic University of Murcia, 30107 Murcia, Spain
| |
Collapse
|
3
|
Paquin J, Tremblay R, Islam H, Riesco E, Marcotte-Chénard A, Dionne IJ. Resistance training, skeletal muscle hypertrophy, and glucose homeostasis: how related are they? A Systematic review and Meta-analysis. Appl Physiol Nutr Metab 2024. [PMID: 39484808 DOI: 10.1139/apnm-2024-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Resistance training (RT) promotes skeletal muscle (Skm) hypertrophy, increases muscular strength, and improves metabolic health. Whether changes in fat-free mass (FFM; a surrogate marker of muscle hypertrophy) moderate RT-induced improvements in glucose homeostasis has not been determined, despite extensive research on the benefits of RT for health and performance. The aim of this meta-analysis is to examine whether RT-induced Skm hypertrophy drives improvements in glucose metabolism and to explore confounders, such as biological sex and training parameters. Random-effects meta-analyses were performed using variance random effects. Meta-regressions were performed for confounding factors depending on the heterogeneity (I2). Analyses from 33 intervention studies revealed significant within-study increases in FFM with a moderate effect size (within-studies: (effect size; ES = 0.24 [0.10; 0.39]; p = 0.002; I2 = 56%) and a tendency for significance when compared with control groups (ES = 0.42 [-0.04-0.88]; p = 0.07). Within-study significant increases in glucose tolerance (2 h glucose: ES = -0.3 [-0.50; -0.11]; p < 0.01; I2 = 43%; glucose area under the curve (AUC): -0.40 [-0.66; -0.13] I2 = 76.1%; p < 0.01) and insulin sensitivity (ES = 0.38 [0.13; 0.62]; I2 = 53.0%; p < 0.01) were also apparent with RT. When compared to control groups, there was no significant difference in 2 h glucose, nor in glucose AUC from baseline in RT intervention groups. Meta-regression analyses failed to consistently reveal increases in FFM as a moderator of glucose homeostasis. Other mixed-effect models were also unsuccessful to unveil biological sex or training parameters as moderators of FFM increases and glucose homeostasis changes. Although Skm hypertrophy and improvements in glycemic control occur concurrently during RT, changes in these variables were not always related. Well-controlled trials including detailed description of training parameters are needed to inform RT guidelines for improving metabolic health. Registration and protocol number (Prospero): CRD42023397362.
Collapse
Affiliation(s)
- J Paquin
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada
- University of Sherbrooke, Faculty of Physical Activity Sciences, Sherbrooke, QC, Canada
| | - R Tremblay
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada
- University of Sherbrooke, Faculty of Physical Activity Sciences, Sherbrooke, QC, Canada
| | - H Islam
- University of British Columbia, School of Health and Exercise Science, Kelowna, BC, Canada
| | - E Riesco
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada
- University of Sherbrooke, Faculty of Physical Activity Sciences, Sherbrooke, QC, Canada
| | - A Marcotte-Chénard
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada
- University of Sherbrooke, Faculty of Physical Activity Sciences, Sherbrooke, QC, Canada
- University of British Columbia, School of Health and Exercise Science, Kelowna, BC, Canada
| | - I J Dionne
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada
- University of Sherbrooke, Faculty of Physical Activity Sciences, Sherbrooke, QC, Canada
| |
Collapse
|
4
|
Konopka MJ, Keizer H, Rietjens G, Zeegers MP, Sperlich B. A critical examination of sport discipline typology: identifying inherent limitations and deficiencies in contemporary classification systems. Front Physiol 2024; 15:1389844. [PMID: 39050482 PMCID: PMC11266029 DOI: 10.3389/fphys.2024.1389844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Exercise scientists (especially in the field of biomolecular research) frequently classify athletic cohorts into categories such as endurance, strength, or mixed, and create a practical framework for studying diverse athletic populations between seemingly similar groups. It is crucial to recognize the limitations and complexities of these classifications, as they may oversimplify the multidimensional characteristics of each sport. If so, the validity of studies dealing with such approaches may become compromised and the comparability across different studies challenging or impossible. This perspective critically examines and highlights the issues associated with current sports typologies, critiques existing sports classification systems, and emphasizes the imperative for a universally accepted classification model to enhance the quality of biomolecular research of sports in the future.
Collapse
Affiliation(s)
- Magdalena Johanna Konopka
- Department of Epidemiology, Maastricht University, Maastricht, Netherlands
- Institute for Healthcare Management and Health Sciences, University of Bayreuth, Bayreuth, Germany
| | - Hans Keizer
- Department of Epidemiology, Maastricht University, Maastricht, Netherlands
| | - Gerard Rietjens
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maurice Petrus Zeegers
- Department of Epidemiology, Maastricht University, Maastricht, Netherlands
- MPB Holding, Heerlen, Netherlands
| | - Billy Sperlich
- Integrative and Experimental Exercise Science and Training, Institute of Sport Science, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Wang X, Wang L, Wu Y, Cai M, Wang L. Effect of Different Exercise Interventions on Grip Strength, Knee Extensor Strength, Appendicular Skeletal Muscle Index, and Skeletal Muscle Index Strength in Patients with Sarcopenia: A Meta-Analysis of Randomized Controlled Trials. Diseases 2024; 12:71. [PMID: 38667529 PMCID: PMC11049519 DOI: 10.3390/diseases12040071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Sarcopenia is a systemic skeletal muscle disease that is more prevalent in older adults. The role of exercise in improving the disease has been demonstrated. However, due to the variety of exercise modalities, it is not clear what type of exercise provides the best benefit. The aim of this meta-analysis was to analyze the effects of different exercise modalities on grip strength, appendicular skeletal muscle index, skeletal muscle index, and knee extensor strength in elderly patients with sarcopenia. The protocol for this evaluation was registered on the PROSPERO website and the databases PubMed, WOS, Cochrane Library, and Embase were searched. Thirteen studies were included in the analysis. The results showed that exercise interventions had positive effects on grip strength and knee extension muscle strength, with resistance training being the most effective. There was no significant improvement in appendicular skeletal muscle index or skeletal muscle index. This study still has limitations. For example, age group and exercise duration were not considered. Future studies should further explore benefits in age groups as well as other relevant outcome indicators.
Collapse
Affiliation(s)
- Xinxiang Wang
- College of Rehabilitation, Shanghai University of Medicine & Health Sciences, Shanghai 200237, China; (X.W.)
- College of Sports Science, Shenyang Normal University, Shenyang 110034, China
| | - Lijuan Wang
- College of Sports Science, Shenyang Normal University, Shenyang 110034, China
| | - Yu Wu
- College of Sports Science, Shenyang Normal University, Shenyang 110034, China
| | - Ming Cai
- College of Rehabilitation, Shanghai University of Medicine & Health Sciences, Shanghai 200237, China; (X.W.)
| | - Liyan Wang
- College of Rehabilitation, Shanghai University of Medicine & Health Sciences, Shanghai 200237, China; (X.W.)
| |
Collapse
|
6
|
Brown A, Parise G, Thomas ACQ, Ng SY, McGlory C, Phillips SM, Kumbhare D, Joanisse S. Low baseline ribosome-related gene expression and resistance training-induced declines in ribosome-related gene expression are associated with skeletal muscle hypertrophy in young men and women. J Cell Physiol 2024; 239:e31182. [PMID: 38214457 DOI: 10.1002/jcp.31182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Ribosomes are essential cellular machinery for protein synthesis. It is hypothesised that ribosome content supports muscle growth and that individuals with more ribosomes have greater increases in muscle size following resistance training (RT). Aerobic conditioning (AC) also elicits distinct physiological adaptations; however, no measures of ribosome content following AC have been conducted. We used ribosome-related gene expression as a proxy measure for ribosome content and hypothesised that AC and RT would increase ribosome-related gene expression. Fourteen young men and women performed 6 weeks of single-legged AC followed by 10 weeks of double-legged RT. Muscle biopsies were taken following AC and following RT in the aerobically conditioned (AC+RT) and unconditioned (RT) legs. No differences in regulatory genes (Ubf, Cyclin D1, Tif-1a and Polr-1b) involved in ribosomal biogenesis or ribosomal RNA (45S, 5.8S, 18S and 28S rRNAs) expression were observed following AC and RT, except for c-Myc (RT > AC+RT) and 5S rRNA (RT < AC+RT at pre-RT) with 18S external transcribed spacer and 5.8S internal transcribed spacer expression decreasing from pre-RT to post-RT in the RT leg only. When divided for change in leg-lean soft tissue mass (ΔLLSTM) following RT, legs with the greatest ΔLLSTM had lower expression in 11/13 measured ribosome-related genes before RT and decreased expression in 9/13 genes following RT. These results indicate that AC and RT did not increase ribosome-related gene expression. Contrary to previous research, the greatest increase in muscle mass was associated with lower changes in ribosome-related gene expression over the course of the 10-week training programme. This may point to the importance of translational efficiency rather than translational capacity (i.e. ribosome content) in mediating long-term exercise-induced adaptations in skeletal muscle.
Collapse
Affiliation(s)
- Alex Brown
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Gianni Parise
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Aaron C Q Thomas
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Sean Y Ng
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Dinesh Kumbhare
- Toronto Rehabilitation Institute, University of Toronto, Toronto, Ontario, Canada
| | - Sophie Joanisse
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingha, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
7
|
Kataoka R, Hammert WB, Yamada Y, Song JS, Seffrin A, Kang A, Spitz RW, Wong V, Loenneke JP. The Plateau in Muscle Growth with Resistance Training: An Exploration of Possible Mechanisms. Sports Med 2024; 54:31-48. [PMID: 37787845 DOI: 10.1007/s40279-023-01932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
It is hypothesized that there is likely a finite ability for muscular adaptation. While it is difficult to distinguish between a true plateau following a long-term training period and short-term stalling in muscle growth, a plateau in muscle growth has been attributed to reaching a genetic potential, with limited discussion on what might physiologically contribute to this muscle growth plateau. The present paper explores potential physiological factors that may drive the decline in muscle growth after prolonged resistance training. Overall, with chronic training, the anabolic signaling pathways may become more refractory to loading. While measures of anabolic markers may have some predictive capabilities regarding muscle growth adaptation, they do not always demonstrate a clear connection. Catabolic processes may also constrain the ability to achieve further muscle growth, which is influenced by energy balance. Although speculative, muscle cells may also possess cell scaling mechanisms that sense and regulate their own size, along with molecular brakes that hinder growth rate over time. When considering muscle growth over the lifespan, there comes a point when the anabolic response is attenuated by aging, regardless of whether or not individuals approach their muscle growth potential. Our goal is that the current review opens avenues for future experimental studies to further elucidate potential mechanisms to explain why muscle growth may plateau.
Collapse
Affiliation(s)
- Ryo Kataoka
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - William B Hammert
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Yujiro Yamada
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Jun Seob Song
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Aldo Seffrin
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Anna Kang
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Robert W Spitz
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Vickie Wong
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.
| |
Collapse
|
8
|
Ziemkiewicz N, Au J, Chauvin HM, Garg K. Electrically stimulated eccentric contraction training enhances muscle mass, function, and size following volumetric muscle loss. J Orthop Res 2023; 41:2588-2598. [PMID: 37132367 DOI: 10.1002/jor.25591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/14/2023] [Accepted: 05/01/2023] [Indexed: 05/04/2023]
Abstract
Volumetric muscle loss (VML) overwhelms muscle's innate capacity for repair and can lead to permanent disability. The standard of care for VML injuries includes physical therapy, which can improve muscle function. The objective of this study was to develop and evaluate a rehabilitative therapy using electrically stimulated eccentric contraction training (EST) and determine the structural, biomolecular, and functional response of the VML-injured muscle. This study implemented EST using three different frequencies (50, 100, and 150 Hz) in VML-injured rats starting at 2 weeks postinjury. Four weeks of EST at 150 Hz showed a progressive increase in eccentric torque with an improvement in muscle mass (~39%), myofiber cross-sectional area, and peak isometric torque (~37.5%) relative to the untrained VML-injured sham group. EST at 150 Hz group also increased the number of large type 2B fibers (>5000 µm2 ). Elevated gene expression of markers associated with angiogenesis, myogenesis, neurogenesis, and an anti-inflammatory response was also observed. These results suggest that VML-injured muscles can respond and adapt to eccentric loading. The results of this study may aid in developing physical therapy regimens for traumatized muscles.
Collapse
Affiliation(s)
- Natalia Ziemkiewicz
- Department of Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, St. Louis, Missouri, USA
| | - Jeffrey Au
- Department of Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, St. Louis, Missouri, USA
| | - Hannah M Chauvin
- Department of Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, St. Louis, Missouri, USA
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Fennel ZJ, Ducharme JB, Berkemeier QN, Specht JW, McKenna ZJ, Simpson SE, Nava RC, Escobar KA, Hafen PS, Deyhle MR, Amorim FT, Mermier CM. Effect of heat stress on heat shock protein expression and hypertrophy-related signaling in the skeletal muscle of trained individuals. Am J Physiol Regul Integr Comp Physiol 2023; 325:R735-R749. [PMID: 37842742 DOI: 10.1152/ajpregu.00031.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Muscle mass is balanced between hypertrophy and atrophy by cellular processes, including activation of the protein kinase B-mechanistic target of rapamycin (Akt-mTOR) signaling cascade. Stressors apart from exercise and nutrition, such as heat stress, can stimulate the heat shock protein A (HSPA) and C (HSPC) families alongside hypertrophic signaling factors and muscle growth. The effects of heat stress on HSP expression and Akt-mTOR activation in human skeletal muscle and their magnitude of activation compared with known hypertrophic stimuli are unclear. Here, we show a single session of whole body heat stress following resistance exercise increases the expression of HSPA and activation of the Akt-mTOR cascade in skeletal muscle compared with resistance exercise in a healthy, resistance-trained population. Heat stress alone may also exert similar effects, though the responses are notably variable and require further investigation. In addition, acute heat stress in C2C12 muscle cells enhanced myotube growth and myogenic fusion, albeit to a lesser degree than growth factor-mediated hypertrophy. Though the mechanisms by which heat stress stimulates hypertrophy-related signaling and the potential mechanistic role of HSPs remain unclear, these findings provide additional evidence implicating heat stress as a novel growth stimulus when combined with resistance exercise in human skeletal muscle and alone in isolated murine muscle cells. We believe these findings will help drive further applied and mechanistic investigation into how heat stress influences muscular hypertrophy and atrophy.NEW & NOTEWORTHY We show that acute resistance exercise followed by whole body heat stress increases the expression of HSPA and increases activation of the Akt-mTOR cascade in a physically active and resistance-trained population.
Collapse
Affiliation(s)
- Zachary J Fennel
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Jeremy B Ducharme
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Quint N Berkemeier
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Jonathan W Specht
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Zachary J McKenna
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
- Institute for Exercise and Environmental Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Shandy E Simpson
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Roberto C Nava
- Fulcrum Therapeutics, Cambridge, Massachusetts, United States
| | - Kurt A Escobar
- Department of Kinesiology, California State University Long Beach, Long Beach, California, United States
| | - Paul S Hafen
- Division of Science, Indiana University Purdue University Columbus, Columbus, Indiana, United States
- Department of Anatomy, Cell Biology, and Physiology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine Indianapolis, Indianapolis, Indiana, United States
| | - Michael R Deyhle
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
- Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States
| | - Fabiano T Amorim
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Christine M Mermier
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| |
Collapse
|
10
|
Alghadir AH, Gabr SA, Iqbal A. Hand grip strength, vitamin D status, and diets as predictors of bone health in 6-12 years old school children. BMC Musculoskelet Disord 2023; 24:830. [PMID: 37872520 PMCID: PMC10594896 DOI: 10.1186/s12891-023-06960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Vitamin D and calcium-rich foods, exposure to sunlight, and physical activities (PA) play a pivotal role in promoting the production of sufficient vitamin D and improving grip strength needed for better bone health among school children. PURPOSE This study aimed to determine the effects of hand grip muscle strength (HGS), vitamin D in addition to diets, and PA on bone health status among 6-12 years old schoolchildren. METHODS This study was based on a cross-sectional observational design, which was descriptive in nature. A diverse sample of 560 elementary school children aged 6-12 years old were invited to participate in this descriptive cross-sectional study. The Dual-Energy X-Ray Absorptiometry (DXA), QUS technique, and ACTi graph GT1M accelerometer were used respectively as a valid tools to identify BMD, BMC, and other parameters of bone health like c-BUA values and bone stiffness (SI), and physical activity (PA) of all individuals participated in this study. In addition, a hydraulic dynamometer was used to measure hand grip strength among the participants. Moreover, an immunoassay technique was used to measure the serum levels of vitamin 25(OH)D level, and bone metabolism markers; NTX, DPD, Ca, and sBAP in all participants. Bone loss (osteoporosis) was cross-sectionally predicted in 19.64% of the total population, most of whom were girls (14.3% vs. 5.4% for boys; P = 0.01). Compared to boys, the incidence of osteoporosis was higher and significantly correlated in girls with lower HGS, deficient vitamin D, inadequate vitamin D and Ca intake, greater adiposity, poor PA, and lower sun exposure. Also, in girls, lower vitamin 25(OH)D levels, and poor HGS were shown to be significantly associated with lower values of BMD, BMC, SI, and higher values of bone resorption markers; NTX, DPD, and sBAP and lower serum Ca than do in boys. The findings suggested that deficient vitamin D, lower HGS, adiposity, PA, and sun exposure as related risk factors to the pravelence of bone loss among school children, particularly in girls. In addition, these parameters might be considered diagnostic non-invasive predictors of bone health for clinical use in epidemiological contexts; however, more studies are required.
Collapse
Affiliation(s)
- Ahmad H Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Sami A Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Amir Iqbal
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia.
| |
Collapse
|
11
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
12
|
Currier BS, Mcleod JC, Banfield L, Beyene J, Welton NJ, D'Souza AC, Keogh JAJ, Lin L, Coletta G, Yang A, Colenso-Semple L, Lau KJ, Verboom A, Phillips SM. Resistance training prescription for muscle strength and hypertrophy in healthy adults: a systematic review and Bayesian network meta-analysis. Br J Sports Med 2023; 57:1211-1220. [PMID: 37414459 PMCID: PMC10579494 DOI: 10.1136/bjsports-2023-106807] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
OBJECTIVE To determine how distinct combinations of resistance training prescription (RTx) variables (load, sets and frequency) affect muscle strength and hypertrophy. DATA SOURCES MEDLINE, Embase, Emcare, SPORTDiscus, CINAHL, and Web of Science were searched until February 2022. ELIGIBILITY CRITERIA Randomised trials that included healthy adults, compared at least 2 predefined conditions (non-exercise control (CTRL) and 12 RTx, differentiated by load, sets and/or weekly frequency), and reported muscle strength and/or hypertrophy were included. ANALYSES Systematic review and Bayesian network meta-analysis methodology was used to compare RTxs and CTRL. Surface under the cumulative ranking curve values were used to rank conditions. Confidence was assessed with threshold analysis. RESULTS The strength network included 178 studies (n=5097; women=45%). The hypertrophy network included 119 studies (n=3364; women=47%). All RTxs were superior to CTRL for muscle strength and hypertrophy. Higher-load (>80% of single repetition maximum) prescriptions maximised strength gains, and all prescriptions comparably promoted muscle hypertrophy. While the calculated effects of many prescriptions were similar, higher-load, multiset, thrice-weekly training (standardised mean difference (95% credible interval); 1.60 (1.38 to 1.82) vs CTRL) was the highest-ranked RTx for strength, and higher-load, multiset, twice-weekly training (0.66 (0.47 to 0.85) vs CTRL) was the highest-ranked RTx for hypertrophy. Threshold analysis demonstrated these results were extremely robust. CONCLUSION All RTx promoted strength and hypertrophy compared with no exercise. The highest-ranked prescriptions for strength involved higher loads, whereas the highest-ranked prescriptions for hypertrophy included multiple sets. PROSPERO REGISTRATION NUMBER CRD42021259663 and CRD42021258902.
Collapse
Affiliation(s)
- Brad S Currier
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan C Mcleod
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Laura Banfield
- Health Sciences Library, McMaster University, Hamilton, Ontario, Canada
| | - Joseph Beyene
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nicky J Welton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alysha C D'Souza
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Joshua A J Keogh
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Lydia Lin
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Giulia Coletta
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Antony Yang
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Lauren Colenso-Semple
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Kyle J Lau
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Alexandria Verboom
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Aman F, El Khatib E, AlNeaimi A, Mohamed A, Almulla AS, Zaidan A, Alshafei J, Habbal O, Eldesouki S, Qaisar R. Is the myonuclear domain ceiling hypothesis dead? Singapore Med J 2023; 64:415-422. [PMID: 34544215 PMCID: PMC10395806 DOI: 10.11622/smedj.2021103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022]
Abstract
Muscle fibres are multinuclear cells, and the cytoplasmic territory where a single myonucleus controls transcriptional activity is called the myonuclear domain (MND). MND size shows flexibility during muscle hypertrophy. The MND ceiling hypothesis states that hypertrophy results in the expansion of MND size to an upper limit or MND ceiling, beyond which additional myonuclei via activation of satellite cells are required to support further growth. However, the debate about the MND ceiling hypothesis is far from settled, and various studies show conflicting results about the existence or otherwise of MND ceiling in hypertrophy. The aim of this review is to summarise the literature about the MND ceiling in various settings of hypertrophy and discuss the possible factors contributing to a discrepancy in the literature. We conclude by describing the physiological and clinical significance of the MND ceiling limit in the muscle adaptation process in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Ferdos Aman
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Eman El Khatib
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Alanood AlNeaimi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmed Mohamed
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Alya Sultan Almulla
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Amna Zaidan
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jana Alshafei
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Omar Habbal
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Salma Eldesouki
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
14
|
Ng JCM, Schooling CM. Effect of basal metabolic rate on lifespan: a sex-specific Mendelian randomization study. Sci Rep 2023; 13:7761. [PMID: 37173352 PMCID: PMC10182013 DOI: 10.1038/s41598-023-34410-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Observationally, the association of basal metabolic rate (BMR) with mortality is mixed, although some ageing theories suggest that higher BMR should reduce lifespan. It remains unclear whether a causal association exists. In this one-sample Mendelian randomization study, we aimed to estimate the casual effect of BMR on parental attained age, a proxy for lifespan, using two-sample Mendelian randomization methods. We obtained genetic variants strongly (p-value < 5 × 10-8) and independently (r2 < 0.001) predicting BMR from the UK Biobank and applied them to a genome-wide association study of parental attained age based on the UK Biobank. We meta-analyzed genetic variant-specific Wald ratios using inverse-variance weighting with multiplicative random effects by sex, supplemented by sensitivity analysis. A total of 178 and 180 genetic variants predicting BMR in men and women were available for father's and mother's attained age, respectively. Genetically predicted BMR was inversely associated with father's and mother's attained age (years of life lost per unit increase in effect size of genetically predicted BMR, 0.46 and 1.36; 95% confidence interval 0.07-0.85 and 0.89-1.82), with a stronger association in women than men. In conclusion, higher BMR might reduce lifespan. The underlying pathways linking to major causes of death and relevant interventions warrant further investigation.
Collapse
Affiliation(s)
- Jack C M Ng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Environmental, Occupational, and Geospatial Health Sciences, Graduate School of Public Health and Health Policy, The City University of New York, 55 West 125th St, New York, NY, 10027, USA.
| |
Collapse
|
15
|
Chernozub A, Manolachi V, Tsos A, Potop V, Korobeynikov G, Manolachi V, Sherstiuk L, Zhao J, Mihaila I. Adaptive changes in bodybuilders in conditions of different energy supply modes and intensity of training load regimes using machine and free weight exercises. PeerJ 2023; 11:e14878. [PMID: 36814958 PMCID: PMC9940642 DOI: 10.7717/peerj.14878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/20/2023] [Indexed: 02/19/2023] Open
Abstract
Background The research was aimed at comparing the effect of using two types of training load different in intensity and energy supply. We studied the influence of the proposed load variations (machine and free weight exercises) on long-term adaptation of the body at the stage of specialized basic training in bodybuilding. Methods A total of 64 athletes aged 18-20 years were examined. The research participants were randomly divided into four groups, 16 athletes in each group. Athletes of group 1 and 3 used a complex of free weight exercises. Group 2 and 4 participants performed machine exercises. Bodybuilders of group 1 and 2 were trained in conditions of medium intensity training load (R a = 0.58) in the anaerobic-glycolytic mode of energy supply. Athletes of the 3rd and 4th groups used high intensity load (R a = 0.71) in the anaerobic-alactate mode of energy supply. We managed to determine the nature of adaptation processes using methods of control testing of strength capabilities, bioimpedansometry, anthropometry, biochemical analysis of blood serum (LDH, creatinine). Results The study showed that the difference in the dynamics of the participants' maximum strength development (on example of chest muscles) did not depend on the content of machine or free weight exercises, but on the features of training load regimes. Thus, the controlled indicator of strength capabilities in athletes of groups 3 and 4 increased by 5.1% compared to groups 1 and 2. During all stages of the study, the indicators of the projectile working mass in athletes of groups 3 and 4 exceeded the results observed in groups 1 and 2 by 25.9%. At the same time, the amount of load in a set is on average 2 times higher in athletes of groups 1 and 2. Group 4 athletes, who used machine exercises and high intensity training load, increased the circumferential body measurements by 3.8 times (the chest), compared to the results recorded in group 1 athletes. Athletes of group 1 and 2 showed increasing in body fat by 3.4% compared to the initial level on the background of large load volume. The basal creatine level in bodybuilders of groups 3 and 4 increased by 3.7 times after 12 weeks of study, which indicates an accelerated growth of muscle mass. Conclusion The most pronounced adaptive body changes in bodybuilders at the stage of specialized basic training occurred during high intensity training load and anaerobic-alactate energy supply mode. Machine exercises contributed to increasing the morpho functional indicators of athletes more than free weight exercises.
Collapse
Affiliation(s)
| | - Veaceslav Manolachi
- Dunarea de Jos University of Galati, Galati, Romania
- State University of Physical Education and Sport, Chisinau, Republic of Moldova
| | - Anatolii Tsos
- Lesya Ukrainka Volyn National University, Lutsk, Ukraine
| | - Vladimir Potop
- State University of Physical Education and Sport, Chisinau, Republic of Moldova
- Department of Physical Education and Sport, University of Pitesti, Pitesti, Romania
- Doctoral School of Sports Science and Physical Education, University of Pitesti, Pitesti, Romania
| | - Georgiy Korobeynikov
- National University of Physical Education and Sport, Kyiv, Ukraine
- Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Victor Manolachi
- Dunarea de Jos University of Galati, Galati, Romania
- State University of Physical Education and Sport, Chisinau, Republic of Moldova
| | | | - Jie Zhao
- National University of Physical Education and Sport, Kyiv, Ukraine
| | - Ion Mihaila
- Department of Physical Education and Sport, University of Pitesti, Pitesti, Romania
- Doctoral School of Sports Science and Physical Education, University of Pitesti, Pitesti, Romania
| |
Collapse
|
16
|
Marshall RN, McKendry J, Smeuninx B, Seabright AP, Morgan PT, Greig C, Breen L. Acute resistance exercise training does not augment mitochondrial remodelling in master athletes or untrained older adults. Front Physiol 2023; 13:1097988. [PMID: 36685204 PMCID: PMC9846504 DOI: 10.3389/fphys.2022.1097988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Ageing is associated with alterations to skeletal muscle oxidative metabolism that may be influenced by physical activity status, although the mechanisms underlying these changes have not been unraveled. Similarly, the effect of resistance exercise training (RET) on skeletal muscle mitochondrial regulation is unclear. Methods: Seven endurance-trained masters athletes ([MA], 74 ± 3 years) and seven untrained older adults ([OC]. 69 ± 6 years) completed a single session of knee extension RET (6 x 12 repetitions, 75% 1-RM, 120-s intra-set recovery). Vastus lateralis muscle biopsies were collected pre-RET, 1 h post-RET, and 48h post-RET. Skeletal muscle biopsies were analyzed for citrate synthase (CS) enzyme activity, mitochondrial content, and markers of mitochondrial quality control via immunoblotting. Results: Pre-RET CS activity and protein content were ∼45% (p < .001) and ∼74% greater in MA compared with OC (p = .006). There was a significant reduction (∼18%) in CS activity 48 h post-RET (p < .05) in OC, but not MA. Pre-RET abundance of individual and combined mitochondrial electron transport chain (ETC) complexes I-V were significantly greater in MA compared with OC, as were markers of mitochondrial fission and fusion dynamics (p-DRP-1Ser616, p-MFFSer146, OPA-1 & FIS-1, p < .05 for all). Moreover, MA displayed greater expression of p-AMPKThr172, PGC1α, TFAM, and SIRT-3 (p < .05 for all). Notably, RET did not alter the expression of any marker of mitochondrial content, biogenesis, or quality control in both OC and MA. Conclusion: The present data suggest that long-term aerobic exercise training supports superior skeletal muscle mitochondrial density and protein content into later life, which may be regulated by greater mitochondrial quality control mechanisms and supported via superior fission-fusion dynamics. However, a single session of RET is unable to induce mitochondrial remodelling in the acute (1h post-RET) and delayed (48 h post-RET) recovery period in OC and MA.
Collapse
Affiliation(s)
- Ryan Neil Marshall
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, United Kingdom
| | - James McKendry
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Benoit Smeuninx
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, United Kingdom
| | - Alex Peter Seabright
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, United Kingdom
| | - Paul T. Morgan
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, United Kingdom
| | - Carolyn Greig
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, United Kingdom
- NIHR Biomedical Research Centre, Birmingham, United Kingdom
| | - Leigh Breen
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, United Kingdom
- NIHR Biomedical Research Centre, Birmingham, United Kingdom
| |
Collapse
|
17
|
D'Hulst G, Masschelein E, De Bock K. Resistance exercise enhances long-term mTORC1 sensitivity to leucine. Mol Metab 2022; 66:101615. [PMID: 36252815 PMCID: PMC9626937 DOI: 10.1016/j.molmet.2022.101615] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Exercise enhances the sensitivity of mammalian target of rapamycin complex 1 (mTORC1) to amino acids, in particular leucine. How long this enhanced sensitivity lasts, and which mechanisms control enhanced leucine-mediated mTORC1 activation following exercise is currently unknown. METHODS C57BL/6J mice were exercised for one night in a resistance-braked running wheel after a 12-day acclimatization period. Mice were gavaged with a submaximal dose of l-leucine or saline acutely or 48 h after exercise cessation, following 3 h food withdrawal. Muscles were excised 30 min after leucine administration. To study the contribution of mTORC1, we repeated those experiments but blocked mTORC1 activation using rapamycin immediately before the overnight running bout and one hour before the first dose of leucine. mTORC1 signaling, muscle protein synthesis and amino acid sensing machinery were assessed using immunoblot and qPCR. Leucine uptake was measured using L-[14C(U)]-leucine tracer labeling. RESULTS When compared to sedentary conditions, leucine supplementation more potently activated mTORC1 and protein synthesis in acutely exercised muscle. This effect was observed in m. soleus but not in m. tibialis anterior nor m. plantaris. The synergistic effect in m. soleus was long-lasting as key downstream markers of mTORC1 as well as protein synthesis remained higher when leucine was administered 48 h after exercise. We found that exercise enhanced the expression of amino acid transporters and promoted uptake of leucine into the muscle, leading to higher free intramuscular leucine levels. This coincided with increased expression of activating transcription factor 4 (ATF4), a main transcriptional regulator of amino acid uptake and metabolism, and downstream activation of amino acid genes as well as leucyl-tRNA synthetase (LARS), a putative leucine sensor. Finally, blocking mTORC1 using rapamycin did not reduce expression and activation of ATF4, suggesting that the latter does not act downstream of mTORC1. Rather, we found a robust increase in eukaryotic initiation factor 2α (eIF2α) phosphorylation, suggesting that the integrated stress response pathway, rather than exercise-induced mTORC1 activation, drives long-term ATF4 expression in skeletal muscle after exercise. CONCLUSIONS The enhanced sensitivity of mTORC1 to leucine is maintained at least 48 h after exercise. This shows that the anabolic window of opportunity for protein ingestion is not restricted to the first hours immediately following exercise. Increased mTORC1 sensitivity to leucine coincided with enhanced leucine influx into muscle and higher expression of genes involved in leucine sensing and amino acid metabolism. Also, exercise induced an increase in ATF4 protein expression. Altogether, these data suggest that muscular contractions switch on a coordinated program to enhance amino acid uptake as well as intramuscular sensing of key amino acids involved in mTORC1 activation and the stimulation of muscle protein synthesis.
Collapse
Affiliation(s)
- Gommaar D'Hulst
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zürich, Switzerland
| | - Evi Masschelein
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zürich, Switzerland
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zürich, Switzerland.
| |
Collapse
|
18
|
Schoenfeld BJ, Wackerhage H, De Souza E. Inter-set stretch: A potential time-efficient strategy for enhancing skeletal muscle adaptations. Front Sports Act Living 2022; 4:1035190. [PMID: 36457663 PMCID: PMC9706104 DOI: 10.3389/fspor.2022.1035190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/02/2022] [Indexed: 08/10/2023] Open
Abstract
Time is considered a primary barrier to exercise adherence. Therefore, developing time-efficient resistance training (RT) strategies that optimize muscular adaptations is of primary interest to practitioners. A novel approach to the problem involves combining intensive stretch protocols with RT. Conceivably, integrating stretch into the inter-set period may provide an added stimulus for muscle growth without increasing session duration. Mechanistically, stretch can regulate anabolic signaling via both active and passive force sensors. Emerging evidence indicates that both lengthening contractions against a high load as well as passive stretch can acutely activate anabolic intracellular signaling pathways involved in muscle hypertrophy. Although longitudinal research investigating the effects of stretching between RT sets is limited, some evidence suggests it may in fact enhance hypertrophic adaptations. Accordingly, the purpose of this paper is threefold: (1) to review how the active force of a muscle contraction and the force of a passive stretched are sensed; (2) to present evidence for the effectiveness of RT with inter-set stretch for muscle hypertrophy (3) to provide practical recommendations for application of inter-set stretch in program design as well as directions for future research.
Collapse
Affiliation(s)
- Brad J. Schoenfeld
- Department of Exercise Science and Recreation, Lehman College, Bronx, NY, United States
| | - Henning Wackerhage
- Department of Sport and Exercise Sciences, Technical University of Munich, Munich, Germany
| | - Eduardo De Souza
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL, United States
| |
Collapse
|
19
|
Viana RB, Morais SPD, Vancini RL, Andrade MS, Costa GDCT, Knechtle B, Nikolaidis PT, Lira CABD. EXERCISE SCIENCE IN HIGH SCHOOL BIOLOGY TEXTBOOKS. REV BRAS MED ESPORTE 2022. [DOI: 10.1590/1517-8692202228042021_0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT The content of high school textbooks related to physical activity and exercise is of utmost importance because physical activity and exercise are considered important tools in maintaining and improving health. Our objective was to analyze the presence and quality of exercise science content in high school biology textbooks approved by the National Textbook Plan. A guiding document was developed to enable the analysis of the textbooks. The topics investigated were: I) the extent of content related to exercise science; II) misconceptions about exercise science; III) health benefits attributed to exercise. The academic qualifications of the textbook authors were also analyzed. All analyzed textbooks (n = 9) featured some degree of exercise science content. In addition, ~67% of textbooks analyzed had at least one misconception regarding exercise science, the most common being related to biochemistry and muscle physiology. Also, 93.8% of the authors had undergraduate degrees in biological sciences; 43.8% had doctoral degrees. In conclusion, all high school biology textbooks presented content related to exercise science; however, most of them presented at least one misconception regarding exercise science. Thus, we suggest that the Brazilian National Textbook Plan should improve the criteria for analyzing biology textbooks. Level of Evidence III; Economic and decision analyses - Development of an economic or decision model.
Collapse
Affiliation(s)
- Ricardo Borges Viana
- Universidade Estadual de Goiás, Brazil; Faculdade Estácio de Sá de Goiás, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ipsen JA, Pedersen LT, Viberg B, Nørgaard B, Suetta C, Bruun IH. Rehabilitation for life: the effect on physical function of rehabilitation and care in older adults after hip fracture-study protocol for a cluster-randomised stepped-wedge trial. Trials 2022; 23:375. [PMID: 35526010 PMCID: PMC9077959 DOI: 10.1186/s13063-022-06321-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/21/2022] [Indexed: 11/11/2022] Open
Abstract
Background A hip fracture is a serious event for older adults, given that approximately 50% do not regain their habitual level of physical function, and the mortality rate is high, as is the number of readmissions. The gap in healthcare delivery, as separated into two financial and self-governing sectors, might be a contributing cause of inferior rehabilitation and care for these patients. Therefore, we aim to assess the effect of continuous and progressive rehabilitation and care across sectors for older adults after hip fracture. Methods/design The project is designed as a stepped-wedge cluster randomised controlled trial. The study population of patients are older adults 65 years of age and above discharged after a hip fracture and healthcare professionals in primary and secondary care (municipalities and hospitals). Healthcare professionals from different sectors (hospital and municipalities) will be engaged in the empowerment-orientated praxis, through a workshop for healthcare professionals with knowledge sharing to the older adults using a digital health application (app). The rehabilitation intervention consists of 12 weeks of progressive resistance exercises initiated 1–2 days after discharge. To improve communication across sectors, a videoconference involving the patient and physiotherapists from both sectors will be conducted. On day, 3 after discharge, an outreach nurse performs a thorough assessment including measurement of vital signs. A hotline to the hospital for medical advice is a part of the intervention. The intervention is delivered as an add-on to the usual rehabilitation and care, and it involves one regional hospital and the municipalities within the catchment area of the hospital. The primary outcome is a Timed Up and Go Test 8 weeks post-surgery. Discussion Using a stepped-wedge design, the intervention will be assessed as well as implemented in hospital and municipalities, hopefully for the benefit of older adults after hip fracture. Furthermore, the collaboration between the sectors is expected to improve. Trial registration The study is approved by the Regional Scientific Ethics Committees of Southern Denmark (S-20200070) and the Danish Data Protection Agency (20-21854). Registered 9 of June 2020 at ClinicalTrials.gov, NCT04424186. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06321-w.
Collapse
Affiliation(s)
- Jonas Ammundsen Ipsen
- Department of Physical Therapy and Occupational Therapy, Lillebaelt Hospital, University Hospital of Southern Denmark, Odense, Denmark. .,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| | - Lars T Pedersen
- Department of Physical Therapy and Occupational Therapy, Lillebaelt Hospital, University Hospital of Southern Denmark, Odense, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Department of Health Education, University College South Denmark, Odense, Denmark
| | - Bjarke Viberg
- Department of Orthopaedic Surgery and Traumatology, Lillebaelt Hospital, University Hospital of Southern Denmark, Odense, Denmark
| | - Birgitte Nørgaard
- Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Charlotte Suetta
- Department of Geriatric and Palliative Medicine, Bispebjerg and Frederiksberg Hospitals, University of Copenhagen, Copenhagen, Denmark.,Department of Medicine, Herlev and Gentofte Hospitals, University of Copenhagen, Copenhagen, Denmark
| | - Inge H Bruun
- Department of Physical Therapy and Occupational Therapy, Lillebaelt Hospital, University Hospital of Southern Denmark, Odense, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
21
|
Bettiol NB, Regalo SCH, Cecilio FA, Gonçalves LMN, de Vasconcelos PB, Lopes CGG, Andrade LM, Regalo IH, Siéssere S, Palinkas M. Intervertebral Disc Degeneration: Functional Analysis of Bite Force and Masseter and Temporal Muscles Thickness. Prague Med Rep 2022; 123:101-112. [PMID: 35507943 DOI: 10.14712/23362936.2022.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Intervertebral disc degeneration is a pathological condition associated with the intervertebral disc and is related to functional alterations in the human body. This study aimed to evaluate the maximum molar bite force and masseter and temporal muscles thickness in individuals with intervertebral disc degeneration. Thirty-two individuals were divided into two groups: those with degeneration of intervertebral discs (n=16) and those without degeneration (n=16). The maximum molar bite force (on the right and left sides) was measured using a dynamometer. Masseter and temporal muscle thickness during mandibular task rest and dental clenching in maximum voluntary contraction were analysed using ultrasound. Significant differences in the left molar bite force (p=0.04) were observed between the groups (Student's t-test, p<0.05). The intervertebral disc degeneration group had a lower maximum molar bite force. No significant differences in muscle thickness were observed between the masseter and temporal muscles in either group. However, based on clinical observations, the group with intervertebral disc degeneration presented less masseter muscle thickness and greater temporal muscle thickness in both mandibular tasks. Degenerative disease of the intervertebral discs promoted morphofunctional changes in the stomatognathic system, especially in maximum molar bite force and masticatory muscle thickness. This study provides insight into the interaction between spinal pathology and the stomatognathic system, which is important for healthcare professionals who treat patients with functional degeneration.
Collapse
Affiliation(s)
- Nicole Barbosa Bettiol
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Simone Cecilio Hallak Regalo
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.,Department of Neuroscience and Behavioral Sciences, Faculty of Medicine of Ribeirão Preto, University of São Paulo; National Institute and Technology - Translational Medicine (INCT.TM), São Paulo, Brazil
| | - Flávia Argentato Cecilio
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Paulo Batista de Vasconcelos
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Claire Genoveze Gauch Lopes
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Lilian Mendes Andrade
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Isabela Hallak Regalo
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Selma Siéssere
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.,Department of Neuroscience and Behavioral Sciences, Faculty of Medicine of Ribeirão Preto, University of São Paulo; National Institute and Technology - Translational Medicine (INCT.TM), São Paulo, Brazil
| | - Marcelo Palinkas
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil. .,Department of Neuroscience and Behavioral Sciences, Faculty of Medicine of Ribeirão Preto, University of São Paulo; National Institute and Technology - Translational Medicine (INCT.TM), São Paulo, Brazil.
| |
Collapse
|
22
|
Rosa A, Vazquez G, Grgic J, Balachandran AT, Orazem J, Schoenfeld BJ. Hypertrophic Effects of Single- Versus Multi-Joint Exercise of the Limb Muscles: A Systematic Review and Meta-analysis. Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Muscle hypertrophy is correlated with load progression delta, climb volume, and total load volume in rodents undergoing different ladder-based resistance training protocols. Tissue Cell 2022; 75:101725. [DOI: 10.1016/j.tice.2021.101725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022]
|
24
|
Bell L, Wallen M, Talpey S, Myers M, O'Brien B. Can exhaled volatile organic compounds differentiate high and low responders to resistance exercise? Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Lourenço Í, Krause Neto W, Amorim LDSP, Ortiz VMM, Geraldo VL, Ferreira GHDS, de Lima JT, Massoni AAR, Oliveira BM, Anaruma CA, Ciena AP, Gama EF, Caperuto ÉC. Previous short-term use of testosterone propionate enhances muscle hypertrophy in Wistar rats submitted to ladder-based resistance training. Tissue Cell 2022; 75:101741. [DOI: 10.1016/j.tice.2022.101741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
|
26
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
27
|
Angleri V, Damas F, Phillips SM, Selistre-de-Araujo HS, Cornachione AS, Stotzer US, Santanielo N, Soligon SD, Costa LAR, Lixandrão ME, Conceição MS, Cassaro Vechin F, Ugrinowitsch C, Libardi CA. Resistance training variable manipulations is less relevant than intrinsic biology in affecting muscle fiber hypertrophy. Scand J Med Sci Sports 2022; 32:821-832. [PMID: 35092084 DOI: 10.1111/sms.14134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/21/2021] [Accepted: 01/22/2022] [Indexed: 11/30/2022]
Abstract
We aimed to investigate whether muscle fiber cross-sectional area (fCSA) and associated molecular processes could be differently affected at the group and individual level by manipulating resistance training (RT) variables. Twenty resistance-trained subjects had each leg randomly allocated to either a standard RT (RT-CON: without specific variables manipulations) or a variable RT (RT-VAR: manipulation of load, volume, muscle action, and rest interval at each RT session). Muscle fCSA, satellite cell (SC) pool, myonuclei content, and gene expression were assessed before and after training (chronic effect). Gene expression was assessed 24h after the last training session (acute effect). RT-CON and RT-VAR increased fCSA and myonuclei domain in type I and II fibers after training (P < 0.05). SC and myonuclei content did not change for both conditions (P > 0.05). Pax-7, MyoD, MMP-2 and COL3A1 (chronic) and MGF, Pax-7, and MMP-9 (acute) increased similar for RT-CON and RT-VAR (P < 0.05). The increase in acute MyoG expression was significantly higher for the RT-VAR than RT-CON (P < 0.05). Significant correlation between RT-CON and RT-VAR for the fCSA changes (r = 0.89). fCSA changes were also correlated to satellite cells (r = 0.42) and myonuclei (r = 0.50) changes. Heatmap analyses showed coupled changes in fCSA, SC, and myonuclei responses at the individual level, regardless of the RT protocol. The high between and low within-subject variability regardless of RT protocol suggests that the intrinsic biological factors seem to be more important to explain the magnitude of fCSA gains in resistance-trained subjects.
Collapse
Affiliation(s)
- Vitor Angleri
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Felipe Damas
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Heloisa Sobreiro Selistre-de-Araujo
- LBBM - Laboratory of Biochemistry and Molecular Biology, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Anabelle Silva Cornachione
- Muscle Physiology and Biophysics Laboratory, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Uliana Sbeguen Stotzer
- LBBM - Laboratory of Biochemistry and Molecular Biology, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Natalia Santanielo
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Samuel Domingos Soligon
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | | | | | | | | | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Cleiton Augusto Libardi
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
28
|
Can systemic myokine response to an acute exercise bout predict high and low responders to resistance training? Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Effect of Resistance Exercise on Acquired Immunocytes in Cancer Survivors: A Pilot Study. Int Neurourol J 2021; 25:S96-105. [PMID: 34844392 PMCID: PMC8654310 DOI: 10.5213/inj.2142346.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose The purpose of this study was to elucidate the effect of resistance exercise on skeletal muscle mass-related fitness and acquired immune cell function in ovarian cancer survivors. Methods Twelve ovarian cancer survivors aged 33–61 years participated voluntarily in this study and were divided into control group (CG, n=6) and exercise group (EG, n=6). They underwent removal of ovarian cancer and received regular care for over one year. Resistance exercise was used as the intervention program conducted 4 days a week for 12 weeks. Skeletal muscle mass, muscle strength, and endurance were assessed at baseline and at week 12. Other dependent variables included adaptive immunocytes related to helper T (Th) cells and immunosuppressors (CD4+ and CD8+). Results After the intervention, skeletal muscle mass showed positive changes in EG com-pared to CG, although not significantly different. Muscle strength and endurance significantly increased in EG, while there was no significant change in CG. Th1, Th2, and Th1/Th2 ratio were significantly different between both groups. CD4+CD25+T cells and CD4+PD-1+T cells of EG were lower than those of CG. CD8+PD-1+T cells and CD8+TIGIT+T of EG were lower than those of CG. These results can be interpreted as the improved sensitivity of CD4+ and CD8+, which helps the secretion of myokines and cytokines, when cytotoxic substances are injected into the human body. Conclusions This study suggests that resistance training improves upon desirable changes in adaptive immune cell responses in ovarian cancer survivors by maintaining skeletal muscle mass while developing strength and endurance.
Collapse
|
30
|
Gillis C, Phillips SM. Protein for the Pre-Surgical Cancer Patient: a Narrative Review. CURRENT ANESTHESIOLOGY REPORTS 2021. [DOI: 10.1007/s40140-021-00494-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Pohl A, Schünemann F, Bersiner K, Gehlert S. The Impact of Vegan and Vegetarian Diets on Physical Performance and Molecular Signaling in Skeletal Muscle. Nutrients 2021; 13:3884. [PMID: 34836139 PMCID: PMC8623732 DOI: 10.3390/nu13113884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Muscular adaptations can be triggered by exercise and diet. As vegan and vegetarian diets differ in nutrient composition compared to an omnivorous diet, a change in dietary regimen might alter physiological responses to physical exercise and influence physical performance. Mitochondria abundance, muscle capillary density, hemoglobin concentration, endothelial function, functional heart morphology and availability of carbohydrates affect endurance performance and can be influenced by diet. Based on these factors, a vegan and vegetarian diet possesses potentially advantageous properties for endurance performance. Properties of the contractile elements, muscle protein synthesis, the neuromuscular system and phosphagen availability affect strength performance and can also be influenced by diet. However, a vegan and vegetarian diet possesses potentially disadvantageous properties for strength performance. Current research has failed to demonstrate consistent differences of performance between diets but a trend towards improved performance after vegetarian and vegan diets for both endurance and strength exercise has been shown. Importantly, diet alters molecular signaling via leucine, creatine, DHA and EPA that directly modulates skeletal muscle adaptation. By changing the gut microbiome, diet can modulate signaling through the production of SFCA.
Collapse
Affiliation(s)
- Alexander Pohl
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
| | - Frederik Schünemann
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
| | - Käthe Bersiner
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
| | - Sebastian Gehlert
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
- Department for Molecular and Cellular Sports Medicine, German Sports University Cologne, 50933 Cologne, Germany
| |
Collapse
|
32
|
Making Sense of Muscle Protein Synthesis: A Focus on Muscle Growth During Resistance Training. Int J Sport Nutr Exerc Metab 2021; 32:49-61. [PMID: 34697259 DOI: 10.1123/ijsnem.2021-0139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022]
Abstract
The acute response of muscle protein synthesis (MPS) to resistance exercise and nutrition is often used to inform recommendations for exercise programming and dietary interventions, particularly protein nutrition, to support and enhance muscle growth with training. Those recommendations are worthwhile only if there is a predictive relationship between the acute response of MPS and subsequent muscle hypertrophy during resistance exercise training. The metabolic basis for muscle hypertrophy is the dynamic balance between the synthesis and degradation of myofibrillar proteins in muscle. There is ample evidence that the process of MPS is much more responsive to exercise and nutrition interventions than muscle protein breakdown. Thus, it is intuitively satisfying to translate the acute changes in MPS to muscle hypertrophy with training over a longer time frame. Our aim is to examine and critically evaluate the strength and nature of this relationship. Moreover, we examine the methodological and physiological factors related to measurement of MPS and changes in muscle hypertrophy that contribute to uncertainty regarding this relationship. Finally, we attempt to offer recommendations for practical and contextually relevant application of the information available from studies of the acute response of MPS to optimize muscle hypertrophy with training.
Collapse
|
33
|
van Ingen MJA, Kirby TJ. LINCing Nuclear Mechanobiology With Skeletal Muscle Mass and Function. Front Cell Dev Biol 2021; 9:690577. [PMID: 34368139 PMCID: PMC8335485 DOI: 10.3389/fcell.2021.690577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle demonstrates a high degree of adaptability in response to changes in mechanical input. The phenotypic transformation in response to mechanical cues includes changes in muscle mass and force generating capabilities, yet the molecular pathways that govern skeletal muscle adaptation are still incompletely understood. While there is strong evidence that mechanotransduction pathways that stimulate protein synthesis play a key role in regulation of muscle mass, there are likely additional mechano-sensitive mechanisms important for controlling functional muscle adaptation. There is emerging evidence that the cell nucleus can directly respond to mechanical signals (i.e., nuclear mechanotransduction), providing a potential additional level of cellular regulation for controlling skeletal muscle mass. The importance of nuclear mechanotransduction in cellular function is evident by the various genetic diseases that arise from mutations in proteins crucial to the transmission of force between the cytoskeleton and the nucleus. Intriguingly, these diseases preferentially affect cardiac and skeletal muscle, suggesting that nuclear mechanotransduction is critically important for striated muscle homeostasis. Here we discuss our current understanding for how the nucleus acts as a mechanosensor, describe the main cytoskeletal and nuclear proteins involved in the process, and propose how similar mechanoresponsive mechanisms could occur in the unique cellular environment of a myofiber. In addition, we examine how nuclear mechanotransduction fits into our current framework for how mechanical stimuli regulates skeletal muscle mass.
Collapse
Affiliation(s)
- Maria J A van Ingen
- Biomolecular Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tyler J Kirby
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam Movement Sciences, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
34
|
McKendry J, Stokes T, Mcleod JC, Phillips SM. Resistance Exercise, Aging, Disuse, and Muscle Protein Metabolism. Compr Physiol 2021; 11:2249-2278. [PMID: 34190341 DOI: 10.1002/cphy.c200029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle is the organ of locomotion, its optimal function is critical for athletic performance, and is also important for health due to its contribution to resting metabolic rate and as a site for glucose uptake and storage. Numerous endogenous and exogenous factors influence muscle mass. Much of what is currently known regarding muscle protein turnover is owed to the development and use of stable isotope tracers. Skeletal muscle mass is determined by the meal- and contraction-induced alterations of muscle protein synthesis and muscle protein breakdown. Increased loading as resistance training is the most potent nonpharmacological strategy by which skeletal muscle mass can be increased. Conversely, aging (sarcopenia) and muscle disuse lead to the development of anabolic resistance and contribute to the loss of skeletal muscle mass. Nascent omics-based technologies have significantly improved our understanding surrounding the regulation of skeletal muscle mass at the gene, transcript, and protein levels. Despite significant advances surrounding the mechanistic intricacies that underpin changes in skeletal muscle mass, these processes are complex, and more work is certainly needed. In this article, we provide an overview of the importance of skeletal muscle, describe the influence that resistance training, aging, and disuse exert on muscle protein turnover and the molecular regulatory processes that contribute to changes in muscle protein abundance. © 2021 American Physiological Society. Compr Physiol 11:2249-2278, 2021.
Collapse
Affiliation(s)
- James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan C Mcleod
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
35
|
D’Hulst G, Masschelein E, De Bock K. Dampened Muscle mTORC1 Response Following Ingestion of High-Quality Plant-Based Protein and Insect Protein Compared to Whey. Nutrients 2021; 13:1396. [PMID: 33919313 PMCID: PMC8143359 DOI: 10.3390/nu13051396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Increased amino acid availability acutely stimulates protein synthesis partially via activation of mechanistic target of rapamycin complex 1 (mTORC1). Plant-and insect-based protein sources matched for total protein and/or leucine to animal proteins induce a lower postprandial rise in amino acids, but their effects on mTOR activation in muscle are unknown. C57BL/6J mice were gavaged with different protein solutions: whey, a pea-rice protein mix matched for total protein or leucine content to whey, worm protein matched for total protein, or saline. Blood was drawn 30, 60, 105 and 150 min after gavage and muscle samples were harvested 60 min and 150 min after gavage to measure key components of the mTORC1 pathway. Ingestion of plant-based proteins induced a lower rise in blood leucine compared to whey, which coincided with a dampened mTORC1 activation, both acutely and 150 min after administration. Matching total leucine content to whey did not rescue the reduced rise in plasma amino acids, nor the lower increase in mTORC1 compared to whey. Insect protein elicits a similar activation of downstream mTORC1 kinases as plant-based proteins, despite lower postprandial aminoacidemia. The mTORC1 response following ingestion of high-quality plant-based and insect proteins is dampened compared to whey in mouse skeletal muscle.
Collapse
Affiliation(s)
- Gommaar D’Hulst
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Zurich, Switzerland; (E.M.); (K.D.B.)
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Evi Masschelein
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Zurich, Switzerland; (E.M.); (K.D.B.)
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Zurich, Switzerland; (E.M.); (K.D.B.)
| |
Collapse
|
36
|
Exercise-A Panacea of Metabolic Dysregulation in Cancer: Physiological and Molecular Insights. Int J Mol Sci 2021; 22:ijms22073469. [PMID: 33801684 PMCID: PMC8037630 DOI: 10.3390/ijms22073469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic dysfunction is a comorbidity of many types of cancers. Disruption of glucose metabolism is of concern, as it is associated with higher cancer recurrence rates and reduced survival. Current evidence suggests many health benefits from exercise during and after cancer treatment, yet only a limited number of studies have addressed the effect of exercise on cancer-associated disruption of metabolism. In this review, we draw on studies in cells, rodents, and humans to describe the metabolic dysfunctions observed in cancer and the tissues involved. We discuss how the known effects of acute exercise and exercise training observed in healthy subjects could have a positive outcome on mechanisms in people with cancer, namely: insulin resistance, hyperlipidemia, mitochondrial dysfunction, inflammation, and cachexia. Finally, we compile the current limited knowledge of how exercise corrects metabolic control in cancer and identify unanswered questions for future research.
Collapse
|
37
|
Isolated Leucine and Branched-Chain Amino Acid Supplementation for Enhancing Muscular Strength and Hypertrophy: A Narrative Review. Int J Sport Nutr Exerc Metab 2021; 31:292-301. [PMID: 33741748 DOI: 10.1123/ijsnem.2020-0356] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/18/2022]
Abstract
Branched-chain amino acids (BCAA) are one of the most popular sports supplements, marketed under the premise that they enhance muscular adaptations. Despite their prevalent consumption among athletes and the general public, the efficacy of BCAA has been an ongoing source of controversy in the sports nutrition field. Early support for BCAA supplementation was derived from extrapolation of mechanistic data on their role in muscle protein metabolism. Of the three BCAA, leucine has received the most attention because of its ability to stimulate the initial acute anabolic response. However, a substantial body of both acute and longitudinal research has now accumulated on the topic, affording the ability to scrutinize the effects of BCAA and leucine from a practical standpoint. This article aims to critically review the current literature and draw evidence-based conclusions about the putative benefits of BCAA or leucine supplementation on muscle strength and hypertrophy as well as illuminate gaps in the literature that warrant future study.
Collapse
|
38
|
Kassiano W, de Vasconcelos Costa BD, Nunes JP, Aguiar AF, de Salles BF, Ribeiro AS. Are We Exploring the Potential Role of Specialized Techniques in Muscle Hypertrophy? Int J Sports Med 2021; 42:494-496. [PMID: 33506444 DOI: 10.1055/a-1342-7708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Specialized resistance training techniques (e.g., drop-set, rest-pause) are commonly used by well-trained subjects for maximizing muscle hypertrophy. Most of these techniques were designed to allow a greater training volume (i.e., total repetitions×load), due to the supposition that it elicits greater muscle mass gains. However, many studies that compared the traditional resistance training configuration with specialized techniques seek to equalize the volume between groups, making it difficult to determine the inherent hypertrophic potential of these advanced strategies, as well as, this equalization restricts part of the practical extrapolation on these findings. In this scenario, the objectives of this manuscript were 1) to present the nuance of the evidence that deals with the effectiveness of these specialized resistance training techniques and - primarily - to 2) propose possible ways to explore the hypertrophic potential of such strategies with greater ecological validity without losing the methodological rigor of controlling possible intervening variables; and thus, contributing to increasing the applicability of the findings and improving the effectiveness of hypertrophy-oriented resistance training programs.
Collapse
Affiliation(s)
- Witalo Kassiano
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil
| | | | - João Pedro Nunes
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil
| | | | - Belmiro F de Salles
- Department of Physical Education, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex Silva Ribeiro
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil.,University of Northern Paraná, Londrina, PR, Brazil
| |
Collapse
|
39
|
Oxfeldt M, Dalgaard LB, Risikesan J, Johansen FT, Hansen M. Influence of Fermented Red Clover Extract on Skeletal Muscle in Early Postmenopausal Women: A Double-Blinded Cross-Over Study. Nutrients 2020; 12:E3587. [PMID: 33238442 PMCID: PMC7700192 DOI: 10.3390/nu12113587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Objective: To investigate effects of supplementation with a fermented red clover (RC) extract on signaling proteins related to muscle protein synthesis and breakdown at rest and in response to a resistance exercise bout. Methods: Ten postmenopausal women completed a double-blinded cross-over trial with two different intervention periods performed in random order: (A) RC extract twice daily for 14 days, and (B) placebo drink twice daily for 14 days. The intervention periods were separated by a two-week washout period. After each intervention period a muscle tissue sample was obtained before and three hours after a one-legged resistance exercise bout. Muscle strength was assessed before and after each intervention period. Results: Protein expression of FOXO1 and FOXO3a, two key transcription factors involved in protein degradation, were significantly lower and HSP27, a protein involved in cell protection and prevention of protein aggregation was significantly higher following RC extract compared to placebo. No significant treatment × time interaction was observed for muscle protein expression in response to exercise. However, p-mTOR, p-p70S6k and HSP90 protein content were significantly increased in response to exercise in both groups. Conclusions: This study demonstrates that RC extract supplementation downregulates molecular markers of muscle protein degradation compared to placebo in postmenopausal women.
Collapse
Affiliation(s)
- Mikkel Oxfeldt
- Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark; (M.O.); (L.B.D.); (F.T.J.)
| | - Line Barner Dalgaard
- Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark; (M.O.); (L.B.D.); (F.T.J.)
| | - Jeyanthini Risikesan
- Department of Clinical Medicine, Diabetes and Hormones Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark;
| | - Frank Ted Johansen
- Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark; (M.O.); (L.B.D.); (F.T.J.)
| | - Mette Hansen
- Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark; (M.O.); (L.B.D.); (F.T.J.)
| |
Collapse
|
40
|
Ramírez-Vélez R, Ezzatvar Y, Izquierdo M, García-Hermoso A. Effect of exercise on myosteatosis in adults: a systematic review and meta-analysis. J Appl Physiol (1985) 2020; 130:245-255. [PMID: 33180646 DOI: 10.1152/japplphysiol.00738.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Muscle tissue typically contains only small amounts of adipose tissue, and the excess deposition of adiposity is considered a pathological phenomenon termed myosteatosis. Several studies have assessed the effects of exercise alone on the severity of myosteatosis, and some studies have reported promising results. We performed a systematic review and meta-analysis to investigate the effects of exercise interventions on myosteatosis (i.e., lipid infiltration and muscle radiation attenuation). Studies were identified through a systematic search of three databases and limited to randomized controlled trials (RCTs) focused on evaluating the effect of exercise interventions on lipid infiltration and/or muscle attenuation in adults. Thirteen studies met the inclusion criteria, and 12 were included in the meta-analysis (n = 465, 84.7% women). The volume of lipid infiltration was decreased in the exercise group compared with the control group [Hedges' g = -0.45, 95% confidence interval (CI), -0.74 to -0.16; P = 0.008, I2 = 0%], and the degree of muscle radiation attenuation was increased (Hedges' g = 0.67, 95% CI, 0.22 to 1.13; P = 0.009, I2 = 59.3%). Based on meta-regression analyses, there were no significant effects of mean age at baseline (lipid infiltration, β = -0.008, 95% CI, -0.035 to 0.019; P = 0.495; muscle radiation attenuation, β = -0.013, 95% CI, -0.036 to 0.011; P = 0.248) and intervention duration (lipid infiltration, β = -0.008, 95% CI, -0.028 to 0.010; P = 0.311; muscle radiation attenuation, β = -0.018, 95% CI, -0.050 to 0.014; P = 0.230) on the effect size estimates. Overall, our findings indicate that exercise can significantly improve muscle quality in populations at risk of developing obesity and sarcopenia-related disability.NEW & NOTEWORTHY Muscle tissue typically contains only small amounts of adipose tissue, and the excess deposition of adiposity is considered a pathological phenomenon termed myosteatosis. The volume of lipid infiltration tissue was decreased in the exercise group compared with the control group, and muscle attenuation coefficient was increased. Based on the meta-regression analyses, the mean age at baseline and intervention duration did not affect the effect size estimates for lipid infiltration tissue and muscle radiation attenuation.
Collapse
Affiliation(s)
- Robinson Ramírez-Vélez
- Navarrabiomed, Universidad Pública de Navarra-Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Yasmin Ezzatvar
- Exercise Intervention for Health Research Group, Department of Physiotherapy, Universitat de València, Valencia, Spain
| | - Mikel Izquierdo
- Navarrabiomed, Universidad Pública de Navarra-Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio García-Hermoso
- Navarrabiomed, Universidad Pública de Navarra-Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Laboratorio de Ciencias de la Actividad Física, el Deporte y la Salud, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
41
|
Askow AT, McKenna CF, Box AG, Khan NA, Petruzzello SJ, De Lisio M, Phillips SM, Burd NA. Of Sound Mind and Body: Exploring the Diet-Strength Interaction in Healthy Aging. Front Nutr 2020; 7:145. [PMID: 32984401 PMCID: PMC7485317 DOI: 10.3389/fnut.2020.00145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/23/2020] [Indexed: 12/26/2022] Open
Abstract
Strength is a vital component of healthy aging. However, “strength” comes in different forms (includes both physical and mental aspects) and can look different at various phases of adult life. Healthy eating and regular exercise are clearly important pillars for strength. This paper proposes a framework that underlines the value of protein foods and resistance exercise for aging strong.
Collapse
Affiliation(s)
- Andrew T Askow
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Colleen F McKenna
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Allyson G Box
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Naiman A Khan
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Steven J Petruzzello
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Michael De Lisio
- Department of Cellular and Molecular Medicine, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
42
|
San Juan AF, Dominguez R, Lago-Rodríguez Á, Montoya JJ, Tan R, Bailey SJ. Effects of Dietary Nitrate Supplementation on Weightlifting Exercise Performance in Healthy Adults: A Systematic Review. Nutrients 2020; 12:E2227. [PMID: 32722588 PMCID: PMC7469052 DOI: 10.3390/nu12082227] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Dietary nitrate (NO3-) supplementation has been evidenced to induce an ergogenic effect in endurance and sprint-type exercise, which may be underpinned by enhanced muscle contractility and perfusion, particularly in type II muscle fibers. However, limited data are available to evaluate the ergogenic potential of NO3- supplementation during other exercise modalities that mandate type II fiber recruitment, such as weightlifting exercise (i.e., resistance exercise). In this systematic review, we examine the existing evidence basis for NO3- supplementation to improve muscular power, velocity of contraction, and muscular endurance during weightlifting exercise in healthy adults. We also discuss the potential mechanistic bases for any positive effects of NO3- supplementation on resistance exercise performance. Dialnet, Directory of Open Access Journals, Medline, Pubmed, Scielo, Scopus and SPORT Discus databases were searched for articles using the keywords: nitrate or beetroot and supplement or nut*r or diet and strength or "resistance exercise" or "resistance training" or "muscular power". Four articles fulfilling the inclusion criteria were identified. Two of the four studies indicated that NO3- supplementation could increase aspects of upper body weightlifting exercise (i.e., bench press) performance (increases in mean power/velocity of contraction/number of repetitions to failure), whereas another study observed an increase in the number of repetitions to failure during lower limb weightlifting exercise (i.e., back squat). Although these preliminary observations are encouraging, further research is required for the ergogenic potential of NO3- supplementation on weightlifting exercise performance to be determined.
Collapse
Affiliation(s)
- Alejandro F. San Juan
- Department of Health and Human Performance, Sport Biomechanics Laboratory, Facultad de Ciencias de la Actividad Física y del Deporte—INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Raul Dominguez
- Faculty of Health Science, Universidad Isabel I, 09003 Burgos, Spain;
| | | | - Juan José Montoya
- Faculty of Medicine, School of Medicine of Physical Education and Sport, Complutense University, 28040 Madrid, Spain;
| | - Rachel Tan
- Faculty of Sports Medicine, Natural Sciences Division, Pepperdine University, Malibu, CA 90263, USA;
| | - Stephen J. Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK;
| |
Collapse
|