1
|
Ceraolo G, Spoto G, Butera A, Spanò M, Vinci M, Vitello GA, Musumeci A, Calì F, Nicotera AG, Di Rosa G. New Insights Into TRMT10A Syndrome: Case Report and Literature Review. Am J Med Genet B Neuropsychiatr Genet 2024:e33015. [PMID: 39440920 DOI: 10.1002/ajmg.b.33015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
TRMT10A is related to a syndrome characterized by early-onset diabetes mellitus, microcephaly, epilepsy, and intellectual disability. We report a case of a patient showing spastic-ataxic paraparesis and Dandy-Walker variant associated with a causative homozygous c.421-1G > A variant in the TRMT10A gene, affecting a canonical splicing site. This mutation disrupts the "SAM-dependent methyltransferase TRM10-type domain", which is implicated in methylation and S-adenosylmethionine metabolic biological processes, crucial for mitochondrial and glucose metabolism. The prominent neurological involvement of our patient enhances the implication of TRMT10A in the brain development, suggesting a potential association between TRMT10A variants and dominant neurological phenotypes. This case expands the clinical spectrum of TRMT10A syndrome highlighting the importance of considering this gene in the evaluation of patients with brain/cerebellar malformations and spastic-ataxic paraparesis. Further research is warranted to elucidate the underlying pathogenic mechanisms and potential therapeutic implications.
Collapse
Affiliation(s)
- Graziana Ceraolo
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Biomedical Sciences, Dental Sciences & Morpho-Functional Imaging, University of Messina, Messina, Italy
| | - Ambra Butera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
- Unit of Child Neurology and Psychiatry, Department of Chemical, Biological, Farmaceutical & Environmental Science, University of Messina, Messina, Italy
| | - Maria Spanò
- Unit of Child Neurology and Psychiatry, Maternal-Infantile Department, University of Messina, Messina, Italy
| | | | | | | | | | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Maternal-Infantile Department, University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Biomedical Sciences, Dental Sciences & Morpho-Functional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
2
|
Samhani C, Guerci B, Larose C. Discovery of a TRMT10A mutation in a case of atypical diabetes: Case report. DIABETES & METABOLISM 2024; 50:101572. [PMID: 39243962 DOI: 10.1016/j.diabet.2024.101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
It is notable that monogenic forms of diabetes are exceedingly uncommon, with only 28 genes thus far identified. Such conditions frequently result in the dysfunction of pancreatic cells responsible for insulin production. Mutation in the TRMT10A gene leads to a rare genetic disease that is associated with endocrine and metabolic disorders, including diabetes and short stature. This article presents a review of the existing literature on the subject, describing the association between TRMT10A gene mutation and diabetes. It also presents the clinical case of a young girl with type 1 diabetes and facial dysmorphia. TRMT10A gene mutation has been linked to syndromic juvenile diabetes in a manner analogous to Wolfram's syndrome. This form of diabetes, which manifests in early childhood and is associated with microcephaly, epilepsy and intellectual disability, is caused by mutations in the gene for homolog A of tRNA methyltransferase 10 (TRMT10A). This emphasizes the importance of using a targeted panel to recognize previously unidentified monogenic diabetes among early-onset non-insulin-dependent diabetes in the absence of obesity and autoimmunity. In view of the aforementioned data, it is recommended that TRMT10A sequencing be considered in children or adults with early-onset diabetes and a history of intellectual disability, microcephaly and epilepsy.
Collapse
Affiliation(s)
- C Samhani
- Department of Endocrinology, Diabetology, and Nutrition, Brabois Adult Hospital, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - B Guerci
- Department of Endocrinology, Diabetology, and Nutrition, Brabois Adult Hospital, University of Lorraine, Vandoeuvre-lès-Nancy, France; Faculty of Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - C Larose
- Faculty of Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France; Department of Urology, University Hospital, Nancy, France.
| |
Collapse
|
3
|
Tresky R, Miyamoto Y, Nagayoshi Y, Yabuki Y, Araki K, Takahashi Y, Komohara Y, Ge H, Nishiguchi K, Fukuda T, Kaneko H, Maeda N, Matsuura J, Iwasaki S, Sakakida K, Shioda N, Wei FY, Tomizawa K, Chujo T. TRMT10A dysfunction perturbs codon translation of initiator methionine and glutamine and impairs brain functions in mice. Nucleic Acids Res 2024; 52:9230-9246. [PMID: 38950903 PMCID: PMC11347157 DOI: 10.1093/nar/gkae520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
In higher eukaryotes, tRNA methyltransferase 10A (TRMT10A) is responsible for N1-methylguanosine modification at position nine of various cytoplasmic tRNAs. Pathogenic mutations in TRMT10A cause intellectual disability, microcephaly, diabetes, and short stature in humans, and generate cytotoxic tRNA fragments in cultured cells; however, it is not clear how TRMT10A supports codon translation or brain functions. Here, we generated Trmt10a null mice and showed that tRNAGln(CUG) and initiator methionine tRNA levels were universally decreased in various tissues; the same was true in a human cell line lacking TRMT10A. Ribosome profiling of mouse brain revealed that dysfunction of TRMT10A causes ribosome slowdown at the Gln(CAG) codon and increases translation of Atf4 due to higher frequency of leaky scanning of its upstream open reading frames. Broadly speaking, translation of a subset of mRNAs, especially those for neuronal structures, is perturbed in the mutant brain. Despite not showing discernable defects in the pancreas, liver, or kidney, Trmt10a null mice showed lower body weight and smaller hippocampal postsynaptic densities, which is associated with defective synaptic plasticity and memory. Taken together, our study provides mechanistic insight into the roles of TRMT10A in the brain, and exemplifies the importance of universal tRNA modification during translation of specific codons.
Collapse
Affiliation(s)
- Roland Tresky
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuta Miyamoto
- Department of Anatomy and Neurobiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yu Nagayoshi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yukie Takahashi
- Department of Anatomy and Neurobiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Huicong Ge
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kayo Nishiguchi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hitomi Kaneko
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Nobuko Maeda
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Jin Matsuura
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Kourin Sakakida
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
4
|
Bowles IE, Jackman JE. A tRNA-specific function for tRNA methyltransferase Trm10 is associated with a new tRNA quality control mechanism in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2024; 30:171-187. [PMID: 38071471 PMCID: PMC10798241 DOI: 10.1261/rna.079861.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
In Saccharomyces cerevisiae, a single homolog of the tRNA methyltransferase Trm10 performs m1G9 modification on 13 different tRNAs. Here we provide evidence that the m1G9 modification catalyzed by S. cerevisiae Trm10 plays a biologically important role for one of these tRNA substrates, tRNATrp Overexpression of tRNATrp (and not any of 38 other elongator tRNAs) rescues growth hypersensitivity of the trm10Δ strain in the presence of the antitumor drug 5-fluorouracil (5FU). Mature tRNATrp is depleted in trm10Δ cells, and its levels are further decreased upon growth in 5FU, while another Trm10 substrate (tRNAGly) is not affected under these conditions. Thus, m1G9 in S. cerevisiae is another example of a tRNA modification that is present on multiple tRNAs but is only essential for the biological function of one of those species. In addition to the effects of m1G9 on mature tRNATrp, precursor tRNATrp species accumulate in the same strains, an effect that is due to at least two distinct mechanisms. The levels of mature tRNATrp are rescued in the trm10Δmet22Δ strain, consistent with the known role of Met22 in tRNA quality control, where deletion of met22 causes inhibition of 5'-3' exonucleases that catalyze tRNA decay. However, none of the known Met22-associated exonucleases appear to be responsible for the decay of hypomodified tRNATrp, based on the inability of mutants of each enzyme to rescue the growth of the trm10Δ strain in the presence of 5FU. Thus, the surveillance of tRNATrp appears to constitute a distinct tRNA quality control pathway in S. cerevisiae.
Collapse
Affiliation(s)
- Isobel E Bowles
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Ohio State Biochemistry Program, Columbus, Ohio 43210, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Ohio State Biochemistry Program, Columbus, Ohio 43210, USA
| |
Collapse
|
5
|
Perlegos AE, Quan X, Donnelly KM, Shen H, Shields EJ, Elashal H, Fange Liu K, Bonini NM. dTrmt10A impacts Hsp70 chaperone m 6A levels and the stress response in the Drosophila brain. Sci Rep 2023; 13:22999. [PMID: 38155219 PMCID: PMC10754819 DOI: 10.1038/s41598-023-50272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023] Open
Abstract
Chronic cellular stress has a profound impact on the brain, leading to degeneration and accelerated aging. Recent work has revealed the vital role of RNA modifications, and the proteins responsible for regulating them, in the stress response. In our study, we defined the role of CG14618/dTrmt10A, the Drosophila counterpart of human TRMT10A a N1-methylguanosine methyltransferase, on m6A regulation and heat stress resilience in the Drosophila brain. By m6A-IP RNA sequencing on Drosophila head tissue, we demonstrated that manipulating dTrmt10A levels indirectly regulates m6A levels on polyA + RNA. dTrmt10A exerted its influence on m6A levels on transcripts enriched for neuronal signaling and heat stress pathways, similar to the m6A methyltransferase Mettl3. Intriguingly, its impact primarily targeted 3' UTR m6A, setting it apart from the majority of Drosophila m6A-modified transcripts which display 5' UTR enrichment. Upregulation of dTrmt10A led to increased resilience to acute heat stress, decreased m6A modification on heat shock chaperones, and coincided with decreased decay of chaperone transcripts and increased translation of chaperone proteins. Overall, these findings establish a potential mechanism by which dTrmt10A regulates the acute brain stress response through m6A modification.
Collapse
Affiliation(s)
- Alexandra E Perlegos
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiuming Quan
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kirby M Donnelly
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hui Shen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Emily J Shields
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heidi Elashal
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nancy M Bonini
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Bowles IE, Jackman JE. Diversity in Biological Function and Mechanism of the tRNA Methyltransferase Trm10. Acc Chem Res 2023; 56:3595-3603. [PMID: 38048440 PMCID: PMC11210281 DOI: 10.1021/acs.accounts.3c00533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Transfer ribonucleic acid (tRNA) is the most highly modified RNA species in the cell, and loss of tRNA modifications can lead to growth defects in yeast as well as metabolic, neurological, and mitochondrial disorders in humans. Significant progress has been made toward identifying the enzymes that are responsible for installing diverse modifications in tRNA, revealing a landscape of fascinating biological and mechanistic diversity that remains to be fully explored. Most early discoveries of tRNA modification enzymes were in model systems, where many enzymes were not strictly required for viability, an observation somewhat at odds with the extreme conservation of many of the same enzymes throughout multiple domains of life. Moreover, many tRNA modification enzymes act on more than one type of tRNA substrate, which is not necessarily surprising given the similar overall secondary and tertiary structures of tRNA, yet biochemical characterization has revealed interesting patterns of substrate specificity that can be challenging to rationalize on a molecular level. Questions about how many enzymes efficiently select a precise set of target tRNAs from among a structurally similar pool of molecules persist.The tRNA methyltransferase Trm10 provides an exciting paradigm to study the biological and mechanistic questions surrounding tRNA modifications. Even though the enzyme was originally characterized in Saccharomyces cerevisiae where its deletion causes no detectable phenotype under standard lab conditions, several more recently identified phenotypes provide insight into the requirement for this modification in the overall quality control of the tRNA pool. Studies of Trm10 in yeast also revealed another characteristic feature that has turned out to be a conserved feature of enzymes throughout the Trm10 family tree. We were initially surprised to see that purified S. cerevisiae Trm10 was capable of modifying tRNA substrates that were not detectably modified by the enzyme in vivo in yeast. This pattern has continued to emerge as we and others have studied Trm10 orthologs from Archaea and Eukarya, with enzymes exhibiting in vitro substrate specificities that can differ significantly from in vivo patterns of modification. While this feature complicates efforts to predict substrate specificities of Trm10 enzymes in the absence of appropriate genetic systems, it also provides an exciting opportunity for studying how enzyme activities can be regulated to achieve dynamic patterns of biological tRNA modification, which have been shown to be increasingly important for stress responses and human disease. Finally, the intriguing diversity in target nucleotide modification that has been revealed among Trm10 orthologs is distinctive among known tRNA modifying enzymes and necessitates unusual and likely novel catalytic strategies for methylation that are being revealed by biochemical and structural studies directed toward various family members. These efforts will no doubt yield more surprising discoveries in terms of tRNA modification enzymology.
Collapse
Affiliation(s)
- Isobel E. Bowles
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Jane E. Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
7
|
Strassler SE, Bowles IE, Krishnamohan A, Kim H, Edgington CB, Kuiper EG, Hancock CJ, Comstock LR, Jackman JE, Conn GL. tRNA m 1G9 modification depends on substrate-specific RNA conformational changes induced by the methyltransferase Trm10. J Biol Chem 2023; 299:105443. [PMID: 37949221 PMCID: PMC10704376 DOI: 10.1016/j.jbc.2023.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
The methyltransferase Trm10 modifies a subset of tRNAs on the base N1 position of the ninth nucleotide in the tRNA core. Trm10 is conserved throughout Eukarya and Archaea, and mutations in the human gene (TRMT10A) have been linked to neurological disorders such as microcephaly and intellectual disability, as well as defects in glucose metabolism. Of the 26 tRNAs in yeast with guanosine at position 9, only 13 are substrates for Trm10. However, no common sequence or other posttranscriptional modifications have been identified among these substrates, suggesting the presence of some other tRNA feature(s) that allow Trm10 to distinguish substrate from nonsubstrate tRNAs. Here, we show that substrate recognition by Saccharomyces cerevisiae Trm10 is dependent on both intrinsic tRNA flexibility and the ability of the enzyme to induce specific tRNA conformational changes upon binding. Using the sensitive RNA structure-probing method SHAPE, conformational changes upon binding to Trm10 in tRNA substrates, but not nonsubstrates, were identified and mapped onto a model of Trm10-bound tRNA. These changes may play an important role in substrate recognition by allowing Trm10 to gain access to the target nucleotide. Our results highlight a novel mechanism of substrate recognition by a conserved tRNA modifying enzyme. Further, these studies reveal a strategy for substrate recognition that may be broadly employed by tRNA-modifying enzymes which must distinguish between structurally similar tRNA species.
Collapse
Affiliation(s)
- Sarah E Strassler
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Isobel E Bowles
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - Aiswarya Krishnamohan
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - Hyejeong Kim
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Catherine B Edgington
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Emily G Kuiper
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Clio J Hancock
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lindsay R Comstock
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA.
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
8
|
Strassler SE, Bowles IE, Krishnamohan A, Kim H, Edgington CB, Kuiper EG, Hancock CJ, Comstock LR, Jackman JE, Conn GL. tRNA m 1G9 modification depends on substrate-specific RNA conformational changes induced by the methyltransferase Trm10. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526536. [PMID: 36778341 PMCID: PMC9915607 DOI: 10.1101/2023.02.01.526536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The methyltransferase Trm10 modifies a subset of tRNAs on the base N1 position of the 9th nucleotide in the tRNA core. Trm10 is conserved throughout Eukarya and Archaea, and mutations in the human gene (TRMT10A) have been linked to neurological disorders such as microcephaly and intellectual disability, as well as defects in glucose metabolism. Of the 26 tRNAs in yeast with guanosine at position 9, only 14 are substrates for Trm10. However, no common sequence or other posttranscriptional modifications have been identified among these substrates, suggesting the presence of some other tRNA feature(s) which allow Trm10 to distinguish substrate from nonsubstrate tRNAs. Here, we show that substrate recognition by Saccharomyces cerevisiae Trm10 is dependent on both intrinsic tRNA flexibility and the ability of the enzyme to induce specific tRNA conformational changes upon binding. Using the sensitive RNA structure-probing method SHAPE, conformational changes upon binding to Trm10 in tRNA substrates, but not nonsubstrates, were identified and mapped onto a model of Trm10-bound tRNA. These changes may play an important role in substrate recognition by allowing Trm10 to gain access to the target nucleotide. Our results highlight a novel mechanism of substrate recognition by a conserved tRNA modifying enzyme. Further, these studies reveal a strategy for substrate recognition that may be broadly employed by tRNA-modifying enzymes which must distinguish between structurally similar tRNA species.
Collapse
Affiliation(s)
- Sarah E. Strassler
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta GA, 30322, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University
| | - Isobel E. Bowles
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12 Avenue, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, 484 W. 12 Avenue, Columbus, OH, 43210, USA
| | - Aiswarya Krishnamohan
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12 Avenue, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, 484 W. 12 Avenue, Columbus, OH, 43210, USA
| | - Hyejeong Kim
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12 Avenue, Columbus, OH, 43210, USA
| | - Catherine B. Edgington
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12 Avenue, Columbus, OH, 43210, USA
| | - Emily G. Kuiper
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta GA, 30322, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University
| | - Clio J. Hancock
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta GA, 30322, USA
| | - Lindsay R. Comstock
- Department of Chemistry, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27106, USA
| | - Jane E. Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, 484 W. 12 Avenue, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, 484 W. 12 Avenue, Columbus, OH, 43210, USA
| | - Graeme L. Conn
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta GA, 30322, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University
| |
Collapse
|
9
|
Şıklar Z, Kontbay T, Colclough K, Patel KA, Berberoğlu M. Expanding the Phenotype of TRMT10A Mutations: Case Report and a Review of the Existing Cases. J Clin Res Pediatr Endocrinol 2023; 15:90-96. [PMID: 34541035 PMCID: PMC9976169 DOI: 10.4274/jcrpe.galenos.2021.2021.0110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The tRNA methyltransferase 10 homologue A (TRMT10A) gene encodes tRNA methyl transferase, and biallelic loss of function mutations cause a recessive syndrome of intellectual disability, microcephaly, short stature and diabetes. A case with intellectual disability and distinctive features including microcephaly was admitted. She was diagnosed with epilepsy at 2.5 years old. At 3.6 years of age, severe short stature related to growth hormone (GH) deficiency was detected. She had an incidental diagnosis of diabetes at age 11.4 years which was negative for diabetes antibodies with persistent C-peptide level and she was treated with metformin. Spontaneous puberty did not begin until 15.7 years of age and she was found to have primary ovarian failure. A homozygous p.Arg127* mutation in TRMT10A was detected. In addition to the typical clinical features which characterize TRMT10A syndrome, we observed an unusual form of impaired glucose metabolism which presented in early childhood with hypoglycemia followed by diabetes in late childhood. GH deficiency and primary ovarian failure may also be additional findings of this syndrome. Patients with slow onset diabetes who are negative for auto-antibodies and have extra-pancreatic features should be tested for all known subtypes of monogenic diabetes.
Collapse
Affiliation(s)
- Zeynep Şıklar
- Ankara University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey,* Address for Correspondence: Ankara University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey Phone: +90 505 342 21 69 E-mail:
| | - Tuğba Kontbay
- Ankara University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon and Exeter Hospital, Exeter, UK
| | - Kashyap A. Patel
- University of Exeter, College of Medicine and Health, Exeter, UK
| | - Merih Berberoğlu
- Ankara University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| |
Collapse
|
10
|
Boughanem H, Böttcher Y, Tomé-Carneiro J, López de Las Hazas MC, Dávalos A, Cayir A, Macias-González M. The emergent role of mitochondrial RNA modifications in metabolic alterations. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1753. [PMID: 35872632 DOI: 10.1002/wrna.1753] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 11/11/2022]
Abstract
Mitochondrial epitranscriptomics refers to the modifications occurring in all the different RNA types of mitochondria. Although the number of mitochondrial RNA modifications is less than those in cytoplasm, substantial evidence indicates that they play a critical role in accurate protein synthesis. Recent evidence supported those modifications in mitochondrial RNAs also have crucial implications in mitochondrial-related diseases. In the light of current knowledge about the involvement, the association between mitochondrial RNA modifications and diseases arises from studies focusing on mutations in both mitochondrial and nuclear DNA genes encoding enzymes involved in such modifications. Here, we review the current evidence available for mitochondrial RNA modifications and their role in metabolic disorders, and we also explore the possibility of using them as promising targets for prevention and early detection. Finally, we discuss future directions of mitochondrial epitranscriptomics in these metabolic alterations, and how these RNA modifications may offer a new diagnostic and theragnostic avenue for preventive purposes. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Hatim Boughanem
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria and University of Málaga, Spain.,Instituto de Salud Carlos III (ISCIII), Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Madrid, Spain
| | - Yvonne Böttcher
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway.,Akershus Universitetssykehus, Medical Department, Lørenskog, Norway
| | - João Tomé-Carneiro
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
| | - María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
| | - Akin Cayir
- Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey.,Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus Universitetssykehus, Lørenskog, Norway
| | - Manuel Macias-González
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria and University of Málaga, Spain.,Instituto de Salud Carlos III (ISCIII), Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Madrid, Spain
| |
Collapse
|
11
|
Stern E, Vivante A, Barel O, Levy-Shraga Y. TRMT10A Mutation in a Child with Diabetes, Short Stature, Microcephaly and Hypoplastic Kidneys. J Clin Res Pediatr Endocrinol 2022; 14:227-232. [PMID: 33448213 PMCID: PMC9176091 DOI: 10.4274/jcrpe.galenos.2020.2020.0265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A new syndrome of diabetes, short stature, microcephaly and intellectual disability has been described in association with mutations in the tRNA methyltransferase 10 homologue A (TRMT10A) gene. We report a patient who presented with fasting hyperglycemia, a raised hemoglobin A1c and positive islet cell autoantibodies. Additional clinical features included intellectual disability, hypoplastic kidneys and short stature. In view of the syndromic features coexistant with diabetes, genetic evaluation was carried out, revealing a homozygous mutation in the TRMT10A gene (c.616G>A, p.G206R). The case highlights the importance of genetic evaluation of patients with diabetes with atypical features that can further progress our understanding of the pathophysiology of the rarer subtypes of diabetes.
Collapse
Affiliation(s)
- Eve Stern
- The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Unit of Pediatric Endocrinology and Diabetes, Tel-Hashomer; Tel-Aviv University, The Sackler Faculty of Medicine, Tel-Aviv, Israel
| | - Asaf Vivante
- The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Department of Pediatrics B and Pediatric Nephrology, Tel-Hashomer; Tel- Aviv University, The Sackler Faculty of Medicine, Tel-Aviv, Israel
| | - Ortal Barel
- Sheba Cancer Research Center, The Genomic Unit, Tel-Hashomer; Tel-Aviv University, The Sackler Faculty of Medicine, Tel-Aviv, Israel
| | - Yael Levy-Shraga
- The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Unit of Pediatric Endocrinology and Diabetes, Tel-Hashomer; Tel-Aviv University, The Sackler Faculty of Medicine, Tel-Aviv, Israel,* Address for Correspondence: The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Unit of Pediatric Endocrinology and Diabetes, Tel-Hashomer; Tel-Aviv University, The Sackler Faculty of Medicine, Tel-Aviv, Israel Phone: +972-3-5305015 E-mail:
| |
Collapse
|
12
|
Yahaya TO, Anyebe DA. Genes predisposing to neonatal diabetes mellitus and pathophysiology: Current findings. J Neonatal Perinatal Med 2021; 13:543-553. [PMID: 32333556 DOI: 10.3233/npm-190353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Precision medicine, described as a therapeutic procedure in which complex diseases are treated based on the causal gene and pathophysiology, is being considered for diabetes mellitus (DM). To this end, several monogenetic mutations in the beta cells have been linked with neonatal diabetes mellitus (NDM), however, the list of suspect genes is expansive, necessitating an update. This study, therefore, provides an update on NDM candidate genes and pathophysiology. RESULTS Reputable online academic databases were searched for relevant information, which led to the identification of 43 genes whose mutations are linked to the condition. Of the linked genes, mutations in the KCNJ11, ABCC8, and INS genes as well as the genes on 6q24 chromosomal region are the most frequently implicated. Mutations in these genes can cause pancreatic agenesis and developmental errors, resulting in NDM in the first six to twelve months of birth. The clinical presentations of NDM include frequent urination, rapid breathing, and dehydration, among others. CONCLUSIONS Monogenetic mutations in the beta cells may cause NDM with distinct pathophysiology from other DM. Treatment options that target NDM candidate genes and pathophysiology may lead to an improved treatment compared with the present generalized treatment for all forms of DM.
Collapse
Affiliation(s)
- T O Yahaya
- Department of Biology, Federal University Birnin Kebbi, Nigeria
| | - D A Anyebe
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Nigeria
| |
Collapse
|
13
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
14
|
tRNA Biology in the Pathogenesis of Diabetes: Role of Genetic and Environmental Factors. Int J Mol Sci 2021; 22:ijms22020496. [PMID: 33419045 PMCID: PMC7825315 DOI: 10.3390/ijms22020496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
The global rise in type 2 diabetes results from a combination of genetic predisposition with environmental assaults that negatively affect insulin action in peripheral tissues and impair pancreatic β-cell function and survival. Nongenetic heritability of metabolic traits may be an important contributor to the diabetes epidemic. Transfer RNAs (tRNAs) are noncoding RNA molecules that play a crucial role in protein synthesis. tRNAs also have noncanonical functions through which they control a variety of biological processes. Genetic and environmental effects on tRNAs have emerged as novel contributors to the pathogenesis of diabetes. Indeed, altered tRNA aminoacylation, modification, and fragmentation are associated with β-cell failure, obesity, and insulin resistance. Moreover, diet-induced tRNA fragments have been linked with intergenerational inheritance of metabolic traits. Here, we provide a comprehensive review of how perturbations in tRNA biology play a role in the pathogenesis of monogenic and type 2 diabetes.
Collapse
|
15
|
Lin H, Zhou X, Chen X, Huang K, Wu W, Fu J, Li Y, Polychronakos C, Dong GP. tRNA methyltransferase 10 homologue A ( TRMT10A) mutation in a Chinese patient with diabetes, insulin resistance, intellectual deficiency and microcephaly. BMJ Open Diabetes Res Care 2020; 8:8/1/e001601. [PMID: 33067246 PMCID: PMC7569974 DOI: 10.1136/bmjdrc-2020-001601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Loss-of-function mutations in tRNA methyltransferase 10 homologue A (TRMT10A), a tRNA methyltransferase, have recently been described as a monogenic cause of early-onset diabetes with microcephaly, epilepsy and intellectual disability. RESEARCH DESIGN AND METHODS We report a Chinese young patient who was diagnosed with diabetes mellitus as a result of a TRMT10A mutation. RESULTS A homozygous mutation c.496-1G>A in TRMT10A was identified using targeted next-generation sequencing and confirmed by PCR/Sanger sequencing. In addition to being diagnosed with diabetes, the patient also has microcephaly and intellectual deficiency. The diabetes was due to marked insulin resistance and responded very well to metformin treatment. CONCLUSION Our case is the first report in the Asian population. It adds to current knowledge of TRMT10A related with young-onset non-insulin-dependent diabetes and confirms the a single previous report of insulin resistance in this syndrome. Genomic testing should be considered in children with non-insulin-dependent diabetes with intellectual disability and microcephaly. A clear genetic diagnosis is helpful for early detection and treatment addressing insulin resistance.
Collapse
Affiliation(s)
- Hu Lin
- Department of Endocrinology, The Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang Province, China
| | - Xuelian Zhou
- Department of Endocrinology, The Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang Province, China
| | - Xuefeng Chen
- Department of Endocrinology, The Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang Province, China
| | - Ke Huang
- Department of Endocrinology, The Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang Province, China
| | - Wei Wu
- Department of Endocrinology, The Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang Province, China
| | - Junfen Fu
- Department of Endocrinology, The Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang Province, China
| | - Yangxi Li
- The Endocrine Genetics Laboratory, Department of Pediatrics, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Constantin Polychronakos
- The Endocrine Genetics Laboratory, Department of Pediatrics, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Guan-Ping Dong
- Department of Endocrinology, The Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang Province, China
| |
Collapse
|
16
|
Vilardo E, Amman F, Toth U, Kotter A, Helm M, Rossmanith W. Functional characterization of the human tRNA methyltransferases TRMT10A and TRMT10B. Nucleic Acids Res 2020; 48:6157-6169. [PMID: 32392304 PMCID: PMC7293042 DOI: 10.1093/nar/gkaa353] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 01/07/2023] Open
Abstract
The TRM10 family of methyltransferases is responsible for the N1-methylation of purines at position 9 of tRNAs in Archaea and Eukarya. The human genome encodes three TRM10-type enzymes, of which only the mitochondrial TRMT10C was previously characterized in detail, whereas the functional significance of the two presumably nuclear enzymes TRMT10A and TRMT10B remained unexplained. Here we show that TRMT10A is m1G9-specific and methylates a subset of nuclear-encoded tRNAs, whilst TRMT10B is the first m1A9-specific tRNA methyltransferase found in eukaryotes and is responsible for the modification of a single nuclear-encoded tRNA. Furthermore, we show that the lack of G9 methylation causes a decrease in the steady-state levels of the initiator tRNAiMet-CAT and an alteration in its further post-transcriptional modification. Our work finally clarifies the function of TRMT10A and TRMT10B in vivo and provides evidence that the loss of TRMT10A affects the pool of cytosolic tRNAs required for protein synthesis.
Collapse
Affiliation(s)
- Elisa Vilardo
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Fabian Amman
- Department of Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Ursula Toth
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Annika Kotter
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Mark Helm
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
17
|
Abstract
The posttranscriptional modification of messenger RNA (mRNA) and transfer RNA (tRNA) provides an additional layer of regulatory complexity during gene expression. Here, we show that a tRNA methyltransferase, TRMT10A, interacts with an mRNA demethylase FTO (ALKBH9), both in vitro and inside cells. TRMT10A installs N 1-methylguanosine (m1G) in tRNA, and FTO performs demethylation on N 6-methyladenosine (m6A) and N 6,2'-O-dimethyladenosine (m6Am) in mRNA. We show that TRMT10A ablation not only leads to decreased m1G in tRNA but also significantly increases m6A levels in mRNA. Cross-linking and immunoprecipitation, followed by high-throughput sequencing results show that TRMT10A shares a significant overlap of associated mRNAs with FTO, and these mRNAs have accelerated decay rates potentially through the regulation by a specific m6A reader, YTHDF2. Furthermore, transcripts with increased m6A upon TRMT10A ablation contain an overrepresentation of m1G9-containing tRNAs codons read by tRNAGln(TTG), tRNAArg(CCG), and tRNAThr(CGT) These findings collectively reveal the presence of coordinated mRNA and tRNA methylations and demonstrate a mechanism for regulating gene expression through the interactions between mRNA and tRNA modifying enzymes.
Collapse
|
18
|
Zhang K, Lentini JM, Prevost CT, Hashem MO, Alkuraya FS, Fu D. An intellectual disability-associated missense variant in TRMT1 impairs tRNA modification and reconstitution of enzymatic activity. Hum Mutat 2020; 41:600-607. [PMID: 31898845 DOI: 10.1002/humu.23976] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/22/2019] [Accepted: 12/24/2019] [Indexed: 12/27/2022]
Abstract
The human TRMT1 gene encodes an RNA methyltransferase enzyme responsible for catalyzing dimethylguanosine (m2,2G) formation in transfer RNAs (tRNAs). Frameshift mutations in TRMT1 have been shown to cause autosomal-recessive intellectual disability (ID) in the human population but additional TRMT1 variants remain to be characterized. Here, we describe a homozygous TRMT1 missense variant in a patient displaying developmental delay, ID, and epilepsy. The missense variant changes an arginine residue to a cysteine (R323C) within the methyltransferase domain and is expected to perturb protein folding. Patient cells expressing TRMT1-R323C exhibit a deficiency in m2,2G modifications within tRNAs, indicating that the mutation causes loss of function. Notably, the TRMT1 R323C mutant retains tRNA binding but is unable to rescue m2,2G formation in TRMT1-deficient human cells. Our results identify a pathogenic point mutation in TRMT1 that perturbs tRNA modification activity and demonstrate that m2,2G modifications are disrupted in the cells of patients with TRMT1-associated ID disorders.
Collapse
Affiliation(s)
- Kejia Zhang
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York
| | - Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York
| | - Christopher T Prevost
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York
| | - Mais O Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York
| |
Collapse
|
19
|
Fassio A, Esposito A, Kato M, Saitsu H, Mei D, Marini C, Conti V, Nakashima M, Okamoto N, Olmez Turker A, Albuz B, Semerci Gündüz CN, Yanagihara K, Belmonte E, Maragliano L, Ramsey K, Balak C, Siniard A, Narayanan V, Ohba C, Shiina M, Ogata K, Matsumoto N, Benfenati F, Guerrini R. De novo mutations of the ATP6V1A gene cause developmental encephalopathy with epilepsy. Brain 2019; 141:1703-1718. [PMID: 29668857 PMCID: PMC5972584 DOI: 10.1093/brain/awy092] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/10/2018] [Indexed: 12/30/2022] Open
Abstract
V-type proton (H+) ATPase (v-ATPase) is a multi-subunit proton pump that regulates pH homeostasis in all eukaryotic cells; in neurons, v-ATPase plays additional and unique roles in synapse function. Through whole exome sequencing, we identified de novo heterozygous mutations (p.Pro27Arg, p.Asp100Tyr, p.Asp349Asn, p.Asp371Gly) in ATP6V1A, encoding the A subunit of v-ATPase, in four patients with developmental encephalopathy with epilepsy. Early manifestations, observed in all patients, were developmental delay and febrile seizures, evolving to encephalopathy with profound delay, hypotonic/dyskinetic quadriparesis and intractable multiple seizure types in two patients (p.Pro27Arg, p.Asp100Tyr), and to moderate delay with milder epilepsy in the other two (p.Asp349Asn, p.Asp371Gly). Modelling performed on the available prokaryotic and eukaryotic structures of v-ATPase predicted p.Pro27Arg to perturb subunit interaction, p.Asp100Tyr to cause steric hindrance and destabilize protein folding, p.Asp349Asn to affect the catalytic function and p.Asp371Gly to impair the rotation process, necessary for proton transport. We addressed the impact of p.Asp349Asn and p.Asp100Tyr mutations on ATP6V1A expression and function by analysing ATP6V1A-overexpressing HEK293T cells and patients’ lymphoblasts. The p.Asp100Tyr mutant was characterized by reduced expression due to increased degradation. Conversely, no decrease in expression and clearance was observed for p.Asp349Asn. In HEK293T cells overexpressing either pathogenic or control variants, p.Asp349Asn significantly increased LysoTracker® fluorescence with no effects on EEA1 and LAMP1 expression. Conversely, p.Asp100Tyr decreased both LysoTracker® fluorescence and LAMP1 levels, leaving EEA1 expression unaffected. Both mutations decreased v-ATPase recruitment to autophagosomes, with no major impact on autophagy. Experiments performed on patients’ lymphoblasts using the LysoSensor™ probe revealed lower pH of endocytic organelles for p.Asp349Asn and a reduced expression of LAMP1 with no effect on the pH for p.Asp100Tyr. These data demonstrate gain of function for p.Asp349Asn characterized by an increased proton pumping in intracellular organelles, and loss of function for p.Asp100Tyr with decreased expression of ATP6V1A and reduced levels of lysosomal markers. We expressed p.Asp349Asn and p.Asp100Tyr in rat hippocampal neurons and confirmed significant and opposite effects in lysosomal labelling. However, both mutations caused a similar defect in neurite elongation accompanied by loss of excitatory inputs, revealing that altered lysosomal homeostasis markedly affects neurite development and synaptic connectivity. This study provides evidence that de novo heterozygous ATP6V1A mutations cause a developmental encephalopathy with a pathomechanism that involves perturbations of lysosomal homeostasis and neuronal connectivity, uncovering a novel role for v-ATPase in neuronal development.
Collapse
Affiliation(s)
- Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Alessandro Esposito
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Mitsuhiro Kato
- Department of Paediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Davide Mei
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Carla Marini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Valerio Conti
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | | | - Burcu Albuz
- Department of Medical Genetics, Pamukkale University Hospital, Denizli, Turkey
| | | | - Keiko Yanagihara
- Department of Paediatric Neurology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Elisa Belmonte
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Luca Maragliano
- Center of Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Keri Ramsey
- Center for Rare Childhood Disorders and Neurogenomics Division Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Chris Balak
- Center for Rare Childhood Disorders and Neurogenomics Division Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Ashley Siniard
- Center for Rare Childhood Disorders and Neurogenomics Division Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders and Neurogenomics Division Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | | | - Chihiro Ohba
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masaaki Shiina
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center of Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy.,IRCCS Fondazione Stella Maris, Pisa, Italy
| |
Collapse
|
20
|
Cosentino C, Cnop M, Igoillo-Esteve M. The tRNA Epitranscriptome and Diabetes: Emergence of tRNA Hypomodifications as a Cause of Pancreatic β-Cell Failure. Endocrinology 2019; 160:1262-1274. [PMID: 30907926 DOI: 10.1210/en.2019-00098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/15/2019] [Indexed: 01/26/2023]
Abstract
tRNAs are crucial noncoding RNA molecules that serve as amino acid carriers during protein synthesis. The transcription of tRNA genes is a highly regulated process. The tRNA pool is tissue and cell specific, it varies during development, and it is modulated by the environment. tRNAs are highly posttranscriptionally modified by specific tRNA-modifying enzymes. The tRNA modification signature of a cell determines the tRNA epitranscriptome. Perturbations in the tRNA epitranscriptome, as a consequence of mutations in tRNAs and tRNA-modifying enzymes or environmental exposure, have been associated with human disease, including diabetes. tRNA fragmentation induced by impaired tRNA modifications or dietary factors has been linked to pancreatic β-cell demise and paternal inheritance of metabolic traits. Herein, we review recent findings that associate tRNA epitranscriptome perturbations with diabetes.
Collapse
Affiliation(s)
- Cristina Cosentino
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
21
|
Zhou Z, Sun B, Huang S, Jia W, Yu D. The tRNA-associated dysregulation in diabetes mellitus. Metabolism 2019; 94:9-17. [PMID: 30711570 DOI: 10.1016/j.metabol.2019.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus (DM) is a complex endocrine and metabolic disorder for human health and well-being. Deregulated glucose and lipid metabolism are the primary underlying manifestations associated with this disease. Transfer RNAs (tRNAs) are considered to mainly participate in protein translation and may contribute to complex human pathologies. Although the molecular mechanisms remain, for the most part, unknown, accumulating evidence indicates that tRNAs play a vital role in the pathogenesis of DM. This paper reviews different aspects of tRNA-associated dysregulation in DM, such as tRNA mutations, tRNA modifications, tRNA aminoacylation and tRNA derivatives, aiming at a better understanding of the pathogenesis of DM and providing new ideas for the personalized treatment of this metabolism-associated disease.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Bao Sun
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410000, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410000, China
| | - Shiqiong Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410000, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410000, China
| | - Wenrui Jia
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Dongsheng Yu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
22
|
de Crécy-Lagard V, Boccaletto P, Mangleburg CG, Sharma P, Lowe TM, Leidel SA, Bujnicki JM. Matching tRNA modifications in humans to their known and predicted enzymes. Nucleic Acids Res 2019; 47:2143-2159. [PMID: 30698754 PMCID: PMC6412123 DOI: 10.1093/nar/gkz011] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/28/2018] [Accepted: 01/10/2019] [Indexed: 12/25/2022] Open
Abstract
tRNA are post-transcriptionally modified by chemical modifications that affect all aspects of tRNA biology. An increasing number of mutations underlying human genetic diseases map to genes encoding for tRNA modification enzymes. However, our knowledge on human tRNA-modification genes remains fragmentary and the most comprehensive RNA modification database currently contains information on approximately 20% of human cytosolic tRNAs, primarily based on biochemical studies. Recent high-throughput methods such as DM-tRNA-seq now allow annotation of a majority of tRNAs for six specific base modifications. Furthermore, we identified large gaps in knowledge when we predicted all cytosolic and mitochondrial human tRNA modification genes. Only 48% of the candidate cytosolic tRNA modification enzymes have been experimentally validated in mammals (either directly or in a heterologous system). Approximately 23% of the modification genes (cytosolic and mitochondrial combined) remain unknown. We discuss these 'unidentified enzymes' cases in detail and propose candidates whenever possible. Finally, tissue-specific expression analysis shows that modification genes are highly expressed in proliferative tissues like testis and transformed cells, but scarcely in differentiated tissues, with the exception of the cerebellum. Our work provides a comprehensive up to date compilation of human tRNA modifications and their enzymes that can be used as a resource for further studies.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
- Cancer and Genetic Institute, University of Florida, Gainesville, FL 32611, USA
| | - Pietro Boccaletto
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Carl G Mangleburg
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Puneet Sharma
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Todd M Lowe
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
- Research Group for RNA Biochemistry, Institute of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
23
|
The emerging impact of tRNA modifications in the brain and nervous system. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:412-428. [PMID: 30529455 DOI: 10.1016/j.bbagrm.2018.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 01/19/2023]
Abstract
A remarkable number of neurodevelopmental disorders have been linked to defects in tRNA modifications. These discoveries place tRNA modifications in the spotlight as critical modulators of gene expression pathways that are required for proper organismal growth and development. Here, we discuss the emerging molecular and cellular functions of the diverse tRNA modifications linked to cognitive and neurological disorders. In particular, we describe how the structure and location of a tRNA modification influences tRNA folding, stability, and function. We then highlight how modifications in tRNA can impact multiple aspects of protein translation that are instrumental for maintaining proper cellular proteostasis. Importantly, we describe how perturbations in tRNA modification lead to a spectrum of deleterious biological outcomes that can disturb neurodevelopment and neurological function. Finally, we summarize the biological themes shared by the different tRNA modifications linked to cognitive disorders and offer insight into the future questions that remain to decipher the role of tRNA modifications. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert.
Collapse
|
24
|
Impact of tRNA Modifications and tRNA-Modifying Enzymes on Proteostasis and Human Disease. Int J Mol Sci 2018; 19:ijms19123738. [PMID: 30477220 PMCID: PMC6321623 DOI: 10.3390/ijms19123738] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Transfer RNAs (tRNAs) are key players of protein synthesis, as they decode the genetic information organized in mRNA codons, translating them into the code of 20 amino acids. To be fully active, tRNAs undergo extensive post-transcriptional modifications, catalyzed by different tRNA-modifying enzymes. Lack of these modifications increases the level of missense errors and affects codon decoding rate, contributing to protein aggregation with deleterious consequences to the cell. Recent works show that tRNA hypomodification and tRNA-modifying-enzyme deregulation occur in several diseases where proteostasis is affected, namely, neurodegenerative and metabolic diseases. In this review, we discuss the recent findings that correlate aberrant tRNA modification with proteostasis imbalances, in particular in neurological and metabolic disorders, and highlight the association between tRNAs, their modifying enzymes, translational decoding, and disease onset.
Collapse
|
25
|
Cosentino C, Toivonen S, Diaz Villamil E, Atta M, Ravanat JL, Demine S, Schiavo A, Pachera N, Deglasse JP, Jonas JC, Balboa D, Otonkoski T, Pearson ER, Marchetti P, Eizirik DL, Cnop M, Igoillo-Esteve M. Pancreatic β-cell tRNA hypomethylation and fragmentation link TRMT10A deficiency with diabetes. Nucleic Acids Res 2018; 46:10302-10318. [PMID: 30247717 PMCID: PMC6212784 DOI: 10.1093/nar/gky839] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/17/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
Transfer RNAs (tRNAs) are non-coding RNA molecules essential for protein synthesis. Post-transcriptionally they are heavily modified to improve their function, folding and stability. Intronic polymorphisms in CDKAL1, a tRNA methylthiotransferase, are associated with increased type 2 diabetes risk. Loss-of-function mutations in TRMT10A, a tRNA methyltransferase, are a monogenic cause of early onset diabetes and microcephaly. Here we confirm the role of TRMT10A as a guanosine 9 tRNA methyltransferase, and identify tRNAGln and tRNAiMeth as two of its targets. Using RNA interference and induced pluripotent stem cell-derived pancreatic β-like cells from healthy controls and TRMT10A-deficient patients we demonstrate that TRMT10A deficiency induces oxidative stress and triggers the intrinsic pathway of apoptosis in β-cells. We show that tRNA guanosine 9 hypomethylation leads to tRNAGln fragmentation and that 5'-tRNAGln fragments mediate TRMT10A deficiency-induced β-cell death. This study unmasks tRNA hypomethylation and fragmentation as a hitherto unknown mechanism of pancreatic β-cell demise relevant to monogenic and polygenic forms of diabetes.
Collapse
Affiliation(s)
- Cristina Cosentino
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Sanna Toivonen
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Esteban Diaz Villamil
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Mohamed Atta
- CEA/Grenoble, DRF/BIG/LCBM UMR5249, Grenoble, France
| | - Jean-Luc Ravanat
- Université Grenoble Alpes, CEA, CNRS INAC, SyMMES UMR 5819, Grenoble, France
| | - Stéphane Demine
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Andrea Alex Schiavo
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Nathalie Pachera
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Jean-Philippe Deglasse
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d’ Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Jean-Christophe Jonas
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d’ Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Diego Balboa
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ewan R Pearson
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, Ninewells Hospital and Medical School, Dundee, UK
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | |
Collapse
|
26
|
Wei FY, Tomizawa K. tRNA modifications and islet function. Diabetes Obes Metab 2018; 20 Suppl 2:20-27. [PMID: 30230180 DOI: 10.1111/dom.13405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/26/2022]
Abstract
Efficient and accurate protein translation is essential to producing insulin in pancreatic β-cells. Transfer RNA (tRNA) is known as the key component of the protein translational machinery. Interestingly, tRNA contains a wide variety of chemical modifications, which are posttranscriptionally catalysed by tRNA modifying enzymes. Recent advances in genome-sequencing technology have unveiled a number of genetic variations that are associated with the development of type 2 diabetes (T2D). Some of these mutations are located in the genes of tRNA modifying enzymes. Using cellular and animal models, it has been showed that dysregulation of tRNA modification impairs protein translation in pancreatic β-cells and leads to aberrant insulin production. In this review, we discuss the recent findings in the molecular functions of tRNA modifications and their involvement in the development of T2D.
Collapse
Affiliation(s)
- Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
27
|
Krishnamohan A, Jackman JE. Mechanistic features of the atypical tRNA m1G9 SPOUT methyltransferase, Trm10. Nucleic Acids Res 2017; 45:9019-9029. [PMID: 28911116 PMCID: PMC5587797 DOI: 10.1093/nar/gkx620] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/06/2017] [Indexed: 11/13/2022] Open
Abstract
The tRNA m1G9 methyltransferase (Trm10) is a member of the SpoU-TrmD (SPOUT) superfamily of methyltransferases, and Trm10 homologs are widely conserved throughout Eukarya and Archaea. Despite possessing the trefoil knot characteristic of SPOUT enzymes, Trm10 does not share the same quaternary structure or key sequences with other members of the SPOUT family, suggesting a novel mechanism of catalysis. To investigate the mechanism of m1G9 methylation by Trm10, we performed a biochemical and kinetic analysis of Trm10 and variants with alterations in highly conserved residues, using crystal structures solved in the absence of tRNA as a guide. Here we demonstrate that a previously proposed general base residue (D210 in Saccharomyces cerevisiae Trm10) is not likely to play this suggested role in the chemistry of methylation. Instead, pH-rate analysis suggests that D210 and other conserved carboxylate-containing residues at the active site collaborate to establish an active site environment that promotes a single ionization that is required for catalysis. Moreover, Trm10 does not depend on a catalytic metal ion, further distinguishing it from the other known SPOUT m1G methyltransferase, TrmD. These results provide evidence for a non-canonical tRNA methyltransferase mechanism that characterizes the Trm10 enzyme family.
Collapse
Affiliation(s)
- Aiswarya Krishnamohan
- The Ohio State Biochemistry Program, Center for RNA Biology, and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Jane E Jackman
- The Ohio State Biochemistry Program, Center for RNA Biology, and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Maraia RJ, Arimbasseri AG. Factors That Shape Eukaryotic tRNAomes: Processing, Modification and Anticodon-Codon Use. Biomolecules 2017; 7:biom7010026. [PMID: 28282871 PMCID: PMC5372738 DOI: 10.3390/biom7010026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/24/2017] [Indexed: 01/24/2023] Open
Abstract
Transfer RNAs (tRNAs) contain sequence diversity beyond their anticodons and the large variety of nucleotide modifications found in all kingdoms of life. Some modifications stabilize structure and fit in the ribosome whereas those to the anticodon loop modulate messenger RNA (mRNA) decoding activity more directly. The identities of tRNAs with some universal anticodon loop modifications vary among distant and parallel species, likely to accommodate fine tuning for their translation systems. This plasticity in positions 34 (wobble) and 37 is reflected in codon use bias. Here, we review convergent evidence that suggest that expansion of the eukaryotic tRNAome was supported by its dedicated RNA polymerase III transcription system and coupling to the precursor-tRNA chaperone, La protein. We also review aspects of eukaryotic tRNAome evolution involving G34/A34 anticodon-sparing, relation to A34 modification to inosine, biased codon use and regulatory information in the redundancy (synonymous) component of the genetic code. We then review interdependent anticodon loop modifications involving position 37 in eukaryotes. This includes the eukaryote-specific tRNA modification, 3-methylcytidine-32 (m3C32) and the responsible gene, TRM140 and homologs which were duplicated and subspecialized for isoacceptor-specific substrates and dependence on i6A37 or t6A37. The genetics of tRNA function is relevant to health directly and as disease modifiers.
Collapse
Affiliation(s)
- Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
- Commissioned Corps, U.S. Public Health Service, Rockville, MD, 20016, USA.
| | - Aneeshkumar G Arimbasseri
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|