1
|
Munro N. Climate Change and Emerging Infectious Diseases: A Precarious Relationship. AACN Adv Crit Care 2024; 35:325-333. [PMID: 39642076 DOI: 10.4037/aacnacc2024290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Climate change is apparent. Temperatures are rising. Floods are more frequent and devastating. Climate changes can favor the development of emerging infectious diseases. The number of animal reservoirs and vector hosts can increase, further spreading pathogens. Many emerging infectious diseases were not historically considered major threats in US but have become a major concern in US territories and various states. In June 2024, the Centers for Disease Control and Prevention issued a Health Alert Network advisory about an increase in local transmission of dengue fever. Preventing the transmission of emerging infectious diseases has become a focus of regulatory agencies. Nurse education at all levels should include infectious diseases and be coordinated with local, state, and regional institutions. Emerging infectious diseases are now formidable challenges to health care.
Collapse
Affiliation(s)
- Nancy Munro
- Nancy Munro is an Acute Care Nurse Practitioner, Pulmonary Hypertension Service, Critical Care Medicine Department, National Institutes of Health, 10 Center Drive, Building 10-CRC, Room 2C145, Bethesda, MD 20892
| |
Collapse
|
2
|
Li J, Guttmann N, Drew GC, Hector TE, Wolinska J, King KC. Excess mortality of infected ectotherms induced by warming depends on pathogen kingdom and evolutionary history. PLoS Biol 2024; 22:e3002900. [PMID: 39556605 PMCID: PMC11611255 DOI: 10.1371/journal.pbio.3002900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/02/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Climate change is causing extreme heating events and can lead to more infectious disease outbreaks, putting species persistence at risk. The extent to which warming temperatures and infection may together impair host health is unclear. Using a meta-analysis of >190 effect sizes representing 101 ectothermic animal host-pathogen systems, we demonstrate that warming significantly increased the mortality of hosts infected by bacterial pathogens. Pathogens that have been evolutionarily established within the host species showed higher virulence under warmer temperatures. Conversely, the effect of warming on novel infections-from pathogens without a shared evolutionary history with the host species-were more pronounced with larger differences between compared temperatures. We found that compared to established infections, novel infections were more deadly at lower/baseline temperatures. Moreover, we revealed that the virulence of fungal pathogens increased only when temperatures were shifted upwards towards the pathogen thermal optimum. The magnitude of all these significant effects was not impacted by host life-stage, immune complexity, pathogen inoculation methods, or exposure time. Overall, our findings reveal distinct patterns in changes of pathogen virulence during warming. We highlight the importance of pathogen taxa, thermal optima, and evolutionary history in determining the impact of global change on infection outcomes.
Collapse
Affiliation(s)
- Jingdi Li
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Nele Guttmann
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin (FU), Berlin, Germany
| | - Georgia C. Drew
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Collegium Helveticum, The joint Institute for Advanced Studies (IAS) of the ETH Zurich, The University of Zurich, &The Zurich University of the Arts, Zurich, Switzerland
| | - Tobias E. Hector
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin (FU), Berlin, Germany
| | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Mahendran R, Pathirana S, Weerasinghe MC. Living Conditions and Malaria: A Longitudinal Study in a Rural Malaria-Endemic Area of Sri Lanka. Am J Trop Med Hyg 2024; 111:317-323. [PMID: 38889733 PMCID: PMC11310603 DOI: 10.4269/ajtmh.22-0688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/25/2024] [Indexed: 06/20/2024] Open
Abstract
This study was conducted in a rural malaria-endemic community in Sri Lanka in 2014-2015 because malaria was no longer endemic in the area as of November 2012. Data on sociodemographic factors, living conditions, malaria infections, and use of mosquito protection methods during the period from 1990 to 2015 were collected through a household survey in a systematically selected sample of 724 households, covering >10% of the population in the area. Malaria incidence data were obtained from Anti-Malaria Campaign, and Malaria Research Unit of the University of Colombo. A total of 24,549 malaria cases were reported and a considerable improvement in living conditions was noted during the period covered. The association of malaria case incidence with living conditions of the community was evaluated using Spearman Rank Correlation at P <0.05. Sixty-six percent of households reported a history of malaria. The percentage of poorest type of houses (type 1) declined from 38.8% in the 1990-1994 period to 1.6% by 2015, whereas the best houses (type 5) doubled from 49.1% to 92.1% during the same period. Malaria case incidence was reported to be lowest in the best type houses (r = -0.933, P = 0.007), when pipe-borne water was available within the premises (for drinking: r = -0.846, P = 0.034; for personal hygiene: r = -0.859, P = 0.029), when water-sealed sanitary facilities were available (r = -0.956, P = 0.003), and when mosquito nets were used (r = -0.98, P = 0.001). This observed negative association may have been due to reduced human-mosquito contact.
Collapse
Affiliation(s)
| | - Sisira Pathirana
- Malaria Research Unit, Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | |
Collapse
|
4
|
Lyberger K, Farner J, Couper L, Mordecai EA. A Mosquito Parasite Is Locally Adapted to Its Host but Not Temperature. Am Nat 2024; 204:121-132. [PMID: 39008840 DOI: 10.1086/730522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
AbstractClimate change will alter interactions between parasites and their hosts. Warming may affect patterns of local adaptation, shifting the environment to favor the parasite or host and thus changing the prevalence of disease. We assessed local adaptation to hosts and temperature in the facultative ciliate parasite Lambornella clarki, which infects the western tree hole mosquito Aedes sierrensis. We conducted laboratory infection experiments with mosquito larvae and parasites collected from across a climate gradient, pairing sympatric or allopatric populations across three temperatures that were either matched or mismatched to the source environment. Lambornella clarki parasites were locally adapted to their hosts, with 2.6 times higher infection rates on sympatric populations compared with allopatric populations, but they were not locally adapted to temperature. Infection peaked at the intermediate temperature of 12.5°C, notably lower than the optimum temperature for free-living L. clarki growth, suggesting that the host's immune response can play a significant role in mediating the outcome of infection. Our results highlight the importance of host selective pressure on parasites, despite the impact of temperature on infection success.
Collapse
|
5
|
Solano N, Herring EC, Hintz CW, Newberry PM, Schatz AM, Walker JW, Osenberg CW, Murdock CC. Mosquito population dynamics is shaped by the interaction among larval density, season, and land use. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.598043. [PMID: 38915528 PMCID: PMC11195073 DOI: 10.1101/2024.06.08.598043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Understanding how variation in key abiotic and biotic factors interact at spatial scales relevant for mosquito fitness and population dynamics is crucial for predicting current and future mosquito distributions and abundances, and the transmission potential for human pathogens. However, studies investigating the effects of environmental variation on mosquito traits have investigated environmental factors in isolation or in laboratory experiments that examine constant environmental conditions that often do not occur in the field. To address these limitations, we conducted a semi-field experiment in Athens, Georgia using the invasive Asian tiger mosquito (Aedes albopictus). We selected nine sites that spanned natural variation in impervious surface and vegetation cover to explore effects of the microclimate (temperature and humidity) on mosquitoes. On these sites, we manipulated conspecific larval density at each site. We repeated the experiment in the summer and fall. We then evaluated the effects of land cover, larval density, and time of season, as well as interactive effects, on the mean proportion of females emerging, juvenile development time, size upon emergence, and predicted per capita population growth (i.e., fitness). We found significant effects of larval density, land cover, and season on all response variables. Of most note, we saw strong interactive effects of season and intra-specific density on each response variable, including a non-intuitive decrease in development time with increasing intra-specific competition in the fall. Our study demonstrates that ignoring the interaction between variation in biotic and abiotic variables could reduce the accuracy and precision of models used to predict mosquito population and pathogen transmission dynamics, especially those inferring dynamics at finer-spatial scales across which transmission and control occur.
Collapse
Affiliation(s)
- Nicole Solano
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Emily C. Herring
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Carl W. Hintz
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Philip M. Newberry
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Annakate M. Schatz
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Joseph W. Walker
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | | | - Courtney C. Murdock
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
6
|
Li JD, Gao YY, Stevens EJ, King KC. Dual stressors of infection and warming can destabilize host microbiomes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230069. [PMID: 38497264 PMCID: PMC10945407 DOI: 10.1098/rstb.2023.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/02/2024] [Indexed: 03/19/2024] Open
Abstract
Climate change is causing extreme heating events and intensifying infectious disease outbreaks. Animals harbour microbial communities, which are vital for their survival and fitness under stressful conditions. Understanding how microbiome structures change in response to infection and warming may be important for forecasting host performance under global change. Here, we evaluated alterations in the microbiomes of several wild Caenorhabditis elegans isolates spanning a range of latitudes, upon warming temperatures and infection by the parasite Leucobacter musarum. Using 16S rRNA sequencing, we found that microbiome diversity decreased, and dispersion increased over time, with the former being more prominent in uninfected adults and the latter aggravated by infection. Infection reduced dominance of specific microbial taxa, and increased microbiome dispersion, indicating destabilizing effects on host microbial communities. Exposing infected hosts to warming did not have an additive destabilizing effect on their microbiomes. Moreover, warming during pre-adult development alleviated the destabilizing effects of infection on host microbiomes. These results revealed an opposing interaction between biotic and abiotic factors on microbiome structure. Lastly, we showed that increased microbiome dispersion might be associated with decreased variability in microbial species interaction strength. Overall, these findings improve our understanding of animal microbiome dynamics amidst concurrent climate change and epidemics. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- J. D. Li
- Department of Biology, University of Oxford, Oxford OX1 2JD, UK
| | - Y. Y. Gao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
- School of Ecology and Nature Conservation, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, People's Republic of China
| | - E. J. Stevens
- Department of Biology, University of Oxford, Oxford OX1 2JD, UK
| | - K. C. King
- Department of Biology, University of Oxford, Oxford OX1 2JD, UK
- Department of Zoology, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, V6T 1Z3, Canada
| |
Collapse
|
7
|
Pfenning-Butterworth A, Buckley LB, Drake JM, Farner JE, Farrell MJ, Gehman ALM, Mordecai EA, Stephens PR, Gittleman JL, Davies TJ. Interconnecting global threats: climate change, biodiversity loss, and infectious diseases. Lancet Planet Health 2024; 8:e270-e283. [PMID: 38580428 PMCID: PMC11090248 DOI: 10.1016/s2542-5196(24)00021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/06/2023] [Accepted: 02/06/2024] [Indexed: 04/07/2024]
Abstract
The concurrent pressures of rising global temperatures, rates and incidence of species decline, and emergence of infectious diseases represent an unprecedented planetary crisis. Intergovernmental reports have drawn focus to the escalating climate and biodiversity crises and the connections between them, but interactions among all three pressures have been largely overlooked. Non-linearities and dampening and reinforcing interactions among pressures make considering interconnections essential to anticipating planetary challenges. In this Review, we define and exemplify the causal pathways that link the three global pressures of climate change, biodiversity loss, and infectious disease. A literature assessment and case studies show that the mechanisms between certain pairs of pressures are better understood than others and that the full triad of interactions is rarely considered. Although challenges to evaluating these interactions-including a mismatch in scales, data availability, and methods-are substantial, current approaches would benefit from expanding scientific cultures to embrace interdisciplinarity and from integrating animal, human, and environmental perspectives. Considering the full suite of connections would be transformative for planetary health by identifying potential for co-benefits and mutually beneficial scenarios, and highlighting where a narrow focus on solutions to one pressure might aggravate another.
Collapse
Affiliation(s)
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA, USA
| | - John M Drake
- School of Ecology, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | | | - Maxwell J Farrell
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada; School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Alyssa-Lois M Gehman
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada; Hakai Institute, Calvert, BC, Canada
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Patrick R Stephens
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - John L Gittleman
- School of Ecology, University of Georgia, Athens, GA, USA; Nicholas School for the Environment, Duke University, Durham, NC, USA
| | - T Jonathan Davies
- Department of Botany, University of British Columbia, Vancouver, BC, Canada; Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Obame-Nkoghe J, Agossou AE, Mboowa G, Kamgang B, Caminade C, Duke DC, Githeko AK, Ogega OM, Engone Elloué N, Sarr FB, Nkoghe D, Kengne P, Ndam NT, Paupy C, Bockarie M, Voua Otomo P. Climate-influenced vector-borne diseases in Africa: a call to empower the next generation of African researchers for sustainable solutions. Infect Dis Poverty 2024; 13:26. [PMID: 38486340 PMCID: PMC10938833 DOI: 10.1186/s40249-024-01193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
We look at the link between climate change and vector-borne diseases in low- and middle-income countries in Africa. The large endemicity and escalating threat of diseases such as malaria and arboviral diseases, intensified by climate change, disproportionately affects vulnerable communities globally. We highlight the urgency of prioritizing research and development, advocating for robust scientific inquiry to promote adaptation strategies, and the vital role that the next generation of African research leaders will play in addressing these challenges. Despite significant challenges such as funding shortages within countries, various pan-African-oriented funding bodies such as the African Academy of Sciences, the Africa Research Excellence Fund, the Wellcome Trust, the U.S. National Institutes of Health, and the Bill and Melinda Gates Foundation as well as initiatives such as the African Research Initiative for Scientific Excellence and the Pan-African Mosquito Control Association, have empowered (or are empowering) these researchers by supporting capacity building activities, including continental and global networking, skill development, mentoring, and African-led research. This article underscores the urgency of increased national investment in research, proposing the establishment of research government agencies to drive evidence-based interventions. Collaboration between governments and scientific communities, sustained by pan-African funding bodies, is crucial. Through these efforts, African nations are likely to enhance the resilience and adaptive capacity of their systems and communities by navigating these challenges effectively, fostering scientific excellence and implementing transformative solutions against climate-sensitive vector-borne diseases.
Collapse
Affiliation(s)
- Judicaël Obame-Nkoghe
- Molecular and Cellular Biology Laboratory (LabMC), Biology Department, University of Science and Technology of Masuku, BP 901, Franceville, Gabon.
- Ecology and Health Research Unit, Interdisciplinary Center for Medical Research of Franceville, BP 769, Franceville, Gabon.
- Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State, Private Bag x13, Phuthaditjhaba, 9866, Republic of South Africa.
| | - Adjoavi Esse Agossou
- Laboratory of Pharmacology and Improved Traditional Medicines, Department of Animal Physiology, Faculty of Science and Technology, University of Abomey-Calavi, BP 526, Cotonou, Benin
| | - Gerald Mboowa
- The African Center of Excellence in Bioinformatics and Data-Intensive Sciences, Infectious Diseases Institute, College of Health Sciences, Makerere University, P. O Box 22418, Kampala, Uganda
- Africa Centers for Disease Control and Prevention, African Union Commission, Roosevelt Street, P.O. Box 3243, W21 K19, Addis Ababa, Ethiopia
| | - Basile Kamgang
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
| | - Cyril Caminade
- Earth System Physics Department, The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
| | - Dawn C Duke
- Africa Research Excellence Fund, 99 Charterhouse Street, London, EC1M 6HR, UK
| | | | | | - Nestor Engone Elloué
- Center for Phylosophical Studies and Research (CERP), Omar Bongo University (UOB), BP 13131, Libreville, Gabon
| | - Fatou Bintou Sarr
- UMRED, Health Training and Research Unit, University of Iba Der Thiam of Thiès, BP 967, Thiès, Senegal
| | - Dieudonné Nkoghe
- National Parasitic Diseases Control Program, Ministry of Health, Libreville, Gabon
| | - Pierre Kengne
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Nicaise T Ndam
- MERIT, IRD, Paris Cité University, 75006, Paris, France
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, LG 54, Accra, Ghana
| | | | - Moses Bockarie
- School of Community Health Sciences, Njala University, Bo, Sierra Leone
| | - Patricks Voua Otomo
- Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State, Private Bag x13, Phuthaditjhaba, 9866, Republic of South Africa
| |
Collapse
|
9
|
Ismail S, Farner J, Couper L, Mordecai E, Lyberger K. Temperature and intraspecific variation affect host-parasite interactions. Oecologia 2024; 204:389-399. [PMID: 38006450 DOI: 10.1007/s00442-023-05481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
Parasites play key roles in regulating aquatic ecosystems, yet the impact of climate warming on their ecology and disease transmission remains poorly understood. Isolating the effect of warming is challenging as transmission involves multiple interacting species and potential intraspecific variation in temperature responses of one or more of these species. Here, we leverage a wide-ranging mosquito species and its facultative parasite as a model system to investigate the impact of temperature on host-parasite interactions and disease transmission. We conducted a common garden experiment measuring parasite growth and infection rates at seven temperatures using 12 field-collected parasite populations and a single mosquito population. We find that both free-living growth rates and infection rates varied with temperature, which were highest at 18-24.5 °C and 13 °C, respectively. Further, we find intraspecific variation in peak performance temperature reflecting patterns of local thermal adaptation-parasite populations from warmer source environments typically had higher thermal optima for free-living growth rates. For infection rates, we found a significant interaction between parasite population and nonlinear effects of temperature. These findings underscore the need to consider both host and parasite thermal responses, as well as intraspecific variation in thermal responses, when predicting the impacts of climate change on disease in aquatic ecosystems.
Collapse
Affiliation(s)
- Sherine Ismail
- Department of Biology, Stanford University, Stanford, USA
| | | | - Lisa Couper
- Department of Biology, Stanford University, Stanford, USA
| | - Erin Mordecai
- Department of Biology, Stanford University, Stanford, USA
| | | |
Collapse
|
10
|
Vanalli C, Mari L, Casagrandi R, Gatto M, Cattadori IM. Helminth ecological requirements shape the impact of climate change on the hazard of infection. Ecol Lett 2024; 27:e14386. [PMID: 38403295 DOI: 10.1111/ele.14386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
Outbreaks and spread of infectious diseases are often associated with seasonality and environmental changes, including global warming. Free-living stages of soil-transmitted helminths are highly susceptible to climatic drivers; however, how multiple climatic variables affect helminth species, and the long-term consequences of these interactions, is poorly understood. We used experiments on nine trichostrongylid species of herbivores to develop a temperature- and humidity-dependent model of infection hazard, which was then implemented at the European scale under climate change scenarios. Intestinal and stomach helminths exhibited contrasting climatic responses, with the former group strongly affected by temperature while the latter primarily impacted by humidity. Among the demographic traits, larval survival heavily modulated the infection hazard. According to the specific climatic responses of the two groups, climate change is expected to generate differences in the seasonal and spatial shifts of the infection hazard and group co-circulation. In the future, an intensification of these trends could create new opportunities for species range expansion and co-occurrence at European central-northern latitudes.
Collapse
Affiliation(s)
- Chiara Vanalli
- Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lorenzo Mari
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Renato Casagrandi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Marino Gatto
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Isabella M Cattadori
- Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
11
|
Krichel L, Kirk D, Pencer C, Hönig M, Wadhawan K, Krkošek M. Short-term temperature fluctuations increase disease in a Daphnia-parasite infectious disease system. PLoS Biol 2023; 21:e3002260. [PMID: 37683040 PMCID: PMC10491407 DOI: 10.1371/journal.pbio.3002260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/18/2023] [Indexed: 09/10/2023] Open
Abstract
Climate change has profound effects on infectious disease dynamics, yet the impacts of increased short-term temperature fluctuations on disease spread remain poorly understood. We empirically tested the theoretical prediction that short-term thermal fluctuations suppress endemic infection prevalence at the pathogen's thermal optimum. This prediction follows from a mechanistic disease transmission model analyzed using stochastic simulations of the model parameterized with thermal performance curves (TPCs) from metabolic scaling theory and using nonlinear averaging, which predicts ecological outcomes consistent with Jensen's inequality (i.e., reduced performance around concave-down portions of a thermal response curve). Experimental observations of replicated epidemics of the microparasite Ordospora colligata in Daphnia magna populations indicate that temperature variability had the opposite effect of our theoretical predictions and instead increase endemic infection prevalence. This positive effect of temperature variability is qualitatively consistent with a published hypothesis that parasites may acclimate more rapidly to fluctuating temperatures than their hosts; however, incorporating hypothetical effects of delayed host acclimation into the mechanistic transmission model did not fully account for the observed pattern. The experimental data indicate that shifts in the distribution of infection burden underlie the positive effect of temperature fluctuations on endemic prevalence. The increase in disease risk associated with climate fluctuations may therefore result from disease processes interacting across scales, particularly within-host dynamics, that are not captured by combining standard transmission models with metabolic scaling theory.
Collapse
Affiliation(s)
- Leila Krichel
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Devin Kirk
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Clara Pencer
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Madison Hönig
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- Department of Anthropology, Washington State University, Pullman, Washington, United States of America
| | - Kiran Wadhawan
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin Krkošek
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Ismail S, Farner J, Couper L, Mordecai E, Lyberger K. Temperature and intraspecific variation affect host-parasite interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554680. [PMID: 37662401 PMCID: PMC10473705 DOI: 10.1101/2023.08.24.554680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Parasites play key roles in regulating aquatic ecosystems, yet the impact of climate warming on their ecology and disease transmission remains poorly understood. Isolating the effect of warming is challenging as transmission involves multiple interacting species and potential intraspecific variation in temperature responses of one or more of these species. Here, we leverage a wide-ranging mosquito species and its facultative parasite as a model system to investigate the impact of temperature on host-parasite interactions and disease transmission. We conducted a common garden experiment measuring parasite growth and infection rates at seven temperatures using 12 field-collected parasite populations and a single mosquito population. We find that both free-living growth rates and infection rates varied with temperature, which were highest at 18-24.5°C and 13°C, respectively. Further, we find intraspecific variation in peak performance temperature reflecting patterns of local thermal adaptation-parasite populations from warmer source environments typically had higher thermal optima for free-living growth rates. For infection rates, we found a significant interaction between parasite population and nonlinear effects of temperature. These findings underscore the need to consider both host and parasite thermal responses, as well as intraspecific variation in thermal responses, when predicting the impacts of climate change on disease in aquatic ecosystems.
Collapse
|
13
|
Lyberger K, Farner J, Couper L, Mordecai EA. A mosquito parasite is locally adapted to its host but not temperature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537840. [PMID: 37131754 PMCID: PMC10153241 DOI: 10.1101/2023.04.21.537840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Climate change will alter interactions between parasites and their hosts. Warming may affect patterns of local adaptation, shifting the environment to favor the parasite or host and thus changing the prevalence of disease. We assessed local adaptation in the facultative ciliate parasite Lambornella clarki, which infects the western tree hole mosquito Aedes sierrensis. We conducted laboratory infection experiments with mosquito larvae and parasites collected from across a climate gradient, pairing sympatric or allopatric populations across three temperatures that were either matched or mismatched to the source environment. L. clarki parasites were locally adapted to their hosts, with 2.6x higher infection rates on sympatric compared to allopatric populations, but were not locally adapted to temperature. Infection peaked at the intermediate temperature of 13°C. Our results highlight the importance of host selective pressure on parasites, despite the impact of temperature on infection success.
Collapse
|
14
|
King KC, Hall MD, Wolinska J. Infectious disease ecology and evolution in a changing world. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220002. [PMID: 36744560 PMCID: PMC9900701 DOI: 10.1098/rstb.2022.0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/07/2023] Open
Affiliation(s)
- Kayla C. King
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Matthew D. Hall
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Freie Universität Berlin (FU), 14195 Berlin, Germany
| |
Collapse
|
15
|
Gsell AS, Biere A, de Boer W, de Bruijn I, Eichhorn G, Frenken T, Geisen S, van der Jeugd H, Mason-Jones K, Meisner A, Thakur MP, van Donk E, Zwart MP, Van de Waal DB. Environmental refuges from disease in host-parasite interactions under global change. Ecology 2023; 104:e4001. [PMID: 36799146 DOI: 10.1002/ecy.4001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 02/18/2023]
Abstract
The physiological performance of organisms depends on their environmental context, resulting in performance-response curves along environmental gradients. Parasite performance-response curves are generally expected to be broader than those of their hosts due to shorter generation times and hence faster adaptation. However, certain environmental conditions may limit parasite performance more than that of the host, thereby providing an environmental refuge from disease. Thermal disease refuges have been extensively studied in response to climate warming, but other environmental factors may also provide environmental disease refuges which, in turn, respond to global change. Here, we (1) showcase laboratory and natural examples of refuges from parasites along various environmental gradients, and (2) provide hypotheses on how global environmental change may affect these refuges. We strive to synthesize knowledge on potential environmental disease refuges along different environmental gradients including salinity and nutrients, in both natural and food-production systems. Although scaling up from single host-parasite relationships along one environmental gradient to their interaction outcome in the full complexity of natural environments remains difficult, integrating host and parasite performance-response can serve to formulate testable hypotheses about the variability in parasitism outcomes and the occurrence of environmental disease refuges under current and future environmental conditions.
Collapse
Affiliation(s)
- Alena S Gsell
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Ecosystem Research Department, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Soil Biology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Irene de Bruijn
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Koppert, Berkel en Rodenrijs, The Netherlands
| | - Götz Eichhorn
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Centre for Avian Migration and Demography, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Thijs Frenken
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Great Lakes Institute for Environmental Research (GLIER), University of Windsor, Windsor, Ontario, Canada
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Department of Nematology, Wageningen University and Research, Wageningen, The Netherlands
| | - Henk van der Jeugd
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Centre for Avian Migration and Demography, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Kyle Mason-Jones
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Annelein Meisner
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Wageningen University & Research, Wageningen Research, Wageningen, The Netherlands.,Microbial Ecology Group, Department of Biology, Lund University, Lund, Sweden
| | - Madhav P Thakur
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Terrestrial Ecology Group, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Ellen van Donk
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Mark P Zwart
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Marina R, Ariati J, Anwar A, Astuti EP, Dhewantara PW. Climate and vector-borne diseases in Indonesia: a systematic literature review and critical appraisal of evidence. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:1-28. [PMID: 36367556 DOI: 10.1007/s00484-022-02390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Climate is widely known as an important driver to transmit vector-borne diseases (VBD). However, evidence of the role of climate variability on VBD risk in Indonesia has not been adequately understood. We conducted a systematic literature review to collate and critically review studies on the relationship between climate variability and VBD in Indonesia. We searched articles on PubMed, Scopus, and Google Scholar databases that are published until December 2021. Studies that reported the relationship of climate and VBD, such as dengue, chikungunya, Zika, and malaria, were included. For the reporting, we followed the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. A total of 66 out of 284 studies were reviewed. Fifty-two (78.8%) papers investigated dengue, 13 (19.7%) papers studied malaria, one (1.5%) paper discussed chikungunya, and no (0%) paper reported on Zika. The studies were predominantly conducted in western Indonesian cities. Most studies have examined the short-term effect of climate variability on the incidence of VBD at national, sub-national, and local levels. Rainfall (n = 60/66; 90.9%), mean temperature (Tmean) (n = 50/66; 75.8%), and relative humidity (RH) (n = 50/66; 75.8%) were the common climatic factors employed in the studies. The effect of climate on the incidence of VBD was heterogenous across locations. Only a few studies have investigated the long-term effects of climate on the distribution and incidence of VBD. The paucity of high-quality epidemiological data and variation in methodology are two major issues that limit the generalizability of evidence. A unified framework is required for future research to assess the impacts of climate on VBD in Indonesia to provide reliable evidence for better policymaking.
Collapse
Affiliation(s)
- Rina Marina
- Vector-borne and Zoonotic Diseases Research Group, Research Center for Public Health and Nutrition, Cibinong Science Center, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor KM.46, Bogor, West Java, 16915, Indonesia.
| | - Jusniar Ariati
- Center for Health Services Policy, Health Policy Agency, Ministry of Health of Indonesia, Jl. Percetakan Negara No. 29, Jakarta, 10560, Indonesia
| | - Athena Anwar
- Research Center for Climate and Atmosphere, National Agency for Research and Innovation, Jl. Djunjunan No. 133, Bandung, 40174, Indonesia
| | - Endang Puji Astuti
- Vector-borne and Zoonotic Diseases Research Group, Research Center for Public Health and Nutrition, Cibinong Science Center, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor KM.46, Bogor, West Java, 16915, Indonesia
| | - Pandji Wibawa Dhewantara
- Vector-borne and Zoonotic Diseases Research Group, Research Center for Public Health and Nutrition, Cibinong Science Center, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor KM.46, Bogor, West Java, 16915, Indonesia
| |
Collapse
|
17
|
Nova N, Athni TS, Childs ML, Mandle L, Mordecai EA. Global Change and Emerging Infectious Diseases. ANNUAL REVIEW OF RESOURCE ECONOMICS 2022; 14:333-354. [PMID: 38371741 PMCID: PMC10871673 DOI: 10.1146/annurev-resource-111820-024214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Our world is undergoing rapid planetary changes driven by human activities, often mediated by economic incentives and resource management, affecting all life on Earth. Concurrently, many infectious diseases have recently emerged or spread into new populations. Mounting evidence suggests that global change-including climate change, land-use change, urbanization, and global movement of individuals, species, and goods-may be accelerating disease emergence by reshaping ecological systems in concert with socioeconomic factors. Here, we review insights, approaches, and mechanisms by which global change drives disease emergence from a disease ecology perspective. We aim to spur more interdisciplinary collaboration with economists and identification of more effective and sustainable interventions to prevent disease emergence. While almost all infectious diseases change in response to global change, the mechanisms and directions of these effects are system specific, requiring new, integrated approaches to disease control that recognize linkages between environmental and economic sustainability and human and planetary health.
Collapse
Affiliation(s)
- Nicole Nova
- Department of Biology, Stanford University, Stanford, California, USA
| | - Tejas S Athni
- Department of Biology, Stanford University, Stanford, California, USA
| | - Marissa L Childs
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, California, USA
| | - Lisa Mandle
- Department of Biology, Stanford University, Stanford, California, USA
- Natural Capital Project, Stanford University, Stanford, California, USA
- Woods Institute for the Environment, Stanford University, Stanford, California, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, California, USA
| |
Collapse
|
18
|
Kirk D, O’Connor MI, Mordecai EA. Scaling effects of temperature on parasitism from individuals to populations. J Anim Ecol 2022; 91:2087-2102. [PMID: 35900837 PMCID: PMC9532350 DOI: 10.1111/1365-2656.13786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022]
Abstract
Parasitism is expected to change in a warmer future, but whether warming leads to substantial increases in parasitism remains unclear. Understanding how warming effects on parasitism in individual hosts (e.g. parasite load) translate to effects on population-level parasitism (e.g. prevalence, R0 ) remains a major knowledge gap. We conducted a literature review and identified 24 host-parasite systems that had information on the temperature dependence of parasitism at both individual host and host population levels: 13 vector-borne systems and 11 environmentally transmitted systems. We found a strong positive correlation between the thermal optima of individual- and population-level parasitism, although several of the environmentally transmitted systems exhibited thermal optima >5°C apart between individual and population levels. Parasitism thermal optima were close to vector performance thermal optima in vector-borne systems but not hosts in environmentally transmitted systems, suggesting these thermal mismatches may be more common in certain types of host-parasite systems. We also adapted and simulated simple models for both types of transmission modes and found the same pattern across the two modes: thermal optima were more strongly correlated across scales when there were more traits linking individual- to population-level processes. Generally, our results suggest that information on the temperature dependence, and specifically the thermal optimum, at either the individual or population level should provide a useful-although not quantitatively exact-baseline for predicting temperature dependence at the other level, especially in vector-borne parasite systems. Environmentally transmitted parasitism may operate by a different set of rules, in which temperature dependence is decoupled in some systems, requiring the need for trait-based studies of temperature dependence at individual and population levels.
Collapse
Affiliation(s)
- Devin Kirk
- Department of Biology, Stanford University, Stanford, USA
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Mary I. O’Connor
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
19
|
Schampera C, Agha R, Manzi F, Wolinska J. Parasites do not adapt to elevated temperature, as evidenced from experimental evolution of a phytoplankton-fungus system. Biol Lett 2022; 18:20210560. [PMID: 35168375 PMCID: PMC8847893 DOI: 10.1098/rsbl.2021.0560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Global warming is predicted to impact the prevalence and severity of infectious diseases. However, empirical data supporting this statement usually stem from experiments in which parasite fitness and disease outcome are measured directly after temperature increase. This might exclude the possibility of parasite adaptation. To incorporate the adaptive response of parasites into predictions of disease severity in a warmer world, we undertook an experimental evolution assay in which a fungal parasite of phytoplankton was maintained at elevated or control temperatures for six months, corresponding to 100–200 parasite generations. Host cultures were maintained at the respective temperatures and provided as substrate, but were not under parasite pressure. A reciprocal infection experiment conducted after six-month serial passages revealed no evidence of parasite adaptation. In fact, parasite fitness at elevated temperatures was inferior in parasite populations reared at elevated temperatures compared with those maintained under control temperature. However, this effect was reversed after parasites were returned to control temperatures for a few (approx. 10) generations. The absence of parasite adaptation to elevated temperatures suggests that, in phytoplankton–fungus systems, disease outcome under global warming will be largely determined by both host and parasite thermal ecology.
Collapse
Affiliation(s)
- Charlotte Schampera
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Ramsy Agha
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Florent Manzi
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.,Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität (FU) Berlin, Berlin, Germany
| | - Justyna Wolinska
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.,Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität (FU) Berlin, Berlin, Germany
| |
Collapse
|
20
|
Ortiz DI, Piche-Ovares M, Romero-Vega LM, Wagman J, Troyo A. The Impact of Deforestation, Urbanization, and Changing Land Use Patterns on the Ecology of Mosquito and Tick-Borne Diseases in Central America. INSECTS 2021; 13:20. [PMID: 35055864 PMCID: PMC8781098 DOI: 10.3390/insects13010020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022]
Abstract
Central America is a unique geographical region that connects North and South America, enclosed by the Caribbean Sea to the East, and the Pacific Ocean to the West. This region, encompassing Belize, Costa Rica, Guatemala, El Salvador, Honduras, Panama, and Nicaragua, is highly vulnerable to the emergence or resurgence of mosquito-borne and tick-borne diseases due to a combination of key ecological and socioeconomic determinants acting together, often in a synergistic fashion. Of particular interest are the effects of land use changes, such as deforestation-driven urbanization and forest degradation, on the incidence and prevalence of these diseases, which are not well understood. In recent years, parts of Central America have experienced social and economic improvements; however, the region still faces major challenges in developing effective strategies and significant investments in public health infrastructure to prevent and control these diseases. In this article, we review the current knowledge and potential impacts of deforestation, urbanization, and other land use changes on mosquito-borne and tick-borne disease transmission in Central America and how these anthropogenic drivers could affect the risk for disease emergence and resurgence in the region. These issues are addressed in the context of other interconnected environmental and social challenges.
Collapse
Affiliation(s)
- Diana I. Ortiz
- Biology Program, Westminster College, New Wilmington, PA 16172, USA
| | - Marta Piche-Ovares
- Laboratorio de Virología, Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica;
- Departamento de Virología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica
| | - Luis M. Romero-Vega
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica;
- Laboratorio de Investigación en Vectores (LIVe), Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica;
| | - Joseph Wagman
- Malaria and Neglected Tropical Diseases Program, Center for Malaria Control and Elimination, PATH, Washington, DC 20001, USA;
| | - Adriana Troyo
- Laboratorio de Investigación en Vectores (LIVe), Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica;
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| |
Collapse
|
21
|
Bruijning M, Fossen EIF, Jongejans E, Vanvelk H, Raeymaekers JAM, Govaert L, Brans KI, Einum S, De Meester L. Host–parasite dynamics shaped by temperature and genotype: Quantifying the role of underlying vital rates. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marjolein Bruijning
- Department of Ecology and Evolutionary Biology Princeton University Princeton NJ USA
- Department of Animal Ecology and Physiology Radboud University Nijmegen The Netherlands
| | - Erlend I. F. Fossen
- Centre for Biodiversity Dynamics Department of Biology NTNUNorwegian University of Science and Technology Trondheim Norway
- Animal Ecology Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Eelke Jongejans
- Department of Animal Ecology and Physiology Radboud University Nijmegen The Netherlands
- Animal Ecology NIOO‐KNAW Wageningen The Netherlands
| | - Héléne Vanvelk
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | | | - Lynn Govaert
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland
- Department of Aquatic Ecology Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | - Kristien I. Brans
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Sigurd Einum
- Centre for Biodiversity Dynamics Department of Biology NTNUNorwegian University of Science and Technology Trondheim Norway
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
- Leibniz Institüt für Gewasserökologie und Binnenfischerei (IGB) Berlin Germany
- Institute of Biology Freie Universität Berlin Berlin Germany
| |
Collapse
|
22
|
Sweeny AR, Albery GF, Becker DJ, Eskew EA, Carlson CJ. Synzootics. J Anim Ecol 2021; 90:2744-2754. [PMID: 34546566 DOI: 10.1111/1365-2656.13595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 09/14/2021] [Indexed: 12/30/2022]
Abstract
Ecologists increasingly recognise coinfection as an important component of emergent epidemiological patterns, connecting aspects of ecoimmunology, behaviour, ecosystem function and even extinction risk. Building on syndemic theory in medical anthropology, we propose the term 'synzootics' to describe co-occurring enzootic or epizootic processes that produce worse health outcomes in wild animals. Using framing from syndemic theory, we describe how the synzootic concept offers new insights into the ecology and evolution of infectious diseases. We then recommend a set of empirical criteria and lines of evidence that can be used to identify synzootics in nature. We conclude by exploring how synzootics could indirectly drive the emergence of novel pathogens in human populations.
Collapse
Affiliation(s)
- Amy R Sweeny
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Evan A Eskew
- Department of Biology, Pacific Lutheran University, Tacoma, Washington, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
23
|
Couper LI, Farner JE, Caldwell JM, Childs ML, Harris MJ, Kirk DG, Nova N, Shocket M, Skinner EB, Uricchio LH, Exposito-Alonso M, Mordecai EA. How will mosquitoes adapt to climate warming? eLife 2021; 10:69630. [PMID: 34402424 PMCID: PMC8370766 DOI: 10.7554/elife.69630] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
The potential for adaptive evolution to enable species persistence under a changing climate is one of the most important questions for understanding impacts of future climate change. Climate adaptation may be particularly likely for short-lived ectotherms, including many pest, pathogen, and vector species. For these taxa, estimating climate adaptive potential is critical for accurate predictive modeling and public health preparedness. Here, we demonstrate how a simple theoretical framework used in conservation biology-evolutionary rescue models-can be used to investigate the potential for climate adaptation in these taxa, using mosquito thermal adaptation as a focal case. Synthesizing current evidence, we find that short mosquito generation times, high population growth rates, and strong temperature-imposed selection favor thermal adaptation. However, knowledge gaps about the extent of phenotypic and genotypic variation in thermal tolerance within mosquito populations, the environmental sensitivity of selection, and the role of phenotypic plasticity constrain our ability to make more precise estimates. We describe how common garden and selection experiments can be used to fill these data gaps. Lastly, we investigate the consequences of mosquito climate adaptation on disease transmission using Aedes aegypti-transmitted dengue virus in Northern Brazil as a case study. The approach outlined here can be applied to any disease vector or pest species and type of environmental change.
Collapse
Affiliation(s)
- Lisa I Couper
- Department of Biology, Stanford University, Stanford, United States
| | | | - Jamie M Caldwell
- Department of Biology, Stanford University, Stanford, United States.,Department of Biology, University of Hawaii at Manoa, Honolulu, United States
| | - Marissa L Childs
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, United States
| | - Mallory J Harris
- Department of Biology, Stanford University, Stanford, United States
| | - Devin G Kirk
- Department of Biology, Stanford University, Stanford, United States.,Department of Zoology, University of Toronto, Toronto, Canada
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, United States
| | - Marta Shocket
- Department of Biology, Stanford University, Stanford, United States.,Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, United States
| | - Eloise B Skinner
- Department of Biology, Stanford University, Stanford, United States.,Environmental Futures Research Institute, Griffith University, Brisbane, Australia
| | - Lawrence H Uricchio
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Moises Exposito-Alonso
- Department of Biology, Stanford University, Stanford, United States.,Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, United States
| |
Collapse
|
24
|
Kenny C, Priyadarshini A. Review of Current Healthcare Waste Management Methods and Their Effect on Global Health. Healthcare (Basel) 2021; 9:284. [PMID: 33807606 PMCID: PMC7999172 DOI: 10.3390/healthcare9030284] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
Healthcare is a rapidly growing industry as medical treatments become more sophisticated, more in demand due to increasing incidence of chronic disease and more widely available worldwide. This booming industry is also creating more waste than ever before and, as such, there is a growing need to treat and dispose of this waste. Healthcare waste (HCW) disposal includes a multitude of disposal methods, including incineration, landfilling and chemical treatments. These rudimentary methods and their growing use present their own problems that negatively impact both the environment and, in turn, damage public health, thus contributing to a global healthcare crisis. The aim of this review was to examine the current HCW disposal methods in place and the harmful effects they have on the environment and on public health. The findings accumulated in this review demonstrate a heavy reliance on basic, low tech HCW disposal techniques and uncovered the negative impacts of these methods. There is a notable lack of employment of "greener" HCW disposal methods on a largescale due to cost, access and feasibility. Despite innovations in HCW disposal, there is no scalable, global green solution at present. Further, the review highlights that global health consequences of HCW disposal methods often differ depending on how developed the country is.
Collapse
Affiliation(s)
- Christina Kenny
- College of Business, Technological University Dublin, 2 Dublin, Ireland;
| | - Anushree Priyadarshini
- College of Business, Technological University Dublin, 2 Dublin, Ireland;
- Environment Sustainability and Health Institute, Technological University Dublin, 7 Dublin, Ireland
| |
Collapse
|
25
|
Couper LI, MacDonald AJ, Mordecai EA. Impact of prior and projected climate change on US Lyme disease incidence. GLOBAL CHANGE BIOLOGY 2021; 27:738-754. [PMID: 33150704 PMCID: PMC7855786 DOI: 10.1111/gcb.15435] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/28/2020] [Indexed: 05/21/2023]
Abstract
Lyme disease is the most common vector-borne disease in temperate zones and a growing public health threat in the United States (US). The life cycles of the tick vectors and spirochete pathogen are highly sensitive to climate, but determining the impact of climate change on Lyme disease burden has been challenging due to the complex ecology of the disease and the presence of multiple, interacting drivers of transmission. Here we incorporated 18 years of annual, county-level Lyme disease case data in a panel data statistical model to investigate prior effects of climate variation on disease incidence while controlling for other putative drivers. We then used these climate-disease relationships to project Lyme disease cases using CMIP5 global climate models and two potential climate scenarios (RCP4.5 and RCP8.5). We find that interannual variation in Lyme disease incidence is associated with climate variation in all US regions encompassing the range of the primary vector species. In all regions, the climate predictors explained less of the variation in Lyme disease incidence than unobserved county-level heterogeneity, but the strongest climate-disease association detected was between warming annual temperatures and increasing incidence in the Northeast. Lyme disease projections indicate that cases in the Northeast will increase significantly by 2050 (23,619 ± 21,607 additional cases), but only under RCP8.5, and with large uncertainty around this projected increase. Significant case changes are not projected for any other region under either climate scenario. The results demonstrate a regionally variable and nuanced relationship between climate change and Lyme disease, indicating possible nonlinear responses of vector ticks and transmission dynamics to projected climate change. Moreover, our results highlight the need for improved preparedness and public health interventions in endemic regions to minimize the impact of further climate change-induced increases in Lyme disease burden.
Collapse
Affiliation(s)
- Lisa I Couper
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Andrew J MacDonald
- Earth Research Institute, University of California, Santa Barbara, CA, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
26
|
Cohen JM, Sauer EL, Santiago O, Spencer S, Rohr JR. Divergent impacts of warming weather on wildlife disease risk across climates. Science 2021; 370:370/6519/eabb1702. [PMID: 33214248 DOI: 10.1126/science.abb1702] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022]
Abstract
Disease outbreaks among wildlife have surged in recent decades alongside climate change, although it remains unclear how climate change alters disease dynamics across different geographic regions. We amassed a global, spatiotemporal dataset describing parasite prevalence across 7346 wildlife populations and 2021 host-parasite combinations, compiling local weather and climate records at each location. We found that hosts from cool and warm climates experienced increased disease risk at abnormally warm and cool temperatures, respectively, as predicted by the thermal mismatch hypothesis. This effect was greatest in ectothermic hosts and similar in terrestrial and freshwater systems. Projections based on climate change models indicate that ectothermic wildlife hosts from temperate and tropical zones may experience sharp increases and moderate reductions in disease risk, respectively, though the magnitude of these changes depends on parasite identity.
Collapse
Affiliation(s)
- Jeremy M Cohen
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA. .,Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Erin L Sauer
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA.,Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Olivia Santiago
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Samuel Spencer
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Jason R Rohr
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
27
|
Abstract
Climate change is expected to have complex effects on infectious diseases, causing some to increase, others to decrease, and many to shift their distributions. There have been several important advances in understanding the role of climate and climate change on wildlife and human infectious disease dynamics over the past several years. This essay examines 3 major areas of advancement, which include improvements to mechanistic disease models, investigations into the importance of climate variability to disease dynamics, and understanding the consequences of thermal mismatches between host and parasites. Applying the new information derived from these advances to climate-disease models and addressing the pressing knowledge gaps that we identify should improve the capacity to predict how climate change will affect disease risk for both wildlife and humans.
Collapse
Affiliation(s)
- Jason R. Rohr
- Department of Biological Sciences, Environmental Change Initiative, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jeremy M. Cohen
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
28
|
Affiliation(s)
- Matthew B. Thomas
- York Environmental Sustainability Institute and Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
29
|
Kirk D, Luijckx P, Jones N, Krichel L, Pencer C, Molnár P, Krkošek M. Experimental evidence of warming-induced disease emergence and its prediction by a trait-based mechanistic model. Proc Biol Sci 2020; 287:20201526. [PMID: 33049167 DOI: 10.1098/rspb.2020.1526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Predicting the effects of seasonality and climate change on the emergence and spread of infectious disease remains difficult, in part because of poorly understood connections between warming and the mechanisms driving disease. Trait-based mechanistic models combined with thermal performance curves arising from the metabolic theory of ecology (MTE) have been highlighted as a promising approach going forward; however, this framework has not been tested under controlled experimental conditions that isolate the role of gradual temporal warming on disease dynamics and emergence. Here, we provide experimental evidence that a slowly warming host-parasite system can be pushed through a critical transition into an epidemic state. We then show that a trait-based mechanistic model with MTE functional forms can predict the critical temperature for disease emergence, subsequent disease dynamics through time and final infection prevalence in an experimentally warmed system of Daphnia and a microsporidian parasite. Our results serve as a proof of principle that trait-based mechanistic models using MTE subfunctions can predict warming-induced disease emergence in data-rich systems-a critical step towards generalizing the approach to other systems.
Collapse
Affiliation(s)
- Devin Kirk
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Pepijn Luijckx
- School of Natural Sciences, Zoology Department, Trinity College Dublin, University of Dublin, Dublin, Republic of Ireland
| | - Natalie Jones
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Leila Krichel
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Clara Pencer
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Péter Molnár
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada.,Laboratory of Quantitative Global Change Ecology, Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Martin Krkošek
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
30
|
Shocket MS, Verwillow AB, Numazu MG, Slamani H, Cohen JM, El Moustaid F, Rohr J, Johnson LR, Mordecai EA. Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23°C and 26°C. eLife 2020; 9:e58511. [PMID: 32930091 PMCID: PMC7492091 DOI: 10.7554/elife.58511] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
The temperature-dependence of many important mosquito-borne diseases has never been quantified. These relationships are critical for understanding current distributions and predicting future shifts from climate change. We used trait-based models to characterize temperature-dependent transmission of 10 vector-pathogen pairs of mosquitoes (Culex pipiens, Cx. quinquefascsiatus, Cx. tarsalis, and others) and viruses (West Nile, Eastern and Western Equine Encephalitis, St. Louis Encephalitis, Sindbis, and Rift Valley Fever viruses), most with substantial transmission in temperate regions. Transmission is optimized at intermediate temperatures (23-26°C) and often has wider thermal breadths (due to cooler lower thermal limits) compared to pathogens with predominately tropical distributions (in previous studies). The incidence of human West Nile virus cases across US counties responded unimodally to average summer temperature and peaked at 24°C, matching model-predicted optima (24-25°C). Climate warming will likely shift transmission of these diseases, increasing it in cooler locations while decreasing it in warmer locations.
Collapse
Affiliation(s)
- Marta S Shocket
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Ecology and Evolutionary Biology, University of California Los AngelesLos AngelesUnited States
| | | | - Mailo G Numazu
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Hani Slamani
- Department of Statistics, Virginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUnited States
| | - Jeremy M Cohen
- Department of Integrative Biology, University of South FloridaTampaUnited States
- Department of Forest and Wildlife Ecology, University of WisconsinMadisonUnited States
| | - Fadoua El Moustaid
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUnited States
| | - Jason Rohr
- Department of Integrative Biology, University of South FloridaTampaUnited States
- Department of Biological Sciences, Eck Institute of Global Health, Environmental Change Initiative, University of Notre DameSouth BendUnited States
| | - Leah R Johnson
- Department of Statistics, Virginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUnited States
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUnited States
| | - Erin A Mordecai
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
31
|
Han BA, O'Regan SM, Paul Schmidt J, Drake JM. Integrating data mining and transmission theory in the ecology of infectious diseases. Ecol Lett 2020; 23:1178-1188. [PMID: 32441459 PMCID: PMC7384120 DOI: 10.1111/ele.13520] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/21/2020] [Accepted: 03/27/2020] [Indexed: 01/07/2023]
Abstract
Our understanding of ecological processes is built on patterns inferred from data. Applying modern analytical tools such as machine learning to increasingly high dimensional data offers the potential to expand our perspectives on these processes, shedding new light on complex ecological phenomena such as pathogen transmission in wild populations. Here, we propose a novel approach that combines data mining with theoretical models of disease dynamics. Using rodents as an example, we incorporate statistical differences in the life history features of zoonotic reservoir hosts into pathogen transmission models, enabling us to bound the range of dynamical phenomena associated with hosts, based on their traits. We then test for associations between equilibrium prevalence, a key epidemiological metric and data on human outbreaks of rodent-borne zoonoses, identifying matches between empirical evidence and theoretical predictions of transmission dynamics. We show how this framework can be generalized to other systems through a rubric of disease models and parameters that can be derived from empirical data. By linking life history components directly to their effects on disease dynamics, our mining-modelling approach integrates machine learning and theoretical models to explore mechanisms in the macroecology of pathogen transmission and their consequences for spillover infection to humans.
Collapse
Affiliation(s)
- Barbara A Han
- Cary Institute of Ecosystem Studies, Box AB Millbrook, NY, 12571, USA
| | - Suzanne M O'Regan
- Department of Mathematics and Statistics, North Carolina A&T State University, 1601 E. Market St., Greensboro, NC, 27411, USA
| | - John Paul Schmidt
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens, GA, 30602, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, 203 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - John M Drake
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens, GA, 30602, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, 203 D.W. Brooks Drive, Athens, GA, 30602, USA
| |
Collapse
|
32
|
Claar DC, Wood CL. Pulse Heat Stress and Parasitism in a Warming World. Trends Ecol Evol 2020; 35:704-715. [PMID: 32439076 DOI: 10.1016/j.tree.2020.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 01/15/2023]
Abstract
Infectious disease outbreaks emerged across the globe during the recent 2015-2016 El Niño event, re-igniting research interest in how climate events influence disease dynamics. While the relationship between long-term warming and the transmission of disease-causing parasites has received substantial attention, we do not yet know how pulse heat events - common phenomena in a warming world - will alter parasite transmission. The effects of pulse warming on ecological and evolutionary processes are complex and context dependent, motivating research to understand how climate oscillations drive host health and disease. Here, we develop a framework for evaluating and predicting the effects of pulse warming on parasitic infection. Specifically, we synthesize how pulse heat stress affects hosts, parasites, and the ecological interactions between them.
Collapse
Affiliation(s)
- Danielle C Claar
- University of Washington School of Aquatic and Fishery Sciences, Seattle, WA 98105, USA; NOAA Climate and Global Change Postdoctoral Scholar, Boulder, CO 80301, USA.
| | - Chelsea L Wood
- University of Washington School of Aquatic and Fishery Sciences, Seattle, WA 98105, USA
| |
Collapse
|
33
|
Swei A, Couper LI, Coffey LL, Kapan D, Bennett S. Patterns, Drivers, and Challenges of Vector-Borne Disease Emergence. Vector Borne Zoonotic Dis 2020; 20:159-170. [PMID: 31800374 PMCID: PMC7640753 DOI: 10.1089/vbz.2018.2432] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vector-borne diseases are emerging at an increasing rate and comprise a disproportionate share of all emerging infectious diseases. Yet, the key ecological and evolutionary dimensions of vector-borne disease that facilitate their emergence have not been thoroughly explored. This study reviews and synthesizes the existing literature to explore global patterns of emerging vector-borne zoonotic diseases (VBZDs) under changing global conditions. We find that the vast majority of emerging VBZDs are transmitted by ticks (Ixodidae) and mosquitoes (Culicidae) and the pathogens transmitted are dominated by Rickettsiaceae bacteria and RNA viruses (Flaviviridae, Bunyaviridae, and Togaviridae). The most common potential driver of these emerging zoonoses is land use change, but for many diseases, the driver is unknown, revealing a critical research gap. While most reported VBZDs are emerging in the northern latitudes, after correcting for sampling bias, Africa is clearly a region with the greatest share of emerging VBZD. We highlight critical gaps in our understanding of VBZD emergence and emphasize the importance of interdisciplinary research and consideration of deeper evolutionary processes to improve our capacity for anticipating where and how such diseases have and will continue to emerge.
Collapse
Affiliation(s)
- Andrea Swei
- Department of Biology, San Francisco State University, San Francisco, California
| | - Lisa I. Couper
- Department of Biology, Stanford University, Palo Alto, California
| | - Lark L. Coffey
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Durrell Kapan
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California
| | - Shannon Bennett
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California
| |
Collapse
|
34
|
Kido A, Hood ME. Mining new sources of natural history observations for disease interactions. AMERICAN JOURNAL OF BOTANY 2020; 107:3-11. [PMID: 31885083 PMCID: PMC6980919 DOI: 10.1002/ajb2.1409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Allyson Kido
- Department of BiologyAmherst CollegeAmherstMassachusettsUSA
| | | |
Collapse
|
35
|
Ruszkiewicz JA, Tinkov AA, Skalny AV, Siokas V, Dardiotis E, Tsatsakis A, Bowman AB, da Rocha JBT, Aschner M. Brain diseases in changing climate. ENVIRONMENTAL RESEARCH 2019; 177:108637. [PMID: 31416010 PMCID: PMC6717544 DOI: 10.1016/j.envres.2019.108637] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 05/12/2023]
Abstract
Climate change is one of the biggest and most urgent challenges for the 21st century. Rising average temperatures and ocean levels, altered precipitation patterns and increased occurrence of extreme weather events affect not only the global landscape and ecosystem, but also human health. Multiple environmental factors influence the onset and severity of human diseases and changing climate may have a great impact on these factors. Climate shifts disrupt the quantity and quality of water, increase environmental pollution, change the distribution of pathogens and severely impacts food production - all of which are important regarding public health. This paper focuses on brain health and provides an overview of climate change impacts on risk factors specific to brain diseases and disorders. We also discuss emerging hazards in brain health due to mitigation and adaptation strategies in response to climate changes.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Moscow, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Moscow, Russia; Trace Element Institute for UNESCO, Lyon, France
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
| | - João B T da Rocha
- Department of Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
36
|
Robert MA, Christofferson RC, Weber PD, Wearing HJ. Temperature impacts on dengue emergence in the United States: Investigating the role of seasonality and climate change. Epidemics 2019; 28:100344. [PMID: 31175008 PMCID: PMC6791375 DOI: 10.1016/j.epidem.2019.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/02/2019] [Accepted: 05/05/2019] [Indexed: 12/23/2022] Open
Abstract
Tropical mosquito-borne viruses have been expanding into more temperate regions in recent decades. This is partly due to the coupled effects of temperature on mosquito life history traits and viral infection dynamics and warming surface temperatures, resulting in more suitable conditions for vectors and virus transmission. In this study, we use a deterministic ordinary differential equations model to investigate how seasonal and diurnal temperature fluctuations affect the potential for dengue transmission in six U.S. cities. We specifically consider temperature-dependent mosquito larval development, adult mosquito mortality, and the extrinsic incubation period of the virus. We show that the ability of introductions to lead to outbreaks depends upon the relationship between a city's temperature profile and the time of year at which the initial case is introduced. We also investigate how the potential for outbreaks changes with predicted future increases in mean temperatures due to climate change. We find that climate change will likely lead to increases in suitability for dengue transmission and will increase the periods of the year in which introductions may lead to outbreaks, particularly in cities that typically have mild winters and warm summers, such as New Orleans, Louisiana, and El Paso, Texas. We discuss our results in the context of temperature heterogeneity within and across cities and how these differences may impact the potential for dengue emergence given present day and predicted future temperatures.
Collapse
Affiliation(s)
- Michael A Robert
- Department of Biology, University of New Mexico, Albuquerque, NM, United States; Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, United States; Department of Mathematics, Physics, and Statistics, University of the Sciences, Philadelphia, PA, United States.
| | - Rebecca C Christofferson
- Department of Pathobiology, Louisiana State University, Baton Rouge, LA, United States; Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, United States
| | - Paula D Weber
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, United States
| | - Helen J Wearing
- Department of Biology, University of New Mexico, Albuquerque, NM, United States; Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
37
|
Shocket MS, Magnante A, Duffy MA, Cáceres CE, Hall SR. Can hot temperatures limit disease transmission? A test of mechanisms in a zooplankton–fungus system. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Meghan A. Duffy
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
| | - Carla E. Cáceres
- School of Integrative Biology University of Illinois at Urbana‐Champaign Urbana IL USA
| | | |
Collapse
|
38
|
Cohen JM, McMahon TA, Ramsay C, Roznik EA, Sauer EL, Bessler S, Civitello DJ, Delius BK, Halstead N, Knutie SA, Nguyen KH, Ortega N, Sears B, Venesky MD, Young S, Rohr JR. Impacts of thermal mismatches on chytrid fungus
Batrachochytrium dendrobatidis
prevalence are moderated by life stage, body size, elevation and latitude. Ecol Lett 2019; 22:817-825. [DOI: 10.1111/ele.13239] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/04/2018] [Accepted: 12/05/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Jeremy M. Cohen
- Department of Integrative Biology University of South Florida Tampa FL USA
| | | | - Chloe Ramsay
- Department of Integrative Biology University of South Florida Tampa FL USA
| | | | - Erin L. Sauer
- Department of Integrative Biology University of South Florida Tampa FL USA
| | - Scott Bessler
- Department of Integrative Biology University of South Florida Tampa FL USA
| | | | - Bryan K. Delius
- Department of Integrative Biology University of South Florida Tampa FL USA
| | | | - Sarah A. Knutie
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
| | - Karena H. Nguyen
- Department of Integrative Biology University of South Florida Tampa FL USA
| | - Nicole Ortega
- Department of Integrative Biology University of South Florida Tampa FL USA
| | - Brittany Sears
- Department of Biological Sciences University of South Florida St. Petersburg St. Petersburg FL USA
| | | | - Suzanne Young
- Ecole polytechnique fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Jason R. Rohr
- Department of Integrative Biology University of South Florida Tampa FL USA
- Department of Biological Sciences University of Notre Dame Notre Dame IN USA
| |
Collapse
|
39
|
Menezes BRCD, Rodrigues KF, Fonseca BCDS, Ribas RG, Montanheiro TLDA, Thim GP. Recent advances in the use of carbon nanotubes as smart biomaterials. J Mater Chem B 2019; 7:1343-1360. [PMID: 32255006 DOI: 10.1039/c8tb02419g] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Carbon nanotubes (CNTs) have remarkable mechanical, thermal, electronic, and biological properties due to their particular atomic structure made of graphene sheets that are rolled into cylindrical tubes. Due to their outstanding properties, CNTs have been used in several technological fields. Currently, the most prominent research area of CNTs focuses on biomedical applications, using these materials to produce hybrid biosensors, drug delivery systems, and high performance composites for implants. Although a great number of research studies have already shown the advantages of CNT-based biomedical devices, their clinical use for in vivo application has not been consummated. Concerns related to their toxicity, biosafety, and biodegradation still remain. The effect of CNTs on the human body and the ecosystem is not well established, especially due to the lack of standardization of toxicological tests, which generate contradictions in the results. CNTs' toxicity must be clarified to enable the medical use of these exceptional materials in the near future. In this review, we summarize recent advances in developing biosensors, drug delivery systems, and implants using CNTs as smart biomaterials to identify pathogens, load/deliver drugs and enhance the mechanical and antimicrobial performance of implants.
Collapse
Affiliation(s)
- Beatriz Rossi Canuto de Menezes
- Divisão de Ciências Fundamentais, Instituto Tecnológico de Aeronáutica (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228970, Brazil.
| | | | | | | | | | | |
Collapse
|
40
|
Marklewitz M, Junglen S. Evolutionary and ecological insights into the emergence of arthropod-borne viruses. Acta Trop 2019; 190:52-58. [PMID: 30339799 DOI: 10.1016/j.actatropica.2018.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/19/2018] [Accepted: 10/12/2018] [Indexed: 02/05/2023]
Abstract
The emergence of arthropod-borne viruses (arboviruses) is of global concern as they can rapidly spread across countries and to new continents as the recent examples of chikungunya virus and Zika virus have demonstrated. Whereas the global movement patterns of emerging arboviruses are comparatively well studied, there is little knowledge on initial emergence processes that enable sylvatic (enzootic) viruses to leave their natural amplification cycle and infect humans or livestock, often also involving infection of anthropophilic vector species. Emerging arboviruses almost exclusively originate in highly biodiverse ecosystems of tropical countries. Changes in host population diversity and density can affect pathogen transmission patterns and are likely to influence arbovirus emergence processes. This review focuses on concepts from disease ecology, explaining the interplay between biodiversity and pathogen emergence.
Collapse
Affiliation(s)
- Marco Marklewitz
- Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany; German Center for Infection Research (DZIF), Germany
| | - Sandra Junglen
- Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany; German Center for Infection Research (DZIF), Germany.
| |
Collapse
|
41
|
Altizer S, Becker DJ, Epstein JH, Forbes KM, Gillespie TR, Hall RJ, Hawley DM, Hernandez SM, Martin LB, Plowright RK, Satterfield DA, Streicker DG. Food for contagion: synthesis and future directions for studying host-parasite responses to resource shifts in anthropogenic environments. Philos Trans R Soc Lond B Biol Sci 2019. [PMID: 29531154 DOI: 10.1098/rstb.2017.0102] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human-provided resource subsidies for wildlife are diverse, common and have profound consequences for wildlife-pathogen interactions, as demonstrated by papers in this themed issue spanning empirical, theoretical and management perspectives from a range of study systems. Contributions cut across scales of organization, from the within-host dynamics of immune function, to population-level impacts on parasite transmission, to landscape- and regional-scale patterns of infection. In this concluding paper, we identify common threads and key findings from author contributions, including the consequences of resource subsidies for (i) host immunity; (ii) animal aggregation and contact rates; (iii) host movement and landscape-level infection patterns; and (iv) interspecific contacts and cross-species transmission. Exciting avenues for future work include studies that integrate mechanistic modelling and empirical approaches to better explore cross-scale processes, and experimental manipulations of food resources to quantify host and pathogen responses. Work is also needed to examine evolutionary responses to provisioning, and ask how diet-altered changes to the host microbiome influence infection processes. Given the massive public health and conservation implications of anthropogenic resource shifts, we end by underscoring the need for practical recommendations to manage supplemental feeding practices, limit human-wildlife conflicts over shared food resources and reduce cross-species transmission risks, including to humans.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.
Collapse
Affiliation(s)
- Sonia Altizer
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA .,Center for the Ecology of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel J Becker
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | | | - Kristian M Forbes
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Biology, The Pennsylvania State University, University Park, PA, USA.,Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Thomas R Gillespie
- Department of Environmental Sciences and Program in Population Biology, Ecology and Evolution, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Richard J Hall
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Department of Infectious Disease, College of Veterinary Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sonia M Hernandez
- Warnell School of Forestry and Natural Resources, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Lynn B Martin
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Dara A Satterfield
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
| | - Daniel G Streicker
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| |
Collapse
|
42
|
Stensgaard AS, Vounatsou P, Sengupta ME, Utzinger J. Schistosomes, snails and climate change: Current trends and future expectations. Acta Trop 2019; 190:257-268. [PMID: 30261186 DOI: 10.1016/j.actatropica.2018.09.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022]
Abstract
The exact impact of climate change on schistosomiasis, a disease caused by a blood fluke that affects more than 250 million people mainly in tropical and subtropical countries, is currently unknown, but likely to vary with the snail-parasite species' specific ecologies and the spatio-temporal scale of investigation. Here, by means of a systematic review to identify studies reporting on impacts of climate change on the agents of schistosomiasis, we provide an updated synthesis of the current knowledge about the climate change-schistosomiasis relation. We found that, despite a recent increase in scientific studies that discuss the potential impact of climate change on schistosomiasis, only a handful of reports have applied modelling and predictive forecasting that provide a quantitative estimate of potential outcomes. The volume and type of evidence associated with climate change responses were found to be variable across geographical regions and snail-parasite taxonomic groups. Indeed, the strongest evidence stems from the People's Republic of China pertaining to Schistosoma japonicum. Some evidence is also available from eastern Africa, mainly for Schistosoma mansoni. While studies focused on the northern and southern range margins for schistosomiasis indicate an increase in transmission range as the most likely outcome, there was less agreement about the direction of outcomes from the central and eastern parts of Africa. The current lack of consensus suggests that climate change is more likely to shift than to expand the geographic ranges of schistosomiasis. A comparison between the current geographical distributions and the thermo-physiological limitations of the two main African schistosome species (Schistosoma haematobium and S. mansoni) offered additional insights, and showed that both species already exist near their thermo-physiological niche boundaries. The African species both stand to move considerably out of their "thermal comfort zone" in a future, warmer Africa, but S. haematobium in particular is likely to experience less favourable climatic temperatures. The consequences for schistosomiasis transmission will, to a large extent, depend on the parasites and snails ability to adapt or move. Based on the identified geographical trends and knowledge gaps about the climate change-schistosomiasis relation, we propose to align efforts to close the current knowledge gaps and focus on areas considered to be the most vulnerable to climate change.
Collapse
|
43
|
Okuneye K, Eikenberry SE, Gumel AB. Weather-driven malaria transmission model with gonotrophic and sporogonic cycles. JOURNAL OF BIOLOGICAL DYNAMICS 2019; 13:288-324. [PMID: 30691351 DOI: 10.1080/17513758.2019.1570363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Malaria is mainly a tropical disease and its transmission cycle is heavily influenced by environment: The life-cycles of the Anopheles mosquito vector and Plasmodium parasite are both strongly affected by ambient temperature, while suitable aquatic habitat is necessary for immature mosquito development. Therefore, how global warming may affect malaria burden is an active question, and we develop a new ordinary differential equations-based malaria transmission model that explicitly considers the temperature-dependent Anopheles gonotrophic and Plasmodium sporogonic cycles. Mosquito dynamics are coupled to infection among a human population with symptomatic and asymptomatic disease carriers, as well as temporary immunity. We also explore the effect of incorporating diurnal temperature variations upon transmission. Rigorous analysis of the model show that the non-trivial disease-free equilibrium is locally-asymptotically stable when the associated reproduction number is less than unity (this equilibrium is globally-asymptotically for a special case with no density-dependent larval and disease-induced host mortality). Numerical simulations of the model, for the case where the ambient temperature is held constant, suggest a nonlinear, hyperbolic relationship between the reproduction number and clinical malaria burden. Moreover, malaria burden peaks at 29.5 o C when daily ambient temperature is held constant, but this peak decreases with increasing daily temperature variation, to about 23-25 o C. Malaria burden also varies nonlinearly with temperature, such that small temperature changes influent disease mainly at marginal temperatures, suggesting that in areas where malaria is highly endemic, any response to global warming may be highly nonlinear and most typically minimal, while in areas of more marginal malaria potential (such as the East African highlands), increasing temperatures may translate nearly linearly into increased disease potential. Finally, we observe that while explicitly modelling the stages of the Plasmodium sporogonic cycle is essential, explicitly including the stages of the Anopheles gonotrophic cycle is of minimal importance.
Collapse
Affiliation(s)
- Kamaldeen Okuneye
- a School of Mathematical and Statistical Sciences, Arizona State University , Tempe , Arizona 85287 , USA
| | - Steffen E Eikenberry
- a School of Mathematical and Statistical Sciences, Arizona State University , Tempe , Arizona 85287 , USA
| | - Abba B Gumel
- a School of Mathematical and Statistical Sciences, Arizona State University , Tempe , Arizona 85287 , USA
- b Department of Mathematics and Applied Mathematics, University of Pretoria , Pretoria , South Africa
| |
Collapse
|
44
|
Caminade C, McIntyre KM, Jones AE. Impact of recent and future climate change on vector-borne diseases. Ann N Y Acad Sci 2019; 1436:157-173. [PMID: 30120891 PMCID: PMC6378404 DOI: 10.1111/nyas.13950] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022]
Abstract
Climate change is one of the greatest threats to human health in the 21st century. Climate directly impacts health through climatic extremes, air quality, sea-level rise, and multifaceted influences on food production systems and water resources. Climate also affects infectious diseases, which have played a significant role in human history, impacting the rise and fall of civilizations and facilitating the conquest of new territories. Our review highlights significant regional changes in vector and pathogen distribution reported in temperate, peri-Arctic, Arctic, and tropical highland regions during recent decades, changes that have been anticipated by scientists worldwide. Further future changes are likely if we fail to mitigate and adapt to climate change. Many key factors affect the spread and severity of human diseases, including mobility of people, animals, and goods; control measures in place; availability of effective drugs; quality of public health services; human behavior; and political stability and conflicts. With drug and insecticide resistance on the rise, significant funding and research efforts must to be maintained to continue the battle against existing and emerging diseases, particularly those that are vector borne.
Collapse
Affiliation(s)
- Cyril Caminade
- Department of Epidemiology and Population Health, Institute of Infection and Global HealthUniversity of LiverpoolLiverpoolUK
- NIHR Health Protection Research Unit in Emerging and Zoonotic InfectionsLiverpoolUK
| | - K. Marie McIntyre
- Department of Epidemiology and Population Health, Institute of Infection and Global HealthUniversity of LiverpoolLiverpoolUK
- NIHR Health Protection Research Unit in Emerging and Zoonotic InfectionsLiverpoolUK
| | - Anne E. Jones
- Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
45
|
Asad H, Carpenter DO. Effects of climate change on the spread of zika virus: a public health threat. REVIEWS ON ENVIRONMENTAL HEALTH 2018; 33:31-42. [PMID: 29500926 DOI: 10.1515/reveh-2017-0042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/09/2017] [Indexed: 05/18/2023]
Abstract
Zika is a vector-borne viral disease transmitted to humans primarily by Aedes aegypti mosquitoes. The increased climate instability has contributed to the emergence of infections carried by mosquitoes like dengue, chikungunya and zika. While infection with the zika virus is not new, the recent epidemic of microcephaly in Brazil and other countries in South America resulting from the infection of pregnant women with the zika virus raise a number of serious public health concerns. These include the question of how climate change affects the range of zika vectors, what can we do to shorten the length of mosquito season, how and why the symptoms of zika infection have changed and what can be done to reduce the burden of human disease from this infection? Another important question that needs to be answered is what are the factors that caused the zika virus to leave the non-human primates and/or other mammals and invade the human population?
Collapse
Affiliation(s)
- Hina Asad
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, USA
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, USA
| |
Collapse
|
46
|
Abstract
In every epidemic some individuals become sick and some may die, whereas others recover from illness and still others show no signs or symptoms of disease. These differences highlight a fundamental question of microbial pathogenesis: why are some individuals susceptible to infectious diseases while others who acquire the same microbe remain well? For most of human history, the answer assumed the hand of providence. With the advent of the germ theory of disease, the focus on disease causality became the microbe, but this did not explain how there can be different outcomes of infection in different individuals with the same microbe. Here we examine the attributes of susceptibility in the context of the "damage-response framework" of microbial pathogenesis. We identify 11 attributes that, although not independent, are sufficiently distinct to be considered separately: microbiome, inoculum, sex, temperature, environment, age, chance, history, immunity, nutrition, and genetics. We use the first letter of each to create the mnemonic MISTEACHING, underscoring the need for caution in accepting dogma and attributing disease causality to any single factor. For both populations and individuals, variations in the attributes that assemble into MISTEACHING can create an enormity of combinations that can in turn translate into different outcomes of host-microbe encounters. Combinatorial diversity among the 11 attributes makes identifying "signatures" of susceptibility possible. However, with their inevitable uncertainties and propensity to change, there may still be a low likelihood for prediction with regard to individual host-microbe interactions, although probabilistic prediction may be possible.
Collapse
|
47
|
Tjaden NB, Caminade C, Beierkuhnlein C, Thomas SM. Mosquito-Borne Diseases: Advances in Modelling Climate-Change Impacts. Trends Parasitol 2017; 34:227-245. [PMID: 29229233 DOI: 10.1016/j.pt.2017.11.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 01/15/2023]
Abstract
Vector-borne diseases are on the rise globally. As the consequences of climate change are becoming evident, climate-based models of disease risk are of growing importance. Here, we review the current state-of-the-art in both mechanistic and correlative disease modelling, the data driving these models, the vectors and diseases covered, and climate models applied to assess future risk. We find that modelling techniques have advanced considerably, especially in terms of using ensembles of climate models and scenarios. Effects of extreme events, precipitation regimes, and seasonality on diseases are still poorly studied. Thorough validation of models is still a challenge and is complicated by a lack of field and laboratory data. On a larger scale, the main challenges today lie in cross-disciplinary and cross-sectoral transfer of data and methods.
Collapse
Affiliation(s)
| | - Cyril Caminade
- Institute of Infection and Global Health, University of Liverpool, UK; NIHR, Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - Carl Beierkuhnlein
- Department of Biogeography, University of Bayreuth, Germany; BayCEER, Bayreuth Center for Ecology and Environmental Research, Bayreuth, Germany; GIB, Geographisches Institut Bayreuth, Bayreuth, Germany
| | - Stephanie Margarete Thomas
- Department of Biogeography, University of Bayreuth, Germany; BayCEER, Bayreuth Center for Ecology and Environmental Research, Bayreuth, Germany.
| |
Collapse
|
48
|
Sripa B, Echaubard P. Prospects and Challenges towards Sustainable Liver Fluke Control. Trends Parasitol 2017; 33:799-812. [PMID: 28754415 DOI: 10.1016/j.pt.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 02/08/2023]
Abstract
The liver fluke Opisthorchis viverrini (Ov) is endemic in Southeast Asia where more than 10 million people are estimated to be infected. The infection is associated with several hepatobiliary diseases, including cholangiocarcinoma (CCA). Northeast Thailand is a hotspot for Ov transmission, and, despite extensive public health prevention campaigns led by the government, the prevalence of Ov infection is still high. High infection rates result from cultural and ecological complexities where wet-rice agrarian habitats, centuries-old raw-food culture, and the parasite's complex biology combine to create an ideal transmission arena. Here we review the state of our knowledge regarding the social-ecological determinants underlying Ov transmission. We also describe an integrative research rationale for liver fluke control better aligned with sustainable health development.
Collapse
Affiliation(s)
- Banchob Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Pierre Echaubard
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Global Health Asia Institute, Faculty of Public Health, Mahidol University, Bangkok, Thailand; Department of Biology, Laurentian University, Sudbury, Ontario, Canada.
| |
Collapse
|
49
|
Duan Y, Yang LJ, Zhang YJ, Huang XL, Pan GX, Wang J. Effects of meteorological factors on incidence of scarlet fever during different periods in different districts of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:19-24. [PMID: 28073056 DOI: 10.1016/j.scitotenv.2017.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/24/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To reveal the difference of meteorological effect on scarlet fever in Beijing and Hong Kong, China, during different periods among 2004-2014. METHODS The data of monthly incidence of scarlet fever and meteorological variables from 2004 to 2014 in Beijing and Hong Kong were collected from Chinese science data center of public health, meteorological data website and Hong Kong observatory website. The whole study period was separated into two periods by the outbreak year 2011 (Jan 2004-Dec 2010 and Jan 2011-Dec 2014). A generalized additive Poisson model was conducted to estimate the effect of meteorological variables on monthly incidence of scarlet fever during two periods in Beijing and Hong Kong, China. RESULTS Incidence of scarlet fever in two districts were compared and found the average incidence during period of 2004-2010 were significantly different (Z=203.973, P<0.001) while average incidence became generally equal during 2011-2014 (Z=2.125, P>0.05). There was also significant difference in meteorological variables between Beijing and Hong Kong during whole study period, except air pressure (Z=0.165, P=0.869). After fitting GAM model, it could be found monthly mean temperature showed a negative effect (RR=0.962, 95%CI: 0.933, 0.992) on scarlet fever in Hong Kong during the period of 2004-2010. By comparison, for data in Beijing during the period of 2011-2014, the RRs of monthly mean temperature range growing 1°C and monthly sunshine duration growing 1h was equal to 1.196(1.022, 1.399) and 1.006(1.001, 1.012), respectively. The changes of meteorological effect on scarlet fever over time were not significant both in Beijing and Hong Kong. CONCLUSION This study suggests that meteorological variables were important factors for incidence of scarlet fever during different period in Beijing and Hong Kong. It also support that some meteorological effects were opposite in different period although these differences might not completely statistically significant.
Collapse
Affiliation(s)
- Yu Duan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Li-Juan Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yan-Jie Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Xiao-Lei Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Gui-Xia Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|