1
|
Mousso T, Rice K, Tumenbayar BI, Pham K, Heo Y, Heo SC, Lee K, Lombardo AT, Bae Y. Survivin modulates stiffness-induced vascular smooth muscle cell motility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.628062. [PMID: 39713437 PMCID: PMC11661181 DOI: 10.1101/2024.12.11.628062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Arterial stiffness is a key contributor to cardiovascular diseases, including atherosclerosis, restenosis, and coronary artery disease, it has been characterized to be associated with the aberrant migration of vascular smooth muscle cells (VSMCs). However, the underlying molecular mechanisms driving VSMC migration in stiff environments remain incompletely understood. We recently demonstrated that survivin, a member of the inhibitor of apoptosis protein family, is highly expressed in both mouse and human VSMCs cultured on stiff polyacrylamide hydrogels, where it modulates stiffness-mediated cell cycle progression and proliferation. However, its role in stiffness-dependent VSMC migration remains unknown. To assess its impact on migration, we performed time-lapse video microscopy on VSMCs seeded on fibronectin-coated soft and stiff polyacrylamide hydrogels, mimicking the physiological stiffness of normal and diseased arteries, with either survivin inhibition or overexpression. We observed that VSMC motility increased under stiff conditions, while pharmacologic or siRNA-mediated inhibition of survivin reduced stiffness-stimulated migration to rates similar to those observed under soft conditions. Further investigation revealed that cells on stiff hydrogels exhibited greater directional movement and robust lamellipodial protrusion compared to those on soft hydrogels. Interestingly, survivin-inhibited cells on stiff hydrogels showed reduced directional persistence and lamellipodial protrusion compared to control cells. We also examined whether survivin overexpression alone is sufficient to induce cell migration on soft hydrogels, and found that survivin overexpression modestly increased cell motility and partially rescued the lack of directional persistence compared to GFP-expressing control VSMCs on soft hydrogels. In conclusion, our findings demonstrate that survivin plays a key role in regulating stiffness-induced VSMC migration, suggesting that targeting survivin and its signaling pathways could offer therapeutic strategies for addressing arterial stiffness in cardiovascular diseases.
Collapse
Affiliation(s)
- Thomas Mousso
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY 14203, USA
| | - Kalina Rice
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY 14203, USA
| | - Bat-Ider Tumenbayar
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Khanh Pham
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY 14203, USA
| | - Yuna Heo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY 14203, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Su Chin Heo
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kwonmoo Lee
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Andrew T Lombardo
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY 14203, USA
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
2
|
Duan M, Liu Y, Pi C, Zhao Y, Tian Y, Xie J. TGF-β2 enhances nanoscale cortex stiffness via condensation of cytoskeleton-focal adhesion plaque. Biophys J 2024:S0006-3495(24)04068-2. [PMID: 39645584 DOI: 10.1016/j.bpj.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/27/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024] Open
Abstract
Physical spatiotemporal characteristics of cellular cortex dominate cell functions and even determine cell fate. The cellular cortex is able to reorganize to a dynamic steady status with changed stiffnesses once stimulated, and thus alter the physiological and pathological activities of almost all types of cells. TGF-β2, a potent pleiotropic growth factor, plays important roles in cartilage development, endochondral ossification, and cartilage diseases. However, it is not yet known whether TGF-β2 would alter the physical spatiotemporal characteristics of the cell cortex such as cortex stiffness, thereby affecting the function of chondrocytes. In this study, we investigated the influence of TGF-β2 on cellular cortex stiffness of chondrocytes and the underlying mechanism. We firstly detected TGF-β2-induced changes in cytoskeleton and focal adhesion plaque, which were closely related to cellular cortex stiffness. We then characterized the landscape of nanoscale cortex stiffness in individual chondrocytes induced by TGF-β2 via atomic force microscopy. By using inhibitors, latrunculin A and blebbistatin, we verified the importance of cytoskeleton-focal adhesion plaque axis on cellular cortex stiffness of chondrocytes induced by TGF-β2. We finally elucidated that TGF-β2 enhanced the phosphorylation of Smad3 and facilitated the nuclear accumulation of p-Smad3. The p-Smad3 aggregated in the nuclei enhanced the cytoskeleton and focal adhesion plaque at transcriptional level, thereby mediating changes in cell cortex stiffness. Taken together, these results provide an understanding about the role of TGF-β2 on physical spatiotemporal properties of cell cortex in chondrocytes, and might provide cues for interpretation of cartilage development and interventions to cartilage diseases.
Collapse
Affiliation(s)
- Mengmeng Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yanfang Zhao
- Department of Prosthodontics, Indiana University, Bloomington, Indiana
| | - Yunfei Tian
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, China.
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Pamplona R, González-Lana S, Ochoa I, Martín-Rapún R, Sánchez-Somolinos C. Evaluation of gelatin-based hydrogels for colon and pancreas studies using 3D in vitro cell culture. J Mater Chem B 2024; 12:3144-3160. [PMID: 38456751 DOI: 10.1039/d3tb02640j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Biomimetic 3D models emerged some decades ago to address 2D cell culture limitations in the field of replicating biological phenomena, structures or functions found in nature. The fabrication of hydrogels for cancer disease research enables the study of cell processes including growth, proliferation and migration and their 3D design is based on the encapsulation of tumoral cells within a tunable matrix. In this work, a platform of gelatin methacrylamide (GelMA)-based photocrosslinked scaffolds with embedded colorectal (HCT-116) or pancreatic (MIA PaCa-2) cancer cells is presented. Prior to cell culture, the mechanical characterization of hydrogels was assessed in terms of stiffness and swelling behavior. Modifications of the UV curing time enabled a fine tuning of the mechanical properties, which at the same time, showed susceptibility to the chemical composition and crosslinking mechanism. All scaffolds displayed excellent cytocompatibility with both tumoral cells while eliciting various cell responses depending on the microenvironment features. Individual and collective cell migration were observed for HCT-116 and MIA PaCa-2 cell lines, highlighting the ability of the colorectal cancer cells to cluster into aggregates of different sizes governed by the surrounding matrix. Additionally, metabolic activity results pointed out to the development of a more proliferative phenotype within stiffer networks. These findings confirm the suitability of the presented platform of GelMA-based hydrogels to conduct 3D cell culture experiments and explore biological processes associated with colorectal and pancreatic cancer.
Collapse
Affiliation(s)
- Regina Pamplona
- Aragón Institute of Nanoscience and Materials (INMA), CSIC-University of Zaragoza, Department of Organic Chemistry, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Sandra González-Lana
- BEONCHIP S.L., CEMINEM, Campus Río Ebro. C/Mariano Esquillor Gómez s/n, 50018 Zaragoza, Spain
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Institute for Health Research Aragón (IIS Aragón), Paseo de Isabel La Católica 1-3, 50009 Zaragoza, Spain
| | - Rafael Martín-Rapún
- Aragón Institute of Nanoscience and Materials (INMA), CSIC-University of Zaragoza, Department of Organic Chemistry, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain.
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Universidad de Zaragoza, Facultad de Ciencias, Departamento de Química Orgánica, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Carlos Sánchez-Somolinos
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Aragón Institute of Nanoscience and Materials (INMA), CSIC-University of Zaragoza, Department of Condensed Matter Physics (Faculty of Science), C/Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| |
Collapse
|
4
|
Chou WH, Molaei M, Wu H, Oakes PW, Beach JR, Gardel ML. Limiting pool and actin architecture controls myosin cluster sizes in adherent cells. Biophys J 2024; 123:157-171. [PMID: 38062704 PMCID: PMC10808045 DOI: 10.1016/j.bpj.2023.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
The actomyosin cytoskeleton generates mechanical forces that power important cellular processes, such as cell migration, cell division, and mechanosensing. Actomyosin self-assembles into contractile networks and bundles that underlie force generation and transmission in cells. A central step is the assembly of the myosin II filament from myosin monomers, regulation of which has been extensively studied. However, myosin filaments are almost always found as clusters within the cell cortex. While recent studies characterized cluster nucleation dynamics at the cell periphery, how myosin clusters grow on stress fibers remains poorly characterized. Here, we utilize a U2OS osteosarcoma cell line with endogenously tagged myosin II to measure the myosin cluster size distribution in the lamella of adherent cells. We find that myosin clusters can grow with Rho-kinase (ROCK) activity alone in the absence of myosin motor activity. Time-lapse imaging reveals that myosin clusters grow via increased myosin association to existing clusters, which is potentiated by ROCK-dependent myosin filament assembly. Enabling myosin motor activity allows further myosin cluster growth through myosin association that is dependent on F-actin architecture. Using a toy model, we show that myosin self-affinity is sufficient to recapitulate the experimentally observed myosin cluster size distribution, and that myosin cluster sizes are determined by the pool of myosin available for cluster growth. Together, our findings provide new insights into the regulation of myosin cluster sizes within the lamellar actomyosin cytoskeleton.
Collapse
Affiliation(s)
- Wen-Hung Chou
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, Illinois; Institute of Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Mehdi Molaei
- Institute of Biophysical Dynamics, The University of Chicago, Chicago, Illinois; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | - Huini Wu
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois
| | - Patrick W Oakes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois
| | - Jordan R Beach
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois
| | - Margaret L Gardel
- Institute of Biophysical Dynamics, The University of Chicago, Chicago, Illinois; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois; James Franck Institute, The University of Chicago, Chicago, Illinois; Department of Physics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
5
|
Amiri S, Muresan C, Shang X, Huet-Calderwood C, Schwartz MA, Calderwood DA, Murrell M. Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton. Nat Commun 2023; 14:8011. [PMID: 38049429 PMCID: PMC10695988 DOI: 10.1038/s41467-023-43612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
The filamentous actin (F-actin) cytoskeleton is a composite material consisting of cortical actin and bundled F-actin stress fibers, which together mediate the mechanical behaviors of the cell, from cell division to cell migration. However, as mechanical forces are typically measured upon transmission to the extracellular matrix, the internal distribution of forces within the cytoskeleton is unknown. Likewise, how distinct F-actin architectures contribute to the generation and transmission of mechanical forces is unclear. Therefore, we have developed a molecular tension sensor that embeds into the F-actin cytoskeleton. Using this sensor, we measure tension within stress fibers and cortical actin, as the cell is subject to uniaxial stretch. We find that the mechanical response, as measured by FRET, depends on the direction of applied stretch relative to the cell's axis of alignment. When the cell is aligned parallel to the direction of the stretch, stress fibers and cortical actin both accumulate tension. By contrast, when aligned perpendicular to the direction of stretch, stress fibers relax tension while the cortex accumulates tension, indicating mechanical anisotropy within the cytoskeleton. We further show that myosin inhibition regulates this anisotropy. Thus, the mechanical anisotropy of the cell and the coordination between distinct F-actin architectures vary and depend upon applied load.
Collapse
Affiliation(s)
- Sorosh Amiri
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA
- Department of Mechanical Engineering and Material Science, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
| | - Camelia Muresan
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
| | - Xingbo Shang
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
| | | | - Martin A Schwartz
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
- Department of Cell Biology, 333 Cedar St, Yale University, New Haven, CT, 06510, USA
- Yale Cardiovascular Research Center, 300 George St, New Haven, CT, 06511, USA
| | - David A Calderwood
- Department of Pharmacology, 333 Cedar St, Yale University, New Haven, CT, 06510, USA
- Department of Cell Biology, 333 Cedar St, Yale University, New Haven, CT, 06510, USA
| | - Michael Murrell
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA.
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA.
- Department of Physics, 217 Prospect Street, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
6
|
Chou WH, Molaei M, Wu H, Oakes PW, Beach JR, Gardel ML. Limiting Pool and Actin Architecture Controls Myosin Cluster Sizes in Adherent Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544121. [PMID: 37333106 PMCID: PMC10274763 DOI: 10.1101/2023.06.07.544121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The actomyosin cytoskeleton generates mechanical forces that power important cellular processes, such as cell migration, cell division, and mechanosensing. Actomyosin self-assembles into contractile networks and bundles that underlie force generation and transmission in cells. A central step is the assembly of the myosin II filament from myosin monomers, regulation of which has been extensively studied. However, myosin filaments are almost always found as clusters within the cell cortex. While recent studies characterized cluster nucleation dynamics at the cell periphery, how myosin clusters grow on stress fibers remains poorly characterized. Here, we utilize a U2OS osteosarcoma cell line with endogenously tagged myosin II to measure the myosin cluster size distribution in the lamella of adherent cells. We find that myosin clusters can grow with Rho-kinase (ROCK) activity alone in the absence of myosin motor activity. Time-lapse imaging reveals that myosin clusters grow via increased myosin association to existing clusters, which is potentiated by ROCK-dependent myosin filament assembly. Enabling myosin motor activity allows further myosin cluster growth through myosin association that is dependent on F-actin architecture. Using a toy model, we show that myosin self-affinity is sufficient to recapitulate the experimentally observed myosin cluster size distribution, and that myosin cluster sizes are determined by the pool of myosin available for cluster growth. Together, our findings provide new insights into the regulation of myosin cluster sizes within the lamellar actomyosin cytoskeleton.
Collapse
|
7
|
Sievers J, Mahajan V, Welzel PB, Werner C, Taubenberger A. Precision Hydrogels for the Study of Cancer Cell Mechanobiology. Adv Healthc Mater 2023; 12:e2202514. [PMID: 36826799 PMCID: PMC11468035 DOI: 10.1002/adhm.202202514] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/23/2023] [Indexed: 02/25/2023]
Abstract
Cancer progression is associated with extensive remodeling of the tumor microenvironment (TME), resulting in alterations of biochemical and biophysical cues that affect both cancer and stromal cells. In particular, the mechanical characteristics of the TME extracellular matrix undergo significant changes. Bioengineered polymer hydrogels can be instrumental to systematically explore how mechanically changed microenvironments impact cancer cell behavior, including proliferation, survival, drug resistance, and invasion. This article reviews studies that have explored the impact of different mechanical cues of the cells' 3D microenvironment on cancer cell behavior using hydrogel-based in vitro models. In particular, advanced engineering strategies are highlighted for tailored hydrogel matrices recapitulating the TME's micrometer- and sub-micrometer-scale architectural and mechanical features, while accounting for its intrinsically heterogenic and dynamic nature. It is anticipated that such precision hydrogel systems will further the understanding of cancer mechanobiology.
Collapse
Affiliation(s)
- Jana Sievers
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Vaibhav Mahajan
- Center for Molecular and Cellular Bioengineering (CMCB)BIOTECTU Dresden01307DresdenGermany
| | - Petra B. Welzel
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
- Center of Regenerative Therapies Dresden and Cluster of Excellence Physics of LifeTU Dresden01062DresdenGermany
| | - Anna Taubenberger
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
- Center for Molecular and Cellular Bioengineering (CMCB)BIOTECTU Dresden01307DresdenGermany
| |
Collapse
|
8
|
Huynh QS, Holsinger RMD. Fiber and Electrical Field Alignment Increases BDNF Expression in SH-SY5Y Cells following Electrical Stimulation. Pharmaceuticals (Basel) 2023; 16:138. [PMID: 37259290 PMCID: PMC9960882 DOI: 10.3390/ph16020138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 09/13/2024] Open
Abstract
The limited expression of neurotrophic factors that can be included in neural tissue engineering scaffolds is insufficient for sustained neural regeneration. A localized and sustained method of introducing neurotrophic factors is required. We describe our attempt at inducing neuroblastoma cells to express trophic factors following electrical stimulation. Human SH-SY5Y neuroblastoma cells, cultured on polycaprolactone electrospun nanofibers, were electrically stimulated using a 100 mV/mm electric field. Nuclear morphology and brain-derived neurotrophic factor (BDNF) expression were analyzed. Cells were classified based on the type of fiber orientation and the alignment of these fibers in relation to the electric field. Nuclear deformation was mainly influenced by fiber orientation rather than the electrical field. Similarly, fiber orientation also induced BDNF expression. Although electrical field alone had no significant effect on BDNF expression, combining fiber orientation with electrical field resulted in BDNF expression in cells that grew on electrospun fibers that were aligned perpendicular to the electrical field.
Collapse
Affiliation(s)
- Quy-Susan Huynh
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Merino-Casallo F, Gomez-Benito MJ, Hervas-Raluy S, Garcia-Aznar JM. Unravelling cell migration: defining movement from the cell surface. Cell Adh Migr 2022; 16:25-64. [PMID: 35499121 PMCID: PMC9067518 DOI: 10.1080/19336918.2022.2055520] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Cell motility is essential for life and development. Unfortunately, cell migration is also linked to several pathological processes, such as cancer metastasis. Cells' ability to migrate relies on many actors. Cells change their migratory strategy based on their phenotype and the properties of the surrounding microenvironment. Cell migration is, therefore, an extremely complex phenomenon. Researchers have investigated cell motility for more than a century. Recent discoveries have uncovered some of the mysteries associated with the mechanisms involved in cell migration, such as intracellular signaling and cell mechanics. These findings involve different players, including transmembrane receptors, adhesive complexes, cytoskeletal components , the nucleus, and the extracellular matrix. This review aims to give a global overview of our current understanding of cell migration.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Silvia Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
10
|
De Belly H, Paluch EK, Chalut KJ. Interplay between mechanics and signalling in regulating cell fate. Nat Rev Mol Cell Biol 2022; 23:465-480. [PMID: 35365816 DOI: 10.1038/s41580-022-00472-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/11/2022]
Abstract
Mechanical signalling affects multiple biological processes during development and in adult organisms, including cell fate transitions, cell migration, morphogenesis and immune responses. Here, we review recent insights into the mechanisms and functions of two main routes of mechanical signalling: outside-in mechanical signalling, such as mechanosensing of substrate properties or shear stresses; and mechanical signalling regulated by the physical properties of the cell surface itself. We discuss examples of how these two classes of mechanical signalling regulate stem cell function, as well as developmental processes in vivo. We also discuss how cell surface mechanics affects intracellular signalling and, in turn, how intracellular signalling controls cell surface mechanics, generating feedback into the regulation of mechanosensing. The cooperation between mechanosensing, intracellular signalling and cell surface mechanics has a profound impact on biological processes. We discuss here our understanding of how these three elements interact to regulate stem cell fate and development.
Collapse
Affiliation(s)
- Henry De Belly
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Ewa K Paluch
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Kevin J Chalut
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Wellcome/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Aprile P, Whelan IT, Sathy BN, Carroll SF, Kelly DJ. Soft Hydrogel Environments that Facilitate Cell Spreading and Aggregation Preferentially Support Chondrogenesis of Adult Stem Cells. Macromol Biosci 2022; 22:e2100365. [PMID: 35171524 DOI: 10.1002/mabi.202100365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a promising cell type for treating damaged and diseased synovial joints. The therapeutic potential of MSCs will be facilitated by the engineering of biomaterial environments capable of directing their fate. Here we explored the interplay between matrix elasticity and cell morphology in regulating the chondrogenic differentiation of MSCs when seeded onto or encapsulated within hydrogels made of interpenetrating networks (IPN) of alginate and collagen type I. This IPN system enabled the independent control of substrate stiffness (in 2D and in 3D) and cell morphology (3D only). In a 2D culture environment, the expression of chondrogenic markers SOX9, ACAN and COL2 increased on a soft substrate, which correlated with increased SMAD2/3 nuclear localization, enhanced MSCs condensation and the formation of larger cellular aggregates. The encapsulation of spread MSCs within a soft IPN dramatically increased the expression of cartilage-specific genes, which was linked to higher levels of cellular condensation and nuclear SMAD2/3 localization. Surprisingly, cells forced to adopt a more rounded morphology within the same soft IPNs expressed higher levels of the osteogenic markers RUNX2 and COL1. The insight provided by this study suggests that a mechanobiology informed approach to biomaterial development will be integral to the development of successful cartilage tissue engineering strategies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Paola Aprile
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Ian T Whelan
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,CÚRAM Center for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Binulal N Sathy
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Centre for Nanoscience and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Simon F Carroll
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,CÚRAM Center for Research in Medical Devices, National University of Ireland, Galway, Ireland.,The Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Ireland
| |
Collapse
|
12
|
Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther 2021; 6:426. [PMID: 34916490 PMCID: PMC8674418 DOI: 10.1038/s41392-021-00830-x] [Citation(s) in RCA: 340] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/05/2023] Open
Abstract
Hydrogel is a type of versatile platform with various biomedical applications after rational structure and functional design that leverages on material engineering to modulate its physicochemical properties (e.g., stiffness, pore size, viscoelasticity, microarchitecture, degradability, ligand presentation, stimulus-responsive properties, etc.) and influence cell signaling cascades and fate. In the past few decades, a plethora of pioneering studies have been implemented to explore the cell-hydrogel matrix interactions and figure out the underlying mechanisms, paving the way to the lab-to-clinic translation of hydrogel-based therapies. In this review, we first introduced the physicochemical properties of hydrogels and their fabrication approaches concisely. Subsequently, the comprehensive description and deep discussion were elucidated, wherein the influences of different hydrogels properties on cell behaviors and cellular signaling events were highlighted. These behaviors or events included integrin clustering, focal adhesion (FA) complex accumulation and activation, cytoskeleton rearrangement, protein cyto-nuclei shuttling and activation (e.g., Yes-associated protein (YAP), catenin, etc.), cellular compartment reorganization, gene expression, and further cell biology modulation (e.g., spreading, migration, proliferation, lineage commitment, etc.). Based on them, current in vitro and in vivo hydrogel applications that mainly covered diseases models, various cell delivery protocols for tissue regeneration and disease therapy, smart drug carrier, bioimaging, biosensor, and conductive wearable/implantable biodevices, etc. were further summarized and discussed. More significantly, the clinical translation potential and trials of hydrogels were presented, accompanied with which the remaining challenges and future perspectives in this field were emphasized. Collectively, the comprehensive and deep insights in this review will shed light on the design principles of new biomedical hydrogels to understand and modulate cellular processes, which are available for providing significant indications for future hydrogel design and serving for a broad range of biomedical applications.
Collapse
Affiliation(s)
- Huan Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lixia Duan
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Yan Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Jun Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China.
| | - Kun Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China.
| |
Collapse
|
13
|
Castle EL, Robinson CA, Douglas P, Rinker KD, Corcoran JA. Viral Manipulation of a Mechanoresponsive Signaling Axis Disassembles Processing Bodies. Mol Cell Biol 2021; 41:e0039921. [PMID: 34516278 PMCID: PMC8547432 DOI: 10.1128/mcb.00399-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 12/23/2022] Open
Abstract
Processing bodies (PBs) are ribonucleoprotein granules important for cytokine mRNA decay that are targeted for disassembly by many viruses. Kaposi's sarcoma-associated herpesvirus is the etiological agent of the inflammatory endothelial cancer, Kaposi's sarcoma, and a PB-regulating virus. The virus encodes kaposin B (KapB), which induces actin stress fibers (SFs) and cell spindling as well as PB disassembly. We now show that KapB-mediated PB disassembly requires actin rearrangements, RhoA effectors, and the mechanoresponsive transcription activator, YAP. Moreover, ectopic expression of active YAP or exposure of ECs to mechanical forces caused PB disassembly in the absence of KapB. We propose that the viral protein KapB activates a mechanoresponsive signaling axis and links changes in cell shape and cytoskeletal structures to enhanced inflammatory molecule expression using PB disassembly. Our work implies that cytoskeletal changes in other pathologies may similarly impact the inflammatory environment.
Collapse
Affiliation(s)
- Elizabeth L. Castle
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carolyn-Ann Robinson
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Pauline Douglas
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kristina D. Rinker
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Chemical and Petroleum Engineering and Centre for Bioengineering Research and Education, University of Calgary, Calgary, Alberta, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer A. Corcoran
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Ghilardi SJ, Aronson MS, Sgro AE. Ventral stress fibers induce plasma membrane deformation in human fibroblasts. Mol Biol Cell 2021; 32:1707-1723. [PMID: 34191528 PMCID: PMC8684729 DOI: 10.1091/mbc.e21-03-0096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022] Open
Abstract
Interactions between the actin cytoskeleton and the plasma membrane are important in many eukaryotic cellular processes. During these processes, actin structures deform the cell membrane outward by applying forces parallel to the fiber's major axis (as in migration) or they deform the membrane inward by applying forces perpendicular to the fiber's major axis (as in the contractile ring during cytokinesis). Here we describe a novel actin-membrane interaction in human dermal myofibroblasts. When labeled with a cytosolic fluorophore, the myofibroblasts displayed prominent fluorescent structures on the ventral side of the cell. These structures are present in the cell membrane and colocalize with ventral actin stress fibers, suggesting that the stress fibers bend the membrane to form a "cytosolic pocket" that the fluorophores diffuse into, creating the observed structures. The existence of this pocket was confirmed by transmission electron microscopy. While dissolving the stress fibers, inhibiting fiber protein binding, or inhibiting myosin II binding of actin removed the observed pockets, modulating cellular contractility did not remove them. Taken together, our results illustrate a novel actin-membrane bending topology where the membrane is deformed outward rather than being pinched inward, resembling the topological inverse of the contractile ring found in cytokinesis.
Collapse
Affiliation(s)
- Samuel J. Ghilardi
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215
| | - Mark S. Aronson
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215
| | - Allyson E. Sgro
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215
| |
Collapse
|
15
|
Höhfeld J, Benzing T, Bloch W, Fürst DO, Gehlert S, Hesse M, Hoffmann B, Hoppe T, Huesgen PF, Köhn M, Kolanus W, Merkel R, Niessen CM, Pokrzywa W, Rinschen MM, Wachten D, Warscheid B. Maintaining proteostasis under mechanical stress. EMBO Rep 2021; 22:e52507. [PMID: 34309183 PMCID: PMC8339670 DOI: 10.15252/embr.202152507] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cell survival, tissue integrity and organismal health depend on the ability to maintain functional protein networks even under conditions that threaten protein integrity. Protection against such stress conditions involves the adaptation of folding and degradation machineries, which help to preserve the protein network by facilitating the refolding or disposal of damaged proteins. In multicellular organisms, cells are permanently exposed to stress resulting from mechanical forces. Yet, for long time mechanical stress was not recognized as a primary stressor that perturbs protein structure and threatens proteome integrity. The identification and characterization of protein folding and degradation systems, which handle force-unfolded proteins, marks a turning point in this regard. It has become apparent that mechanical stress protection operates during cell differentiation, adhesion and migration and is essential for maintaining tissues such as skeletal muscle, heart and kidney as well as the immune system. Here, we provide an overview of recent advances in our understanding of mechanical stress protection.
Collapse
Affiliation(s)
- Jörg Höhfeld
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
| | - Dieter O Fürst
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Sebastian Gehlert
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
- Department for the Biosciences of SportsInstitute of Sports ScienceUniversity of HildesheimHildesheimGermany
| | - Michael Hesse
- Institute of Physiology I, Life & Brain CenterMedical FacultyRheinische Friedrich‐Wilhelms UniversityBonnGermany
| | - Bernd Hoffmann
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Thorsten Hoppe
- Institute for GeneticsCologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) and CMMCUniversity of CologneCologneGermany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA3Forschungszentrum JülichJülichGermany
- CECADUniversity of CologneCologneGermany
| | - Maja Köhn
- Institute of Biology IIIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Waldemar Kolanus
- LIMES‐InstituteRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Rudolf Merkel
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Carien M Niessen
- Department of Dermatology and CECADUniversity of CologneCologneGermany
| | | | - Markus M Rinschen
- Department of Biomedicine and Aarhus Institute of Advanced StudiesAarhus UniversityAarhusDenmark
- Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dagmar Wachten
- Institute of Innate ImmunityUniversity Hospital BonnBonnGermany
| | - Bettina Warscheid
- Institute of Biology IIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| |
Collapse
|
16
|
Stietz J, Pollerhoff L, Kurtz M, Li SC, Reiter AMF, Kanske P. The ageing of the social mind: replicating the preservation of socio-affective and the decline of socio-cognitive processes in old age. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210641. [PMID: 34457343 PMCID: PMC8386516 DOI: 10.1098/rsos.210641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 08/04/2021] [Indexed: 05/06/2023]
Abstract
Anticipating population ageing to reach a historically unprecedented level in this century and considering the public goal of promoting well-being until old age, research in many fields has started to focus on processes and factors that contribute to healthy ageing. Since human interactions have a tremendous impact on our mental and physical well-being, scientists are increasingly investigating the basic processes that enable successful social interactions such as social affect (empathy, compassion) and social cognition (Theory of Mind). However, regarding the replication crisis in psychological science it is crucial to probe the reproducibility of findings revealed by each specific method. To this end, we aimed to replicate the effect of age on empathy, compassion and Theory of Mind observed in Reiter and colleagues' study (Reiter et al. 2017 Sci. Rep. 7, 11046 (doi:10.1038/s41598-017-10669-4)) by using the same ecologically valid paradigm in an independent sample with similar age ranges. We were able to replicate the previously observed results of a preservation or even enhancement in socio-affective processes, but a decline in socio-cognitive processes for older adults. Our findings add to the understanding of how social affect and cognition change across the adult lifespan and may suggest targets for intervention studies aiming to foster successful social interactions and well-being until advanced old age.
Collapse
Affiliation(s)
- Julia Stietz
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Lena Pollerhoff
- Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Marcel Kurtz
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- Centre for Tactile Internet with Human-in-the-Loop, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Andrea M. F. Reiter
- Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Philipp Kanske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
17
|
Rizwan M, Baker AEG, Shoichet MS. Designing Hydrogels for 3D Cell Culture Using Dynamic Covalent Crosslinking. Adv Healthc Mater 2021; 10:e2100234. [PMID: 33987970 DOI: 10.1002/adhm.202100234] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/22/2021] [Indexed: 12/17/2022]
Abstract
Designing simple biomaterials to replicate the biochemical and mechanical properties of tissues is an ongoing challenge in tissue engineering. For several decades, new biomaterials have been engineered using cytocompatible chemical reactions and spontaneous ligations via click chemistries to generate scaffolds and water swollen polymer networks, known as hydrogels, with tunable properties. However, most of these materials are static in nature, providing only macroscopic tunability of the scaffold mechanics, and do not reflect the dynamic environment of natural extracellular microenvironment. For more complex applications such as organoids or co-culture systems, there remain opportunities to investigate cells that locally remodel and change the physicochemical properties within the matrices. In this review, advanced biomaterials where dynamic covalent chemistry is used to produce stable 3D cell culture models and high-resolution constructs for both in vitro and in vivo applications, are discussed. The implications of dynamic covalent chemistry on viscoelastic properties of in vitro models are summarized, case studies in 3D cell culture are critically analyzed, and opportunities to further improve the performance of biomaterials for 3D tissue engineering are discussed.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario M5S 3E5 Canada
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Donnelly Centre for Cellular and Biomolecular Research University of Toronto Toronto Ontario M5S 3E1 Canada
| | - Alexander E. G. Baker
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario M5S 3E5 Canada
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Donnelly Centre for Cellular and Biomolecular Research University of Toronto Toronto Ontario M5S 3E1 Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario M5S 3E5 Canada
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Donnelly Centre for Cellular and Biomolecular Research University of Toronto Toronto Ontario M5S 3E1 Canada
| |
Collapse
|
18
|
Articular Chondrocyte Phenotype Regulation through the Cytoskeleton and the Signaling Processes That Originate from or Converge on the Cytoskeleton: Towards a Novel Understanding of the Intersection between Actin Dynamics and Chondrogenic Function. Int J Mol Sci 2021; 22:ijms22063279. [PMID: 33807043 PMCID: PMC8004672 DOI: 10.3390/ijms22063279] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
Numerous studies have assembled a complex picture, in which extracellular stimuli and intracellular signaling pathways modulate the chondrocyte phenotype. Because many diseases are mechanobiology-related, this review asked to what extent phenotype regulators control chondrocyte function through the cytoskeleton and cytoskeleton-regulating signaling processes. Such information would generate leverage for advanced articular cartilage repair. Serial passaging, pro-inflammatory cytokine signaling (TNF-α, IL-1α, IL-1β, IL-6, and IL-8), growth factors (TGF-α), and osteoarthritis not only induce dedifferentiation but also converge on RhoA/ROCK/Rac1/mDia1/mDia2/Cdc42 to promote actin polymerization/crosslinking for stress fiber (SF) formation. SF formation takes center stage in phenotype control, as both SF formation and SOX9 phosphorylation for COL2 expression are ROCK activity-dependent. Explaining how it is molecularly possible that dedifferentiation induces low COL2 expression but high SF formation, this review theorized that, in chondrocyte SOX9, phosphorylation by ROCK might effectively be sidelined in favor of other SF-promoting ROCK substrates, based on a differential ROCK affinity. In turn, actin depolymerization for redifferentiation would “free-up” ROCK to increase COL2 expression. Moreover, the actin cytoskeleton regulates COL1 expression, modulates COL2/aggrecan fragment generation, and mediates a fibrogenic/catabolic expression profile, highlighting that actin dynamics-regulating processes decisively control the chondrocyte phenotype. This suggests modulating the balance between actin polymerization/depolymerization for therapeutically controlling the chondrocyte phenotype.
Collapse
|
19
|
Peng Y, Qing X, Lin H, Huang D, Li J, Tian S, Liu S, Lv X, Ma K, Li R, Rao Z, Bai Y, Chen S, Lei M, Quan D, Shao Z. Decellularized Disc Hydrogels for hBMSCs tissue-specific differentiation and tissue regeneration. Bioact Mater 2021; 6:3541-3556. [PMID: 33842740 PMCID: PMC8022111 DOI: 10.1016/j.bioactmat.2021.03.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue specificity, a key factor in the decellularized tissue matrix (DTM), has shown bioactive functionalities in tuning cell fate-e.g., the differentiation of mesenchymal stem cells. Notably, cell fate is also determined by the living microenvironment, including material composition and spatial characteristics. Herein, two neighboring tissues within intervertebral discs, the nucleus pulposus (NP) and annulus fibrosus (AF), were carefully processed into DTM hydrogels (abbreviated DNP-G and DAF-G, respectively) to determine the tissue-specific effects on stem cell fate, such as specific components and different culturing methods, as well as in vivo regeneration. Distinct differences in their protein compositions were identified by proteomic analysis. Interestingly, the fate of human bone marrow mesenchymal stem cells (hBMSCs) also responds to both culturing methods and composition. Generally, hBMSCs cultured with DNP-G (3D) differentiated into NP-like cells, while hBMSCs cultured with DAF-G (2D) underwent AF-like differentiation, indicating a close correlation with the native microenvironments of NP and AF cells, respectively. Furthermore, we found that the integrin-mediated RhoA/LATS/YAP1 signaling pathway was activated in DAF-G (2D)-induced AF-specific differentiation. Additionally, the activation of YAP1 determined the tendency of NP- or AF-specific differentiation and played opposite regulatory effects. Finally, DNP-G and DAF-G specifically promoted tissue regeneration in NP degeneration and AF defect rat models, respectively. In conclusion, DNP-G and DAF-G can specifically determine the fate of stem cells through the integrin-mediated RhoA/LATS/YAP1 signaling pathway, and this tissue specificity is both compositional and spatial, supporting the utilization of tissue-specific DTM in advanced treatments of intervertebral disc degeneration.
Collapse
Key Words
- 2D, two-dimensional
- 3D, three-dimensional
- AF, annulus fibrosus
- Col I–S, collagen type I solution
- DAF, decellularized annulus fibrosus
- DAF-G, decellularized annulus fibrosus hydrogel
- DAF-S, decellularized annulus fibrosus solution
- DNP, decellularized nucleus pulposus
- DNP-G, decellularized nucleus pulposus hydrogel
- DNP-S, decellularized nucleus pulposus solution
- DTM, decellularized tissue matrix
- Decellularized tissue matrix
- Differentiation
- ECM, extracellular matrix
- FAF, fresh annulus fibrosus
- FNP, fresh nucleus pulposus
- IDD, intervertebral disc degeneration
- Intervertebral disc
- MSC, mesenchymal stem cell
- NP, nucleus pulposus
- Tissue specificity
- YAP1
- YAP1, yes-associated protein 1
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Donghua Huang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinye Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaige Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510127, China
| | - Zilong Rao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510127, China
| | - Ying Bai
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510127, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, China
| | - Ming Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Corresponding author.
| | - Daping Quan
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510127, China,School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510127, China,Corresponding author. School of Chemistry, Sun Yat-sen University, Guangzhou, 510127, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Corresponding author.
| |
Collapse
|
20
|
Prieto EI, Mojares EBA, Cortez JJM, Vasquez MR. Electrospun nanofiber scaffolds for the propagation and analysis of breast cancer stem cells in vitro. Biomed Mater 2021; 16:035004. [PMID: 33634797 DOI: 10.1088/1748-605x/abc3dd] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite advances in cancer treatment, breast cancer remains the second foremost cause of cancer mortality among women, with a high rate of relapse after initial treatment success. A subpopulation of highly malignant cancer cells, known as cancer stem cells (CSCs), is suspected to be linked to metastasis and relapse. Targeting of CSCs may therefore provide a means of addressing cancer-related mortality. However, due to their low population in vivo and a lack of proper culture platform for their propagation, much of the CSC biology remains unknown. Since maintenance of CSCs is heavily influenced by the tumor microenvironment, this study developed a 3D culture platform that mimics the metastatic tumor extracellular matrix (ECM) to effectively increase CSC population in vitro and allow CSC analysis. Through electrospinning, nanofibers that were aligned, porous, and collagen-coated were fabricated from polycaprolactone to recreate the metastatic tumor ECM assemblage. Breast cancer cells seeded onto the nanofiber scaffolds exhibited gross morphology and cytoskeletal phenotype similar to invasive cancer cells. Moreover, the population of breast cancer stem cells increased in nanofiber scaffolds. Analysis of breast cancer cells grown on the nanofiber scaffolds demonstrated an upregulation of mesenchymal markers and an increase in cell invasiveness suggesting the cells have undergone epithelial-mesenchymal transition. These results indicate that the fabricated nanofiber scaffolds effectively mimicked the tumor microenvironment that maintains the cancer stem cell population, offering a platform to enrich and analyze CSCs in vitro.
Collapse
Affiliation(s)
- E I Prieto
- National Institute of Molecular Biology and Biotechnology, College of Science, National Science Complex, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - E B A Mojares
- National Institute of Molecular Biology and Biotechnology, College of Science, National Science Complex, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - J J M Cortez
- National Institute of Molecular Biology and Biotechnology, College of Science, National Science Complex, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - M R Vasquez
- Department of Mining, Metallurgical, and Materials Engineering, College of Engineering, University of the Philippines, Diliman, Quezon City 1101, Philippines
| |
Collapse
|
21
|
Naydenov NG, Lechuga S, Huang EH, Ivanov AI. Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2021; 13:741. [PMID: 33670106 PMCID: PMC7916823 DOI: 10.3390/cancers13040741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) remains the third most common cause of cancer and the second most common cause of cancer deaths worldwide. Clinicians are largely faced with advanced and metastatic disease for which few interventions are available. One poorly understood aspect of CRC involves altered organization of the actin cytoskeleton, especially at the metastatic stage of the disease. Myosin motors are crucial regulators of actin cytoskeletal architecture and remodeling. They act as mechanosensors of the tumor environments and control key cellular processes linked to oncogenesis, including cell division, extracellular matrix adhesion and tissue invasion. Different myosins play either oncogenic or tumor suppressor roles in breast, lung and prostate cancer; however, little is known about their functions in CRC. This review focuses on the functional roles of myosins in colon cancer development. We discuss the most studied class of myosins, class II (conventional) myosins, as well as several classes (I, V, VI, X and XVIII) of unconventional myosins that have been linked to CRC development. Altered expression and mutations of these motors in clinical tumor samples and their roles in CRC growth and metastasis are described. We also evaluate the potential of using small molecular modulators of myosin activity to develop novel anticancer therapies.
Collapse
Affiliation(s)
- Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Emina H. Huang
- Departments of Cancer Biology and Colorectal Surgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| |
Collapse
|
22
|
Tamashunas AC, Katiyar A, Zhang Q, Purkayastha P, Singh PK, Chukkapalli SS, Lele TP. Osteoprotegerin is sensitive to actomyosin tension in human periodontal ligament fibroblasts. J Cell Physiol 2021; 236:5715-5724. [PMID: 33400284 DOI: 10.1002/jcp.30256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/28/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022]
Abstract
Periodontal ligament fibroblasts (PdLFs) are an elongated cell type in the periodontium with matrix and bone regulatory functions which become abnormal in periodontal disease (PD). Here we found that the normally elongated and oriented PdLF nucleus becomes rounded and loses orientation in a mouse model of PD. Using in vitro micropatterning of cultured primary PdLF cell shape, we show that PdLF elongation correlates with nuclear elongation and the presence of thicker, contractile F-actin fibers. The rounded nuclei in mouse PD models in vivo are, therefore, indicative of reduced actomyosin tension. Inhibiting actomyosin contractility by inhibiting myosin light chain kinase, Rho kinase or myosin ATPase activity, in cultured PdLFs each consistently reduced messenger RNA levels of bone regulatory protein osteoprotegerin (OPG). Infection of cultured PdLFs with two different types of periodontal bacteria (Porphyromonas gingivalis and Fusobacterium nucleatum) failed to recapitulate the observed nuclear rounding in vivo, upregulated nonmuscle myosin II phosphorylation and downregulated OPG. Collectively, our results add support to the hypothesis that PdLF contractility becomes decreased and contributes to disease progression in PD.
Collapse
Affiliation(s)
- Andrew C Tamashunas
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Aditya Katiyar
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Qiao Zhang
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Purboja Purkayastha
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Pankaj K Singh
- GCC Center for Advanced Microscopy and Image Informatics, Houston, Texas, USA.,Center for Translational Cancer Research, Texas A&M University, Houston, Texas, USA
| | - Sasanka S Chukkapalli
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA.,Center for Molecular Microbiology, University of Florida, Gainesville, Florida, USA
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.,Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Translational Medical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
23
|
Mechanoadaptive organization of stress fiber subtypes in epithelial cells under cyclic stretches and stretch release. Sci Rep 2020; 10:18684. [PMID: 33122754 PMCID: PMC7596055 DOI: 10.1038/s41598-020-75791-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/20/2020] [Indexed: 01/01/2023] Open
Abstract
Cyclic stretch applied to cells induces the reorganization of stress fibers. However, the correlation between the reorganization of stress fiber subtypes and strain-dependent responses of the cytoplasm and nucleus has remained unclear. Here, we investigated the dynamic involvement of stress fiber subtypes in the orientation and elongation of cyclically stretched epithelial cells. We applied uniaxial cyclic stretches at 5%, 10%, and 15% strains to cells followed by the release of the mechanical stretch. Dorsal, transverse arcs, and peripheral stress fibers were mainly involved in the cytoplasm responses whereas perinuclear cap fibers were associated with the reorientation and elongation of the nucleus. Dorsal stress fibers and transverse arcs rapidly responded within 15 min regardless of the strain magnitude to facilitate the subsequent changes in the orientation and elongation of the cytoplasm. The cyclic stretches induced the additional formation of perinuclear cap fibers and their increased number was almost maintained with a slight decline after 2-h-long stretch release. The slow formation and high stability of perinuclear cap fibers were linked to the slow reorientation kinetics and partial morphology recovery of nucleus in the presence or absence of cyclic stretches. The reorganization of stress fiber subtypes occurred in accordance with the reversible distribution of myosin II. These findings allowed us to propose a model for stretch-induced responses of the cytoplasm and nucleus in epithelial cells based on different mechanoadaptive properties of stress fiber subtypes.
Collapse
|
24
|
Yang X, Wang G, Huang X, Cheng M, Han Y. RNA-seq reveals the diverse effects of substrate stiffness on epidermal ovarian cancer cells. Aging (Albany NY) 2020; 12:20493-20511. [PMID: 33091877 PMCID: PMC7655203 DOI: 10.18632/aging.103906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/21/2020] [Indexed: 12/27/2022]
Abstract
Background: Increasing evidence has confirmed that ovarian cancer is a mechanically responsive tumor both in vivo and in vitro. However, an understanding of the complete molecular mechanism involved in the response to substrate stiffness is lacking, as the associated transcriptome-wide effects have not been mapped. This limited understanding has restricted the identification of potential mechanically responsive targets in ovarian cancer. Results: To address these limitations, we used a polyacrylamide hydrogel system with a tunable Young’s modulus that broadly ranged from soft (1 kPa) to normal (6 kPa) and stiff (60 kPa) and investigated the effect of substrate rigidity on the morphology, spreading area, and cytoskeleton of SKOV-3 epidermal ovarian cancer (EOC) cells. RNA-seq analysis of these cells was then performed at appropriate timepoints to map the transcriptome-wide changes associated with stiffness sensing. We identified a large number of stiffness-sensing genes as well as many genes that were enriched in cancer-related pathways. Informed by these diverse expression results and based on bioinformatics analysis, we evaluated the hypothesis that PLEC and TNS2, which are located in focal adhesions and regulated by lnc-ZNF136, may play key roles in the EOC response to substrate stiffness. Conclusion: Overall, the results of the present study reveal previously unknown features of the EOC stiffness response and provide new insights into EOC metastasis in the clinic.
Collapse
Affiliation(s)
- Xiaoxu Yang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Guohui Wang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Xiaolei Huang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Yangyang Han
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| |
Collapse
|
25
|
Kothapalli C, Mahajan G, Farrell K. Substrate stiffness induced mechanotransduction regulates temporal evolution of human fetal neural progenitor cell phenotype, differentiation, and biomechanics. Biomater Sci 2020; 8:5452-5464. [PMID: 32996962 PMCID: PMC8500671 DOI: 10.1039/d0bm01349h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
While the mechanotransduction-induced fate of adult neural stem/progenitor cells (NPCs) is relatively known, how substrate stiffness regulates the temporal evolution of the biomechanics and phenotype of developmentally relevant human fetal NPCs (hNPCs) and their mechanosensing pathways remain unknown. Here, we primed hNPCs on tissue-culture plastic (TCPS) for 3 days in non-differentiating medium before transferring to TCPS or Geltrex™ gels (<1 kPa) for 9-day cultures post-priming, and regularly assessed stemness, differentiation, and cell mechanics (Young's modulus, tether forces, apparent membrane tension, tether radius). hNPCs maintained stemness on TCPS while those on gels co-expressed stemness and neural/glial markers, 3-days post-priming. Biomechanical characteristics remained unchanged in cells on TCPS but were significantly altered in those on gels, 3-days post-priming. However, 9-days post-priming, hNPCs on gels differentiated, with significantly more neurons on softer gels and glia on stiffer gels, while those on TCPS maintained their native stemness. Withdrawal of bFGF and EGF in 9-day cultures induced hNPC differentiation and influenced cell mechanics. Cells on stiffer gels had higher biomechanical properties than those on softer gels throughout the culture period, with NPC-like > neural > glia subtypes. Higher stress fiber density in cells on stiffer gels explains their significantly different biomechanical properties on these gels. Blebbistatin treatment caused cell polarization, lowered elastic modulus, and enhanced tether forces, implicating the role of non-muscle myosin-II in hNPC mechanosensing, adaptability, and thereby mechanics. Such substrate-mediated temporal evolution of hNPCs guide design of smart scaffolds to investigate morphogenesis, disease modeling, stem cell biology, and biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Chandrasekhar Kothapalli
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115, USA.
| | - Gautam Mahajan
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115, USA.
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
26
|
Alzahofi N, Welz T, Robinson CL, Page EL, Briggs DA, Stainthorp AK, Reekes J, Elbe DA, Straub F, Kallemeijn WW, Tate EW, Goff PS, Sviderskaya EV, Cantero M, Montoliu L, Nedelec F, Miles AK, Bailly M, Kerkhoff E, Hume AN. Rab27a co-ordinates actin-dependent transport by controlling organelle-associated motors and track assembly proteins. Nat Commun 2020; 11:3495. [PMID: 32661310 PMCID: PMC7359353 DOI: 10.1038/s41467-020-17212-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/04/2020] [Indexed: 11/09/2022] Open
Abstract
Cell biologists generally consider that microtubules and actin play complementary roles in long- and short-distance transport in animal cells. On the contrary, using melanosomes of melanocytes as a model, we recently discovered that the motor protein myosin-Va works with dynamic actin tracks to drive long-range organelle dispersion in opposition to microtubules. This suggests that in animals, as in yeast and plants, myosin/actin can drive long-range transport. Here, we show that the SPIRE-type actin nucleators (predominantly SPIRE1) are Rab27a effectors that co-operate with formin-1 to generate actin tracks required for myosin-Va-dependent transport in melanocytes. Thus, in addition to melanophilin/myosin-Va, Rab27a can recruit SPIREs to melanosomes, thereby integrating motor and track assembly activity at the organelle membrane. Based on this, we suggest a model in which organelles and force generators (motors and track assemblers) are linked, forming an organelle-based, cell-wide network that allows their collective activity to rapidly disperse the population of organelles long-distance throughout the cytoplasm.
Collapse
Affiliation(s)
- Noura Alzahofi
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Tobias Welz
- University Hospital Regensburg, Regensburg, Germany
| | | | - Emma L Page
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Deborah A Briggs
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Amy K Stainthorp
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - James Reekes
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - David A Elbe
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Felix Straub
- University Hospital Regensburg, Regensburg, Germany
| | - Wouter W Kallemeijn
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, W12 0BZ, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, W12 0BZ, UK
| | - Philip S Goff
- Cell Biology and Genetics Research Centre, St. George's, University of London, London, SW17 0RE, UK
| | - Elena V Sviderskaya
- Cell Biology and Genetics Research Centre, St. George's, University of London, London, SW17 0RE, UK
| | - Marta Cantero
- Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, 28049, Spain
- CIBERER-ISCIII, Madrid, Spain
| | - Lluis Montoliu
- Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, 28049, Spain
- CIBERER-ISCIII, Madrid, Spain
| | - Francois Nedelec
- Sainsbury Laboratory, Cambridge University, Cambridge, CB2 1LR, UK
| | - Amanda K Miles
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Maryse Bailly
- UCL Institute of Ophthalmology, 11-43 Bath St, London, EC1V 9EL, UK
| | | | - Alistair N Hume
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
27
|
Lee S, Kumar S. Cofilin is required for polarization of tension in stress fiber networks during migration. J Cell Sci 2020; 133:jcs243873. [PMID: 32501289 PMCID: PMC7358140 DOI: 10.1242/jcs.243873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/11/2020] [Indexed: 01/04/2023] Open
Abstract
Cell migration is associated with the establishment of defined leading and trailing edges, which in turn requires polarization of contractile forces. While the actomyosin stress fiber (SF) network plays a critical role in enforcing this polarity, precisely how this asymmetry is established remains unclear. Here, we provide evidence for a model in which the actin-severing protein cofilin (specifically cofilin-1) participates in symmetry breakage by removing low-tension actomyosin filaments during transverse arc assembly. Cofilin knockdown (KD) produces a non-polarized SF architecture that cannot be rescued with chemokines or asymmetric matrix patterns. Whereas cofilin KD increases whole-cell prestress, it decreases prestress within single SFs, implying an accumulation of low-tension SFs. This notion is supported by time-lapse imaging, which reveals weakly contractile and incompletely fused transverse arcs. Confocal and super-resolution imaging further associate this failed fusion with the presence of crosslinker-rich, tropomyosin-devoid nodes at the junctions of multiple transverse arc fragments and dorsal SFs. These results support a model in which cofilin facilitates the formation of high-tension transverse arcs, thereby promoting mechanical asymmetry.
Collapse
Affiliation(s)
- Stacey Lee
- UC Berkeley-UCSF Graduate Program in Bioengineering, USA
- UC Berkeley Department of Bioengineering, UC Berkeley, CA, USA
| | - Sanjay Kumar
- UC Berkeley-UCSF Graduate Program in Bioengineering, USA
- UC Berkeley Department of Bioengineering, UC Berkeley, CA, USA
- UC Berkeley Department of Chemical and Biomolecular Engineering, 274A Stanley Hall #1762, UC Berkeley, Berkeley, CA 94720-1762, UC Berkeley, CA, USA
| |
Collapse
|
28
|
Gerarduzzi C, Hartmann U, Leask A, Drobetsky E. The Matrix Revolution: Matricellular Proteins and Restructuring of the Cancer Microenvironment. Cancer Res 2020; 80:2705-2717. [PMID: 32193287 DOI: 10.1158/0008-5472.can-18-2098] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2019] [Accepted: 03/17/2020] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) surrounding cells is indispensable for regulating their behavior. The dynamics of ECM signaling are tightly controlled throughout growth and development. During tissue remodeling, matricellular proteins (MCP) are secreted into the ECM. These factors do not serve classical structural roles, but rather regulate matrix proteins and cell-matrix interactions to influence normal cellular functions. In the tumor microenvironment, it is becoming increasingly clear that aberrantly expressed MCPs can support multiple hallmarks of carcinogenesis by interacting with various cellular components that are coupled to an array of downstream signals. Moreover, MCPs also reorganize the biomechanical properties of the ECM to accommodate metastasis and tumor colonization. This realization is stimulating new research on MCPs as reliable and accessible biomarkers in cancer, as well as effective and selective therapeutic targets.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada. .,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elliot Drobetsky
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
29
|
Ghosh D, Mejia Pena C, Quach N, Xuan B, Lee AH, Dawson MR. Senescent mesenchymal stem cells remodel extracellular matrix driving breast cancer cells to a more-invasive phenotype. J Cell Sci 2020; 133:jcs232470. [PMID: 31932504 PMCID: PMC6983709 DOI: 10.1242/jcs.232470] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are essential for the regenerative process; however, biological aging and environmental stress can induce senescence - an irreversible state of growth arrest - that not only affects the behavior of cells but also disrupts their ability to restore tissue integrity. While abnormal tissue properties, including increased extracellular matrix stiffness, are linked with the risk of developing breast cancer, the role and contribution of senescent MSCs to the disease progression to malignancy are not well understood. Here, we investigated senescence-associated biophysical changes in MSCs and how this influences cancer cell behavior in a 3D matrix interface model. Although senescent MSCs were far less motile than pre-senescent MSCs, they induced an invasive breast cancer phenotype, characterized by increased spheroid growth and cell invasion in collagen gels. Further analysis of collagen gels using second-harmonic generation showed increased collagen density when senescent MSCs were present, suggesting that senescent MSCs actively remodel the surrounding matrix. This study provides direct evidence of the pro-malignant effects of senescent MSCs in tumors.
Collapse
Affiliation(s)
- Deepraj Ghosh
- Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology, Providence, RI 02912, USA
| | - Carolina Mejia Pena
- Brown University, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, RI 02912, USA
| | - Nhat Quach
- Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology, Providence, RI 02912, USA
| | - Botai Xuan
- Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology, Providence, RI 02912, USA
| | - Amy H Lee
- Brown University, Center for Biomedical Engineering, Providence, PI 02912, USA
| | - Michelle R Dawson
- Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology, Providence, RI 02912, USA
- Brown University, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, RI 02912, USA
- Brown University, Center for Biomedical Engineering, Providence, PI 02912, USA
| |
Collapse
|
30
|
Seetharaman S, Etienne-Manneville S. Microtubules at focal adhesions – a double-edged sword. J Cell Sci 2019; 132:132/19/jcs232843. [DOI: 10.1242/jcs.232843] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT
Cell adhesion to the extracellular matrix is essential for cellular processes, such as migration and invasion. In response to cues from the microenvironment, integrin-mediated adhesions alter cellular behaviour through cytoskeletal rearrangements. The tight association of the actin cytoskeleton with adhesive structures has been extensively studied, whereas the microtubule network in this context has gathered far less attention. In recent years, however, microtubules have emerged as key regulators of cell adhesion and migration through their participation in adhesion turnover and cellular signalling. In this Review, we focus on the interactions between microtubules and integrin-mediated adhesions, in particular, focal adhesions and podosomes. Starting with the association of microtubules with these adhesive structures, we describe the classical role of microtubules in vesicular trafficking, which is involved in the turnover of cell adhesions, before discussing how microtubules can also influence the actin–focal adhesion interplay through RhoGTPase signalling, thereby orchestrating a very crucial crosstalk between the cytoskeletal networks and adhesions.
Collapse
Affiliation(s)
- Shailaja Seetharaman
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, 75015 Paris, France
- Université Paris Descartes, Center for Research and Interdisciplinarity, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006 Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, 75015 Paris, France
| |
Collapse
|
31
|
Abstract
Myosin 2 plays a central role in numerous, fundamental, actin-based biological processes, including cell migration, cell division, and the adhesion of cells to substrates and other cells. Here, we highlight recent studies in which the forces created by actomyosin 2 have been shown to also impact tension-sensitive ion channels and cell metabolism.
Collapse
Affiliation(s)
- Melissa A Quintanilla
- Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Center for Translational Research and Education, Maywood, IL, USA
| | - John A Hammer
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jordan R Beach
- Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Center for Translational Research and Education, Maywood, IL, USA
| |
Collapse
|
32
|
Hui TH, Cho WC, Fong HW, Yu M, Kwan KW, Ngan KC, Wong KH, Tan Y, Yao S, Jiang H, Gu Z, Lin Y. An electro-osmotic microfluidic system to characterize cancer cell migration under confinement. J R Soc Interface 2019; 16:20190062. [PMID: 31164075 PMCID: PMC6597772 DOI: 10.1098/rsif.2019.0062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022] Open
Abstract
We have developed a novel electro-osmotic microfluidic system to apply precisely controlled osmolarity gradients to cancer cells in micro-channels. We observed that albeit adhesion is not required for cells to migrate in such a confined microenvironment, the migrating velocity of cells is strongly influenced by the interactions between the cells and the channel wall, with a stronger adhesion leading to diminished cell motility. Furthermore, through examining more than 20 different types of cancer cells, we found a linear positive correlation between the protein concentration of the aquaporin-4 (AQP4) and the cell migrating speed. Knockdown of AQP4 in invasive re-populated cancer stem cells reduced their migration capability down to the level that is comparable to their parental cancer cells. Interestingly, these observations can all be quantitatively explained by the osmotic engine model where the cell movement is assumed to be driven by cross-membrane ion/water transport, while adhesion acts as a frictional resistance against the cell motility. By providing versatile and controllable features in regulating and characterizing the migration capability of cells, our system may serve as a useful tool in quantifying how cell motility is influenced by different physical and biochemical factors, as well as elucidating the mechanisms behind, in the future.
Collapse
Affiliation(s)
- T. H. Hui
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - W. C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, People's Republic of China
| | - H. W. Fong
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, People's Republic of China
| | - M. Yu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, People's Republic of China
| | - K. W. Kwan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - K. C. Ngan
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, People's Republic of China
| | - K. H. Wong
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, People's Republic of China
| | - Y. Tan
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - S. Yao
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, People's Republic of China
| | - H. Jiang
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Z. Gu
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Y. Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
33
|
Lee JY, Chang JK, Dominguez AA, Lee HP, Nam S, Chang J, Varma S, Qi LS, West RB, Chaudhuri O. YAP-independent mechanotransduction drives breast cancer progression. Nat Commun 2019; 10:1848. [PMID: 31015465 PMCID: PMC6478686 DOI: 10.1038/s41467-019-09755-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
Increased tissue stiffness is a driver of breast cancer progression. The transcriptional regulator YAP is considered a universal mechanotransducer, based largely on 2D culture studies. However, the role of YAP during in vivo breast cancer remains unclear. Here, we find that mechanotransduction occurs independently of YAP in breast cancer patient samples and mechanically tunable 3D cultures. Mechanistically, the lack of YAP activity in 3D culture and in vivo is associated with the absence of stress fibers and an order of magnitude decrease in nuclear cross-sectional area relative to 2D culture. This work highlights the context-dependent role of YAP in mechanotransduction, and establishes that YAP does not mediate mechanotransduction in breast cancer.
Collapse
Affiliation(s)
- Joanna Y Lee
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jessica K Chang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Antonia A Dominguez
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Hong-Pyo Lee
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sungmin Nam
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Julie Chang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
34
|
Jiu Y, Kumari R, Fenix AM, Schaible N, Liu X, Varjosalo M, Krishnan R, Burnette DT, Lappalainen P. Myosin-18B Promotes the Assembly of Myosin II Stacks for Maturation of Contractile Actomyosin Bundles. Curr Biol 2018; 29:81-92.e5. [PMID: 30581023 DOI: 10.1016/j.cub.2018.11.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/12/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
Abstract
Cell adhesion, morphogenesis, mechanosensing, and muscle contraction rely on contractile actomyosin bundles, where the force is produced through sliding of bipolar myosin II filaments along actin filaments. The assembly of contractile actomyosin bundles involves registered alignment of myosin II filaments and their subsequent fusion into large stacks. However, mechanisms underlying the assembly of myosin II stacks and their physiological functions have remained elusive. Here, we identified myosin-18B, an unconventional myosin, as a stable component of contractile stress fibers. Myosin-18B co-localized with myosin II motor domains in stress fibers and was enriched at the ends of myosin II stacks. Importantly, myosin-18B deletion resulted in drastic defects in the concatenation and persistent association of myosin II filaments with each other and thus led to severely impaired assembly of myosin II stacks. Consequently, lack of myosin-18B resulted in defective maturation of actomyosin bundles from their precursors in osteosarcoma cells. Moreover, myosin-18B knockout cells displayed abnormal morphogenesis, migration, and ability to exert forces to the environment. These results reveal a critical role for myosin-18B in myosin II stack assembly and provide evidence that myosin II stacks are important for a variety of vital processes in cells.
Collapse
Affiliation(s)
- Yaming Jiu
- Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Reena Kumari
- Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland
| | - Aidan M Fenix
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Niccole Schaible
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xiaonan Liu
- Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland
| | - Ramaswamy Krishnan
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pekka Lappalainen
- Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
35
|
Cao Y, Lei Y, Luo Y, Tan T, Du B, Zheng Y, Sun L, Liang Q. The actomyosin network is influenced by NMHC IIA and regulated by Crp F46, which is involved in controlling cell migration. Exp Cell Res 2018; 373:119-131. [PMID: 30336116 DOI: 10.1016/j.yexcr.2018.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
Abstract
When a cell migrates, the centrosome positions between the nucleus and the leading edge of migration via the microtubule system. The protein CrpF46 (centrosome-related protein F46) has a known role during mitosis and centrosome duplication. However, how CrpF46 efficiently regulates centrosome-related cell migration is unclear. Here, we report that knockdown of CrpF46 resulted in the disruption of microtubule arrangement, with impaired centrosomal reorientation, and slowed down cell migration. In cells that express low levels of CrpF46, stress fibers were weakened, which could be rescued by recovering Flag-CrpF46. We also found that CrpF46 interacted with non-muscle myosin high chain IIA (NMHC IIA) and that its three coiled-coil domains are pivotal for its binding to NMHC IIA. Additionally, analyses of phosphorylation of NMHC IIA and RLC (regulatory light chain) demonstrated that CrpF46 was associated with myosin IIA during filament formation. Indirect immunofluorescence images indicated that NM IIA filaments were inhibited when CrpF46 was under-expressed. Thus, CrpF46 regulates cell migration by centrosomal reorientation and altering the function of the actomyosin network by controlling specific phosphorylation of myosin.
Collapse
Affiliation(s)
- Yang Cao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China; Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Yan Lei
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China; Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Yang Luo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Tan Tan
- School of Pharmacology and Biology, University of South China, Hunan Province Cooperative innovation Center for Molecular Target New Drug Study, Hengyang 421001, PR China
| | - Baochen Du
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Yanbo Zheng
- The Institute of Medical Biotechnology (IMB) of the Chinese Academy of Medical Sciences, Beijing 100050, PR China
| | - Le Sun
- AbMax Biotechnology Co., Beijing 101111, PR China
| | - Qianjin Liang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China; Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
36
|
Tropomyosin Tpm 2.1 loss induces glioblastoma spreading in soft brain-like environments. J Neurooncol 2018; 141:303-313. [PMID: 30535593 DOI: 10.1007/s11060-018-03049-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/12/2018] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The brain is a very soft tissue. Glioblastoma (GBM) brain tumours are highly infiltrative into the surrounding healthy brain tissue and invasion mechanisms that have been defined using rigid substrates therefore may not apply to GBM dissemination. GBMs characteristically lose expression of the high molecular weight tropomyosins, a class of actin-associating proteins and essential regulators of the actin stress fibres and focal adhesions that underpin cell migration on rigid substrates. METHODS Here, we investigated how loss of the high molecular weight tropomyosins affects GBM on soft matrices that recapitulate the biomechanical architecture of the brain. RESULTS We find that Tpm 2.1 is down-regulated in GBM grown on soft substrates. We demonstrate that Tpm 2.1 depletion by siRNA induces cell spreading and elongation in soft 3D hydrogels, irrespective of matrix composition. Tpm 1.7, a second high molecular weight tropomyosin is also down-regulated when cells are cultured on soft brain-like surfaces and we show that effects of this isoform are matrix dependent, with Tpm 1.7 inducing cell rounding in 3D collagen gels. Finally, we show that the absence of Tpm 2.1 from primary patient-derived GBMs correlates with elongated, mesenchymal invasion. CONCLUSIONS We propose that Tpm 2.1 down-regulation facilitates GBM colonisation of the soft brain environment. This specialisation of the GBM actin cytoskeleton organisation that is highly suited to the soft brain-like environment may provide novel therapeutic targets for arresting GBM invasion.
Collapse
|
37
|
Synchronized mechanical oscillations at the cell-matrix interface in the formation of tensile tissue. Proc Natl Acad Sci U S A 2018; 115:E9288-E9297. [PMID: 30237286 DOI: 10.1073/pnas.1801759115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The formation of uniaxial fibrous tissues with defined viscoelastic properties implies the existence of an orchestrated mechanical interaction between the cytoskeleton and the extracellular matrix. This study addresses the nature of this interaction. The hypothesis is that this mechanical interplay underpins the mechanical development of the tissue. In embryonic tendon tissue, an early event in the development of a mechanically robust tissue is the interaction of the pointed tips of extracellular collagen fibrils with the fibroblast plasma membrane to form stable interface structures (fibripositors). Here, we used a fibroblast-generated tissue that is structurally and mechanically matched to embryonic tendon to demonstrate homeostasis of cell-derived and external strain-derived tension over repeated cycles of strain and relaxation. A cell-derived oscillatory tension component is evident in this matrix construct. This oscillatory tension involves synchronization of individual cell forces across the construct and is induced in each strain cycle by transient relaxation and transient tensioning of the tissue. The cell-derived tension along with the oscillatory component is absent in the presence of blebbistatin, which disrupts actinomyosin force generation of the cell. The time period of this oscillation (60-90 s) is well-defined in each tissue sample and matches a primary viscoelastic relaxation time. We hypothesize that this mechanical oscillation of fibroblasts with plasma membrane anchored collagen fibrils is a key factor in mechanical sensing and feedback regulation in the formation of tensile tissues.
Collapse
|
38
|
Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G. Cellular Mechanotransduction: From Tension to Function. Front Physiol 2018; 9:824. [PMID: 30026699 PMCID: PMC6041413 DOI: 10.3389/fphys.2018.00824] [Citation(s) in RCA: 553] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
Living cells are constantly exposed to mechanical stimuli arising from the surrounding extracellular matrix (ECM) or from neighboring cells. The intracellular molecular processes through which such physical cues are transformed into a biological response are collectively dubbed as mechanotransduction and are of fundamental importance to help the cell timely adapt to the continuous dynamic modifications of the microenvironment. Local changes in ECM composition and mechanics are driven by a feed forward interplay between the cell and the matrix itself, with the first depositing ECM proteins that in turn will impact on the surrounding cells. As such, these changes occur regularly during tissue development and are a hallmark of the pathologies of aging. Only lately, though, the importance of mechanical cues in controlling cell function (e.g., proliferation, differentiation, migration) has been acknowledged. Here we provide a critical review of the recent insights into the molecular basis of cellular mechanotransduction, by analyzing how mechanical stimuli get transformed into a given biological response through the activation of a peculiar genetic program. Specifically, by recapitulating the processes involved in the interpretation of ECM remodeling by Focal Adhesions at cell-matrix interphase, we revise the role of cytoskeleton tension as the second messenger of the mechanotransduction process and the action of mechano-responsive shuttling proteins converging on stage and cell-specific transcription factors. Finally, we give few paradigmatic examples highlighting the emerging role of malfunctions in cell mechanosensing apparatus in the onset and progression of pathologies.
Collapse
Affiliation(s)
- Fabiana Martino
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
| | - Ana R. Perestrelo
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Vladimír Vinarský
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
| | - Stefania Pagliari
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Giancarlo Forte
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
- Department of Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
39
|
Lee S, Kassianidou E, Kumar S. Actomyosin stress fiber subtypes have unique viscoelastic properties and roles in tension generation. Mol Biol Cell 2018; 29:1992-2004. [PMID: 29927349 PMCID: PMC6232976 DOI: 10.1091/mbc.e18-02-0106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actomyosin stress fibers (SFs) support cell shape and migration by directing intracellular tension to the extracellular matrix (ECM) via focal adhesions. Migrating cells exhibit three SF subtypes (dorsal SFs, transverse arcs, and ventral SFs), which differ in their origin, location, and ECM connectivity. While each subtype is hypothesized to play unique structural roles, this idea has not been directly tested at the single-SF level. Here, we interrogate the mechanical properties of single SFs of each subtype based on their retraction kinetics following laser incision. While each SF subtype bears distinct mechanical properties, these properties are highly interdependent, with incision of dorsal fibers producing centripetal recoil of adjacent transverse arcs and the retraction of incised transverse arcs being limited by attachment points to dorsal SFs. These observations hold whether cells are allowed to spread freely or are confined to crossbow ECM patterns. Consistent with this interdependence, subtype-specific knockdown of dorsal SFs (palladin) or transverse arcs (mDia2) influences ventral SF retraction. These altered mechanics are partially phenocopied in cells cultured on ECM microlines that preclude assembly of dorsal SFs and transverse arcs. Our findings directly demonstrate that different SF subtypes play distinct roles in generating tension and form a mechanically interdependent network.
Collapse
Affiliation(s)
- Stacey Lee
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762
| | - Elena Kassianidou
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762
| | - Sanjay Kumar
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720-1762
| |
Collapse
|
40
|
García-Mariscal A, Li H, Pedersen E, Peyrollier K, Ryan KM, Stanley A, Quondamatteo F, Brakebusch C. Loss of RhoA promotes skin tumor formation and invasion by upregulation of RhoB. Oncogene 2018; 37:847-860. [PMID: 29059167 DOI: 10.1038/onc.2017.333] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/26/2017] [Accepted: 08/12/2017] [Indexed: 02/06/2023]
Abstract
Cellular movement is controlled by small GTPases, such as RhoA. Although migration is crucial for cancer cell invasion, the specific role of RhoA in tumor formation is unclear. Inducing skin tumors in mice with a keratinocyte-restricted loss of RhoA, we observed increased tumor frequency, growth and invasion. In vitro invasion assays revealed that in the absence of RhoA cell invasiveness is increased in a Rho-associated protein kinase (ROCK) activation and cell contraction-dependent manner. Surprisingly, loss of RhoA causes increased Rho signaling via overcompensation by RhoB because of reduced lysosomal degradation of RhoB in Gamma-aminobutyric acid receptor-associated protein (GABARAP)+ autophagosomes and endosomes. In the absence of RhoA, RhoB relocalized to the plasma membrane and functionally replaced RhoA with respect to invasion, clonogenic growth and survival. Our data demonstrate for the first time that RhoA is a tumor suppressor in 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol 13-acetate skin carcinogenesis and identify Rho signaling dependent on RhoA and RhoB as a potent driver of tumor progression.
Collapse
Affiliation(s)
- A García-Mariscal
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - H Li
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - E Pedersen
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - K Peyrollier
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | | | - A Stanley
- Skin and Extracellular Matrix Research Group, Anatomy, NUI, Galway, Ireland
| | - F Quondamatteo
- Skin and Extracellular Matrix Research Group, Anatomy, NUI, Galway, Ireland
| | - C Brakebusch
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Jankowska KI, Williamson EK, Roy NH, Blumenthal D, Chandra V, Baumgart T, Burkhardt JK. Integrins Modulate T Cell Receptor Signaling by Constraining Actin Flow at the Immunological Synapse. Front Immunol 2018; 9:25. [PMID: 29403502 PMCID: PMC5778112 DOI: 10.3389/fimmu.2018.00025] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/04/2018] [Indexed: 11/25/2022] Open
Abstract
Full T cell activation requires coordination of signals from multiple receptor–ligand pairs that interact in parallel at a specialized cell–cell contact site termed the immunological synapse (IS). Signaling at the IS is intimately associated with actin dynamics; T cell receptor (TCR) engagement induces centripetal flow of the T cell actin network, which in turn enhances the function of ligand-bound integrins by promoting conformational change. Here, we have investigated the effects of integrin engagement on actin flow, and on associated signaling events downstream of the TCR. We show that integrin engagement significantly decelerates centripetal flow of the actin network. In primary CD4+ T cells, engagement of either LFA-1 or VLA-4 by their respective ligands ICAM-1 and VCAM-1 slows actin flow. Slowing is greatest when T cells interact with low mobility integrin ligands, supporting a predominately drag-based mechanism. Using integrin ligands presented on patterned surfaces, we demonstrate that the effects of localized integrin engagement are distributed across the actin network, and that focal adhesion proteins, such as talin, vinculin, and paxillin, are recruited to sites of integrin engagement. Further analysis shows that talin and vinculin are interdependent upon one another for recruitment, and that ongoing actin flow is required. Suppression of vinculin or talin partially relieves integrin-dependent slowing of actin flow, indicating that these proteins serve as molecular clutches that couple engaged integrins to the dynamic actin network. Finally, we found that integrin-dependent slowing of actin flow is associated with reduction in tyrosine phosphorylation downstream of the TCR, and that this modulation of TCR signaling depends on expression of talin and vinculin. More generally, we found that integrin-dependent effects on actin retrograde flow were strongly correlated with effects on TCR signaling. Taken together, these studies support a model in which ligand-bound integrins engage the actin cytoskeletal network via talin and vinculin, and tune TCR signaling events by modulating actin dynamics at the IS.
Collapse
Affiliation(s)
- Katarzyna I Jankowska
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Edward K Williamson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Nathan H Roy
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Blumenthal
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Vidhi Chandra
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
42
|
FERMT2 links cortical actin structures, plasma membrane tension and focal adhesion function to stabilize podocyte morphology. Matrix Biol 2018; 68-69:263-279. [PMID: 29337051 DOI: 10.1016/j.matbio.2018.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 01/30/2023]
Abstract
Simplification and retraction of podocyte protrusions, generally termed as foot process effacement, is a uniform pathological pattern observed in the majority of glomerular disease, including focal segmental glomerulosclerosis. However, it is still incompletely understood how the interaction of cortical actin structures, actomyosin contractility and focal adhesions, is being orchestrated to control foot process morphology in health and disease. By uncovering the functional role of fermitin family member 2 (FERMT2 or kindlin-2) in podocytes, we provide now evidence, how cell-extracellular matrix (ECM) interactions modulate membrane tension and actomyosin contractility. A genetic modeling approach was applied by deleting FERMT2 in a set of in vivo systems as well as in CRISPR/Cas9 modified human podocytes. Loss of FERMT2 results in altered cortical actin composition, cell cortex destabilization associated with plasma membrane blebbing and a remodeling of focal adhesions. We further show that FERMT2 knockout podocytes have high levels of RhoA activation and concomitantly increased actomyosin contractility. Inhibition of actomyosin tension reverses the membrane blebbing phenotype. Thus, our findings establish a direct link between cell-matrix adhesions, cortical actin structures and plasma membrane tension allowing to better explain cell morphological changes in foot process effacement.
Collapse
|
43
|
Ghosh D, Dawson MR. Microenvironment Influences Cancer Cell Mechanics from Tumor Growth to Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:69-90. [PMID: 30368749 DOI: 10.1007/978-3-319-95294-9_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microenvironment in a solid tumor includes a multitude of cell types, matrix proteins, and growth factors that profoundly influence cancer cell mechanics by providing both physical and chemical stimulation. This tumor microenvironment, which is both dynamic and heterogeneous in nature, plays a critical role in cancer progression from the growth of the primary tumor to the development of metastatic and drug-resistant tumors. This chapter provides an overview of the biophysical tools used to study cancer cell mechanics and mechanical changes in the tumor microenvironment at different stages of cancer progression, including growth of the primary tumor, local invasion, and metastasis. Quantitative single cell biophysical analysis of intracellular mechanics, cell traction forces, and cell motility can easily be combined with analysis of critical cell fate processes, including adhesion, proliferation, and drug resistance, to determine how changes in mechanics contribute to cancer progression. This biophysical approach can be used to systematically investigate the parameters in the tumor that control cancer cell interactions with the stroma and to identify specific conditions that induce tumor-promoting behavior, along with strategies for inhibiting these conditions to treat cancer. Increased understanding of the underlying biophysical mechanisms that drive cancer progression may provide insight into novel therapeutic approaches in the fight against cancer.
Collapse
Affiliation(s)
- Deepraj Ghosh
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA
| | - Michelle R Dawson
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA.
- Center for Biomedical Engineering, Brown University, Providence, RI, USA.
- School of Engineering, Brown University, Providence, RI, USA.
| |
Collapse
|
44
|
Kassianidou E, Hughes JH, Kumar S. Activation of ROCK and MLCK tunes regional stress fiber formation and mechanics via preferential myosin light chain phosphorylation. Mol Biol Cell 2017; 28:3832-3843. [PMID: 29046396 PMCID: PMC5739298 DOI: 10.1091/mbc.e17-06-0401] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 01/21/2023] Open
Abstract
Graded induction of regulatory light chain (RLC) activators MLCK and ROCK were used to explore the relationship between RLC phosphorylation and actin-myosin stress fiber viscoelasticity. MLCK controls peripheral stress fiber mechanics by monophosphorylation of RLC, whereas ROCK acts on central stress fibers via diphosphorylation. The assembly and mechanics of actomyosin stress fibers (SFs) depend on myosin regulatory light chain (RLC) phosphorylation, which is driven by myosin light chain kinase (MLCK) and Rho-associated kinase (ROCK). Although previous work suggests that MLCK and ROCK control distinct pools of cellular SFs, it remains unclear how these kinases differ in their regulation of RLC phosphorylation or how phosphorylation influences individual SF mechanics. Here, we combine genetic approaches with biophysical tools to explore relationships between kinase activity, RLC phosphorylation, SF localization, and SF mechanics. We show that graded MLCK overexpression increases RLC monophosphorylation (p-RLC) in a graded manner and that this p-RLC localizes to peripheral SFs. Conversely, graded ROCK overexpression preferentially increases RLC diphosphorylation (pp-RLC), with pp-RLC localizing to central SFs. Interrogation of single SFs with subcellular laser ablation reveals that MLCK and ROCK quantitatively regulate the viscoelastic properties of peripheral and central SFs, respectively. The effects of MLCK and ROCK on single-SF mechanics may be correspondingly phenocopied by overexpression of mono- and diphosphomimetic RLC mutants. Our results point to a model in which MLCK and ROCK regulate peripheral and central SF viscoelastic properties through mono- and diphosphorylation of RLC, offering new quantitative connections between kinase activity, RLC phosphorylation, and SF viscoelasticity.
Collapse
Affiliation(s)
- Elena Kassianidou
- Department of Bioengineering.,UC Berkeley-UCSF Graduate Program in Bioengineering, and
| | - Jasmine H Hughes
- Department of Bioengineering.,UC Berkeley-UCSF Graduate Program in Bioengineering, and
| | - Sanjay Kumar
- Department of Bioengineering .,UC Berkeley-UCSF Graduate Program in Bioengineering, and.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|