1
|
Nditanchou R, Agyemang D, Dixon R, D'Souza S, Selby R, Opare J, Tettevi EJ, Asiedu MD, Idun B, Chailloux A, Schmidt E, Hamill L, Senyonjo L, Osei-Atweneboana MY. Persistent transmission of onchocerciasis in Kwanware-Ottou focus in Wenchi health district, Ghana. BMC Infect Dis 2024; 24:1156. [PMID: 39402497 PMCID: PMC11475550 DOI: 10.1186/s12879-024-10071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND This study examined onchocerciasis transmission in Kwanware and Ottou in the Wenchi Health District of Ghana, where persistent onchocercal microfilariae (mf) levels have been reported since 2012. METHODS This study was conducted from 2019 to 2021 and involved the following: (i) reviewing past records of ivermectin mass drug administration (MDA); (ii) conducting a treatment coverage evaluation survey (CES); (iii) conducting key informant interviews; (iv) prospecting blackfly breeding sites; (v) collecting and dissecting blackflies; and (vi) conducting parasitological and serological surveys. RESULTS (i) The review indicated ongoing MDA treatment for the past 27 years, with a reported coverage of over 65% in the last 17 yearly rounds; (ii) estimated treatment coverage by the CES in 2019 was 71.3%, with most of those not taking medicine stating that they were not offered; (iii) however, the key informant interviews revealed insufficiencies in reaching a significant number of people for treatment due to remote settlement, mobility, transport logistical issues, failure to register some people for treatment, leading to a false impression of good coverage, and a short distribution time; (iv) the most productive breeding was found within 5 km of Kwanware-Ottou; and (v) blackfly daily biting rates were highest in Kwanware and Ottou, with 199 and 160 bites per day, respectively. Infection in blackflies was found only in Kwanware and Ottou, with infectivity rates of 5.9‰ (per 1000) and 6.7‰, respectively. (vi) The mf prevalence in Ottou and Kwanware, respectively, was 40.0% and 30.0% among adults aged ≥ 20 years, and the anti-(Onchocerca volvulus) Ov16 IgG4 antibodies seroprevalence rates were 8.3% and 13.3% among children aged 5-9 years. These values were reduced to undetectable levels at a radius of 10 km from Ottou. CONCLUSIONS This study confirms that active onchocerciasis transmission centres on Kwanware/Ottou and is confined to a 10 km radius despite 27 yearly treatment rounds. The main contributing factors are suboptimal coverage and high biting rates. Identifying and targeting such a focus with a combination of interventions will be cost-effective in accelerating onchocerciasis elimination in Ghana.
Collapse
Affiliation(s)
- Rogers Nditanchou
- Sightsavers Cameroon Country Office, Immeuble No 1067 bis Rue 1750 Nouvelle Route Bastos, P.O. Box 4844, Bastos, Yaoundé, Cameroon.
| | - David Agyemang
- Sightsavers Ghana Country Office, The Elizabeth, No. 39, Senchi Link Airport Residential Area, P.O. Box 18190 KIA, Accra, Ghana
| | - Ruth Dixon
- Technopolis Group, 3 Pavilion Buildings, Brighton, BN1 1EE, UK
| | - Susan D'Souza
- Sightsavers, 35 Perrymount Road, Haywards Heath, RH16 3BW, UK
| | - Richard Selby
- Sightsavers, 35 Perrymount Road, Haywards Heath, RH16 3BW, UK
| | - Joseph Opare
- Neglected Tropical Diseases Programme, Ghana Health Service, PMB, Ministries, P.O. Box MB-190, Accra, Ghana
| | - Edward Jenner Tettevi
- The Council for Scientific and Industrial Research (CSIR), P. O. Box AH 38, Achimota, Accra, Ghana
| | - Manfred Dakorah Asiedu
- The Council for Scientific and Industrial Research (CSIR), P. O. Box AH 38, Achimota, Accra, Ghana
| | - Bright Idun
- The Council for Scientific and Industrial Research (CSIR), P. O. Box AH 38, Achimota, Accra, Ghana
| | | | - Elena Schmidt
- Sightsavers, 35 Perrymount Road, Haywards Heath, RH16 3BW, UK
| | - Louise Hamill
- Sightsavers, 35 Perrymount Road, Haywards Heath, RH16 3BW, UK
| | - Laura Senyonjo
- Sightsavers, 35 Perrymount Road, Haywards Heath, RH16 3BW, UK
| | | |
Collapse
|
2
|
Turner HC, Kura K, Roth B, Kuesel AC, Kinrade S, Basáñez MG. An Updated Economic Assessment of Moxidectin Treatment Strategies for Onchocerciasis Elimination. Clin Infect Dis 2024; 78:S138-S145. [PMID: 38662693 PMCID: PMC11045023 DOI: 10.1093/cid/ciae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Concerns that annual mass administration of ivermectin, the predominant strategy for onchocerciasis control and elimination, may not lead to elimination of parasite transmission (EoT) in all endemic areas have increased interest in alternative treatment strategies. One such strategy is moxidectin. We performed an updated economic assessment of moxidectin- relative to ivermectin-based strategies. METHODS We investigated annual and biannual community-directed treatment with ivermectin (aCDTI, bCDTI) and moxidectin (aCDTM, bCDTM) with minimal or enhanced coverage (65% or 80% of total population taking the drug, respectively) in intervention-naive areas with 30%, 50%, or 70% microfilarial baseline prevalence (representative of hypo-, meso-, and hyperendemic areas). We compared programmatic delivery costs for the number of treatments achieving 90% probability of EoT (EoT90), calculated with the individual-based stochastic transmission model EPIONCHO-IBM. We used the costs for 40 years of program delivery when EoT90 was not reached earlier. The delivery costs do not include drug costs. RESULTS aCDTM and bCDTM achieved EoT90 with lower programmatic delivery costs than aCDTI with 1 exception: aCDTM with minimal coverage did not achieve EoT90 in hyperendemic areas within 40 years. With minimal coverage, bCDTI delivery costs as much or more than aCDTM and bCDTM. With enhanced coverage, programmatic delivery costs for aCDTM and bCDTM were lower than for aCDTI and bCDTI. CONCLUSIONS Moxidectin-based strategies could accelerate progress toward EoT and reduce programmatic delivery costs compared with ivermectin-based strategies. The costs of moxidectin to national programs are needed to quantify whether delivery cost reductions will translate into overall program cost reduction.
Collapse
Affiliation(s)
- Hugo C Turner
- UK Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Klodeta Kura
- UK Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Barbara Roth
- Medicines Development for Global Health, Melbourne, Victoria, Australia
| | - Annette C Kuesel
- UNICEF/United Nations Development Progamme/World Bank/World Health Organization Special Programme for Research and Training in Tropical Diseases, World Health Organization, Geneva, Switzerland (retired)
| | - Sally Kinrade
- Medicines Development for Global Health, Melbourne, Victoria, Australia
| | - Maria-Gloria Basáñez
- UK Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Otabil KB, Basáñez MG, Ankrah B, Opoku SA, Kyei DO, Hagan R, Ababio R, Bart-Plange EJ, Babae TN, Kudzordzi PC, Darko VA, Bamfo JG, Ameyaw J, Raji AS, Hadermann A, Schallig HDFH, Colebunders R. Persistence of onchocerciasis and associated dermatologic and ophthalmic pathologies after 27 years of ivermectin mass drug administration in the middle belt of Ghana. Trop Med Int Health 2023; 28:844-854. [PMID: 37846505 DOI: 10.1111/tmi.13937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
OBJECTIVES There is a pressing need to regularly evaluate the progress of onchocerciasis elimination programmes to timely identify and mitigate potential risks hindering the reaching of the 2030 targets proposed by the World Health Organization (WHO) in its roadmap on neglected tropical diseases (NTDs). We determined the prevalence of onchocerciasis and associated dermatological and ophthalmological manifestations in six endemic communities in the Bono Region of Ghana after 27 years of ivermectin mass treatment. METHODS In a cross-sectional study, 564 participants aged ≥5 years were enrolled (49.1% females), with a median age of 26 (range: 5-89) years. In 54% and 47%, skin-snip microscopy and Ov16 rapid diagnostic tests were performed, respectively. Skin disease was determined using the WHO Skin NTD App. Visual function assessments included tests of visual acuity. RESULTS The overall microfilarial prevalence was 12.5% (38/305) and Ov16 seroprevalence was 24.2% (64/265). Severe itching was recorded in 24.3%, acute papular onchodermatitis in 52.8%, chronic papular onchodermatitis in 12.5%, lichenified onchodermatitis in 0.7%, skin atrophy in 11.3%, depigmentation in 1.7% and palpable nodules in 5.3%. Of the 301 persons in which visual acuity was examined, 17% were visually impaired and 5.3% were blind and 47.3% presented with cataract. Chronic papular onchodermatitis, lichenified onchodermatitis, depigmentation and visual impairment were significantly associated with the presence of skin microfilariae and Ov16 seropositivity. CONCLUSIONS The persistence of Onchocerca volvulus infection and onchocerciasis-associated dermatological and ophthalmological pathologies after prolonged treatment is of concern. There is a need to include morbidity management in onchocerciasis elimination programmes and understand better patterns of treatment coverage, adherence and actual intake of ivermectin.
Collapse
Affiliation(s)
- Kenneth Bentum Otabil
- Consortium for Neglected Tropical Diseases and One Health, Department of Biological Science, School of Sciences, University of Energy and Natural Resources, Sunyani, Bono Region, Ghana
- Department of Biological Science, School of Sciences, University of Energy and Natural Resources, Sunyani, Bono Region, Ghana
- Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - María-Gloria Basáñez
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis (MRC GIDA), and London Centre for Neglected Tropical Disease Research, School of Public Health, Imperial College London, London, UK
| | - Blessing Ankrah
- Consortium for Neglected Tropical Diseases and One Health, Department of Biological Science, School of Sciences, University of Energy and Natural Resources, Sunyani, Bono Region, Ghana
| | - Stephen Agyemang Opoku
- Department of Medical Laboratory Science, School of Sciences, University of Energy and Natural Resources, Sunyani, Bono Region, Ghana
| | - Dennis Ofori Kyei
- Department of Medical Laboratory Science, School of Sciences, University of Energy and Natural Resources, Sunyani, Bono Region, Ghana
| | - Rhoda Hagan
- Department of Medical Laboratory Science, School of Sciences, University of Energy and Natural Resources, Sunyani, Bono Region, Ghana
| | - Richmond Ababio
- Department of Medical Laboratory Science, School of Sciences, University of Energy and Natural Resources, Sunyani, Bono Region, Ghana
| | - Emmanuel John Bart-Plange
- Consortium for Neglected Tropical Diseases and One Health, Department of Biological Science, School of Sciences, University of Energy and Natural Resources, Sunyani, Bono Region, Ghana
| | - Theophilus Nti Babae
- Consortium for Neglected Tropical Diseases and One Health, Department of Biological Science, School of Sciences, University of Energy and Natural Resources, Sunyani, Bono Region, Ghana
| | - Prince-Charles Kudzordzi
- Consortium for Neglected Tropical Diseases and One Health, Department of Biological Science, School of Sciences, University of Energy and Natural Resources, Sunyani, Bono Region, Ghana
| | - Vera Achiaa Darko
- Consortium for Neglected Tropical Diseases and One Health, Department of Biological Science, School of Sciences, University of Energy and Natural Resources, Sunyani, Bono Region, Ghana
- STU Clinic, Sunyani Technical University, Sunyani, Bono Region, Ghana
| | | | | | - Abdul Sakibu Raji
- Department of Biological Science, School of Sciences, University of Energy and Natural Resources, Sunyani, Bono Region, Ghana
| | - Amber Hadermann
- Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Henk D F H Schallig
- Department of Medical Microbiology, Experimental Parasitology Unit, Amsterdam University Medical Centres, Academic Medical Centre at the University of Amsterdam, Amsterdam, The Netherlands
| | - Robert Colebunders
- Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Kura K, Milton P, Hamley JID, Walker M, Bakajika DK, Kanza EM, Opoku NO, Howard H, Nigo MM, Asare S, Olipoh G, Attah SK, Mambandu GL, Kennedy KK, Kataliko K, Mumbere M, Halleux CM, Hopkins A, Kuesel AC, Kinrade S, Basáñez MG. Can mass drug administration of moxidectin accelerate onchocerciasis elimination in Africa? Philos Trans R Soc Lond B Biol Sci 2023; 378:20220277. [PMID: 37598705 PMCID: PMC10440165 DOI: 10.1098/rstb.2022.0277] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/11/2023] [Indexed: 08/22/2023] Open
Abstract
Epidemiological and modelling studies suggest that elimination of Onchocerca volvulus transmission (EoT) throughout Africa may not be achievable with annual mass drug administration (MDA) of ivermectin alone, particularly in areas of high endemicity and vector density. Single-dose Phase II and III clinical trials demonstrated moxidectin's superiority over ivermectin for prolonged clearance of O. volvulus microfilariae. We used the stochastic, individual-based EPIONCHO-IBM model to compare the probabilities of reaching EoT between ivermectin and moxidectin MDA for a range of endemicity levels (30 to 70% baseline microfilarial prevalence), treatment frequencies (annual and biannual) and therapeutic coverage/adherence values (65 and 80% of total population, with, respectively, 5 and 1% of systematic non-adherence). EPIONCHO-IBM's projections indicate that biannual (six-monthly) moxidectin MDA can reduce by half the number of years necessary to achieve EoT in mesoendemic areas and might be the only strategy that can achieve EoT in hyperendemic areas. Data needed to improve modelling projections include (i) the effect of repeated annual and biannual moxidectin treatment; (ii) inter- and intra-individual variation in response to successive treatments with moxidectin or ivermectin; (iii) the effect of moxidectin and ivermectin treatment on L3 development into adult worms; and (iv) patterns of adherence to moxidectin and ivermectin MDA. This article is part of the theme issue 'Challenges in the fight against neglected tropical diseases: a decade from the London Declaration on NTDs'.
Collapse
Affiliation(s)
- Klodeta Kura
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Philip Milton
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Jonathan I. D. Hamley
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Didier K. Bakajika
- Expanded Special Project for Elimination of Neglected Tropical Diseases (ESPEN), African Regional Office of the World Health Organization (WHO/AFRO/ESPEN), Brazzaville, Democratic Republic of Congo
| | - Eric M. Kanza
- Programme Nationale de Lutte contre les Maladies Tropicales Négligées à Chimiothérapie Préventive (PNLMTN-CTP), Ministère de la Santé Publique, Kinshasa, Democratic Republic of the Congo
| | - Nicholas O. Opoku
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Hayford Howard
- Liberia Institute for Biomedical Research (LIBR), Monrovia, Liberia
| | - Maurice M. Nigo
- Institut Supérieur des Techniques Médicales de Nyankunde, Bunia, Democratic Republic of the Congo
| | | | - George Olipoh
- Precious Minerals Marketing Company, National Assay Centre, Technical Department, Diamond House, Accra, GA-143-2548, Ghana
| | - Simon K. Attah
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, Accra, Ghana
| | - Germain L. Mambandu
- Inspection Provinciale de la Santé de la Tshopo, Kisangani, Democratic Republic of the Congo
| | - Kambale Kasonia Kennedy
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Kambale Kataliko
- Centre de Santé CECA 20 de Mabakanga, Beni, Nord Kivu, Democratic Republic of the Congo
| | - Mupenzi Mumbere
- Medicines Development for Global Health, 18 Kavanagh Street, Southbank, Victoria 3006, Australia
| | - Christine M. Halleux
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, 1211 Geneva 27, Switzerland
| | - Adrian Hopkins
- Neglected and Disabling Diseases of Poverty Consultant, Gravesend, Kent DA11 OSL, UK
| | - Annette C. Kuesel
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, 1211 Geneva 27, Switzerland
| | - Sally Kinrade
- Medicines Development for Global Health, 18 Kavanagh Street, Southbank, Victoria 3006, Australia
| | - Maria-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
| |
Collapse
|
5
|
Ryan NM, Hess JA, Robertson EJ, Tricoche N, Turner C, Davis J, Petrovsky N, Ferguson M, Rinaldi WJ, Wong VM, Shimada A, Zhan B, Bottazzi ME, Makepeace BL, Gray SA, Carter D, Lustigman S, Abraham D. Adjuvanted Fusion Protein Vaccine Induces Durable Immunity to Onchocerca volvulus in Mice and Non-Human Primates. Vaccines (Basel) 2023; 11:1212. [PMID: 37515028 PMCID: PMC10385774 DOI: 10.3390/vaccines11071212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Onchocerciasis remains a debilitating neglected tropical disease. Due to the many challenges of current control methods, an effective vaccine against the causative agent Onchocerca volvulus is urgently needed. Mice and cynomolgus macaque non-human primates (NHPs) were immunized with a vaccine consisting of a fusion of two O. volvulus protein antigens, Ov-103 and Ov-RAL-2 (Ov-FUS-1), and three different adjuvants: Advax-CpG, alum, and AlT4. All vaccine formulations induced high antigen-specific IgG titers in both mice and NHPs. Challenging mice with O. volvulus L3 contained within subcutaneous diffusion chambers demonstrated that Ov-FUS-1/Advax-CpG-immunized animals developed protective immunity, durable for at least 11 weeks. Passive transfer of sera, collected at several time points, from both mice and NHPs immunized with Ov-FUS-1/Advax-CpG transferred protection to naïve mice. These results demonstrate that Ov-FUS-1 with the adjuvant Advax-CpG induces durable protective immunity against O. volvulus in mice and NHPs that is mediated by vaccine-induced humoral factors.
Collapse
Affiliation(s)
- Nathan M Ryan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jessica A Hess
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Erica J Robertson
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nancy Tricoche
- Laboratory of Molecular Parasitology, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | | | - Jenn Davis
- PAI Life Sciences Inc., Seattle, WA 98102, USA
| | | | | | | | | | - Ayako Shimada
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bin Zhan
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin L Makepeace
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Sean A Gray
- PAI Life Sciences Inc., Seattle, WA 98102, USA
| | | | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - David Abraham
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Gaiya DD, Muhammad A, Aimola IA, Udu SK, Balarabe SA, Auta R, Ekpa E, Sheyin A. Potential of Onchocerca ochengi inosine-5'-monophosphate dehydrogenase (IMPDH) and guanosine-5'-monophosphate oxidoreductase (GMPR) as druggable and vaccine candidates: immunoinformatics screening. J Biomol Struct Dyn 2023; 41:14832-14848. [PMID: 36866624 DOI: 10.1080/07391102.2023.2184171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/18/2023] [Indexed: 03/04/2023]
Abstract
Onchocerciasis is a vector-borne disease caused by the filarial nematode Onchocerca volvulus, which is responsible for most of the visual impairments recorded in Africa, Asia and the Americas. It is known that O. volvulus has similar molecular and biological characteristics as Onchocerca ochengi in cattle. This study was designed to screen for immunogenic epitopes and binding pockets of O. ochengi IMPDH and GMPR ligands using immunoinformatic approaches. In this study, a total of 23 B cell epitopes for IMPDH and 7 B cell epitopes for GMPR were predicted using ABCpred tool, Bepipred 2.0 and Kolaskar and Tongaonkar methods. The CD4+ Th computational results showed 16 antigenic epitopes from IMPDH with strong binding affinity for DRB1_0301, DRB3_0101, DRB1_0103 and DRB1_1501 MHC II alleles while 8 antigenic epitopes from GMPR were predicted to bind DRB1_0101 and DRB1_0401 MHC II alleles, respectively. For the CD8+ CTLs analysis, 8 antigenic epitopes from IMPDH showed strong binding affinity to human leukocyte antigen HLA-A*26:01, HLA-A*03:01, HLA-A*24:02 and HLA-A*01:01 MHC I alleles while 2 antigenic epitopes from GMPR showed strong binding affinity to HLA-A*01:01 allele, respectively. The immunogenic B cell and T cell epitopes were further evaluated for antigenicity, non-alllergernicity, toxicity, IFN-gamma, IL4 and IL10. The docking score revealed favorable binding free energy with IMP and MYD scoring the highest binding affinity at -6.6 kcal/mol with IMPDH and -8.3 kcal/mol with GMPR. This study provides valuable insight on IMPDH and GMPR as potential drug targets and for the development of multiple epitope vaccine candidates.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Daniel Danladi Gaiya
- Biology Unit, Faculty of Science, Air Force Institute of Technology, Nigerian Air Force Base, Kawo, Kaduna State, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Samaru Zaria, Kaduna State, Nigeria
| | - Idowu Asegame Aimola
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Samaru Zaria, Kaduna State, Nigeria
| | - Stella Kuyet Udu
- Biology Unit, Faculty of Science, Air Force Institute of Technology, Nigerian Air Force Base, Kawo, Kaduna State, Nigeria
| | - Sallau Abdullahi Balarabe
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Samaru Zaria, Kaduna State, Nigeria
| | - Richard Auta
- Department of Biochemistry, Faculty of Science, Kaduna State University, Kaduna, Kaduna State, Nigeria
| | - Emmanuel Ekpa
- Biology Unit, Faculty of Science, Air Force Institute of Technology, Nigerian Air Force Base, Kawo, Kaduna State, Nigeria
| | - Abraham Sheyin
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Samaru Zaria, Kaduna State, Nigeria
| |
Collapse
|
7
|
Evaluating the impact of alternative intervention strategies in accelerating onchocerciasis elimination in an area of persistent transmission in the West Region of Cameroon. PLoS Negl Trop Dis 2022; 16:e0010591. [PMID: 36542603 PMCID: PMC9770396 DOI: 10.1371/journal.pntd.0010591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Alternative strategies are recommended to accelerate onchocerciasis elimination in problematic areas including areas where annual ivermectin (IVM) distributions are unable to interrupt transmission. The aim of this study was to accelerate progress towards elimination in the Massangam health district, West Region of Cameroon where impact evaluations demonstrated ongoing transmission of onchocerciasis infection and high microfilaria (mf) prevalence despite more than 20 years of annual IVM distribution. METHODOLOGY/PRINCIPAL FINDINGS Parasitological, entomological, and breeding site surveys were conducted in 2015 delineating a focus of high transmission and identified three communities with high mf prevalence. Individuals in these communities were screened for mf yearly for a period of two years and those positive treated each year with doxycycline 100mg daily for five weeks. In addition, surrounding communities were given biannual IVM. Temephos-based applications were performed once a week for 10 consecutive weeks on Simulium damnosum s.l. breeding sites. Parasitological and entomological assessments were conducted after two years of implementation and findings compared with 2015 baseline. Alternative strategies accelerated progress towards elimination through a significant mf reduction (χ2: 40.1; p<0.001) from 35.7% (95%CI: 29.0-42.8) to 12.3% (95%CI, 9.0-16.4). Reductions were furthermore recorded over a longer period, with a reduction of prevalence of 29.0% under AIS in 2017-2019 compared to 14.6% with IVM in 2011-2015; and by 23.2% following the two years of alternative strategies compared to 20.3% reduction over 15 years of treatment with IVM (1996-2011). Entomological assessment demonstrates that transmission is still ongoing despite the reduction in mf which is expected in an environment with complex breeding sites and open transmission zones, i.e., where migration of flies or humans to and from neighbouring areas is common. CONCLUSION/SIGNIFICANCE This study provides evidence that alternative strategies are feasible and effective and should be considered in areas where transmission is sustained throughout long term uninterrupted MDA with IVM. However, there is need to consider wider transmission zones, and further explore optimal timing of larviciding with treatment to impact transmission.
Collapse
|
8
|
Specht S, Keiser J. Helminth infections: Enabling the World Health Organization Road Map. Int J Parasitol 2022:S0020-7519(22)00180-1. [PMID: 36549443 DOI: 10.1016/j.ijpara.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/19/2022] [Accepted: 10/25/2022] [Indexed: 12/24/2022]
Abstract
Helminthiases are considered among the most persistent public health problems. Control and/or elimination remains a global health challenge and the World Health Organization Road Map highlights critical gaps and actions required to reach the 2030 targets, among them the need for new and more effective treatment options. Stronger collaborations across different fields are required to reach these goals. The helminth elimination platform is one example of how knowledge of two different disease areas can be aligned to fuse expertise and break disease silos.
Collapse
Affiliation(s)
- Sabine Specht
- Drugs for Neglected Diseases Initiative, 15 Camille-Vidart, 1202 Geneva, Switzerland.
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box, 4002, Basel, Switzerland; University of Basel, P.O. Box, 4003, Basel, Switzerland
| |
Collapse
|
9
|
Dixon MA, Winskill P, Harrison WE, Whittaker C, Schmidt V, Flórez Sánchez AC, Cucunuba ZM, Edia-Asuke AU, Walker M, Basáñez MG. Global variation in force-of-infection trends for human T aenia solium taeniasis/cysticercosis. eLife 2022; 11:76988. [PMID: 35984416 PMCID: PMC9391040 DOI: 10.7554/elife.76988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/07/2022] [Indexed: 12/01/2022] Open
Abstract
Infection by Taenia solium poses a major burden across endemic countries. The World Health Organization (WHO) 2021–2030 Neglected Tropical Diseases roadmap has proposed that 30% of endemic countries achieve intensified T. solium control in hyperendemic areas by 2030. Understanding geographical variation in age-prevalence profiles and force-of-infection (FoI) estimates will inform intervention designs across settings. Human taeniasis (HTT) and human cysticercosis (HCC) age-prevalence data from 16 studies in Latin America, Africa, and Asia were extracted through a systematic review. Catalytic models, incorporating diagnostic performance uncertainty, were fitted to the data using Bayesian methods, to estimate rates of antibody (Ab)-seroconversion, infection acquisition and Ab-seroreversion or infection loss. HCC FoI and Ab-seroreversion rates were also estimated across 23 departments in Colombia from 28,100 individuals. Across settings, there was extensive variation in all-ages seroprevalence. Evidence for Ab-seroreversion or infection loss was found in most settings for both HTT and HCC and for HCC Ab-seroreversion in Colombia. The average duration until humans became Ab-seropositive/infected decreased as all-age (sero)prevalence increased. There was no clear relationship between the average duration humans remain Ab-seropositive and all-age seroprevalence. Marked geographical heterogeneity in T. solium transmission rates indicate the need for setting-specific intervention strategies to achieve the WHO goals.
Collapse
Affiliation(s)
- Matthew A Dixon
- Department of Infectious Disease Epidemiology and London Centre for Neglected Tropical Disease Research (LCNTDR), Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom.,MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom.,SCI Foundation, Edinburgh House, London, United Kingdom
| | - Peter Winskill
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Charles Whittaker
- Department of Infectious Disease Epidemiology and London Centre for Neglected Tropical Disease Research (LCNTDR), Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom.,MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom
| | - Veronika Schmidt
- Department of Neurology, Center for Global Health, Technical University Munich (TUM), Munich, Germany.,Centre for Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
| | | | - Zulma M Cucunuba
- Department of Infectious Disease Epidemiology and London Centre for Neglected Tropical Disease Research (LCNTDR), Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom.,MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Martin Walker
- Department of Pathobiology and Population Sciences and London Centre for Neglected Tropical Disease Research (LCNTDR), Royal Veterinary College, Hatfield, United Kingdom
| | - María-Gloria Basáñez
- Department of Infectious Disease Epidemiology and London Centre for Neglected Tropical Disease Research (LCNTDR), Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom.,MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Nana-Djeunga HC, Djune-Yemeli L, Domche A, Donfo-Azafack C, Efon-Ekangouo A, Lenou-Nanga C, Nzune-Toche N, Balog YA, Bopda JG, Mbickmen-Tchana S, Velavan TP, Penlap-Beng V, Ntoumi F, Kamgno J. High infection rates for onchocerciasis and soil-transmitted helminthiasis in children under five not receiving preventive chemotherapy: a bottleneck to elimination. Infect Dis Poverty 2022; 11:47. [PMID: 35484570 PMCID: PMC9052501 DOI: 10.1186/s40249-022-00973-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The current mainstay for control/elimination of onchocerciasis and soil-transmitted helminthiasis (STH) relies on ivermectin- and mebendazole/albendazole-based preventive chemotherapies. However, children under five years of age have been excluded in both research activities and control programs, because they were believed to have insignificant infection rates. There is therefore a need for up-to-date knowledge on the prevalence and intensity of STH and onchocerciasis infections in this age group. This study aimed at assessing the rates and intensities of onchocerciasis and STH infections in children under five years of age who are excluded from ivermectin- or mebendazole/albendazole-based preventive chemotherapies. METHODS A series of cross-sectional surveys was conducted in four Health Districts in the Centre and Littoral Regions of Cameroon between 2018 and 2019. All subjects aged 2 to 4 years, were screened for prevalence (or infection rate) and intensity [number of eggs per gram of stool (epg) or number of microfilariae per skin snip (mf/ss)] of STH and onchocerciasis infections respectively using the Kato-Katz and skin snip methodologies. Chi-square and the non-parametric tests (Mann Whitney and Kruskal Wallis) were used to compare infection rates and intensities of infections between Health Districts and genders, respectively. RESULTS A total of 421 children were enrolled in this study. The overall prevalence of onchocerciasis was 6.6% [95% confidence interval (CI): 4.3‒9.9], ranging from 3.6% (in the Ntui Health District) to 12.2% (in the Bafia Health District). The intensity of infection ranged from 0.5 to 46 microfilariae per skin snip [median: 5; interquartile range (IQR): 2.25‒8.5]. The overall prevalence of STH was 9.6% (95% CI: 6.5‒13.9), with a high infection rate (29.6%) in the Akonolinga Health District. Two STH species (Ascaris lumbricoides and Trichuris trichiura) were found among infected individuals. The median intensities of STH infections were 1,992 epg (IQR: 210‒28,704) and 96 epg (IQR: 48‒168) for A. lumbricoides and T. trichiura, respectively. CONCLUSIONS This study reveals that children < 5 years of age are highly infected with STH and onchocerciasis, and could contribute to the spread of these diseases, perpetuating a vicious circle of transmission and hampering elimination efforts. These findings reveal the urgent need to provide (or scale) treatments (likely pediatric formulations) to these preschool-aged children, especially in areas of high transmission, to accelerate efforts to reach WHO 2030 target.
Collapse
Affiliation(s)
- Hugues C Nana-Djeunga
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé, Cameroon.
| | - Linda Djune-Yemeli
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé, Cameroon
- Molecular Diagnosis Research Group, Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - André Domche
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé, Cameroon
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Cyrille Donfo-Azafack
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé, Cameroon
| | - Arnauld Efon-Ekangouo
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Cédric Lenou-Nanga
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé, Cameroon
| | - Narcisse Nzune-Toche
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé, Cameroon
| | - Yves Aubin Balog
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé, Cameroon
| | - Jean Gabin Bopda
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé, Cameroon
| | - Stève Mbickmen-Tchana
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé, Cameroon
| | | | - Véronique Penlap-Beng
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale (FCRM), CG-BZV, Brazzaville, Republic of the Congo
- Faculty of Science and Technology, Marien Ngouabi University, Brazzaville, Republic of the Congo
| | - Joseph Kamgno
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé, Cameroon.
- Department of Public Health, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon.
| |
Collapse
|
11
|
Tirados I, Thomsen E, Worrall E, Koala L, Melachio TT, Basáñez MG. Vector control and entomological capacity for onchocerciasis elimination. Trends Parasitol 2022; 38:591-604. [DOI: 10.1016/j.pt.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022]
|
12
|
Clark J, Stolk WA, Basáñez MG, Coffeng LE, Cucunubá ZM, Dixon MA, Dyson L, Hampson K, Marks M, Medley GF, Pollington TM, Prada JM, Rock KS, Salje H, Toor J, Hollingsworth TD. How modelling can help steer the course set by the World Health Organization 2021-2030 roadmap on neglected tropical diseases. Gates Open Res 2022; 5:112. [PMID: 35169682 PMCID: PMC8816801 DOI: 10.12688/gatesopenres.13327.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 01/12/2023] Open
Abstract
The World Health Organization recently launched its 2021-2030 roadmap, Ending the Neglect to Attain the Sustainable Development Goals , an updated call to arms to end the suffering caused by neglected tropical diseases. Modelling and quantitative analyses played a significant role in forming these latest goals. In this collection, we discuss the insights, the resulting recommendations and identified challenges of public health modelling for 13 of the target diseases: Chagas disease, dengue, gambiense human African trypanosomiasis (gHAT), lymphatic filariasis (LF), onchocerciasis, rabies, scabies, schistosomiasis, soil-transmitted helminthiases (STH), Taenia solium taeniasis/ cysticercosis, trachoma, visceral leishmaniasis (VL) and yaws. This piece reflects the three cross-cutting themes identified across the collection, regarding the contribution that modelling can make to timelines, programme design, drug development and clinical trials.
Collapse
Affiliation(s)
- Jessica Clark
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7LF, UK
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Wilma A. Stolk
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3000 CA, The Netherlands
| | - María-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Luc E. Coffeng
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3000 CA, The Netherlands
| | - Zulma M. Cucunubá
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Matthew A. Dixon
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
- Schistosomiasis Control Initiative Foundation, London, SE11 5DP, UK
| | - Louise Dyson
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Katie Hampson
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Michael Marks
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Graham F. Medley
- Centre for Mathematical Modelling of Infectious Disease, London School of Hygiene & Tropical Medicine, 15-17 Tavistock Place, London, WC1H 9SH, UK
| | - Timothy M. Pollington
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7LF, UK
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
| | - Joaquin M. Prada
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - Kat S. Rock
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Jaspreet Toor
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - T. Déirdre Hollingsworth
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| |
Collapse
|
13
|
Gunderson EL, Bryant C, Bulman CA, Fischer C, Luo M, Vogel I, Lim KC, Jawahar S, Tricoche N, Voronin D, Corbo C, Ayiseh RB, Manfo FPT, Mbah GE, Cho-Ngwa F, Beerntsen B, Renslo AR, Lustigman S, Sakanari JA. Pyrvinium Pamoate and Structural Analogs Are Early Macrofilaricide Leads. Pharmaceuticals (Basel) 2022; 15:189. [PMID: 35215301 PMCID: PMC8880385 DOI: 10.3390/ph15020189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/05/2022] Open
Abstract
Onchocerciasis and lymphatic filariasis are neglected tropical diseases caused by infection with filarial worms. Annual or biannual mass drug administration with microfilaricidal drugs that kill the microfilarial stages of the parasites has helped reduce infection rates and thus prevent transmission of both infections. However, success depends on high population coverage that is maintained for the duration of the adult worm's lifespan. Given that these filarial worms can live up to 14 years in their human hosts, a macrofilaricidal drug would vastly accelerate elimination efforts. Here, we have evaluated the repurposed drug pyrvinium pamoate as well as newly synthesized analogs of pyrvinium for their efficacy against filarial worms in vitro and in vivo. We found that pyrvinium pamoate, tetrahydropyrvinium and one of the analogs were highly potent in inhibiting worms in in vitro whole-worm screening assays, and that all three compounds reduced female worm fecundity and inhibited embryogenesis in the Brugia pahangi-gerbil in vivo model of infection.
Collapse
Affiliation(s)
- Emma L. Gunderson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (E.L.G.); (C.B.); (C.A.B.); (C.F.); (M.L.); (I.V.); (K.-C.L.); (A.R.R.)
| | - Clifford Bryant
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (E.L.G.); (C.B.); (C.A.B.); (C.F.); (M.L.); (I.V.); (K.-C.L.); (A.R.R.)
| | - Christina A. Bulman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (E.L.G.); (C.B.); (C.A.B.); (C.F.); (M.L.); (I.V.); (K.-C.L.); (A.R.R.)
| | - Chelsea Fischer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (E.L.G.); (C.B.); (C.A.B.); (C.F.); (M.L.); (I.V.); (K.-C.L.); (A.R.R.)
| | - Mona Luo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (E.L.G.); (C.B.); (C.A.B.); (C.F.); (M.L.); (I.V.); (K.-C.L.); (A.R.R.)
| | - Ian Vogel
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (E.L.G.); (C.B.); (C.A.B.); (C.F.); (M.L.); (I.V.); (K.-C.L.); (A.R.R.)
| | - Kee-Chong Lim
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (E.L.G.); (C.B.); (C.A.B.); (C.F.); (M.L.); (I.V.); (K.-C.L.); (A.R.R.)
| | - Shabnam Jawahar
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA; (S.J.); (N.T.); (D.V.)
| | - Nancy Tricoche
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA; (S.J.); (N.T.); (D.V.)
| | - Denis Voronin
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA; (S.J.); (N.T.); (D.V.)
| | - Christopher Corbo
- Department of Biological Sciences, Wagner College, Staten Island, NY 10301, USA;
| | - Rene B. Ayiseh
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (R.B.A.); (F.P.T.M.); (G.E.M.); (F.C.-N.)
| | - Faustin P. T. Manfo
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (R.B.A.); (F.P.T.M.); (G.E.M.); (F.C.-N.)
| | - Glory E. Mbah
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (R.B.A.); (F.P.T.M.); (G.E.M.); (F.C.-N.)
- Higher Teacher Training College (HTTC), The University of Bamenda, Bamenda P.O. Box 39, Cameroon
| | - Fidelis Cho-Ngwa
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (R.B.A.); (F.P.T.M.); (G.E.M.); (F.C.-N.)
| | - Brenda Beerntsen
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211, USA;
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (E.L.G.); (C.B.); (C.A.B.); (C.F.); (M.L.); (I.V.); (K.-C.L.); (A.R.R.)
| | - Sara Lustigman
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA; (S.J.); (N.T.); (D.V.)
| | - Judy A. Sakanari
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (E.L.G.); (C.B.); (C.A.B.); (C.F.); (M.L.); (I.V.); (K.-C.L.); (A.R.R.)
| |
Collapse
|
14
|
Abraham D, Graham-Brown J, Carter D, Gray SA, Hess JA, Makepeace BL, Lustigman S. Development of a recombinant vaccine against human onchocerciasis. Expert Rev Vaccines 2021; 20:1459-1470. [PMID: 34488533 DOI: 10.1080/14760584.2021.1977125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/02/2021] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Human onchocerciasis caused by the filarial nematode parasite Onchocerca volvulus remains a major cause of debilitating disease infecting millions primarily in Sub-Saharan Africa. The development of a prophylactic vaccine, along with mass drug administration, would facilitate meeting the goal of onchocerciasis elimination by 2030. AREAS COVERED Models used to study immunity to Onchocerca include natural infection of cattle with Onchocerca ochengi and O. volvulus infective third-stage larvae implanted within diffusion chambers in mice. A vaccine, comprised of two adjuvanted recombinant antigens, induced protective immunity in genetically diverse mice suggesting that it will function similarly in diverse human populations. These antigens were recognized by immune humans and also induced protective immunity against Brugia malayi. We describe the development of a fusion protein composed of the two vaccine antigens with the plan to test the vaccine in cows and non-human primates as a prelude to the initiation of phase 1 clinical trials. EXPERT OPINION The adjuvanted O. volvulus vaccine composed of two antigens Ov-103 and Ov-RAL-2 was shown to be consistently effective at inducing protective immunity using multiple immune mechanisms. The vaccine is ready for further evaluation in other animal models before moving to clinical trials in humans.
Collapse
Affiliation(s)
- David Abraham
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - John Graham-Brown
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | | | - Jessica A Hess
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Benjamin L Makepeace
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| |
Collapse
|
15
|
Ngwewondo A, Scandale I, Specht S. Onchocerciasis drug development: from preclinical models to humans. Parasitol Res 2021; 120:3939-3964. [PMID: 34642800 PMCID: PMC8599318 DOI: 10.1007/s00436-021-07307-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
Twenty diseases are recognized as neglected tropical diseases (NTDs) by World Health Assembly resolutions, including human filarial diseases. The end of NTDs is embedded within the Sustainable Development Goals for 2030, under target 3.3. Onchocerciasis afflicts approximately 20.9 million people worldwide with > 90% of those infected residing in Africa. Control programs have made tremendous efforts in the management of onchocerciasis by mass drug administration and aerial larviciding; however, disease elimination is not yet achieved. In the new WHO roadmap, it is recognized that new drugs or drug regimens that kill or permanently sterilize adult filarial worms would significantly improve elimination timelines and accelerate the achievement of the program goal of disease elimination. Drug development is, however, handicapped by high attrition rates, and many promising molecules fail in preclinical development or in subsequent toxicological, safety and efficacy testing; thus, research and development (R&D) costs are, in aggregate, very high. Drug discovery and development for NTDs is largely driven by unmet medical needs put forward by the global health community; the area is underfunded and since no high return on investment is possible, there is no dedicated drug development pipeline for human filariasis. Repurposing existing drugs is one approach to filling the drug development pipeline for human filariasis. The high cost and slow pace of discovery and development of new drugs has led to the repurposing of “old” drugs, as this is more cost-effective and allows development timelines to be shortened. However, even if a drug is marketed for a human or veterinary indication, the safety margin and dosing regimen will need to be re-evaluated to determine the risk in humans. Drug repurposing is a promising approach to enlarging the pool of active molecules in the drug development pipeline. Another consideration when providing new treatment options is the use of combinations, which is not addressed in this review. We here summarize recent advances in the late preclinical or early clinical stage in the search for a potent macrofilaricide, including drugs against the nematode and against its endosymbiont, Wolbachia pipientis.
Collapse
Affiliation(s)
- Adela Ngwewondo
- Centre of Medical Research, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box13033, Yaoundé, Cameroon
- Drugs for Neglected Diseases Initiative, Chemin Camille-Vidart 15, 1202, Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, Chemin Camille-Vidart 15, 1202, Geneva, Switzerland
| | - Sabine Specht
- Drugs for Neglected Diseases Initiative, Chemin Camille-Vidart 15, 1202, Geneva, Switzerland.
| |
Collapse
|
16
|
Clark J, Stolk WA, Basáñez MG, Coffeng LE, Cucunubá ZM, Dixon MA, Dyson L, Hampson K, Marks M, Medley GF, Pollington TM, Prada JM, Rock KS, Salje H, Toor J, Hollingsworth TD. How modelling can help steer the course set by the World Health Organization 2021-2030 roadmap on neglected tropical diseases. Gates Open Res 2021; 5:112. [PMID: 35169682 PMCID: PMC8816801 DOI: 10.12688/gatesopenres.13327.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 01/12/2023] Open
Abstract
The World Health Organization recently launched its 2021-2030 roadmap, Ending the Neglect to Attain the Sustainable Development Goals , an updated call to arms to end the suffering caused by neglected tropical diseases. Modelling and quantitative analyses played a significant role in forming these latest goals. In this collection, we discuss the insights, the resulting recommendations and identified challenges of public health modelling for 13 of the target diseases: Chagas disease, dengue, gambiense human African trypanosomiasis (gHAT), lymphatic filariasis (LF), onchocerciasis, rabies, scabies, schistosomiasis, soil-transmitted helminthiases (STH), Taenia solium taeniasis/ cysticercosis, trachoma, visceral leishmaniasis (VL) and yaws. This piece reflects the three cross-cutting themes identified across the collection, regarding the contribution that modelling can make to timelines, programme design, drug development and clinical trials.
Collapse
Affiliation(s)
- Jessica Clark
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7LF, UK
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Wilma A. Stolk
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3000 CA, The Netherlands
| | - María-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Luc E. Coffeng
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3000 CA, The Netherlands
| | - Zulma M. Cucunubá
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Matthew A. Dixon
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
- Schistosomiasis Control Initiative Foundation, London, SE11 5DP, UK
| | - Louise Dyson
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Katie Hampson
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Michael Marks
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Graham F. Medley
- Centre for Mathematical Modelling of Infectious Disease, London School of Hygiene & Tropical Medicine, 15-17 Tavistock Place, London, WC1H 9SH, UK
| | - Timothy M. Pollington
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7LF, UK
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
| | - Joaquin M. Prada
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - Kat S. Rock
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Jaspreet Toor
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - T. Déirdre Hollingsworth
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| |
Collapse
|
17
|
Hatherell HA, Simpson H, Baggaley RF, Hollingsworth TD, Pullan RL. Sustainable Surveillance of Neglected Tropical Diseases for the Post-Elimination Era. Clin Infect Dis 2021; 72:S210-S216. [PMID: 33977302 PMCID: PMC8201586 DOI: 10.1093/cid/ciab211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The World Health Organization’s (WHO’s) 2030 road map for neglected tropical diseases (NTDs) emphasizes the importance of strengthened, institutionalized “post-elimination” surveillance. The required shift from disease-siloed, campaign-based programming to routine, integrated surveillance and response activities presents epidemiological, logistical, and financial challenges, yet practical guidance on implementation is lacking. Nationally representative survey programs, such as demographic and health surveys (DHS), may offer a platform for the integration of NTD surveillance within national health systems and health information systems. Here, we describe characteristics of DHS and other surveys conducted within the WHO Africa region in terms of frequency, target populations, and sample types and discuss applicability for post-validation and post-elimination surveillance. Maximizing utility depends not only on the availability of improved diagnostics but also on better understanding of the spatial and temporal dynamics of transmission at low prevalence. To this end, we outline priorities for obtaining additional data to better characterize optimal post-elimination surveillance platforms.
Collapse
Affiliation(s)
- Hollie-Ann Hatherell
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Hope Simpson
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Rebecca F Baggaley
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | | | - Rachel L Pullan
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
18
|
Human immune response against salivary antigens of Simulium damnosum s.l.: A new epidemiological marker for exposure to blackfly bites in onchocerciasis endemic areas. PLoS Negl Trop Dis 2021; 15:e0009512. [PMID: 34157020 PMCID: PMC8253393 DOI: 10.1371/journal.pntd.0009512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/02/2021] [Accepted: 05/27/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Simulium damnosum sensu lato (s.l.) blackflies transmit Onchocerca volvulus, a filarial nematode that causes human onchocerciasis. Human landing catches (HLCs) is currently the sole method used to estimate blackfly biting rates but is labour-intensive and questionable on ethical grounds. A potential alternative is to measure host antibodies to vector saliva deposited during bloodfeeding. In this study, immunoassays to quantify human antibody responses to S. damnosum s.l. saliva were developed, and the salivary proteome of S. damnosum s.l. was investigated. METHODOLOGY/PRINCIPAL FINDINGS Blood samples from people living in onchocerciasis-endemic areas in Ghana were collected during the wet season; samples from people living in Accra, a blackfly-free area, were considered negative controls and compared to samples from blackfly-free locations in Sudan. Blackflies were collected by HLCs and dissected to extract their salivary glands. An ELISA measuring anti-S. damnosum s.l. salivary IgG and IgM was optimized and used to quantify the humoral immune response of 958 individuals. Both immunoassays differentiated negative controls from endemic participants. Salivary proteins were separated by gel-electrophoresis, and antigenic proteins visualized by immunoblot. Liquid chromatography mass spectrometry (LC-MS/MS) was performed to characterize the proteome of S. damnosum s.l. salivary glands. Several antigenic proteins were recognized, with the major ones located around 15 and 40 kDa. LC-MS/MS identified the presence of antigen 5-related protein, apyrase/nucleotidase, and hyaluronidase. CONCLUSIONS/SIGNIFICANCE This study validated for the first time human immunoassays that quantify humoral immune responses as potential markers of exposure to blackfly bites. These assays have the potential to facilitate understanding patterns of exposure as well as evaluating the impact of vector control on biting rates. Future studies need to investigate seasonal fluctuations of these antibody responses, potential cross-reactions with other bloodsucking arthropods, and thoroughly identify the most immunogenic proteins.
Collapse
|
19
|
Brattig NW, Cheke RA, Garms R. Onchocerciasis (river blindness) - more than a century of research and control. Acta Trop 2021; 218:105677. [PMID: 32857984 DOI: 10.1016/j.actatropica.2020.105677] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
This review summarises more than a century of research on onchocerciasis, also known as river blindness, and its control. River blindness is an infection caused by the tissue filaria Onchocerca volvulus affecting the skin, subcutaneous tissue and eyes and leading to blindness in a minority of infected persons. The parasite is transmitted by its intermediate hosts Simulium spp. which breed in rivers. Featured are history and milestones in onchocerciasis research and control, state-of-the-art data on the parasite, its endobacteria Wolbachia, on the vectors, previous and current prevalence of the infection, its diagnostics, the interaction between the parasite and its host, immune responses and the pathology of onchocerciasis. Detailed information is documented on the time course of control programmes in the afflicted countries in Africa and the Americas, a long road from previous programmes to current successes in control of the transmission of this infectious disease. By development, adjustment and optimization of the control measures, transmission by the vector has been interrupted in foci of countries in the Americas, in Uganda, in Sudan and elsewhere, followed by onchocerciasis eliminations. The current state and future perspectives for control, elimination and eradication within the next 20-30 years are described and discussed. This review contributes to a deeper comprehension of this disease by a tissue-dwelling filaria and it will be helpful in efforts to control and eliminate other filarial infections.
Collapse
|
20
|
de Vos AS, Stolk WA, Coffeng LE, de Vlas SJ. The impact of mass drug administration expansion to low onchocerciasis prevalence settings in case of connected villages. PLoS Negl Trop Dis 2021; 15:e0009011. [PMID: 33979331 PMCID: PMC8143415 DOI: 10.1371/journal.pntd.0009011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/24/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022] Open
Abstract
Background The existence of locations with low but stable onchocerciasis prevalence is not well understood. An often suggested yet poorly investigated explanation is that the infection spills over from neighbouring locations with higher infection densities. Methodology We adapted the stochastic individual based model ONCHOSIM to enable the simulation of multiple villages, with separate blackfly (intermediate host) and human populations, which are connected through the regular movement of the villagers and/or the flies. With this model we explore the impact of the type, direction and degree of connectedness, and of the impact of localized or full-area mass drug administration (MDA) over a range of connected village settings. Principal findings In settings with annual fly biting rates (ABR) below the threshold needed for stable local transmission, persistence of onchocerciasis prevalence can well be explained by regular human traffic and/or fly movement from locations with higher ABR. Elimination of onchocerciasis will then theoretically be reached by only implementing MDA in the higher prevalence area, although lingering infection in the low prevalence location can trigger resurgence of transmission in the total region when MDA is stopped too soon. Expanding MDA implementation to the lower ABR location can therefore shorten the duration of MDA needed. For example, when prevalence spill-over is due to human traffic, and both locations have about equal populations, then the MDA duration can be shortened by up to three years. If the lower ABR location has twice as many inhabitants, the reduction can even be up to six years, but if spill-over is due to fly movement, the expected reduction is less than a year. Conclusions/Significance Although MDA implementation might not always be necessary in locations with stable low onchocerciasis prevalence, in many circumstances it is recommended to accelerate achieving elimination in the wider area. When infected by onchocerciasis worm parasites, people can eventually develop blindness or severe skin morbidity. Over the past decades, in most places with high onchocerciasis prevalence, annual mass drug administration has become freely available for all inhabitants, regardless of their infection status. This policy has been highly successful in decreasing morbidity. For the next aim, to eliminate onchocerciasis, this intervention is now being expanded to lower prevalence locations. We have adapted an existing simulation model of the spread of onchocerciasis to allow us to model settings where multiple villages are connected, through movement of either humans or blackflies, the intermediate host. By this connection, worms could spill over from a high prevalence village to neighbouring villages with lower prevalence. For such situations, we have examined the impact of implementing treatment only in the high prevalence village, or also in one or two lower prevalence villages. We conclude that for elimination of onchocerciasis transmission, treatment in the lower prevalence villages may not actually be needed, but the total duration of mass drug administration in the entire area can be significantly decreased by expanding treatment to these villages.
Collapse
Affiliation(s)
- Anneke S. de Vos
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| | - Wilma A. Stolk
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Luc E. Coffeng
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sake J. de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Walker M, Hamley JID, Milton P, Monnot F, Kinrade S, Specht S, Pedrique B, Basáñez MG. Supporting drug development for neglected tropical diseases using mathematical modelling. Clin Infect Dis 2021; 73:e1391-e1396. [PMID: 33893482 PMCID: PMC8442785 DOI: 10.1093/cid/ciab350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 11/14/2022] Open
Abstract
Drug-based interventions are at the heart of global efforts to reach elimination as a public health problem (trachoma, soil-transmitted helminthiases, schistosomiasis, lymphatic filariasis) or elimination of transmission (onchocerciasis) for 5 of the most prevalent neglected tropical diseases tackled via the World Health Organization preventive chemotherapy strategy. While for some of these diseases there is optimism that currently available drugs will be sufficient to achieve the proposed elimination goals, for others—particularly onchocerciasis—there is a growing consensus that novel therapeutic options will be needed. Since in this area no high return of investment is possible, minimizing wasted money and resources is essential. Here, we use illustrative results to show how mathematical modeling can guide the drug development pathway, yielding resource-saving and efficiency payoffs, from the refinement of target product profiles and intended context of use to the design of clinical trials.
Collapse
Affiliation(s)
- Martin Walker
- Department of Pathobiology and Population Sciences and London Centre for Neglected Tropical Disease Research, Royal Veterinary College, UK.,MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology and London Centre for Neglected Tropical Disease Research, Imperial College London, UK
| | - Jonathan I D Hamley
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology and London Centre for Neglected Tropical Disease Research, Imperial College London, UK
| | - Philip Milton
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology and London Centre for Neglected Tropical Disease Research, Imperial College London, UK
| | - Frédéric Monnot
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Sally Kinrade
- Medicines Development for Global Health, Southbank VIC, Australia
| | - Sabine Specht
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Bélen Pedrique
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Maria-Gloria Basáñez
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology and London Centre for Neglected Tropical Disease Research, Imperial College London, UK
| |
Collapse
|
22
|
Hamley JID, Blok DJ, Walker M, Milton P, Hopkins AD, Hamill LC, Downs P, de Vlas SJ, Stolk WA, Basáñez MG. What does the COVID-19 pandemic mean for the next decade of onchocerciasis control and elimination? Trans R Soc Trop Med Hyg 2021; 115:269-280. [PMID: 33515042 PMCID: PMC7928565 DOI: 10.1093/trstmh/traa193] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/16/2020] [Accepted: 12/29/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mass drug administration (MDA) of ivermectin for onchocerciasis has been disrupted by the coronavirus disease 2019 (COVID-19) pandemic. Mathematical modelling can help predict how missed/delayed MDA will affect short-term epidemiological trends and elimination prospects by 2030. METHODS Two onchocerciasis transmission models (EPIONCHO-IBM and ONCHOSIM) are used to simulate microfilarial prevalence trends, elimination probabilities and age profiles of Onchocerca volvulus microfilarial prevalence and intensity for different treatment histories and transmission settings, assuming no interruption, a 1-y (2020) interruption or a 2-y (2020-2021) interruption. Biannual MDA or increased coverage upon MDA resumption are investigated as remedial strategies. RESULTS Programmes with shorter MDA histories and settings with high pre-intervention endemicity will be the most affected. Biannual MDA is more effective than increasing coverage for mitigating COVID-19's impact on MDA. Programmes that had already switched to biannual MDA should be minimally affected. In high-transmission settings with short treatment history, a 2-y interruption could lead to increased microfilarial load in children (EPIONCHO-IBM) and adults (ONCHOSIM). CONCLUSIONS Programmes with shorter (annual MDA) treatment histories should be prioritised for remedial biannual MDA. Increases in microfilarial load could have short- and long-term morbidity and mortality repercussions. These results can guide decision-making to mitigate the impact of COVID-19 on onchocerciasis elimination.
Collapse
Affiliation(s)
- Jonathan I D Hamley
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, Norfolk Place, London W2 1PG, UK.,MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, Norfolk Place, London W2 1PG, UK
| | - David J Blok
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, Norfolk Place, London W2 1PG, UK.,London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield AL9 7TA, UK
| | - Philip Milton
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, Norfolk Place, London W2 1PG, UK.,MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Adrian D Hopkins
- Neglected and Disabling Diseases of Poverty Consultant, Kent, UK
| | - Louise C Hamill
- Sightsavers, 35 Perrymount Road, Haywards Heath, RH16 3BW, UK
| | - Philip Downs
- Sightsavers, 35 Perrymount Road, Haywards Heath, RH16 3BW, UK
| | - Sake J de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Wilma A Stolk
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Maria-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, Norfolk Place, London W2 1PG, UK.,MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
23
|
Cheke RA, Little KE, Young S, Walker M, Basáñez MG. Taking the strain out of onchocerciasis? A reanalysis of blindness and transmission data does not support the existence of a savannah blinding strain of onchocerciasis in West Africa. ADVANCES IN PARASITOLOGY 2021; 112:1-50. [PMID: 34024357 DOI: 10.1016/bs.apar.2021.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Onchocerciasis (also known as 'river blindness'), is a neglected tropical disease (NTD) caused by the (Simulium-transmitted) filarial nematode Onchocerca volvulus. The occurrence of 'blinding' (savannah) and non-blinding (forest) parasite strains and the existence of corresponding, locally adapted Onchocerca-Simulium complexes were postulated to explain greater blindness prevalence in savannah than in forest foci. As a result, the World Health Organization (WHO) Onchocerciasis Control Programme in West Africa (OCP) focused anti-vectorial and anti-parasitic interventions in savannah endemic areas. In this paper, village-level data on blindness prevalence, microfilarial prevalence, and transmission intensity (measured by the annual transmission potential, the number of infective, L3, larvae per person per year) were extracted from 16 West-Central Africa-based publications, and analysed according to habitat (forest, forest-savannah mosaic, savannah) to test the dichotomous strain hypothesis in relation to blindness. When adjusting for sample size, there were no statistically significant differences in blindness prevalence between the habitats (one-way ANOVA, P=0.68, mean prevalence for forest=1.76±0.37 (SE); mosaic=1.49±0.38; savannah=1.89±0.26). The well-known relationship between blindness prevalence and annual transmission potential for savannah habitats was confirmed and shown to hold for (but not to be statistically different from) forest foci (excluding data from southern Côte d'Ivoire, in which blindness prevalence was significantly lower than in other West African forest communities, but which had been the focus of studies leading to the strain-blindness hypothesis that was accepted by OCP planners). We conclude that the evidence for a savannah blinding onchocerciasis strain in simple contrast with a non-blinding forest strain is equivocal. A re-appraisal of the strain hypothesis to explain patterns of ocular disease is needed to improve understanding of onchocerciasis epidemiology and disease burden estimates in the light of the WHO 2030 goals for onchocerciasis.
Collapse
Affiliation(s)
- Robert A Cheke
- Natural Resources Institute, Department of Agriculture, Health & Environment, University of Greenwich at Medway, Kent, United Kingdom; London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Stephen Young
- Natural Resources Institute, Department of Agriculture, Health & Environment, University of Greenwich at Medway, Kent, United Kingdom
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research, Department of Pathobiology and Populations Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Maria-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom; MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom.
| |
Collapse
|
24
|
Jawahar S, Tricoche N, Bulman CA, Sakanari J, Lustigman S. Drugs that target early stages of Onchocerca volvulus: A revisited means to facilitate the elimination goals for onchocerciasis. PLoS Negl Trop Dis 2021; 15:e0009064. [PMID: 33600426 PMCID: PMC7891776 DOI: 10.1371/journal.pntd.0009064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Several issues have been identified with the current programs for the elimination of onchocerciasis that target only transmission by using mass drug administration (MDA) of the drug ivermectin. Alternative and/or complementary treatment regimens as part of a more comprehensive strategy to eliminate onchocerciasis are needed. We posit that the addition of “prophylactic” drugs or therapeutic drugs that can be utilized in a prophylactic strategy to the toolbox of present microfilaricidal drugs and/or future macrofilaricidal treatment regimens will not only improve the chances of meeting the elimination goals but may hasten the time to elimination and also will support achieving a sustained elimination of onchocerciasis. These “prophylactic” drugs will target the infective third- (L3) and fourth-stage (L4) larvae of Onchocerca volvulus and consequently prevent the establishment of new infections not only in uninfected individuals but also in already infected individuals and thus reduce the overall adult worm burden and transmission. Importantly, an effective prophylactic treatment regimen can utilize drugs that are already part of the onchocerciasis elimination program (ivermectin), those being considered for MDA (moxidectin), and/or the potential macrofilaricidal drugs (oxfendazole and emodepside) currently under clinical development. Prophylaxis of onchocerciasis is not a new concept. We present new data showing that these drugs can inhibit L3 molting and/or inhibit motility of L4 at IC50 and IC90 that are covered by the concentration of these drugs in plasma based on the corresponding pharmacological profiles obtained in human clinical trials when these drugs were tested using various doses for the therapeutic treatments of various helminth infections.
Collapse
Affiliation(s)
- Shabnam Jawahar
- Molecular Parasitology, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Nancy Tricoche
- Molecular Parasitology, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Christina A Bulman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Sara Lustigman
- Molecular Parasitology, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| |
Collapse
|
25
|
Tyagi R, Bulman CA, Cho-Ngwa F, Fischer C, Marcellino C, Arkin MR, McKerrow JH, McNamara CW, Mahoney M, Tricoche N, Jawahar S, Janetka JW, Lustigman S, Sakanari J, Mitreva M. An Integrated Approach to Identify New Anti-Filarial Leads to Treat River Blindness, a Neglected Tropical Disease. Pathogens 2021; 10:71. [PMID: 33466870 PMCID: PMC7830784 DOI: 10.3390/pathogens10010071] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 11/17/2022] Open
Abstract
Filarial worms cause multiple debilitating diseases in millions of people worldwide, including river blindness. Currently available drugs reduce transmission by killing larvae (microfilariae), but there are no effective cures targeting the adult parasites (macrofilaricides) which survive and reproduce in the host for very long periods. To identify effective macrofilaricides, we carried out phenotypic screening of a library of 2121 approved drugs for clinical use against adult Brugia pahangi and prioritized the hits for further studies by integrating those results with a computational prioritization of drugs and associated targets. This resulted in the identification of 18 hits with anti-macrofilaricidal activity, of which two classes, azoles and aspartic protease inhibitors, were further expanded upon. Follow up screening against Onchocerca spp. (adult Onchocerca ochengi and pre-adult O. volvulus) confirmed activity for 13 drugs (the majority having IC50 < 10 μM), and a counter screen of a subset against L. loa microfilariae showed the potential to identify selective drugs that prevent adverse events when co-infected individuals are treated. Stage specific activity was also observed. Many of these drugs are amenable to structural optimization, and also have known canonical targets, making them promising candidates for further optimization that can lead to identifying and characterizing novel anti-macrofilarial drugs.
Collapse
Affiliation(s)
- Rahul Tyagi
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO 63110, USA;
| | - Christina A. Bulman
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - Fidelis Cho-Ngwa
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea CM-00237, Cameroon;
| | - Chelsea Fischer
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - Chris Marcellino
- Division of Neurocritical Care and Hospital Neurology, Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA;
| | - Michelle R. Arkin
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA;
| | - Case W. McNamara
- Calibr, a Division of The Scripps Research Institute, 11119 Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Matthew Mahoney
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; (M.M.); (J.W.J.)
| | - Nancy Tricoche
- Lindsley F. Kimball Research Institute, New York City, NY 10065, USA; (N.T.); (S.J.); (S.L.)
| | - Shabnam Jawahar
- Lindsley F. Kimball Research Institute, New York City, NY 10065, USA; (N.T.); (S.J.); (S.L.)
| | - James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; (M.M.); (J.W.J.)
| | - Sara Lustigman
- Lindsley F. Kimball Research Institute, New York City, NY 10065, USA; (N.T.); (S.J.); (S.L.)
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO 63110, USA;
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA
| |
Collapse
|
26
|
Jacob B, Loum D, Munu D, Lakwo T, Byamukama E, Habomugisha P, Cupp EW, Unnasch TR. Optimization of Slash and Clear Community-Directed Control of Simulium damnosum Sensu Stricto in Northern Uganda. Am J Trop Med Hyg 2021; 104:1394-1403. [PMID: 33432900 DOI: 10.4269/ajtmh.20-1104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/10/2020] [Indexed: 11/07/2022] Open
Abstract
Onchocerciasis, caused by infection with Onchocerca volvulus, has been targeted for elimination by 2030. Currently, onchocerciasis elimination programs rely primarily on mass distribution of ivermectin. However, ivermectin alone may not be sufficient to achieve elimination in some circumstances, and additional tools may be needed. Vector control has been used as a tool to control onchocerciasis, but vector control using insecticides is expensive and ecologically detrimental. Community-directed removal of the trailing vegetation blackfly larval attachment sites (slash and clear) has been shown to dramatically reduce vector biting densities. Here, we report studies to optimize the slash and clear process. Conducting slash and clear interventions at Simulium damnosum sensu stricto breeding sites located within 2 km of afflicted communities resulted in a 95% reduction in vector biting. Extending slash and clear further than 2 km resulted in no further decrease. A single intervention conducted at the first half of the rainy season resulted in a 97% reduction in biting rate, whereas an intervention conducted at the end of the rainy season resulted in a 94% reduction. Vector numbers in any of the intervention villages did not fully recover by the start of the following rainy season. These results suggest that slash and clear may offer an inexpensive and effective way to augment ivermectin distribution in the effort to eliminate onchocerciasis in Africa.
Collapse
Affiliation(s)
- Benjamin Jacob
- College of Public Health, University of South Florida, Tampa, Florida
| | - Denis Loum
- Nwoya District Local Government, Nwoya, Uganda
| | - Denis Munu
- The Carter Center, Uganda Office, Kampala, Uganda
| | - Thomson Lakwo
- Vector Control Division, Ministry of Health, Kampala, Uganda
| | | | | | - Eddie W Cupp
- Center for Global Health Infectious Disease Research, University of South Florida, Tampa, Florida
| | - Thomas R Unnasch
- Center for Global Health Infectious Disease Research, University of South Florida, Tampa, Florida
| |
Collapse
|
27
|
Ngwasiri NN, Brattig NW, Ndjonka D, Liebau E, Paguem A, Leusder D, Kingsley MT, Eisenbarth A, Renz A, Daniel AM. Galectins from Onchocerca ochengi and O. volvulus and their immune recognition by Wistar rats, Gudali zebu cattle and human hosts. BMC Microbiol 2021; 21:5. [PMID: 33407120 PMCID: PMC7788699 DOI: 10.1186/s12866-020-02064-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background During the last two decades research on animal filarial parasites, especially Onchocerca ochengi, infecting cattle in savanna areas of Africa revealed that O. ochengi as an animal model has biological features that are similar to those of O. volvulus, the aetiological agent of human onchocerciasis. There is, however, a paucity of biochemical, immunological and pathological data for O. ochengi. Galectins can be generated by parasites and their hosts. They are multifunctional molecules affecting the interaction between filarial parasites and their mammalian hosts including immune responses. This study characterized O. ochengi galectin, verified its immunologenicity and established its immune reactivity and that of Onchocerca volvulus galectin. Results The phylogenetic analysis showed the high degree of identity between the identified O. ochengi and the O. volvulus galectin-1 (ß-galactoside-binding protein-1) consisting only in one exchange of alanine for serine. O. ochengi galectin induced IgG antibodies during 28 days after immunization of Wistar rats. IgG from O. ochengi-infected cattle and O. volvulus-infected humans cross-reacted with the corresponding galectins. Under the applied experimental conditions in a cell proliferation test, O. ochengi galectin failed to significantly stimulate peripheral blood mononuclear cells (PBMCs) from O. ochengi-infected cattle, regardless of their parasite load. Conclusion An O. ochengi galectin gene was identified and the recombinantly expressed protein was immunogenic. IgG from Onchocerca-infected humans and cattle showed similar cross-reaction with both respective galectins. The present findings reflect the phylogenetic relationship between the two parasites and endorse the appropriateness of the cattle O. ochengi model for O. volvulus infection research. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02064-3.
Collapse
Affiliation(s)
| | - Norbert W Brattig
- Department Molecular Medicine, Bernhard Nocht Institute of Tropical Medicine, Hamburg, Germany
| | | | - Eva Liebau
- University of Muenster, Münster, Germany
| | - Archile Paguem
- University of Ngaoundéré, Ngaoundéré, Cameroon.,Department Comparative Zoology, Eberhard Karls University, Institute of Evolution and Ecology, Tübingen, Germany.,Department of Veterinary Medicine, University of Buea, Buea, Cameroon
| | | | - Manchang Tanyi Kingsley
- Department of Veterinary Medicine, University of Buea, Buea, Cameroon.,Veterinary Research Laboratory, IRAD Wakwa Regional Centre, Ngaoundéré, Cameroon
| | - Albert Eisenbarth
- Department Comparative Zoology, Eberhard Karls University, Institute of Evolution and Ecology, Tübingen, Germany.,Programme Onchocercoses, Station of the University of Tübingen, Ngaoundéré, Cameroon
| | - Alfons Renz
- Department Comparative Zoology, Eberhard Karls University, Institute of Evolution and Ecology, Tübingen, Germany.,Programme Onchocercoses, Station of the University of Tübingen, Ngaoundéré, Cameroon
| | | |
Collapse
|
28
|
Preliminary evaluations of 3-dimensional human skin models for their ability to facilitate in vitro the long-term development of the debilitating obligatory human parasite Onchocerca volvulus. PLoS Negl Trop Dis 2020; 14:e0008503. [PMID: 33151944 PMCID: PMC7671495 DOI: 10.1371/journal.pntd.0008503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/17/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022] Open
Abstract
Onchocerciasis also known as river blindness is a neglected tropical disease and the world's second-leading infectious cause of blindness in humans; it is caused by Onchocerca volvulus. Current treatment with ivermectin targets microfilariae and transmission and does not kill the adult parasites, which reside within subcutaneous nodules. To support the development of macrofilaricidal drugs that target the adult worm to further support the elimination of onchocerciasis, an in-depth understanding of O. volvulus biology especially the factors that support the longevity of these worms in the human host (>10 years) is required. However, research is hampered by a lack of access to adult worms. O. volvulus is an obligatory human parasite and no small animal models that can propagate this parasite were successfully developed. The current optimized 2-dimensional (2-D) in vitro culturing method starting with O. volvulus infective larvae does not yet support the development of mature adult worms. To overcome these limitations, we have developed and applied 3-dimensional (3-D) culture systems with O. volvulus larvae that simulate the human in vivo niche using in vitro engineered skin and adipose tissue. Our proof of concept studies have shown that an optimized indirect co-culture of in vitro skin tissue supported a significant increase in growth of the fourth-stage larvae to the pre-adult stage with a median length of 816–831 μm as compared to 767 μm of 2-D cultured larvae. Notably, when larvae were co-cultured directly with adipose tissue models, a significant improvement for larval motility and thus fitness was observed; 95% compared to 26% in the 2-D system. These promising co-culture concepts are a first step to further optimize the culturing conditions and improve the long-term development of adult worms in vitro. Ultimately, it could provide the filarial research community with a valuable source of O. volvulus worms at various developmental stages, which may accelerate innovative unsolved biomedical inquiries into the parasite’s biology. The filarial nematode Onchocerca volvulus is an obligatory human parasite and the causative agent of onchocerciasis, better known as river blindness. In 2017, more than 20 million infections with O. volvulus were estimated worldwide, 99% of the patients live in Africa. Current international control programs focus on the reduction of microfilaridermia by mass drug administration of ivermectin. However, to meet the elimination goals, additional treatment strategies are needed that also target the adult worms. As this parasite is obliged to humans, there are no small animal models that sustain the full life cycle of the parasite, thus greatly impeding the research on this filarial nematode. To overcome these drawbacks, we have developed co-culture systems based on engineered human skin and adipose tissue that represent the in vivo niche of O. volvulus adult worms that improved the culturing conditions and the development to the pre-adult stages of the parasite. Furthermore, our new culture approach could significantly reduce the use of surrogate animal models currently used for macrofilaricidal drug testing.
Collapse
|
29
|
Dusabimana A, Bhwana D, Raimon S, Mmbando BP, Hotterbeekx A, Tepage F, Mandro M, Siewe Fodjo JN, Abrams S, Colebunders R. Ivermectin Treatment Response in Onchocerca Volvulus Infected Persons with Epilepsy: A Three-Country Short Cohort Study. Pathogens 2020; 9:pathogens9080617. [PMID: 32751060 PMCID: PMC7460326 DOI: 10.3390/pathogens9080617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022] Open
Abstract
Despite a long history of community-directed treatment with ivermectin (CDTI), a high ongoing Onchocerca volvulus transmission is observed in certain onchocerciasis-endemic regions in Africa with a high prevalence of epilepsy. We investigated factors associated with higher microfilarial (mf) density after ivermectin treatment. Skin snips were obtained from O. volvulus-infected persons with epilepsy before, and 3 to 5 months after ivermectin treatment. Participants were enrolled from 4 study sites: Maridi (South Sudan); Logo and Aketi (Democratic Republic of Congo); and Mahenge (Tanzania). Of the 329 participants, 105 (31.9%) had a post-treatment mf density >20% of the pre-treatment value. The percentage reduction in the geometric mean mf density ranged from 69.0% (5 months after treatment) to 89.4% (3 months after treatment). A higher pre-treatment mf density was associated with increased probability of a positive skin snip after ivermectin treatment (p = 0.016). For participants with persistent microfiladermia during follow-up, a higher number of previous CDTI rounds increased the odds of having a post-treatment mf density >20% of the pre-treatment value (p = 0.006). In conclusion, the high onchocerciasis transmission in the study sites may be due to initially high infection intensity in some individuals. Whether the decreasing effect of ivermectin with increasing years of CDTI results from sub-optimal response mechanisms warrants further research.
Collapse
Affiliation(s)
- Alfred Dusabimana
- Global Health Institute, University of Antwerp, Doornstraat 331, 2610 Antwerp, Belgium; (A.D.); (A.H.); (J.N.S.F.); (S.A.)
| | - Dan Bhwana
- National Institute Medical Research, Tanga Centre, P.O. Box 5004 Tanga, Tanzania; (D.B.); (B.P.M.)
| | | | - Bruno P. Mmbando
- National Institute Medical Research, Tanga Centre, P.O. Box 5004 Tanga, Tanzania; (D.B.); (B.P.M.)
| | - An Hotterbeekx
- Global Health Institute, University of Antwerp, Doornstraat 331, 2610 Antwerp, Belgium; (A.D.); (A.H.); (J.N.S.F.); (S.A.)
| | - Floribert Tepage
- Ministry of Health, Bas Uélé province, B.P. 105 Buta, Democratic Republic of Congo;
| | - Michel Mandro
- Provincial Health Division Ituri, Ministry of Health, Bunia, P.O. Box 57 Ituri, Democratic Republic of Congo;
| | - Joseph N. Siewe Fodjo
- Global Health Institute, University of Antwerp, Doornstraat 331, 2610 Antwerp, Belgium; (A.D.); (A.H.); (J.N.S.F.); (S.A.)
| | - Steven Abrams
- Global Health Institute, University of Antwerp, Doornstraat 331, 2610 Antwerp, Belgium; (A.D.); (A.H.); (J.N.S.F.); (S.A.)
- Interuniversity Institute for Biostatistics and statistical Bioinformatics, Data Science Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Robert Colebunders
- Global Health Institute, University of Antwerp, Doornstraat 331, 2610 Antwerp, Belgium; (A.D.); (A.H.); (J.N.S.F.); (S.A.)
- Robert Colebunders, Global Health Institute, Gouverneur Kinsbergencentrum, University of Antwerp, Doornstraat 331, 2610 Wilrijk, Belgium
- Correspondence: ; Tel.: +32-486920149
| |
Collapse
|
30
|
Gunderson EL, Vogel I, Chappell L, Bulman CA, Lim KC, Luo M, Whitman JD, Franklin C, Choi YJ, Lefoulon E, Clark T, Beerntsen B, Slatko B, Mitreva M, Sullivan W, Sakanari JA. The endosymbiont Wolbachia rebounds following antibiotic treatment. PLoS Pathog 2020; 16:e1008623. [PMID: 32639986 PMCID: PMC7371230 DOI: 10.1371/journal.ppat.1008623] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/20/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Antibiotic treatment has emerged as a promising strategy to sterilize and kill filarial nematodes due to their dependence on their endosymbiotic bacteria, Wolbachia. Several studies have shown that novel and FDA-approved antibiotics are efficacious at depleting the filarial nematodes of their endosymbiont, thus reducing female fecundity. However, it remains unclear if antibiotics can permanently deplete Wolbachia and cause sterility for the lifespan of the adult worms. Concerns about resistance arising from mass drug administration necessitate a careful exploration of potential Wolbachia recrudescence. In the present study, we investigated the long-term effects of the FDA-approved antibiotic, rifampicin, in the Brugia pahangi jird model of infection. Initially, rifampicin treatment depleted Wolbachia in adult worms and simultaneously impaired female worm fecundity. However, during an 8-month washout period, Wolbachia titers rebounded and embryogenesis returned to normal. Genome sequence analyses of Wolbachia revealed that despite the population bottleneck and recovery, no genetic changes occurred that could account for the rebound. Clusters of densely packed Wolbachia within the worm's ovarian tissues were observed by confocal microscopy and remained in worms treated with rifampicin, suggesting that they may serve as privileged sites that allow Wolbachia to persist in worms while treated with antibiotic. To our knowledge, these clusters have not been previously described and may be the source of the Wolbachia rebound.
Collapse
Affiliation(s)
- Emma L. Gunderson
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Ian Vogel
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Laura Chappell
- Dept. of Molecular, Cell and Developmental Biology; University of California, Santa Cruz; Santa Cruz, California, United States of America
| | - Christina A. Bulman
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - K. C. Lim
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Mona Luo
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Jeffrey D. Whitman
- Dept. of Laboratory Medicine; University of California, San Francisco; San Francisco, California, United States of America
| | - Chris Franklin
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Young-Jun Choi
- Division of Infectious Diseases; Washington University School of Medicine, St. Louis; St. Louis, Missouri, United States of America
| | - Emilie Lefoulon
- Molecular Parasitology Division; New England BioLabs; Ipswich, Massachusetts, United States of America
| | - Travis Clark
- Veterinary Pathobiology; University of Missouri-Columbia; Columbia, Missouri, United States of America
| | - Brenda Beerntsen
- Veterinary Pathobiology; University of Missouri-Columbia; Columbia, Missouri, United States of America
| | - Barton Slatko
- Molecular Parasitology Division; New England BioLabs; Ipswich, Massachusetts, United States of America
| | - Makedonka Mitreva
- Division of Infectious Diseases; Washington University School of Medicine, St. Louis; St. Louis, Missouri, United States of America
| | - William Sullivan
- Dept. of Molecular, Cell and Developmental Biology; University of California, Santa Cruz; Santa Cruz, California, United States of America
| | - Judy A. Sakanari
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| |
Collapse
|
31
|
Designing antifilarial drug trials using clinical trial simulators. Nat Commun 2020; 11:2685. [PMID: 32483209 PMCID: PMC7264235 DOI: 10.1038/s41467-020-16442-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/03/2020] [Indexed: 12/01/2022] Open
Abstract
Lymphatic filariasis and onchocerciasis are neglected tropical diseases (NTDs) targeted for elimination by mass (antifilarial) drug administration. These drugs are predominantly active against the microfilarial progeny of adult worms. New drugs or combinations are needed to improve patient therapy and to enhance the effectiveness of interventions in persistent hotspots of transmission. Several therapies and regimens are currently in (pre-)clinical testing. Clinical trial simulators (CTSs) project patient outcomes to inform the design of clinical trials but have not been widely applied to NTDs, where their resource-saving payoffs could be highly beneficial. We demonstrate the utility of CTSs using our individual-based onchocerciasis transmission model (EPIONCHO-IBM) that projects trial outcomes of a hypothetical macrofilaricidal drug. We identify key design decisions that influence the power of clinical trials, including participant eligibility criteria and post-treatment follow-up times for measuring infection indicators. We discuss how CTSs help to inform target product profiles. Drugs for filariases are under development and clinical trial simulators could help to inform the design of clinical trials. Here, Walker et al. use an individual-based onchocerciasis transmission model to project trial outcomes of a hypothetical macrofilaricidal drug, resolving key design choices.
Collapse
|