1
|
Kataoka N. Ketogluconate production by Gluconobacter strains: enzymes and biotechnological applications. Biosci Biotechnol Biochem 2024; 88:499-508. [PMID: 38323387 DOI: 10.1093/bbb/zbae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Gluconobacter strains perform incomplete oxidation of various sugars and alcohols, employing regio- and stereoselective membrane-bound dehydrogenases oriented toward the periplasmic space. This oxidative fermentation process is utilized industrially. The ketogluconate production pathway, characteristic of these strains, begins with the conversion of d-glucose to d-gluconate, which then diverges and splits into 2 pathways producing 5-keto-d-gluconate and 2-keto-d-gluconate and subsequently 2,5-diketo-d-gluconate. These transformations are facilitated by membrane-bound d-glucose dehydrogenase, glycerol dehydrogenase, d-gluconate dehydrogenase, and 2-keto-d-gluconate dehydrogenase. The variance in end products across Gluconobacter strains stems from the diversity of enzymes and their activities. This review synthesizes biochemical and genetic knowledge with biotechnological applications, highlighting recent advances in metabolic engineering and the development of an efficient production process focusing on enzymes relevant to the ketogluconate production pathway in Gluconobacter strains.
Collapse
Affiliation(s)
- Naoya Kataoka
- Organization for Research Initiatives, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
2
|
Liu Q, Liu M, Chen W, Yuan H, Jiang Y, Huang D, Liu H, Wang T. Recent Advances in 2-Keto-l-gulonic Acid Production Using Mixed-Culture Fermentation and Future Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1419-1428. [PMID: 38206567 DOI: 10.1021/acs.jafc.3c08189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Vitamin C, also known as ascorbic acid, is an essential vitamin that cannot be synthesized by the human body and must be acquired through our diet. At present, the precursor of vitamin C, 2-keto-l-gulonic acid (2-KGA), is typically produced via a two-step fermentation process utilizing three bacterial strains. The second step of this traditional two-step fermentation method involves mixed-culture fermentation employing 2-KGA-producing bacteria (Ketogulonicigenium vulgare) along with associated bacteria. Because K. vulgare has defects in various metabolic pathways, associated bacteria are needed to provide key substances to promote K. vulgare growth and 2-KGA production. Unlike previous reviews where the main focus was the interaction between associated bacteria and K. vulgare, this Review presents the latest scientific research from the perspective of the metabolic pathways associated with 2-KGA production by K. vulgare and the mechanism underlying the interaction between K. vulgare and the associated bacteria. In addition, the dehydrogenases that are responsible for 2-KGA production, the 2-KGA synthesis pathway, strategies for simplifying 2-KGA production via a one-step fermentation route, and, finally, future prospects and research goals in vitamin C production are also presented.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Meng Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Wenhu Chen
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Di Huang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| |
Collapse
|
3
|
Xu Y, Ji L, Xu S, Bilal M, Ehrenreich A, Deng Z, Cheng H. Membrane-bound sorbitol dehydrogenase is responsible for the unique oxidation of D-galactitol to L-xylo-3-hexulose and D-tagatose in Gluconobacter oxydans. Biochim Biophys Acta Gen Subj 2023; 1867:130289. [PMID: 36503080 DOI: 10.1016/j.bbagen.2022.130289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Gluconobacter oxydans, is used in biotechnology because of its ability to oxidize a wide variety of carbohydrates, alcohols, and polyols in a stereo- and regio-selective manner by membrane-bound dehydrogenases located in periplasmic space. These reactions obey the well-known Bertrand-Hudson's rule. In our previous study (BBA-General Subjects, 2021, 1865:129740), we discovered that Gluconobacter species, including G. oxydans and G. cerinus strain can regio-selectively oxidize the C-3 and C-5 hydroxyl groups of D-galactitol to rare sugars D-tagatose and L-xylo-3-hexulose, which represents an exception to Bertrand Hudson's rule. The enzyme catalyzing this reaction is located in periplasmic space or membrane-bound and is PQQ (pyrroloquinoline quinine) and Ca2+-dependent; we were encouraged to determine which type of enzyme(s) catalyze this unique reaction. METHODS Enzyme was identified by complementation of multi-deletion strain of Gluconobacter oxydans 621H with all putative membrane-bound dehydrogenase genes. RESULTS AND CONCLUSIONS In this study, we identified this gene encoding the membrane-bound PQQ-dependent dehydrogenase that catalyzes the unique galactitol oxidation reaction in its 3'-OH and 5'-OH. Complement experiments in multi-deletion G. oxydans BP.9 strains established that the enzyme mSLDH (encoded by GOX0855-0854, sldB-sldA) is responsible for galactitol's unique oxidation reaction. Additionally, we demonstrated that the small subunit SldB of mSLDH was membrane-bound and served as an anchor protein by fusing it to a red fluorescent protein (mRubby), and heterologously expressed in E. coli and the yeast Yarrowia lipolytica. The SldB subunit was required to maintain the holo-enzymatic activity that catalyzes the conversion of D-galactitol to L-xylo-3-hexulose and D-tagatose. The large subunit SldA encoded by GOX0854 was also characterized, and it was discovered that its 24 amino acids signal peptide is required for the dehydrogenation activity of the mSLDH protein. GENERAL SIGNIFICANCE In this study, the main membrane-bound polyol dehydrogenase mSLDH in G. oxydans 621H was proved to catalyze the unique galactitol oxidation, which represents an exception to the Bertrand Hudson's rule, and broadens its substrate ranges of mSLDH. Further deciphering the explicit enzymatic mechanism will prove this theory.
Collapse
Affiliation(s)
- Yirong Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liyun Ji
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland.
| | - Armin Ehrenreich
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann-Strasse, Freising, Germany.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
An efficient 2-keto-L-gulonic acid whole-cell biotransformation system built on the characterization of L-sorbose dehydrogenase. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Kataoka N, Naoki K, Ano Y, Matsushita K, Yakushi T. Development of efficient 5-ketogluconate production system by Gluconobacter japonicus. Appl Microbiol Biotechnol 2022; 106:7751-7761. [PMID: 36271931 DOI: 10.1007/s00253-022-12242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/08/2022] [Accepted: 10/12/2022] [Indexed: 11/02/2022]
Abstract
5-Ketogluconate (5KGA) is a precursor for synthesizing tartrate, a valuable compound used in several industries. In a previous study, Gluconobacter japonicus NBRC 3271 mutant strain D2, which lacks two membranous gluconate 2-dehydrogenases, was shown to produce 5KGA but not 2-ketogluconate from a mixture of glucose and gluconate. In this study, we aimed to develop an efficient 5KGA production system using G. japonicus D2 as the parental strain. D2 produced 5KGA from glucose in a jar fermentor culture; however, 5KGA levels were reduced during the late phase of cultivation. To increase the potential of D2 for 5KGA production, the cytoplasmic metabolism related to the utilization of 5KGA and gluconate was modified; the gno and gntK genes encoding 5KGA reductase and gluconokinase, respectively, were deleted from D2, generating D4. Improved 5KGA production was observed in D4 compared to that in D2, but a significant amount of gluconate remained at the end of cultivation, leading to an unsatisfied yield of 0.83 mol (mol glucose)-1. The conversion of gluconate to 5KGA is catalyzed by pyrroloquinoline quinone (PQQ)-dependent glycerol dehydrogenase (GLDH), which easily forms an apoenzyme by releasing PQQ and calcium ions. Thus, the effects of CaCl2 addition to the culture medium on 5KGA production by D4 were investigated. We demonstrated that 1 mM CaCl2 addition positively affected the maintenance of the PQQ-GLDH activity toward gluconate and consequently enhanced 5KGA production, and the yield reached 0.97 mol (mol glucose)-1. KEY POINTS: • An efficient 5KGA production system was developed with Gluconobacter japonicus. • Deleting the gno and gntK genes blocked the catabolism of 5KGA and gluconate. • The addition of 1 mM CaCl2 efficiently improved the conversion of glucose to 5KGA.
Collapse
Affiliation(s)
- Naoya Kataoka
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan. .,Department of Biological Science, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan. .,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan.
| | - Kotone Naoki
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Yoshitaka Ano
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Kazunobu Matsushita
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.,Department of Biological Science, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Toshiharu Yakushi
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.,Department of Biological Science, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
6
|
He Y, Xie Z, Zhang H, Liebl W, Toyama H, Chen F. Oxidative Fermentation of Acetic Acid Bacteria and Its Products. Front Microbiol 2022; 13:879246. [PMID: 35685922 PMCID: PMC9171043 DOI: 10.3389/fmicb.2022.879246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Acetic acid bacteria (AAB) are a group of Gram-negative, strictly aerobic bacteria, including 19 reported genera until 2021, which are widely found on the surface of flowers and fruits, or in traditionally fermented products. Many AAB strains have the great abilities to incompletely oxidize a large variety of carbohydrates, alcohols and related compounds to the corresponding products mainly including acetic acid, gluconic acid, gulonic acid, galactonic acid, sorbose, dihydroxyacetone and miglitol via the membrane-binding dehydrogenases, which is termed as AAB oxidative fermentation (AOF). Up to now, at least 86 AOF products have been reported in the literatures, but no any monograph or review of them has been published. In this review, at first, we briefly introduce the classification progress of AAB due to the rapid changes of AAB classification in recent years, then systematically describe the enzymes involved in AOF and classify the AOF products. Finally, we summarize the application of molecular biology technologies in AOF researches.
Collapse
Affiliation(s)
- Yating He
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhenzhen Xie
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huan Zhang
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wolfgang Liebl
- Department of Microbiology, Technical University of Munich, Freising, Germany
| | - Hirohide Toyama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Fusheng Chen
| |
Collapse
|
7
|
Uroz S, Picard L, Turpault MP. Recent progress in understanding the ecology and molecular genetics of soil mineral weathering bacteria. Trends Microbiol 2022; 30:882-897. [PMID: 35181182 DOI: 10.1016/j.tim.2022.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/31/2022]
Abstract
Mineral weathering bacteria play essential roles in nutrient cycling and plant nutrition. However, we are far from having a comprehensive view of the factors regulating their distribution and the molecular mechanisms involved. In this review, we highlight the extrinsic factors (i.e., nutrient availability, carbon source) and the intrinsic properties of minerals explaining the distribution and functioning of these functional communities. We also present and discuss the progress made in understanding the molecular mechanisms and genes that are used by bacteria during the mineral weathering process, or regulated during their interaction with minerals, that have been recently unraveled by omics approaches.
Collapse
Affiliation(s)
- Stephane Uroz
- Université de Lorraine, INRAE, UMR1136 'Interactions Arbres-Microorganismes', F-54280 Champenoux, France; INRAE, UR1138 'Biogéochimie des Ecosystèmes Forestiers', F-54280 Champenoux, France.
| | - Laura Picard
- Université de Lorraine, INRAE, UMR1136 'Interactions Arbres-Microorganismes', F-54280 Champenoux, France; INRAE, UR1138 'Biogéochimie des Ecosystèmes Forestiers', F-54280 Champenoux, France
| | | |
Collapse
|
8
|
Yang H, Chen T, Wang M, Zhou J, Liebl W, Barja F, Chen F. Molecular biology: Fantastic toolkits to improve knowledge and application of acetic acid bacteria. Biotechnol Adv 2022; 58:107911. [PMID: 35033586 DOI: 10.1016/j.biotechadv.2022.107911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/27/2021] [Accepted: 01/09/2022] [Indexed: 12/24/2022]
Abstract
Acetic acid bacteria (AAB) are a group of gram-negative, obligate aerobic bacteria within the Acetobacteraceae family of the alphaproteobacteria class, which are distributed in a wide variety of different natural sources that are rich in sugar and alcohols, as well as in several traditionally fermented foods. Their capabilities are not limited to the production of acetic acid and the brewing of vinegar, as their names suggest. They can also fix nitrogen and produce various kinds of aldehydes, ketones and other organic acids by incomplete oxidation (also referred to as oxidative fermentation) of the corresponding alcohols and/or sugars, as well as pigments and exopolysaccharides (EPS). In order to gain more insight into these organisms, molecular biology techniques have been extensively applied in almost all aspects of AAB research, including their identification and classification, acid resistance mechanisms, oxidative fermentation, EPS production, thermotolerance and so on. In this review, we mainly focus on the application of molecular biological technologies in the advancement of research into AAB while presenting the progress of the latest studies using these techniques.
Collapse
Affiliation(s)
- Haoran Yang
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tao Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science &Technology, Tianjin, China
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | | | - François Barja
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Sciences III, Geneva, Switzerland
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Nguyen TM, Naoki K, Kataoka N, Matsutani M, Ano Y, Adachi O, Matsushita K, Yakushi T. Characterization of a cryptic, pyrroloquinoline quinone-dependent dehydrogenase of Gluconobacter sp. strain CHM43. Biosci Biotechnol Biochem 2021; 85:998-1004. [PMID: 33686415 DOI: 10.1093/bbb/zbab005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/25/2020] [Indexed: 11/13/2022]
Abstract
We characterized the pyrroloquinoline quinone (PQQ)-dependent dehydrogenase 9 (PQQ-DH9) of Gluconobacter sp. strain CHM43, which is a homolog of PQQ-dependent glycerol dehydrogenase (GLDH). We used a plasmid construct to express PQQ-DH9. The expression host was a derivative strain of CHM43, which lacked the genes for GLDH and the membrane-bound alcohol dehydrogenase and consequently had minimal ability to oxidize primary and secondary alcohols. The membranes of the transformant exhibited considerable d-arabitol dehydrogenase activity, whereas the reference strain did not, even if it had PQQ-DH9-encoding genes in the chromosome and harbored the empty vector. This suggests that PQQ-DH9 is not expressed in the genome. The activities of the membranes containing PQQ-DH9 and GLDH suggested that similar to GLDH, PQQ-DH9 oxidized a wide variety of secondary alcohols but had higher Michaelis constants than GLDH with regard to linear substrates such as glycerol. Cyclic substrates such as cis-1,2-cyclohexanediol were readily oxidized by PQQ-DH9.
Collapse
Affiliation(s)
- Thuy Minh Nguyen
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Kotone Naoki
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Naoya Kataoka
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.,Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Minenosuke Matsutani
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Yoshitaka Ano
- Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Osao Adachi
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Kazunobu Matsushita
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.,Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Toshiharu Yakushi
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.,Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
10
|
Breeding of Gluconobacter oxydans with high PQQ-dependent D-sorbitol dehydrogenase for improvement of 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose production. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Current challenges facing one-step production of l-ascorbic acid. Biotechnol Adv 2018; 36:1882-1899. [DOI: 10.1016/j.biotechadv.2018.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
|
12
|
Pyrroloquinoline quinone-dependent dehydrogenases of acetic acid bacteria. Appl Microbiol Biotechnol 2018; 102:9531-9540. [PMID: 30218379 DOI: 10.1007/s00253-018-9360-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
Pyrroloquinoline quinone (PQQ)-dependent dehydrogenases (quinoproteins) of acetic acid bacteria (AAB), such as the membrane-bound alcohol dehydrogenase (ADH) and the membrane-bound glucose dehydrogenase, contain PQQ as the prosthetic group. Most of them are located on the periplasmic surface of the cytoplasmic membrane, and function as primary dehydrogenases in cognate substance-oxidizing respiratory chains. Here, we have provided an overview on the function and molecular architecture of AAB quinoproteins, which can be categorized into six groups according to the primary amino acid sequences. Based on the genomic data, we discuss the types of quinoproteins found in AAB genome and how they are distributed. Our analyses indicate that a significant number of uncharacterized orphan quinoproteins are present in AAB. By reviewing recent experimental developments, we discuss how to characterize the as-yet-unknown enzymes. Moreover, our bioinformatics studies also provide insights on how quinoproteins have developed into intricate enzymes. ADH comprises at least two subunits: the quinoprotein dehydrogenase subunit encoded by adhA and the cytochrome subunit encoded by adhB, and the genes are located in a polycistronic transcriptional unit. Findings on stand-alone derivatives of adhA encourage us to speculate on a possible route for ADH development in the evolutional history of AAB. A combination of bioinformatics studies on big genome sequencing data and wet studies assisted with genetic engineering would unravel biochemical functions and physiological role of uncharacterized quinoproteins in AAB, or even in unculturable metagenome.
Collapse
|
13
|
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018; 35:1547-1549. [PMID: 29722887 DOI: 10.1007/0-387-30745-1_9] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.
Collapse
Affiliation(s)
- Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
- Department of Biology, Temple University, Philadelphia, PA
- Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Glen Stecher
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| | - Michael Li
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| | - Christina Knyaz
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| | - Koichiro Tamura
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Hachioji, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
14
|
Aldopentoses as new substrates for the membrane-bound, pyrroloquinoline quinone-dependent glycerol (polyol) dehydrogenase of Gluconobacter sp. Appl Microbiol Biotechnol 2018; 102:3159-3171. [PMID: 29468297 DOI: 10.1007/s00253-018-8848-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/22/2018] [Accepted: 02/08/2018] [Indexed: 01/14/2023]
Abstract
Membrane-bound, pyrroloquinoline quinone (PQQ)-dependent glycerol dehydrogenase (GLDH, or polyol dehydrogenase) of Gluconobacter sp. oxidizes various secondary alcohols to produce the corresponding ketones, such as oxidation of D-sorbitol to L-sorbose in vitamin C production. Substrate specificity of GLDH is considered limited to secondary alcohols in the D-erythro configuration at the next to the last carbon. Here, we suggest that L-ribose, D- and L-lyxoses, and L-tagatose are also substrates of GLDH, but these sugars do not meet the substrate specificity rule of GLDH. The oxygen consumption activity of wild-type Gluconobacter frateurii cell membranes depends on several kinds of sugars as compared with that of the membranes of a GLDH-negative variant. Biotransformation of those sugars with the membranes was examined to determine the reaction products. A time course measuring the pH in the reaction mixture and the increase or decrease in substrates and products on TLC suggested that oxidation products of L-lyxose and L-tagatose were ketones with unknown structures, but those of L-ribose and D-lyxose were acids. The oxidation product of L-ribose was purified and revealed to be L-ribonate by HRMS and NMR analysis. Biotransformation of L-ribose with the membranes and also with the whole cells produced L-ribonate in nearly stoichiometric amounts, indicating that the specific oxidation site in L-ribose is recognized by GLDH. Since purified GLDH produced L-ribonate without any intermediate-like compounds, we propose here a reaction model where the first carbon in the pyranose form of L-ribose is oxidized by GLDH to L-ribonolactone, which is further hydrolyzed spontaneously to produce L-ribonate.
Collapse
|
15
|
Saichana N, Matsushita K, Adachi O, Frébort I, Frebortova J. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications. Biotechnol Adv 2015; 33:1260-71. [DOI: 10.1016/j.biotechadv.2014.12.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
|
16
|
Efficient Production of 2,5-Diketo-d-Gluconate via Heterologous Expression of 2-Ketogluconate Dehydrogenase in Gluconobacter japonicus. Appl Environ Microbiol 2015; 81:3552-60. [PMID: 25769838 DOI: 10.1128/aem.04176-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/10/2015] [Indexed: 01/21/2023] Open
Abstract
2,5-Diketo-d-gluconate (2,5DKG) is a compound that can be the intermediate for d-tartrate and also vitamin C production. Although Gluconobacter oxydans NBRC3293 produces 2,5DKG from d-glucose via d-gluconate and 2-keto-d-gluconate (2KG), with accumulation of the product in the culture medium, the efficiency of 2,5DKG production is unsatisfactory because there is a large amount of residual d-gluconate at the end of the biotransformation process. Oxidation of 2KG to 2,5DKG is catalyzed by a membrane-bound flavoprotein-cytochrome c complex: 2-keto-gluconate dehydrogenase (2KGDH). Here, we studied the kgdSLC genes encoding 2KGDH in G. oxydans NBRC3293 to improve 2,5DKG production by Gluconobacter spp. The kgdS, kgdL, and kgdC genes correspond to the small, large, and cytochrome subunits of 2KGDH, respectively. The kgdSLC genes were cloned into a broad-host-range vector carrying a DNA fragment of the putative promoter region of the membrane-bound alcohol dehydrogenase gene of G. oxydans for expression in Gluconobacter spp. According to our results, 2KGDH that was purified from the recombinant Gluconobacter cells showed characteristics nearly the same as those reported previously. We also expressed the kgdSLC genes in a mutant strain of Gluconobacter japonicus NBRC3271 (formerly Gluconobacter dioxyacetonicus IFO3271) engineered to produce 2KG efficiently from a mixture of d-glucose and d-gluconate. This mutant strain consumed almost all of the starting materials (d-glucose and d-gluconate) to produce 2,5DKG quantitatively as a seemingly unique metabolite. To our knowledge, this is the first report of a Gluconobacter strain that produces 2,5DKG efficiently and homogeneously.
Collapse
|
17
|
Complete Genome Sequence of the Industrial Strain Gluconobacter oxydans H24. GENOME ANNOUNCEMENTS 2013; 1:genomeA00003-13. [PMID: 23472221 PMCID: PMC3587919 DOI: 10.1128/genomea.00003-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 11/20/2022]
Abstract
Gluconobacter oxydans is characterized by its ability to incompletely oxidize carbohydrates and alcohols. The high yields of its oxidation products and complete secretion into the medium make it important for industrial use. We report the finished genome sequence of Gluconobacter oxydans H24, an industrial strain with high l-sorbose productivity.
Collapse
|
18
|
Combined fluxomics and transcriptomics analysis of glucose catabolism via a partially cyclic pentose phosphate pathway in Gluconobacter oxydans 621H. Appl Environ Microbiol 2013; 79:2336-48. [PMID: 23377928 DOI: 10.1128/aem.03414-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, the distribution and regulation of periplasmic and cytoplasmic carbon fluxes in Gluconobacter oxydans 621H with glucose were studied by (13)C-based metabolic flux analysis ((13)C-MFA) in combination with transcriptomics and enzyme assays. For (13)C-MFA, cells were cultivated with specifically (13)C-labeled glucose, and intracellular metabolites were analyzed for their labeling pattern by liquid chromatography-mass spectrometry (LC-MS). In growth phase I, 90% of the glucose was oxidized periplasmically to gluconate and partially further oxidized to 2-ketogluconate. Of the glucose taken up by the cells, 9% was phosphorylated to glucose 6-phosphate, whereas 91% was oxidized by cytoplasmic glucose dehydrogenase to gluconate. Additional gluconate was taken up into the cells by transport. Of the cytoplasmic gluconate, 70% was oxidized to 5-ketogluconate and 30% was phosphorylated to 6-phosphogluconate. In growth phase II, 87% of gluconate was oxidized to 2-ketogluconate in the periplasm and 13% was taken up by the cells and almost completely converted to 6-phosphogluconate. Since G. oxydans lacks phosphofructokinase, glucose 6-phosphate can be metabolized only via the oxidative pentose phosphate pathway (PPP) or the Entner-Doudoroff pathway (EDP). (13)C-MFA showed that 6-phosphogluconate is catabolized primarily via the oxidative PPP in both phases I and II (62% and 93%) and demonstrated a cyclic carbon flux through the oxidative PPP. The transcriptome comparison revealed an increased expression of PPP genes in growth phase II, which was supported by enzyme activity measurements and correlated with the increased PPP flux in phase II. Moreover, genes possibly related to a general stress response displayed increased expression in growth phase II.
Collapse
|
19
|
Richhardt J, Bringer S, Bott M. Role of the pentose phosphate pathway and the Entner-Doudoroff pathway in glucose metabolism of Gluconobacter oxydans 621H. Appl Microbiol Biotechnol 2013; 97:4315-23. [PMID: 23354449 DOI: 10.1007/s00253-013-4707-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 11/27/2022]
Abstract
Glucose catabolism by the obligatory aerobic acetic acid bacterium Gluconobacter oxydans 621H proceeds in two phases comprising rapid periplasmic oxidation of glucose to gluconate (phase I) and oxidation of gluconate to 2-ketogluconate or 5-ketogluconate (phase II). Only a small amount of glucose and part of the gluconate is taken up into the cells. To determine the roles of the pentose phosphate pathway (PPP) and the Entner-Doudoroff pathway (EDP) for intracellular glucose and gluconate catabolism, mutants defective in either the PPP (Δgnd, Δgnd zwf*) or the EDP (Δedd-eda) were characterized under defined conditions of pH 6 and 15 % dissolved oxygen. In the presence of yeast extract, neither of the two pathways was essential for growth with glucose. However, the PPP mutants showed a reduced growth rate in phase I and completely lacked growth in phase II. In contrast, the EDP mutant showed the same growth behavior as the reference strain. These results demonstrate that the PPP is of major importance for cytoplasmic glucose and gluconate catabolism, whereas the EDP is dispensable. Reasons for this difference are discussed.
Collapse
Affiliation(s)
- Janine Richhardt
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich 52425, Germany
| | | | | |
Collapse
|
20
|
Industrial Production of l-Ascorbic Acid (Vitamin C) and d-Isoascorbic Acid. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 143:143-88. [DOI: 10.1007/10_2013_243] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Characterization of genes involved in D-sorbitol oxidation in thermotolerant Gluconobacter frateurii. Biosci Biotechnol Biochem 2012; 76:1497-505. [PMID: 22878210 DOI: 10.1271/bbb.120227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Further upstream of sldSLC, genes for FAD-dependent D-sorbitol dehydrogenase in Gluconobacter frateurii, three additional genes (sldR, xdhA, and perA) are found: for a transcriptional regulator, NAD(P)-dependent xylitol dehydrogenase, and a transporter protein, a member of major facilitator superfamily, respectively. xdhA and perA but not sldR were found to be in the same transcriptional unit. Disruption of sldR resulted in a dramatic decrease in sldSLC promoter activity, indicating that it is an activator for sldSLC expression. The recombinant protein of XdhA expressed in Escherichia coli showed NAD-dependent dehydrogenase activities with xylitol and D-sorbitol, but a mutant strain defective in this gene showed similar activities with both substrates as compared to the wild-type strain. Nonetheless, the growth of the xdhA mutant strain on D-sorbitol and xylitol was retarded, and so was that of a mutant strain defective in perA. These results indicate that xdhA and perA are involved in assimilation of D-sorbitol and xylitol.
Collapse
|
22
|
Hattori H, Yakushi T, Matsutani M, Moonmangmee D, Toyama H, Adachi O, Matsushita K. High-temperature sorbose fermentation with thermotolerant Gluconobacter frateurii CHM43 and its mutant strain adapted to higher temperature. Appl Microbiol Biotechnol 2012; 95:1531-40. [PMID: 22434571 DOI: 10.1007/s00253-012-4005-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/29/2012] [Accepted: 03/04/2012] [Indexed: 12/31/2022]
Abstract
We succeeded in obtaining a strain adapted to higher temperature from a thermotolerant strain, Gluconobacter frateurii CHM43, for sorbose fermentation. The adapted strain showed higher growth and L-sorbose production than original CHM43 strain at higher temperature around 38.5-40 °C. It was also shown to be useful even with the fermentation without temperature control. To understand the sorbose fermentation ability of the adapted strain at higher temperature, D-sorbitol-oxidizing respiratory chain was compared with the CHM43 strain and the adapted strain. We found that the activity of pyrroloquinoline quinone (PQQ)-dependent glycerol dehydrogenase (GLDH), which is a primary dehydrogenase of the respiratory chain and responsible for L-sorbose production, was decreased when the temperature increased, but the decreased activity of GLDH was recovered by the addition of PQQ. Since the adapted strain was found to produce more PQQ than the CHM43 strain, it was suggested that the adapted strain keeps GLDH as holoenzyme with the increased PQQ production, and thus produces more L-sorbose and grows better under higher temperature.
Collapse
Affiliation(s)
- Hiromi Hattori
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Genome sequence of Gluconacetobacter sp. strain SXCC-1, isolated from Chinese vinegar fermentation starter. J Bacteriol 2011; 193:3395-6. [PMID: 21551293 DOI: 10.1128/jb.05147-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gluconacetobacter strains are prominent bacteria during traditional vinegar fermentation. Here, we report a draft genome sequence of Gluconacetobacter sp. strain SXCC-1. This strain was isolated from a fermentation starter (Daqu) used for commercial production of Shanxi vinegar, the best-known vinegar of China.
Collapse
|
24
|
Voss J, Ehrenreich A, Liebl W. Characterization and inactivation of the membrane-bound polyol dehydrogenase in Gluconobacter oxydans DSM 7145 reveals a role in meso-erythritol oxidation. MICROBIOLOGY-SGM 2010; 156:1890-1899. [PMID: 20223802 DOI: 10.1099/mic.0.037598-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The growth of Gluconobacter oxydans DSM 7145 on meso-erythritol is characterized by two stages: in the first stage, meso-erythritol is oxidized almost stoichiometrically to L-erythrulose according to the Bertrand-Hudson rule. The second phase is distinguished from the first phase by a global metabolic change from membrane-bound meso-erythritol oxidation to L-erythrulose assimilation with concomitant accumulation of acetic acid. The membrane-associated erythritol-oxidizing enzyme was found to be encoded by a gene homologous to sldA known from other species of acetic acid bacteria. Disruption of this gene in the genome of G. oxydans DSM 7145 revealed that the membrane-bound polyol dehydrogenase not only oxidizes meso-erythritol but also has a broader substrate spectrum which includes C3-C6 polyols and D-gluconate and supports growth on these substrates. Cultivation of G. oxydans DSM 7145 on different substrates indicated that expression of the polyol dehydrogenase was not regulated, implying that the production of biomass of G. oxydans to be used as whole-cell biocatalysts in the biotechnological conversion of meso-erythritol to L-erythrulose, which is used as a tanning agent in the cosmetics industry, can be conveniently carried out with glucose as the growth substrate.
Collapse
Affiliation(s)
- Jörn Voss
- Institute of Microbiology and Genetics, Georg-August Universität, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Armin Ehrenreich
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, D-85354 Freising-Weihenstephan, Germany
| | - Wolfgang Liebl
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, D-85354 Freising-Weihenstephan, Germany
| |
Collapse
|
25
|
Screening of thermotolerant Gluconobacter strains for production of 5-keto-D-gluconic acid and disruption of flavin adenine dinucleotide-containing D-gluconate dehydrogenase. Appl Environ Microbiol 2009; 75:4240-7. [PMID: 19411430 DOI: 10.1128/aem.00640-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated thermotolerant Gluconobacter strains that are able to produce 5-keto-d-gluconic acid (5KGA) at 37 degrees C, a temperature at which regular mesophilic 5KGA-producing strains showed much less growth and 5KGA production. The thermotolerant strains produced 2KGA as the major product at both 30 and 37 degrees C. The amount of ketogluconates produced at 37 degrees C was slightly less than the amount produced at 30 degrees C. To improve the yield of 5KGA in these strains, we disrupted flavin adenine dinucleotide-gluconate dehydrogenase (FAD-GADH), which is responsible for 2KGA production. Genes for FAD-GADH were cloned by using inverse PCR and an in vitro cloning strategy. The sequences obtained for three thermotolerant strains were identical and showed high levels of identity to the FAD-GADH sequence reported for the genome of Gluconobacter oxydans 621 H. A kanamycin resistance gene cassette was used to disrupt the FAD-GADH genes in the thermotolerant strains. The mutant strains produced 5KGA exclusively, and the final yields were over 90% at 30 degrees C and 50% at 37 degrees C. We found that the activity of pyrroloquinoline quinone (PQQ)-dependent glycerol dehydrogenase, which is responsible for 5KGA production, increased in response to addition of PQQ and CaCl(2) in vitro when cells were grown at 37 degrees C. Addition of 5 mM CaCl(2) to the culture medium of the mutant strains increased 5KGA production to the point where over 90% of the initial substrate was converted. The thermotolerant Gluconobacter strains that we isolated in this study provide a promising new option for industrial 5KGA production.
Collapse
|
26
|
A pyrroloquinoline quinine-dependent membrane-bound d-sorbitol dehydrogenase from Gluconobacter oxydans exhibits an ordered Bi Bi reaction mechanism. Arch Biochem Biophys 2008; 477:206-10. [PMID: 18407824 DOI: 10.1016/j.abb.2008.03.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/14/2008] [Accepted: 03/16/2008] [Indexed: 11/21/2022]
Abstract
A membrane-bound pyrroloquinoline quinine (PQQ)-dependent D-sorbitol dehydrogenase (mSLDH) in Gluconobacter oxydans participates in the oxidation of D-sorbitol to L-sorbose by transferring electrons to ubiquinone which links to the respiratory chain. To elucidate the kinetic mechanism, the enzyme purified was subjected to two-substrate steady-state kinetic analysis, product and substrate inhibition studies. These kinetic data indicate that the catalytic reaction follows an ordered Bi Bi mechanism, where the substrates bind to the enzyme in a defined order (first ubiquinone followed by D-sorbitol), while products are released in sequence (first L-sorbose followed by ubiquinol). From these findings, we proposed that the native mSLDH bears two different substrate-binding sites, one for ubiquinone and the other for D-sorbitol, in addition to PQQ-binding and Mg(2+)-binding sites in the catalytic center.
Collapse
|
27
|
Merfort M, Herrmann U, Ha SW, Elfari M, Bringer-Meyer S, Görisch H, Sahm H. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation. Biotechnol J 2006; 1:556-63. [PMID: 16892291 DOI: 10.1002/biot.200600032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gluconobacter oxydans DSM 2343 (ATCC 621H)catalyzes the oxidation of glucose to gluconic acid and subsequently to 5-keto-D-gluconic acid (5-KGA), a precursor of the industrially important L-(+)-tartaric acid. To further increase 5-KGA production in G. oxydans, the mutant strain MF1 was used. In this strain the membrane-bound gluconate-2-dehydrogenase activity, responsible for formation of the undesired by-product 2-keto-D-gluconic acid, is disrupted. Therefore, high amounts of 5-KGA accumulate in the culture medium. G. oxydans MF1 was equipped with plasmids allowing the overexpression of the membrane-bound enzymes involved in 5-KGA formation. Overexpression was confirmed on the transcript and enzymatic level. Furthermore, the resulting strains overproducing the membrane-bound glucose dehydrogenase showed an increased gluconic acid formation, whereas the overproduction of gluconate-5-dehydrogenase resulted in an increase in 5-KGA of up to 230 mM. Therefore, these newly developed recombinant strains provide a basis for further improving the biotransformation process for 5-KGA production.
Collapse
Affiliation(s)
- Marcel Merfort
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Salusjärvi T, Hvorslev N, Miasnikov AN. Characterisation of a secondary alcohol dehydrogenase from Xanthomonas campestris DSM 3586. Appl Microbiol Biotechnol 2004; 66:664-7. [PMID: 15565334 DOI: 10.1007/s00253-004-1775-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 09/14/2004] [Accepted: 09/17/2004] [Indexed: 11/29/2022]
Abstract
The chromosomal locus NP_636946 of Xanthomonas campestris DSM 3586 (ATCC 33913) which was earlier presumed to encode a quinoprotein glucose dehydrogenase has been cloned, expressed in Escherichia coli and the recombinant enzyme has been characterised. It was found to have no glucose dehydrogenase activity but to be active on many different polyols and diols, aliphatic alcohols, certain aldonic acids and amino-sugars. The product of D: -gluconic acid oxidation was 5-keto-D: -gluconic acid. The enzyme differs from polyol/gluconate dehydrogenases found in Gluconobacter by its single-chain architecture, different substrate specificity and much higher (20- to 30-fold) expression level in E.coli.
Collapse
|
29
|
Yamada M, Elias MD, Matsushita K, Migita CT, Adachi O. Escherichia coli PQQ-containing quinoprotein glucose dehydrogenase: its structure comparison with other quinoproteins. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1647:185-92. [PMID: 12686131 DOI: 10.1016/s1570-9639(03)00100-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membrane-bound glucose dehydrogenase (mGDH) in Escherichia coli is one of the pivotal pyrroloquinoline quinone (PQQ)-containing quinoproteins coupled with the respiratory chain in the periplasmic oxidation of alcohols and sugars in Gram-negative bacteria. We compared mGDH with other PQQ-dependent quinoproteins in molecular structure and attempted to trace their evolutionary process. We also review the role of residues crucial for the catalytic reaction or for interacting with PQQ and discuss the functions of two distinct domains, radical formation in PQQ, and the presumed existence of bound quinone in mGDH.
Collapse
Affiliation(s)
- Mamoru Yamada
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.
| | | | | | | | | |
Collapse
|
30
|
Hoshino T, Sugisawa T, Shinjoh M, Tomiyama N, Miyazaki T. Membrane-bound D-sorbitol dehydrogenase of Gluconobacter suboxydans IFO 3255--enzymatic and genetic characterization. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1647:278-88. [PMID: 12686146 DOI: 10.1016/s1570-9639(03)00071-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Gluconobacter strains effectively produce L-sorbose from D-sorbitol because of strong activity of the D-sorbitol dehydrogenase (SLDH). L-sorbose is one of the important intermediates in the industrial vitamin C production process. Two kinds of membrane-bound SLDHs, which consist of three subunits, were reportedly found in Gluconobacter strains [Agric. Biol. Chem. 46 (1982) 135,FEMS Microbiol. Lett. 125 (1995) 45]. We purified a one-subunit-type SLDH (80 kDa) from the membrane fraction of Gluconobacter suboxydans IFO 3255 solubilized with Triton X-100 in the presence of D-sorbitol, but the cofactor could not be identified from the purified enzyme. The SLDH was active on mannitol, glycerol and other sugar alcohols as well as on D-sorbitol to produce respective keto-aldoses. Then, the SLDH gene (sldA) was cloned and sequenced. It encodes the polypeptide of 740 residues, which contains a signal sequence of 24 residues. SLDH had 35-37% identity to those of membrane-bound quinoprotein glucose dehydrogenases (GDHs) from Escherichia coli, Gluconobacter oxydans and Acinetobacter calcoaceticus except the N-terminal hydrophobic region of GDH. Additionally, the sldB gene located just upstream of sldA was found to encode the polypeptide consisting of 126 very hydrophobic residues that is similar to the one-sixth N-terminal region of the GDH. Development of the SLDH activity in E. coli required co-expression of the sldA and sldB genes and the presence of PQQ. The sldA gene disruptant showed undetectable oxidation activities on D-sorbitol in growing culture, and resting-cell reaction (pH 4.5 and 7); in addition, they showed undetectable activities on D-mannitol and glycerol. The disruption of the sldB gene by a gene cassette with a downward promoter to express the sldA gene resulted in formation of a larger size of the SLDH protein and in undetectable oxidation of the polyols. In conclusion, the SLDH of the strain 3255 functions as the main polyol dehydrogenase in vivo. The sldB polypeptide possibly has a chaperone-like function to process the SLDH polypeptide into a mature and active form.
Collapse
Affiliation(s)
- Tatsuo Hoshino
- Applied Microbiology, Nippon Roche Research Center, 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan.
| | | | | | | | | |
Collapse
|
31
|
Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, Miyazaki T, Sugisawa T, Hoshino T, Adachi O. 5-keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in gluconobacter species. Appl Environ Microbiol 2003; 69:1959-66. [PMID: 12676670 PMCID: PMC154820 DOI: 10.1128/aem.69.4.1959-1966.2003] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acetic acid bacteria, especially Gluconobacter species, have been known to catalyze the extensive oxidation of sugar alcohols (polyols) such as D-mannitol, glycerol, D-sorbitol, and so on. Gluconobacter species also oxidize sugars and sugar acids and uniquely accumulate two different keto-D-gluconates, 2-keto-D-gluconate and 5-keto-D-gluconate, in the culture medium by the oxidation of D-gluconate. However, there are still many controversies regarding their enzyme systems, especially on D-sorbitol and also D-gluconate oxidations. Recently, pyrroloquinoline quinone-dependent quinoprotein D-arabitol dehydrogenase and D-sorbitol dehydrogenase have been purified from G. suboxydans, both of which have similar and broad substrate specificity towards several different polyols. In this study, both quinoproteins were shown to be identical based on their immuno-cross-reactivity and also on gene disruption and were suggested to be the same as the previously isolated glycerol dehydrogenase (EC 1.1.99.22). Thus, glycerol dehydrogenase is the major polyol dehydrogenase involved in the oxidation of almost all sugar alcohols in Gluconobacter sp. In addition, the so-called quinoprotein glycerol dehydrogenase was also uniquely shown to oxidize D-gluconate, which was completely different from flavoprotein D-gluconate dehydrogenase (EC 1.1.99.3), which is involved in the production of 2-keto-D-gluconate. The gene disruption experiment and the reconstitution system of the purified enzyme in this study clearly showed that the production of 5-keto-D-gluconate in G. suboxydans is solely dependent on the quinoprotein glycerol dehydrogenase.
Collapse
Affiliation(s)
- Kazunobu Matsushita
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Shinjoh M, Tomiyama N, Miyazaki T, Hoshino T. Main polyol dehydrogenase of Gluconobacter suboxydans IFO 3255, membrane-bound D-sorbitol dehydrogenase, that needs product of upstream gene, sldB, for activity. Biosci Biotechnol Biochem 2002; 66:2314-22. [PMID: 12506966 DOI: 10.1271/bbb.66.2314] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The D-sorbitol dehydrogenase gene, sldA, and an upstream gene, sldB, encoding a hydrophobic polypeptide, SldB, of Gluconobacter suboxydans IFO 3255 were disrupted in a check of their biological functions. The bacterial cells with the sldA gene disrupted did not produce L-sorbose by oxidation of D-sorbitol in resting-cell reactions at pHs 4.5 and 7.0, indicating that the dehydrogenase was the main D-sorbitol-oxidizing enzyme in this bacterium. The cells did not produce D-fructose from D-mannitol or dihydroxyacetone from glycerol. The disruption of the sldB gene resulted in undetectable oxidation of D-sorbitol, D-mannitol, or glycerol, although the cells produced the dehydrogenase. The cells with the sldB gene disrupted produced more of what might be signal-unprocessed SldA than the wild-type cells did. SldB may be a chaperone-like component that assists signal processing and folding of the SldA polypeptide to form active D-sorbitol dehydrogenase.
Collapse
Affiliation(s)
- Masako Shinjoh
- Department of Applied Microbiology, Nippon Roche Research Center, 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan.
| | | | | | | |
Collapse
|