1
|
Sadighara P, Mahdavi V, Tahmasebi R, Saatloo NV. Cell proliferation assay for determination of estrogenic components in food: a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:621-627. [PMID: 35934880 DOI: 10.1515/reveh-2022-0035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Due to the widespread use and environmental pollution of estrogenic chemicals, the need for screening tests to detect these compounds is felt more than ever. These compounds lead to cell proliferation. Therefore, studies used cell proliferation to evaluate estrogenic compounds was studied in this systematic review. This systematic review was performed with the keywords; DNA proliferation, cell proliferation, estrogenic component, estrogen, food, bioassay, screening, and detection. After initial screening and full text quality assessment, 16 manuscripts were selected and data were extracted. Four cell lines, MCF-7, MDA-MB-231, Ishikawa, and T47D cells were used in the studies. MCF-7 was more sensitive to estrogenic compounds than other lines. Most of the samples studied were plant compounds and mycotoxins and substances that migrate from packaging to food. This screening test is valid and has similar results as others.
Collapse
Affiliation(s)
- Parisa Sadighara
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Rahele Tahmasebi
- Research and Department of Chromatography, Iranian Academic Center for Education, Culture and Research (ACECR), Urmia, Iran
| | - Naiema Vakili Saatloo
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
2
|
Tomei Torres FA, Masten SJ. Endocrine-disrupting substances: I. Relative risks of PFAS in drinking water. JOURNAL OF WATER AND HEALTH 2023; 21:451-462. [PMID: 37119147 DOI: 10.2166/wh.2023.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Concentrations of per and polyfluorinated alkyl substances (PFAS) in drinking water are significantly lower than in vivo levels of the native target hormone. These concentrations are orders of magnitude lower than the hormone in question, particularly when corrected for transactivation. A pregnant woman can excrete about 7,000 μg/day of total estrogens. A low-dose oral contraceptive pill contains 20 μg estradiol. Soy-based baby formula contains phytoestrogens equivalent to a low-dose oral contraceptive pill. A woman on a low-dose oral hormone replacement therapy consumes about 0.5-2 mg/day of one or more estrogens. The levels of endocrine-disrupting substances (EDSs) exposure by oral, respiratory, or dermal routes have the potential to make removing PFAS from drinking water due to its estrogenic activity divert valuable resources. These levels become even less of a threat when their estrogenic potencies are compared with those of the target hormones present as contaminants in water and even more so when compared with levels commonly present in human tissues. The fact that PFAS constitute a tiny fraction compared to exposure to phytoestrogens makes the effort even more insignificant. If PFAS are to be removed from drinking water, it is not due to their estrogenic activity.
Collapse
Affiliation(s)
- Francisco Alberto Tomei Torres
- Ibero-American Society of Environmental Health (SIBSA), Zabala 3555, Ciudad Autónoma de Buenos Aires (CABA), Rep. Argentina, CP 1427 E-mail:
| | - Susan J Masten
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
3
|
Akkam Y, Omari D, Alhmoud H, Alajmi M, Akkam N, Aljarrah I. Assessment of Xenoestrogens in Jordanian Water System: Activity and Identification. TOXICS 2023; 11:63. [PMID: 36668789 PMCID: PMC9866086 DOI: 10.3390/toxics11010063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Sex hormone disruptors (xenoestrogens) are a global concern due to their potential toxicity. However, to date, there has been no study to investigate the presence of xenoestrogen pollutants in the Jordanian water system. Samples in triplicates were collected from six locations in Jordan, including dams, surface water, tap or faucet water, and filtered water (drinking water-local company). Xenoestrogens were then extracted and evaluated with a yeast estrogen screen utilizing Saccharomyces cerevisiae. Later, possible pollutants were mined using ultrahigh-performance liquid chromatography (UPLC) coupled with a Bruker impact II Q-TOF-MS. Possible hits were identified using MetaboScape software (4000 compounds), which includes pesticide, pharmaceutical pollutant, veterinary drug, and toxic compound databases and a special library of 75 possible xenoestrogens. The presence of xenoestrogens in vegetable samples collected from two different locations was also investigated. The total estrogen equivalents according to the YES system were 2.9 ± 1.2, 9.5 ± 5, 2.5 ± 1.5, 1.4 ± 0.9 ng/L for King Talal Dam, As-Samra Wastewater Treatment Plant, King Abdullah Canal, and tap water, respectively. In Almujeb Dam and drinking water, the estrogenic activity was below the detection limit. Numbers of identified xenoestrogens were: As-Samra Wastewater Treatment Plant 27 pollutants, King Talal Dam 20 pollutants, Almujeb Dam 10 pollutants, King Abdullah Canal 16 pollutants, Irbid tap water 32 pollutants, Amman tap water 30 pollutants, drinking water 3 pollutants, and vegetables 7 pollutants. However, a large number of compounds remained unknown. Xenoestrogen pollutants were detected in all tested samples, but the total estrogenic capacities were within the acceptable range. The major source of xenoestrogen pollutants was agricultural resources. Risk evaluations for low xenoestrogen activity should be taken into account, and thorough pesticide monitoring systems and regular inspections should also be established.
Collapse
Affiliation(s)
- Yazan Akkam
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Derar Omari
- Department of Pharmaceutical Technology and Pharmaceutics, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Hassan Alhmoud
- Department of Pharmaceutical Technology and Pharmaceutics, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
- Faculty of Pharmacy, Jerash University, Irbid 26110, Jordan
| | - Mohammad Alajmi
- Department of Law and Science Department, Kuwait International Law School, Doha 93151, Kuwait
| | - Nosaibah Akkam
- Department of Anatomy and Cell Biology, Faculty of Medicine, Universität des Saarlandes, 66424 Hamburg, Germany
| | - Islam Aljarrah
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
4
|
Tan J, Liu L, Li F, Chen Z, Chen GY, Fang F, Guo J, He M, Zhou X. Screening of Endocrine Disrupting Potential of Surface Waters via an Affinity-Based Biosensor in a Rural Community in the Yellow River Basin, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14350-14360. [PMID: 36129370 DOI: 10.1021/acs.est.2c01323] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Overcoming the limitations of traditional analytical methods and developing technologies to continuously monitor environments and produce a comprehensive picture of potential endocrine-disrupting chemicals (EDCs) has been an ongoing challenge. Herein, we developed a portable nuclear receptor (NR)-based biosensor within 90 min to perform highly sensitive analyses of a broad range of EDCs in environmental water samples. Based on the specific binding of the fluorescence-labeled NRs with their ligands, the receptors were attached to the EDC-functionalized fiber surface by competing with EDCs in the samples. The biosensor emitted fluorescence due to the evanescent wave excitation, thereby resulting in a turn-off sensing mode. The biosensor showed a detection limit of 5 ng/L E2-binding activity equivalent (E2-BAE) and 93 ng/L T3-BAE. As a case study, the biosensor was used to map the estrogenic binding activities of surface waters obtained from a rural community in the Yellow River basin in China. When the results obtained were compared with those from the traditional yeast two-hybrid bioassay, a high correlation was observed. It is anticipated that the good universality and versatility exhibited by this biosensor for various EDCs, which is achieved by using different NRs, will significantly promote the continuous assessment of global EDCs.
Collapse
Affiliation(s)
- Jisui Tan
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lanhua Liu
- School of Ecology and Environmental Science, Zhengzhou University, Zhengzhou 450001, China
| | - Fangxu Li
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhongli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, China
| | - George Y Chen
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, China
| | - Jinsong Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, China
| | - Miao He
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
- National Engineering Research Center of Advanced Technology and Equipment for Water Environment Pollution Monitoring, Changsha 410205, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
- National Engineering Research Center of Advanced Technology and Equipment for Water Environment Pollution Monitoring, Changsha 410205, China
| |
Collapse
|
5
|
Sugiyama KI, Kinoshita M, Grúz P, Kasamatsu T, Honma M. Bisphenol-A reduces DNA methylation after metabolic activation. GENES AND ENVIRONMENT : THE OFFICIAL JOURNAL OF THE JAPANESE ENVIRONMENTAL MUTAGEN SOCIETY 2022; 44:20. [PMID: 35879744 PMCID: PMC9316663 DOI: 10.1186/s41021-022-00249-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Abstract
Bisphenol-A (BPA) is an important environmental contaminant with adverse health effects suspected to be mediated through epigenetic mechanisms. We had reported that the FLO1-dependent flocculation of transgenic yeast expressing human DNA methyltransferase (DNMT yeast) is a useful tool in epigenotoxicology studies. In this report, we have investigated the effects of BPA in the presence of metabolic activation (S-9 mix) on the transcription level of the FLO1 gene in the DNMT yeast. In the presence of metabolic activation, BPA inhibited the intensity of green fluorescence reporter protein (GFP) driven by the FLO1 promoter. A metabolite of BPA, 4-methyl-2,4-bis(p-hydroxyphenyl) pent-1-ene (MBP), also exhibited similar inhibitory effect. Furthermore, BPA in the presence of S-9 mix had only a weak while MBP had no inhibitory effects on the expression of modified GFP reporter gene under the control of FLO1 promoter with reduced CpG motifs. Aforementioned behavior was confirmed by the inhibition of flocculation as well as FLO1 gene mRNA expression. In addition, the global DNA methylation level in the human HEK293 cells was also reduced by MBP. These results indicate that BPA metabolites have inhibitory effect on DNA methylation. Our approach offers a novel in vitro method for screening for chemicals that can alter the epigenome by a mechanism dependent on their metabolic activation.
Collapse
Affiliation(s)
- Kei-Ichi Sugiyama
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Mawo Kinoshita
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Toshio Kasamatsu
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Masamitsu Honma
- Division of General Affairs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| |
Collapse
|
6
|
Mukhopadhyay R, Prabhu NB, Kabekkodu SP, Rai PS. Review on bisphenol A and the risk of polycystic ovarian syndrome: an insight from endocrine and gene expression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32631-32650. [PMID: 35199272 PMCID: PMC9072519 DOI: 10.1007/s11356-022-19244-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/11/2022] [Indexed: 04/12/2023]
Abstract
Bisphenol A (BPA) is one of the most widely studied endocrine disrupting chemicals because of its structural similarity to 17-β estradiol; its ability to bind as an agonist/antagonist to estrogen receptors elicits adverse effects on the functioning of the metabolic and endocrinal system. Therefore, BPA has been thoroughly scrutinized concerning its disruption of pathways like lipid metabolism, steroidogenesis, insulin signaling, and inflammation. This has resulted in reports of its correlation with various aspects of cardiovascular diseases, obesity, diabetes, male and female reproductive disorders, and dysfunctions. Among these, the occurrence of the polycystic ovarian syndrome (PCOS) in premenopausal women is of great concern. PCOS is a highly prevalent disorder affecting women in their reproductive age and is clinically characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology, along with metabolism-related dysfunctions like hyperinsulinemia, obesity, and insulin resistance. In this review, we analyzed certain researched effects of BPA, while focusing on its ability to alter the expression of various significant genes like GnRH, AdipoQ, ESR1, StAR, CYP11A1, CYP19A1, and many more involved in the pathways and endocrine regulation, whose disruption is commonly associated with the clinical manifestations of PCOS.
Collapse
Affiliation(s)
- Risani Mukhopadhyay
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Navya B Prabhu
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
7
|
Robitaille J, Denslow ND, Escher BI, Kurita-Oyamada HG, Marlatt V, Martyniuk CJ, Navarro-Martín L, Prosser R, Sanderson T, Yargeau V, Langlois VS. Towards regulation of Endocrine Disrupting chemicals (EDCs) in water resources using bioassays - A guide to developing a testing strategy. ENVIRONMENTAL RESEARCH 2022; 205:112483. [PMID: 34863984 DOI: 10.1016/j.envres.2021.112483] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are found in every environmental medium and are chemically diverse. Their presence in water resources can negatively impact the health of both human and wildlife. Currently, there are no mandatory screening mandates or regulations for EDC levels in complex water samples globally. Bioassays, which allow quantifying in vivo or in vitro biological effects of chemicals are used commonly to assess acute toxicity in water. The existing OECD framework to identify single-compound EDCs offers a set of bioassays that are validated for the Estrogen-, Androgen-, and Thyroid hormones, and for Steroidogenesis pathways (EATS). In this review, we discussed bioassays that could be potentially used to screen EDCs in water resources, including in vivo and in vitro bioassays using invertebrates, fish, amphibians, and/or mammalians species. Strengths and weaknesses of samples preparation for complex water samples are discussed. We also review how to calculate the Effect-Based Trigger values, which could serve as thresholds to determine if a given water sample poses a risk based on existing quality standards. This work aims to assist governments and regulatory agencies in developing a testing strategy towards regulation of EDCs in water resources worldwide. The main recommendations include 1) opting for internationally validated cell reporter in vitro bioassays to reduce animal use & cost; 2) testing for cell viability (a critical parameter) when using in vitro bioassays; and 3) evaluating the recovery of the water sample preparation method selected. This review also highlights future research avenues for the EDC screening revolution (e.g., 3D tissue culture, transgenic animals, OMICs, and Adverse Outcome Pathways (AOPs)).
Collapse
Affiliation(s)
- Julie Robitaille
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Quebec City, QC, Canada
| | | | - Beate I Escher
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Vicki Marlatt
- Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | | | - Thomas Sanderson
- Centre Armand-Frappier Santé Biotechnologie, INRS, Laval, QC, Canada
| | | | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Quebec City, QC, Canada.
| |
Collapse
|
8
|
Arao Y, Korach KS. The physiological role of estrogen receptor functional domains. Essays Biochem 2021; 65:867-875. [PMID: 34028522 PMCID: PMC8611119 DOI: 10.1042/ebc20200167] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/21/2021] [Accepted: 05/07/2021] [Indexed: 01/27/2023]
Abstract
Estrogen receptor (ER) is a member of the nuclear receptor superfamily whose members share conserved domain structures, including a DNA-binding domain (DBD) and ligand-binding domain (LBD). Estrogenic chemicals work as ligands for activation or repression of ER-mediated transcriptional activity derived from two transactivation domains: AF-1 and AF-2. AF-2 is localized in the LBD, and helix 12 of the LBD is essential for controlling AF-2 functionality. The positioning of helix 12 defines the ER alpha (ERα) ligand properties as agonists or antagonists. In contrast, it is still less well defined as to the ligand-dependent regulation of N-terminal AF-1 activity. It has been thought that the action of selective estrogen receptor modulators (SERMs) is mediated by the regulation of a tissue specific AF-1 activity rather than AF-2 activity. However, it is still unclear how SERMs regulate AF-1 activity in a tissue-selective manner. This review presents some recent observations toward information of ERα mediated SERM actions related to the ERα domain functionality, focusing on the following topics. (1) The F-domain, which is connected to helix 12, controls 4-hydroxytamoxifen (4OHT) mediated AF-1 activation associated with the receptor dimerization activity. (2) The zinc-finger property of the DBD for genomic sequence recognition. (3) The novel estrogen responsive genomic DNA element, which contains multiple long-spaced direct-repeats without a palindromic ERE sequence, is differentially recognized by 4OHT and E2 ligand bound ERα transactivation complexes.
Collapse
Affiliation(s)
- Yukitomo Arao
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH
| | - Kenneth S Korach
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH
| |
Collapse
|
9
|
Zhang M, van Ravenzwaay B, Rietjens IMCM. Development of a Generic Physiologically Based Kinetic Model to Predict In Vivo Uterotrophic Responses Induced by Estrogenic Chemicals in Rats Based on In Vitro Bioassays. Toxicol Sci 2021; 173:19-31. [PMID: 31626307 PMCID: PMC9186316 DOI: 10.1093/toxsci/kfz216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The present study assessed the potential of a generic physiologically based kinetic (PBK) model to convert in vitro data for estrogenicity to predict the in vivo uterotrophic response in rats for diethylstibestrol (DES), ethinylestradiol (EE2), genistein (GEN), coumestrol (COU), and methoxychlor (MXC). PBK models were developed using a generic approach and in vitro concentration-response data from the MCF-7 proliferation assay and the yeast estrogen screening assay were translated into in vivo dose-response data. Benchmark dose analysis was performed on the predicted data and available in vivo uterotrophic data to evaluate the model predictions. The results reveal that the developed generic PBK model adequate defines the in vivo kinetics of the estrogens. The predicted dose-response data of DES, EE2, GEN, COU, and MXC matched the reported in vivo uterus weight response in a qualitative way, whereas the quantitative comparison was somewhat hampered by the variability in both in vitro and in vivo data. From a safety perspective, the predictions based on the MCF-7 proliferation assay would best guarantee a safe point of departure for further risk assessment although it may be conservative. The current study indicates the feasibility of using a combination of in vitro toxicity data and a generic PBK model to predict the relative in vivo uterotrophic response for estrogenic chemicals.
Collapse
Affiliation(s)
- Mengying Zhang
- Division of Toxicology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Bennard van Ravenzwaay
- Division of Toxicology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.,Experimental Toxicology and Ecology, BASF SE, Z 470, Ludwigshafen 67056, Germany
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| |
Collapse
|
10
|
Yu Z, Zhan Q, Chen A, Han J, Zheng Y, Gong Y, Lu R, Zheng Z, Chen G. Intermittent fasting ameliorates di-(2-ethylhexyl) phthalate-induced precocious puberty in female rats: A study of the hypothalamic-pituitary-gonadal axis. Reprod Biol 2021; 21:100513. [PMID: 34049116 DOI: 10.1016/j.repbio.2021.100513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 11/18/2022]
Abstract
Di-(2-ethylhexyl) phthalate has been reported to interfere with the development and function of animal reproductive systems. However, hardly any studies provide methods to minimize or prevent the adverse effects of DEHP on reproduction. The energy balance state of mammals is closely related to reproductive activities, and the reproductive axis can regulate reproductive activities according to changes in the body's energy balance state. In this study, the effects of every other day fasting (EODF), as a way of intermittent fasting, on preventing the precocious puberty induced by DEHP in female rats was studied. EODF significantly improved the advancement of vaginal opening age (as the markers of puberty onset) and elevated serum levels of luteinizing hormone and estradiol (detected by ELISA) induced by 5 mg kg-1 DEHP exposure (D5). The mRNA and western blot results showed that the EODF could minimized the increase of gonadotropin-releasing hormone expression induced by DEHP exposure. The administration of DEHP could elevate the levels of kisspeptin protein and the number of kisspeptin-immunoreactive neurons in anteroventral periventricular nucleu, and this increase was diminished considerably by EODF treatment. In contrast, the D5 and D0 groups showed no remarkable difference in the level of Kiss1 expression in arcuate nucleus, whereas the D5 + EODF group had a remarkable decrease in kisspeptin expression as compared with the other two groups. Our results indicated that EODF might inhibit the acceleration of puberty onset induced by DEHP exposure via HPG axis.
Collapse
Affiliation(s)
- Zhen Yu
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China
| | - Qiufeng Zhan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Ayun Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Junyong Han
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China
| | - Yuanyuan Zheng
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China; Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yuqing Gong
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Rongmei Lu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China; Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Zeyu Zheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Gang Chen
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, 350001, China; Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China; Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, 350001, China.
| |
Collapse
|
11
|
Mitigating the Adverse Effects of Polychlorinated Biphenyl Derivatives on Estrogenic Activity via Molecular Modification Techniques. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094999. [PMID: 34066894 PMCID: PMC8125871 DOI: 10.3390/ijerph18094999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022]
Abstract
The aim of this paper is to explore the mechanism of the change in oestrogenic activity of PCBs molecules before and after modification by designing new PCBs derivatives in combination with molecular docking techniques through the constructed model of oestrogenic activity of PCBs molecules. We found that the weakened hydrophobic interaction between the hydrophobic amino acid residues and hydrophobic substituents at the binding site of PCB derivatives and human oestrogen receptor alpha (hERα) was the main reason for the weakened binding force and reduced anti-oestrogenic activity. It was consistent with the information that the hydrophobic field displayed by the 3D contour maps in the constructed oestrogen activity CoMSIA model was one of the main influencing force fields. The hydrophobic interaction between PCB derivatives and oestrogen-active receptors was negatively correlated with the average distance between hydrophobic substituents and hydrophobic amino acid residues at the hERα-binding site, and positively correlated with the number of hydrophobic amino acid residues. In other words, the smaller the average distance between the hydrophobic amino acid residues at the binding sites between the two and the more the number of them, and the stronger the oestrogen activity expression degree of PCBS derivative molecules. Therefore, hydrophobic interactions between PCB derivatives and the oestrogen receptor can be reduced by altering the microenvironmental conditions in humans. This reduces the ability of PCB derivatives to bind to the oestrogen receptor and can effectively modulate the risk of residual PCB derivatives to produce oestrogenic activity in humans.
Collapse
|
12
|
Rahman MS, Pang WK, Ryu DY, Park YJ, Pang MG. Multigenerational and transgenerational impact of paternal bisphenol A exposure on male fertility in a mouse model. Hum Reprod 2021; 35:1740-1752. [PMID: 32644108 DOI: 10.1093/humrep/deaa139] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/27/2020] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION How does paternal exposure to bisphenol A (BPA) affect the fertility of male offspring in mice in future generations? SUMMARY ANSWER Paternal exposure to BPA adversely affects spermatogenesis, several important sperm functions and DNA methylation patterns in spermatozoa, which have both multigenerational (in F0 and F1) and partial transgenerational (mainly noticed in F2, but F3) impacts on the fertility of the offspring. WHAT IS KNOWN ALREADY BPA, a synthetic endocrine disruptor, is used extensively to manufacture polycarbonate plastics and epoxy resins. Growing evidence suggests that exposure to BPA during the developmental stages results in atypical reproductive phenotypes that could persist for generations to come. STUDY DESIGN, SIZE, DURATION CD-1 male mice (F0) were treated with BPA (5 or 50 mg/kg body weight per day (bw/day)) or ethinylestradiol (EE) (0.4 μg/kg bw/day) for 6 weeks. Control mice were treated with vehicle (corn oil) only. The treated male mice were bred with untreated female mice to produce first filial generation (F1 offspring). The F2 and F3 offspring were produced similarly, without further exposure to BPA. PARTICIPANTS/MATERIALS, SETTING, METHODS Histological changes in the testis along with functional, biochemical and epigenetic (DNA methylation) properties of spermatozoa were investigated. Subsequently, each parameter of the F0-F3 generations was compared between BPA-treated mice and control mice. MAIN RESULTS AND THE ROLE OF CHANCE Paternal BPA exposure disrupted spermatogenesis by decreasing the size and number of testicular seminiferous epithelial cells, which eventually led to a decline in the total sperm count of F0-F2 offspring (P < 0.05). We further showed that a high BPA dose decreased sperm motility in F0-F2 males by mediating the overproduction of reactive oxygen species (F0-F1) and decreasing intracellular ATP (F0-F2) in spermatozoa (P < 0.05). These changes in spermatozoa were associated with altered global DNA methylation patterns in the spermatozoa of F0-F3 males (P < 0.05). Furthermore, we noticed that BPA compromised sperm fertility in mice from the F0-F2 (in the both dose groups) and F3 generations (in the high-dose group only). The overall reproductive toxicity of BPA was equivalent to or higher (high dose) than that of the tested dose of EE. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Further research is required to determine the variables (e.g. lowest BPA dose) that are capable of producing changes in sperm function and fertility in future generations. WIDER IMPLICATIONS OF THE FINDINGS These results may shed light on how occupational exposure to BPA can affect offspring fertility in humans. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF-2018R1A6A1A03025159). M.S.R. was supported by Korea Research Fellowship Program through the NRF funded by the Ministry of Science and ICT (Grant No. 2017H1D3A1A02013844). There are no competing interests.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| |
Collapse
|
13
|
Stanojević M, Vračko Grobelšek M, Sollner Dolenc M. Computational evaluation of endocrine activity of biocidal active substances. CHEMOSPHERE 2021; 267:129284. [PMID: 33338726 DOI: 10.1016/j.chemosphere.2020.129284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Exposure to endocrine disrupting chemicals is an important public health concern although only a few endocrine disruption chemicals have been identified so far. To speed up their identification, in silico toxicological models appear to be the most appropriate, since the potential endocrine disruption of a large number of compounds can be estimated in a short time. In this study three in silico models (Endocrine disruptome software, VirtualToxLab and COSMOS KNIME) have been used. In silico predictions of the endocrine disruption potential of biocidal active substances have been made and predictions then compared with the available in vitro experimental binding affinities to androgen, estrogen, glucocorticoid and thyroid receptors. The chosen models had similar accuracies (around 60%), while differences were shown between the models in specificity and sensitivity. VirtualToxLab was the most balanced model. Additionally, three combined models were prepared and evaluated. As expected, the majority rule approach model was more accurate and balanced. However, the positive consensus rule model, that improved the specificity of predictions (≥80% for all studied nuclear receptors) was more applicable. This reduction of false positive predictions is especially useful in the search for positive (active) compounds. On the other hand, the novel negative consensus rule model improved the specificity of prediction (≥80% for all studied nuclear receptors), giving good predictions of negative (inactive) compounds that can be excluded from further testing. The results obtained by these combined models have great added value, since they can significantly reduce further experimental testing.
Collapse
Affiliation(s)
- Mark Stanojević
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; BiSafe d.o.o., V Kladeh 11c, 1000 Ljubljana, Slovenia
| | | | - Marija Sollner Dolenc
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
14
|
Echeverri-Jaramillo G, Jaramillo-Colorado B, Sabater-Marco C, Castillo-López MÁ. Cytotoxic and estrogenic activity of chlorpyrifos and its metabolite 3,5,6-trichloro-2-pyridinol. Study of marine yeasts as potential toxicity indicators. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:104-117. [PMID: 33249537 DOI: 10.1007/s10646-020-02315-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Chlorpyrifos (CP) is one of the organophosphate insecticides most used worldwide today. Although the main target organ for CP is the nervous system triggering predominantly neurotoxic effects, it has suggested other mechanisms of action as cytotoxicity and endocrine disruption. The risk posed by the pesticide metabolites on non-target organisms is increasingly recognized by regulatory agencies and natural resource managers. In the present study, cytotoxicity and estrogenic activity of CP, and its principal metabolite 3,5,6-trichloro-2-pyridinol (TCP) have been evaluated by in vitro assays, using two mammalian cell lines (HEK293 and N2a), and a recombinant yeast. Results indicate that TCP is more toxic than CP for the two cell lines assayed, being N2a cells more sensitive to both compounds. Both compounds show a similar estrogenic activity being between 2500 and 3000 times less estrogenic than 17β-estradiol. In order to find new toxicity measurement models, yeasts isolated from marine sediments containing CP residues have been tested against CP and TCP by cell viability assay. Of the 12 yeast strains tested, 6 of them showed certain sensitivity, and a concentration-dependent response to the tested compounds, so they could be considered as future models for toxicity tests, although further investigations and proves are necessary.
Collapse
Affiliation(s)
- Gustavo Echeverri-Jaramillo
- Grupo de Investigación Microbiología y Ambiente, GIMA. Programa de Bacteriología, Universidad de San Buenaventura, Cartagena, Colombia
- Grupo de Investigaciones Agroquímicas, GIA. Programa de Química, Universidad de Cartagena, 130014, Cartagena, Colombia
| | - Beatriz Jaramillo-Colorado
- Grupo de Investigaciones Agroquímicas, GIA. Programa de Química, Universidad de Cartagena, 130014, Cartagena, Colombia.
| | - Consuelo Sabater-Marco
- Departamento de Biotecnología, Universidad Politécnica de Valencia, 46022, Valencia, España
| | | |
Collapse
|
15
|
Zhou B, Yang P, Deng YL, Zeng Q, Lu WQ, Mei SR. Prenatal exposure to bisphenol a and its analogues (bisphenol F and S) and ultrasound parameters of fetal growth. CHEMOSPHERE 2020; 246:125805. [PMID: 31918106 DOI: 10.1016/j.chemosphere.2019.125805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/04/2019] [Accepted: 12/30/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Bisphenol A (BPA) has been shown to affect normal fetal growth, but human evidence on its analogues (BPF and BPS) is limited. OBJECT To examine the associations between prenatal exposure to BPA and its analogues (BPF and BPS) and ultrasound parameters of fetal growth. METHODS We measured urinary BPA, BPF, and BPS concentrations among 322 pregnant women during late pregnancy from a cohort study in Wuhan, China. Fetal biparietal diameter (BPD), head circumference (HC), femur length (FL), and abdominal circumference (AC) were measured by ultrasonography. The associations of maternal urinary BPA, BPF, and BPS concentrations with ultrasound parameters of fetal growth were estimated by multivariable adjusted models. RESULTS We observed a gender difference in association of maternal urinary BPA concentrations and fetal HC (P for interaction = 0.003); each ln-unit increase in maternal urinary BPA concentration was associated with a mean decrease of 0.10 cm (95%CI: 0.18, -0.02) among boys and a mean increase of 0.14 cm (95%CI: 0.00, 0.28) among girls for HC. The associations were robust for urinary BPA concentrations modeled as tertiles or including urinary BPA, BPF, and BPS into mutual adjustment models. We did not observe robust associations between maternal urinary BPF and BPS concentrations and ultrasound parameters of fetal growth, though an inverse association with AC and a positive association with FL were estimated for maternal urinary BPF concentrations modeled as continuous variables. CONCLUSIONS Prenatal exposure to BPA but not BPF and BPS was sex-specifically associated with certain fetal growth parameters.
Collapse
Affiliation(s)
- Bin Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Su-Rong Mei
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
16
|
Mansouri K, Kleinstreuer N, Abdelaziz AM, Alberga D, Alves VM, Andersson PL, Andrade CH, Bai F, Balabin I, Ballabio D, Benfenati E, Bhhatarai B, Boyer S, Chen J, Consonni V, Farag S, Fourches D, García-Sosa AT, Gramatica P, Grisoni F, Grulke CM, Hong H, Horvath D, Hu X, Huang R, Jeliazkova N, Li J, Li X, Liu H, Manganelli S, Mangiatordi GF, Maran U, Marcou G, Martin T, Muratov E, Nguyen DT, Nicolotti O, Nikolov NG, Norinder U, Papa E, Petitjean M, Piir G, Pogodin P, Poroikov V, Qiao X, Richard AM, Roncaglioni A, Ruiz P, Rupakheti C, Sakkiah S, Sangion A, Schramm KW, Selvaraj C, Shah I, Sild S, Sun L, Taboureau O, Tang Y, Tetko IV, Todeschini R, Tong W, Trisciuzzi D, Tropsha A, Van Den Driessche G, Varnek A, Wang Z, Wedebye EB, Williams AJ, Xie H, Zakharov AV, Zheng Z, Judson RS. CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:27002. [PMID: 32074470 DOI: 10.23645/epacomptox.5176876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
BACKGROUND Endocrine disrupting chemicals (EDCs) are xenobiotics that mimic the interaction of natural hormones and alter synthesis, transport, or metabolic pathways. The prospect of EDCs causing adverse health effects in humans and wildlife has led to the development of scientific and regulatory approaches for evaluating bioactivity. This need is being addressed using high-throughput screening (HTS) in vitro approaches and computational modeling. OBJECTIVES In support of the Endocrine Disruptor Screening Program, the U.S. Environmental Protection Agency (EPA) led two worldwide consortiums to virtually screen chemicals for their potential estrogenic and androgenic activities. Here, we describe the Collaborative Modeling Project for Androgen Receptor Activity (CoMPARA) efforts, which follows the steps of the Collaborative Estrogen Receptor Activity Prediction Project (CERAPP). METHODS The CoMPARA list of screened chemicals built on CERAPP's list of 32,464 chemicals to include additional chemicals of interest, as well as simulated ToxCast™ metabolites, totaling 55,450 chemical structures. Computational toxicology scientists from 25 international groups contributed 91 predictive models for binding, agonist, and antagonist activity predictions. Models were underpinned by a common training set of 1,746 chemicals compiled from a combined data set of 11 ToxCast™/Tox21 HTS in vitro assays. RESULTS The resulting models were evaluated using curated literature data extracted from different sources. To overcome the limitations of single-model approaches, CoMPARA predictions were combined into consensus models that provided averaged predictive accuracy of approximately 80% for the evaluation set. DISCUSSION The strengths and limitations of the consensus predictions were discussed with example chemicals; then, the models were implemented into the free and open-source OPERA application to enable screening of new chemicals with a defined applicability domain and accuracy assessment. This implementation was used to screen the entire EPA DSSTox database of ∼875,000 chemicals, and their predicted AR activities have been made available on the EPA CompTox Chemicals dashboard and National Toxicology Program's Integrated Chemical Environment. https://doi.org/10.1289/EHP5580.
Collapse
Affiliation(s)
- Kamel Mansouri
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
- ScitoVation LLC, Research Triangle Park, North Carolina, USA
- Integrated Laboratory Systems, Inc., Morrisville, North Carolina, USA
| | - Nicole Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Ahmed M Abdelaziz
- Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Department für Biowissenschaftliche Grundlagen, Weihenstephaner Steig 23, 85350 Freising, Germany
| | - Domenico Alberga
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Vinicius M Alves
- Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
- Laboratory for Molecular Modeling, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Carolina H Andrade
- Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Fang Bai
- School of Pharmacy, Lanzhou University, China
| | - Ilya Balabin
- Information Systems & Global Solutions (IS&GS), Lockheed Martin, USA
| | - Davide Ballabio
- Milano Chemometrics and QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche "Mario Negri", IRCCS, Milan, Italy
| | - Barun Bhhatarai
- QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Scott Boyer
- Swedish Toxicology Sciences Research Center, Karolinska Institutet, Södertälje, Sweden
| | - Jingwen Chen
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Viviana Consonni
- Milano Chemometrics and QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Sherif Farag
- Laboratory for Molecular Modeling, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Denis Fourches
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Paola Gramatica
- QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Francesca Grisoni
- Milano Chemometrics and QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Chris M Grulke
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicology Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Dragos Horvath
- Laboratoire de Chémoinformatique-UMR7140, University of Strasbourg/CNRS, Strasbourg, France
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | | | - Jiazhong Li
- School of Pharmacy, Lanzhou University, China
| | - Xuehua Li
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | | | - Serena Manganelli
- Istituto di Ricerche Farmacologiche "Mario Negri", IRCCS, Milan, Italy
| | | | - Uko Maran
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Gilles Marcou
- Laboratoire de Chémoinformatique-UMR7140, University of Strasbourg/CNRS, Strasbourg, France
| | - Todd Martin
- National Risk Management Research Laboratory, U.S. EPA, Cincinnati, Ohio, USA
| | - Eugene Muratov
- Laboratory for Molecular Modeling, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dac-Trung Nguyen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Orazio Nicolotti
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Nikolai G Nikolov
- Division of Risk Assessment and Nutrition, National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Ulf Norinder
- Swedish Toxicology Sciences Research Center, Karolinska Institutet, Södertälje, Sweden
| | - Ester Papa
- QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Michel Petitjean
- Computational Modeling of Protein-Ligand Interactions (CMPLI)-INSERM UMR 8251, INSERM ERL U1133, Functional and Adaptative Biology (BFA), Universite de Paris, Paris, France
| | - Geven Piir
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Pavel Pogodin
- Institute of Biomedical Chemistry IBMC, 10 Building 8, Pogodinskaya st., Moscow 119121, Russia
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry IBMC, 10 Building 8, Pogodinskaya st., Moscow 119121, Russia
| | - Xianliang Qiao
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Ann M Richard
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| | | | - Patricia Ruiz
- Computational Toxicology and Methods Development Laboratory, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Chetan Rupakheti
- National Risk Management Research Laboratory, U.S. EPA, Cincinnati, Ohio, USA
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, Illinois, USA
| | - Sugunadevi Sakkiah
- Division of Bioinformatics and Biostatistics, National Center for Toxicology Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Alessandro Sangion
- QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Karl-Werner Schramm
- Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Department für Biowissenschaftliche Grundlagen, Weihenstephaner Steig 23, 85350 Freising, Germany
| | - Chandrabose Selvaraj
- Division of Bioinformatics and Biostatistics, National Center for Toxicology Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Imran Shah
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| | - Sulev Sild
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Lixia Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Olivier Taboureau
- Computational Modeling of Protein-Ligand Interactions (CMPLI)-INSERM UMR 8251, INSERM ERL U1133, Functional and Adaptative Biology (BFA), Universite de Paris, Paris, France
| | - Yun Tang
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Igor V Tetko
- BIGCHEM GmbH, Neuherberg, Germany
- Helmholtz Zentrum Muenchen - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Roberto Todeschini
- Milano Chemometrics and QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicology Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Alexander Tropsha
- Laboratory for Molecular Modeling, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - George Van Den Driessche
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Alexandre Varnek
- Laboratoire de Chémoinformatique-UMR7140, University of Strasbourg/CNRS, Strasbourg, France
| | - Zhongyu Wang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Eva B Wedebye
- Division of Risk Assessment and Nutrition, National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Antony J Williams
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| | - Hongbin Xie
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Alexey V Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Ziye Zheng
- Chemistry Department, Umeå University, Umeå, Sweden
| | - Richard S Judson
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| |
Collapse
|
17
|
Mansouri K, Kleinstreuer N, Abdelaziz AM, Alberga D, Alves VM, Andersson PL, Andrade CH, Bai F, Balabin I, Ballabio D, Benfenati E, Bhhatarai B, Boyer S, Chen J, Consonni V, Farag S, Fourches D, García-Sosa AT, Gramatica P, Grisoni F, Grulke CM, Hong H, Horvath D, Hu X, Huang R, Jeliazkova N, Li J, Li X, Liu H, Manganelli S, Mangiatordi GF, Maran U, Marcou G, Martin T, Muratov E, Nguyen DT, Nicolotti O, Nikolov NG, Norinder U, Papa E, Petitjean M, Piir G, Pogodin P, Poroikov V, Qiao X, Richard AM, Roncaglioni A, Ruiz P, Rupakheti C, Sakkiah S, Sangion A, Schramm KW, Selvaraj C, Shah I, Sild S, Sun L, Taboureau O, Tang Y, Tetko IV, Todeschini R, Tong W, Trisciuzzi D, Tropsha A, Van Den Driessche G, Varnek A, Wang Z, Wedebye EB, Williams AJ, Xie H, Zakharov AV, Zheng Z, Judson RS. CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:27002. [PMID: 32074470 PMCID: PMC7064318 DOI: 10.1289/ehp5580] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Endocrine disrupting chemicals (EDCs) are xenobiotics that mimic the interaction of natural hormones and alter synthesis, transport, or metabolic pathways. The prospect of EDCs causing adverse health effects in humans and wildlife has led to the development of scientific and regulatory approaches for evaluating bioactivity. This need is being addressed using high-throughput screening (HTS) in vitro approaches and computational modeling. OBJECTIVES In support of the Endocrine Disruptor Screening Program, the U.S. Environmental Protection Agency (EPA) led two worldwide consortiums to virtually screen chemicals for their potential estrogenic and androgenic activities. Here, we describe the Collaborative Modeling Project for Androgen Receptor Activity (CoMPARA) efforts, which follows the steps of the Collaborative Estrogen Receptor Activity Prediction Project (CERAPP). METHODS The CoMPARA list of screened chemicals built on CERAPP's list of 32,464 chemicals to include additional chemicals of interest, as well as simulated ToxCast™ metabolites, totaling 55,450 chemical structures. Computational toxicology scientists from 25 international groups contributed 91 predictive models for binding, agonist, and antagonist activity predictions. Models were underpinned by a common training set of 1,746 chemicals compiled from a combined data set of 11 ToxCast™/Tox21 HTS in vitro assays. RESULTS The resulting models were evaluated using curated literature data extracted from different sources. To overcome the limitations of single-model approaches, CoMPARA predictions were combined into consensus models that provided averaged predictive accuracy of approximately 80% for the evaluation set. DISCUSSION The strengths and limitations of the consensus predictions were discussed with example chemicals; then, the models were implemented into the free and open-source OPERA application to enable screening of new chemicals with a defined applicability domain and accuracy assessment. This implementation was used to screen the entire EPA DSSTox database of ∼ 875,000 chemicals, and their predicted AR activities have been made available on the EPA CompTox Chemicals dashboard and National Toxicology Program's Integrated Chemical Environment. https://doi.org/10.1289/EHP5580.
Collapse
Affiliation(s)
- Kamel Mansouri
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
- ScitoVation LLC, Research Triangle Park, North Carolina, USA
- Integrated Laboratory Systems, Inc., Morrisville, North Carolina, USA
| | - Nicole Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Ahmed M. Abdelaziz
- Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Department für Biowissenschaftliche Grundlagen, Weihenstephaner Steig 23, 85350 Freising, Germany
| | - Domenico Alberga
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Vinicius M. Alves
- Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
- Laboratory for Molecular Modeling, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Carolina H. Andrade
- Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Fang Bai
- School of Pharmacy, Lanzhou University, China
| | - Ilya Balabin
- Information Systems & Global Solutions (IS&GS), Lockheed Martin, USA
| | - Davide Ballabio
- Milano Chemometrics and QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche “Mario Negri”, IRCCS, Milan, Italy
| | - Barun Bhhatarai
- QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Scott Boyer
- Swedish Toxicology Sciences Research Center, Karolinska Institutet, Södertälje, Sweden
| | - Jingwen Chen
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Viviana Consonni
- Milano Chemometrics and QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Sherif Farag
- Laboratory for Molecular Modeling, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Denis Fourches
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Paola Gramatica
- QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Francesca Grisoni
- Milano Chemometrics and QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Chris M. Grulke
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicology Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Dragos Horvath
- Laboratoire de Chémoinformatique—UMR7140, University of Strasbourg/CNRS, Strasbourg, France
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | | | - Jiazhong Li
- School of Pharmacy, Lanzhou University, China
| | - Xuehua Li
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | | | - Serena Manganelli
- Istituto di Ricerche Farmacologiche “Mario Negri”, IRCCS, Milan, Italy
| | | | - Uko Maran
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Gilles Marcou
- Laboratoire de Chémoinformatique—UMR7140, University of Strasbourg/CNRS, Strasbourg, France
| | - Todd Martin
- National Risk Management Research Laboratory, U.S. EPA, Cincinnati, Ohio, USA
| | - Eugene Muratov
- Laboratory for Molecular Modeling, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dac-Trung Nguyen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Orazio Nicolotti
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Nikolai G. Nikolov
- Division of Risk Assessment and Nutrition, National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Ulf Norinder
- Swedish Toxicology Sciences Research Center, Karolinska Institutet, Södertälje, Sweden
| | - Ester Papa
- QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Michel Petitjean
- Computational Modeling of Protein-Ligand Interactions (CMPLI)–INSERM UMR 8251, INSERM ERL U1133, Functional and Adaptative Biology (BFA), Universite de Paris, Paris, France
| | - Geven Piir
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Pavel Pogodin
- Institute of Biomedical Chemistry IBMC, 10 Building 8, Pogodinskaya st., Moscow 119121, Russia
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry IBMC, 10 Building 8, Pogodinskaya st., Moscow 119121, Russia
| | - Xianliang Qiao
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Ann M. Richard
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| | | | - Patricia Ruiz
- Computational Toxicology and Methods Development Laboratory, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Chetan Rupakheti
- National Risk Management Research Laboratory, U.S. EPA, Cincinnati, Ohio, USA
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, Illinois, USA
| | - Sugunadevi Sakkiah
- Division of Bioinformatics and Biostatistics, National Center for Toxicology Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Alessandro Sangion
- QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Karl-Werner Schramm
- Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Department für Biowissenschaftliche Grundlagen, Weihenstephaner Steig 23, 85350 Freising, Germany
| | - Chandrabose Selvaraj
- Division of Bioinformatics and Biostatistics, National Center for Toxicology Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Imran Shah
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| | - Sulev Sild
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Lixia Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Olivier Taboureau
- Computational Modeling of Protein-Ligand Interactions (CMPLI)–INSERM UMR 8251, INSERM ERL U1133, Functional and Adaptative Biology (BFA), Universite de Paris, Paris, France
| | - Yun Tang
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Igor V. Tetko
- BIGCHEM GmbH, Neuherberg, Germany
- Helmholtz Zentrum Muenchen – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Roberto Todeschini
- Milano Chemometrics and QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicology Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Alexander Tropsha
- Laboratory for Molecular Modeling, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - George Van Den Driessche
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Alexandre Varnek
- Laboratoire de Chémoinformatique—UMR7140, University of Strasbourg/CNRS, Strasbourg, France
| | - Zhongyu Wang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Eva B. Wedebye
- Division of Risk Assessment and Nutrition, National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Antony J. Williams
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| | - Hongbin Xie
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Alexey V. Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Ziye Zheng
- Chemistry Department, Umeå University, Umeå, Sweden
| | - Richard S. Judson
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| |
Collapse
|
18
|
Lobsiger N, Venetz JE, Gregorini M, Christen M, Christen B, Stark WJ. YestroSens, a field-portable S. cerevisiae biosensor device for the detection of endocrine-disrupting chemicals: Reliability and stability. Biosens Bioelectron 2019; 146:111710. [DOI: 10.1016/j.bios.2019.111710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 12/27/2022]
|
19
|
Jiang W, Chen Q, Zhou B, Wang F. In silico prediction of estrogen receptor subtype binding affinity and selectivity using 3D-QSAR and molecular docking. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02428-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Liu L, Zhou X, Lu Y, Shi H, Ma M, Yu T. Triple functional small-molecule-protein conjugate mediated optical biosensor for quantification of estrogenic activities in water samples. ENVIRONMENT INTERNATIONAL 2019; 132:105091. [PMID: 31421388 DOI: 10.1016/j.envint.2019.105091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 05/22/2023]
Abstract
Establishing biosensors to map a comprehensive picture of potential estrogen-active chemicals remains challenging and must be addressed. Herein, we describe an estrogen receptor (ER)-based evanescent wave fluorescent biosensor by using a triple functional small-molecule-protein conjugate as a signal probe for the determination of estrogenic activities in water samples. The signal probe, consisting of a Cy5.5-labelled streptavidin (STV) moiety and a 17β-estradiol (E2) moiety, acts simultaneously as signal conversion, signal recognition and signal report elements. When xenoestrogens compete with the E2 moiety of conjugate in binding to the ER, the unbound conjugates are released, and their STV moiety binds with desthiobiotin (DTB) modified on the optical fiber via the STV-DTB affinity interactions. Signal probe detection is accomplished by fluorescence emission induced by an evanescent field, which positively relates with the estrogenic activities in samples. Quantification of estrogenic activity expressed as E2 equivalent concentration (EEQ) can be achieved with a detection limit of 1.05 μg/L EEQ by using three times standard deviation of the mean blank values and a linear calibration range from 20.8 to 476.7 μg/L EEQ. The optical fiber system is robust enough for hundreds of sensing cycles. The biosensor-based determination of estrogenic activities in wastewater samples obtained from a full-scale wastewater treatment plant is consistent with that measured by the two-hybrid recombinant yeast bioassay.
Collapse
Affiliation(s)
- Lanhua Liu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yun Lu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hanchang Shi
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Yu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| |
Collapse
|
21
|
Co-exposure to endocrine disruptors: effect of bisphenol A and soy extract on glucose homeostasis and related metabolic disorders in male mice. Endocr Regul 2019; 52:76-84. [PMID: 29715189 DOI: 10.2478/enr-2018-0009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Bisphenol A (BPA) is a xenoestrogen, which is commonly used as a monomer of polycarbonate plastics food containers and epoxy resins. Little is known about the interaction effects between xeno- and phyto- estrogens on glucose homeostasis or other metabolic disorders. The aim of this study was to examine effects of individual or combined exposure to low doses of BPA and soy extract on glucose metabolism in mice with the goal to establish its potential mechanisms. METHODS Fifty-four male mice were randomly divided into six groups. Mice were treated with soy extract at 60 or 150 mg/kg by daily gavage with or without subcutaneously administration of BPA (100 μg/kg/day) for four weeks at the same time, while the control group received a vehicle. Serum levels of fasting glucose, insulin, adiponectin, testosterone, malondialdehyde (MDA), and total antioxidant capacity (TAC) were measured. Homeostatic model assessment-β cell function (HOMA-β) index was also determined. RESULTS BPA exposure induced hyperglycemia and significantly reduced HOMA-β, serum levels of insulin, adiponectin, testosterone, and TAC and noticeably enhanced MDA in BPA group compared to control one. While treatment with soy extract in high dose (150 mg/kg) significantly decreased the levels of fasting blood glucose and MDA and notably improved the serum levels of insulin, HOMA-β, and TAC compared to BPA group. CONCLUSION Soy extract may protect against some adverse effects of BPA. These findings represent the first report suggesting a potential effect between soy extract and BPA in low doses, however, further studies are needed to confirm these results.
Collapse
|
22
|
Kozłowska E, Dymarska M, Kostrzewa-Susłow E, Janeczko T. Cascade biotransformation of estrogens by Isaria fumosorosea KCh J2. Sci Rep 2019; 9:10734. [PMID: 31341201 PMCID: PMC6656742 DOI: 10.1038/s41598-019-47225-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/08/2019] [Indexed: 11/23/2022] Open
Abstract
Estrone, estradiol, ethynylestradiol and estrone 3-methyl ether underwent a biotransformation process in the submerged culture of Isaria fumosorosea KCh J2. Estrone was transformed into seven metabolites, four of which were glycosylated. Estradiol was selectively glycosylated at C-3 and then transformed to D-ring lactone. Ethynylestradiol was coupled with methylglucoside and 6β-hydroxyderivative was obtained. Estrone 3-methyl ether was not transformed indicating that a free hydroxyl group at C-3 is necessary for glycosylation. Baeyer-Villiger oxidation combined with hydroxylation and glycosylation was observed. All glycosides obtained in this study are 3-O-β-methylglucosides.
Collapse
Affiliation(s)
- Ewa Kozłowska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| | - Monika Dymarska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Tomasz Janeczko
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| |
Collapse
|
23
|
Bisphenol A Regulates Sodium Ramp Currents in Mouse Dorsal Root Ganglion Neurons and Increases Nociception. Sci Rep 2019; 9:10306. [PMID: 31312012 PMCID: PMC6635372 DOI: 10.1038/s41598-019-46769-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/05/2019] [Indexed: 12/02/2022] Open
Abstract
17β-Estradiol mediates the sensitivity to pain and is involved in sex differences in nociception. The widespread environmental disrupting chemical bisphenol A (BPA) has estrogenic activity, but its implications in pain are mostly unknown. Here we show that treatment of male mice with BPA (50 µg/kg/day) during 8 days, decreases the latency to pain behavior in response to heat, suggesting increased pain sensitivity. We demonstrate that incubation of dissociated dorsal root ganglia (DRG) nociceptors with 1 nM BPA increases the frequency of action potential firing. SCN9A encodes the voltage-gated sodium channel Nav1.7, which is present in DRG nociceptors and is essential in pain signaling. Nav1.7 and other voltage-gated sodium channels in mouse DRG are considered threshold channels because they produce ramp currents, amplifying small depolarizations and enhancing electrical activity. BPA increased Nav-mediated ramp currents elicited with slow depolarizations. Experiments using pharmacological tools as well as DRG from ERβ−/− mice indicate that this BPA effect involves ERα and phosphoinositide 3-kinase. The mRNA expression and biophysical properties other than ramp currents of Nav channels, were unchanged by BPA. Our data suggest that BPA at environmentally relevant doses affects the ability to detect noxious stimuli and therefore should be considered when studying the etiology of pain conditions.
Collapse
|
24
|
Starling MCVM, Amorim CC, Leão MMD. Occurrence, control and fate of contaminants of emerging concern in environmental compartments in Brazil. JOURNAL OF HAZARDOUS MATERIALS 2019; 372:17-36. [PMID: 29728279 DOI: 10.1016/j.jhazmat.2018.04.043] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 05/25/2023]
Abstract
This is the first review to present data obtained in Brazil over the years regarding contaminants of emerging concern (CEC) and to contrast it with contamination in other countries. Data gathered indicated that caffeine, paracetamol, atenolol, ibuprofen, cephalexin and bisphenol A occur in the μg L-1 range in streams near urban areas. While endocrine disruptors are frequently detected in surface waters, highest concentrations account for 17α-ethynylestradiol and 17β-estradiol. Organochlorine pesticides are the most frequently found and persistent in sediments in agricultural regions. Moreover, in tropical agricultural fields, pesticide volatilization and its implications to ecosystem protection must be better investigated. The reality represented here for Brazil may be transposed to other developing countries due to similarities related to primitive basic sanitation infrastructure and economic and social contexts, which contribute to continuous environmental contamination by CEC. Municipal wastewater treatment facilities in Brazil, treat up to the secondary stage and lead to limited CEC removal. This is also true for other nations in Latin America, such as Argentina, Colombia and Mexico. Therefore, it is an urgent priority to improve sanitation infrastructure and, then, the implementation of tertiary treatment shall be imposed.
Collapse
Affiliation(s)
- Maria Clara V M Starling
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Universidade Federal de Minas Gerais. Av.Antônio Carlos, 6627, Belo Horizonte - MG, Brazil, 31270-901
| | - Camila C Amorim
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Universidade Federal de Minas Gerais. Av.Antônio Carlos, 6627, Belo Horizonte - MG, Brazil, 31270-901.
| | - Mônica Maria D Leão
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Universidade Federal de Minas Gerais. Av.Antônio Carlos, 6627, Belo Horizonte - MG, Brazil, 31270-901
| |
Collapse
|
25
|
Chu Z, Li Y. Designing modified polybrominated diphenyl ether BDE-47, BDE-99, BDE-100, BDE-183, and BDE-209 molecules with decreased estrogenic activities using 3D-QSAR, pharmacophore models coupled with resolution V of the 2 10-3 fractional factorial design and molecular docking. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:151-162. [PMID: 30343177 DOI: 10.1016/j.jhazmat.2018.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/14/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
A 3D-QSAR model was constructed to predict polybrominated diphenyl ether (PBDE) estrogenic activities expressed as median effective concentrations (pEC50), and resolution V of the 210-3 fractional factorial design and a pharmacophore model were used to modify the target PBDE molecules BDE-47, BDE-99, BDE-100, BDE-183, and BDE-209 to decrease the estrogenic activities. The persistent-organic-pollutant-related and flame-retardant properties of the modified molecules were evaluated. The mechanisms involved in decreasing PBDE estrogenic activities were explored through molecular docking. The 3D-QSAR model gave a cross-validated correlation coefficient (q2) of 0.682 (i.e., >0.5) and a non-cross-validated correlation coefficient (r2) of 0.980 (i.e., >0.9). Mono- and di-substitutions and hydrophobic substituent groups gave 40 modified molecules with decreased estrogenic activities, including modified BDE-47 and BDE-99 with pEC50 decreased by >10% and modified BDE-100, BDE-183, and BDE-209 with pEC50 decreased by >20%. The modified molecules had similar flame-retardancy to the unmodified molecules, and lower biotoxicities (by a maximum of 17.27%), persistences (by a maximum of 55.68%), bioconcentration (by 4.28%-23.91%), and long-range transport potentials (by 0.72%-18.47%). Docking indicated that hydrophobic interactions were the main factors affecting PBDE estrogenic activities. The results provide a theoretical basis for designing less estrogenic flame retardants than are currently available.
Collapse
Affiliation(s)
- Zhenhua Chu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; The Moe Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; The Moe Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
26
|
Sakkiah S, Guo W, Pan B, Kusko R, Tong W, Hong H. Computational prediction models for assessing endocrine disrupting potential of chemicals. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 36:192-218. [PMID: 30633647 DOI: 10.1080/10590501.2018.1537132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Endocrine disrupting chemicals (EDCs) mimic natural hormones and disrupt endocrine function. Humans and wildlife are exposed to EDCs might alter endocrine functions through various mechanisms and lead to an adverse effects. Hence, EDCs identification is important to protect the ecosystem and to promote the public health. Leveraging in-vitro and in-vivo experiments to identify potential EDCs is time consuming and expensive. Hence, quantitative structure-activity relationship is applied to screen the potential EDCs. Here, we summarize the predictive models developed using various algorithms to forecast the binding activity of chemicals to the estrogen and androgen receptors, alpha-fetoprotein, and sex hormone binding globulin.
Collapse
Affiliation(s)
- Sugunadevi Sakkiah
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , Arkansas , USA
| | - Wenjing Guo
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , Arkansas , USA
| | - Bohu Pan
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , Arkansas , USA
| | - Rebecca Kusko
- b Immuneering Corporation , Cambridge , Massachusetts , USA
| | - Weida Tong
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , Arkansas , USA
| | - Huixiao Hong
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , Arkansas , USA
| |
Collapse
|
27
|
Park YJ, Zheng H, Kwak JH, Chung KH. Sesquiterpenes from Cyperus rotundus and 4α,5α-oxidoeudesm-11-en-3-one as a potential selective estrogen receptor modulator. Biomed Pharmacother 2018; 109:1313-1318. [PMID: 30551381 DOI: 10.1016/j.biopha.2018.10.186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/10/2023] Open
Abstract
Estrogenic activity-oriented fractionation and purification of methanol extract from the rhizome of Cyperus rotundus, a well-known traditional herbal medicine, led to the isolation of six sesquiterpenes. 4α,5α-Oxidoeudesm-11-en-3-one (2) and cyper-11-ene-3,4-dione (3) together with four known sesquiterpenes, cyperotundone (1), caryophyllene α-oxide (4), α-cyperone (5), and isocyperol (6) were obtained from the hexane and dichloromethane fractions. Compounds 2 and 3 were newly isolated from natural resources in particular. To identify the possible use of isolated compounds as an alternative to hormone replacement therapy (HRT), estrogenic activity was evaluated by E-screen assay on MCF-7 BUS cells. Among the all isolated compounds from the rhizome of Cyperus rotundus, newly isolated from natural resource, 2 exhibited the most potent estrogenic activity. In an estrogen sensitive reporter gene assay, 2 significantly increased transcriptional activities. As a phytoestrogen, 2 was assessed by investigating dual action on ER-α and ER-β in competitive binding assay. It was found that 2 exerted higher binding affinity to ER-β than ER-α and it also showed both estrogenic and antiestrogenic effects depending on the E2 concentration. Our results indicate that newly isolated from Cyperus rotundus, 2 has biphasic activities on estrogen receptors which could be useful as an alternative HRT.
Collapse
Affiliation(s)
- Yong Joo Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hailing Zheng
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
28
|
Judson RS, Paul Friedman K, Houck K, Mansouri K, Browne P, Kleinstreuer NC. New approach methods for testing chemicals for endocrine disruption potential. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
In Vitro Estrogenic and Breast Cancer Inhibitory Activities of Chemical Constituents Isolated from Rheum undulatum L. Molecules 2018; 23:molecules23051215. [PMID: 29783719 PMCID: PMC6099608 DOI: 10.3390/molecules23051215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/09/2023] Open
Abstract
We investigated the estrogenic and breast cancer inhibitory activities of chemical constituents isolated from Rhei undulati Rhizoma (roots of Rheum undulatum L.), which is used as a laxative, an anti-inflammatory, and an anti-blood stagnation agent. Estrogen-like activity was studied using the well characterized E-screen assay in estrogen receptor (ER)-positive MCF-7 cells. The mechanism underlying the breast cancer inhibitory activity of the compounds was studied using human ER-negative MDA-MB-231 and ER-positive MCF-7 cells. The activation of apoptosis pathway-related proteins was investigated by western blotting, using extracts of R. undulatum prepared in three solvent conditions (EX1, EX2, and EX3). The R. undulatum chemical constituents (compounds 1⁻3) showed estrogen-like activity in the concentration range of 10 to 50 μM, by increasing the proliferation of human ER-positive MCF-7 cells. These effects were attenuated by co-treatment with 100 nM fulvestrant, an ER antagonist. Compounds 1⁻3 decreased the viability of MCF-7 cells in a concentration-dependent manner. Compounds 1 (aloe emodin) and 2 (rhapontigenin) induced mitochondria-independent apoptosis by activating the caspase-8 pathway, whereas the cytotoxic effect of compound 3 (chrysophanol 1-O-β-d-glucopyranoside) was mediated through the mitochondria-dependent apoptotic pathway.
Collapse
|
30
|
Ding G, Wang C, Vinturache A, Zhao S, Pan R, Han W, Chen L, Wang W, Yuan T, Gao Y, Tian Y. Prenatal low-level phenol exposures and birth outcomes in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1400-1407. [PMID: 28738530 DOI: 10.1016/j.scitotenv.2017.07.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 05/17/2023]
Abstract
Phenolic compounds are among the endocrine disruptors which are widely used in daily life products. Studies in laboratory animals showed reproductive and developmental effects. In spite of widespread exposure to phenols, only few studies examined their effects on human development. This study was designed to investigate the relationship between antenatal phenol exposure and birth outcomes in a Chinese obstetric population. Four hundred ninety-six mother-infant pairs recruited from the Laizhou Wan prospective birth cohort in northern China between 2010 and 2013 were included in the study. We measured two phenol metabolites in maternal urine at delivery and examined their associations with birth outcomes including birth weight, crown-heel length, head circumference, gestational age, and ponderal index. Median levels of bisphenol A (BPA) and triclosan (TCS) in urine were 1.07 and 0.50μg/g creatinine, respectively. After adjusting for confounders, a 10-fold increase in BPA levels was associated with a 0.63cm [95% confidence interval (CI): 0.25 to 1.01] increase in birth length among boys, but not among girls. No associations were found between TCS levels and any birth outcomes. The positive association of prenatal low-level BPA exposures with anthropometric measures observed among boys, suggests gender differences in the response to antenatal phenol exposure. Given the variability in urinary phenol levels reported during pregnancy, our findings based on levels of the target biomarkers in a single urine sample need to be confirmed in additional studies.
Collapse
Affiliation(s)
- Guodong Ding
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pediatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Caifeng Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Nursing, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Angela Vinturache
- Department of Obstetrics & Gynaecology, John Radcliffe Hospital, Oxford University Hospital Trust, Headley Way, Oxford OX3 9DU, UK.
| | - Shasha Zhao
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Pan
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenchao Han
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Limei Chen
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiye Wang
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ying Tian
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
31
|
Zhang M, van Ravenzwaay B, Fabian E, Rietjens IMCM, Louisse J. Towards a generic physiologically based kinetic model to predict in vivo uterotrophic responses in rats by reverse dosimetry of in vitro estrogenicity data. Arch Toxicol 2017; 92:1075-1088. [PMID: 29234833 PMCID: PMC5866837 DOI: 10.1007/s00204-017-2140-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/05/2017] [Indexed: 11/28/2022]
Abstract
Physiologically based kinetic (PBK) modelling-based reverse dosimetry is a promising tool for the prediction of in vivo developmental toxicity using in vitro concentration–response data. In the present study, the potential of this approach to predict the dose-dependent increase of uterus weight in rats upon exposure to estrogenic chemicals was assessed. In vitro concentration–response data of 17β-estradiol (E2) and bisphenol A (BPA) obtained in the MCF-7/BOS proliferation assay, the U2OS ER-CALUX assay and the yeast estrogen screen (YES) assay, were translated into in vivo dose–response data in rat, using a PBK model with a minimum number of in vitro and in silico determined parameter values. To evaluate the predictions made, benchmark dose (BMD) analysis was performed on the predicted dose–response data and the obtained BMDL10 values were compared with BMDL10 values derived from data on the effects of E2 and BPA in the uterotrophic assay reported in the literature. The results show that predicted dose–response data of E2 and BPA matched with the data from in vivo studies when predictions were made based on YES assay data. The YES assay-based predictions of the BMDL10 values differed 3.9-fold (E2) and 4.7- to 13.4-fold (BPA) from the BMDL10 values obtained from the in vivo data. The present study provides the proof-of-principle that PBK modelling-based reverse dosimetry of YES assay data using a minimum PBK model can predict dose-dependent in vivo uterus growth caused by estrogenic chemicals. In future studies, the approach should be extended to include other estrogens.
Collapse
Affiliation(s)
- Mengying Zhang
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Bennard van Ravenzwaay
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Experimental Toxicology and Ecology, BASF SE, Z 470, 67056, Ludwigshafen, Germany
| | - Eric Fabian
- Experimental Toxicology and Ecology, BASF SE, Z 470, 67056, Ludwigshafen, Germany
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Jochem Louisse
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
32
|
Cuomo D, Porreca I, Cobellis G, Tarallo R, Nassa G, Falco G, Nardone A, Rizzo F, Mallardo M, Ambrosino C. Carcinogenic risk and Bisphenol A exposure: A focus on molecular aspects in endoderm derived glands. Mol Cell Endocrinol 2017; 457:20-34. [PMID: 28111205 DOI: 10.1016/j.mce.2017.01.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
Epidemiological and experimental evidence associates the exposure to Bisphenol A with the increase of cancer risk in several organs, including prostate. BPA targets different pathways involved in carcinogenicity including the Nuclear Receptors (i.e. estrogen and androgen receptors), stress regulated proteins and, finally, epigenetic changes. Here, we analyse BPA-dependent carcinogenesis in endoderm-derived glands, thyroid, liver, pancreas and prostate focusing on cell signalling, DNA damage repair pathways and epigenetic modifications. Mainly, we gather molecular data evidencing harmful effects at doses relevant for human risk (low-doses). Since few molecular data are available, above all for the pancreas, we analysed transcriptomic data generated in our laboratory to suggest possible mechanisms of BPA carcinogenicity in endoderm-derived glands, discussing the role of nuclear receptors and stress/NF-kB pathways. We evidence that an in vitro toxicogenomic approach might suggest mechanisms of toxicity applicable to cells having the same developmental origin. Although we cannot draw firm conclusions, published data summarized in this review suggest that exposure to BPA, primarily during the developmental stages, represents a risk for carcinogenesis of endoderm-derived glands.
Collapse
Affiliation(s)
- Danila Cuomo
- IRGS, Biogem, Via Camporeale, 83031 Ariano Irpino, Avellino, Italy; Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100 Benevento, Italy
| | | | - Gilda Cobellis
- Department of Experimental Medicine, Sez. Bozzatti, II University of Naples, 80138 Napoli, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84081 Baronissi, SA, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84081 Baronissi, SA, Italy; Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Geppino Falco
- Department of Biology, University of Naples "Federico II", Napoli, Italy
| | - Antonio Nardone
- Department of Public Health, University of Naples "Federico II", Napoli, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84081 Baronissi, SA, Italy
| | - Massimo Mallardo
- Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100 Benevento, Italy.
| |
Collapse
|
33
|
Pollock NB, Feigin S, Drazenovic M, John-Alder HB. Sex hormones and the development of sexual size dimorphism: 5α-dihydrotestosterone inhibits growth in a female-larger lizard ( Sceloporus undulatus). ACTA ACUST UNITED AC 2017; 220:4068-4077. [PMID: 28912255 DOI: 10.1242/jeb.166553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/11/2017] [Indexed: 12/18/2022]
Abstract
Sexual differences in adult body size [sexual size dimorphism (SSD)] and color (sexual dichromatism) are widespread, and both male- and female-biased dimorphisms are observed even among closely related species. A growing body of evidence indicates testosterone can regulate growth, thus the development of SSD, and sexual dichromatism. However, the mechanism(s) underlying these effects are conjectural, including possible conversions of testosterone to estradiol (E2) or 5α-dihydrotestosterone (DHT). In the present study, we hypothesized that the effects of testosterone are physiological responses mediated by androgen receptors, and we tested two specific predictions: (1) that DHT would mimic the effects of testosterone by inhibiting growth and enhancing coloration, and (2) that removal of endogenous testosterone via surgical castration would stimulate growth. We also hypothesized that females share downstream regulatory networks with males and predicted that females and males would respond similarly to DHT. We conducted experiments on eastern fence lizards (Sceloporus undulatus), a female-larger species with striking sexual dichromatism. We implanted Silastic® tubules containing 150 µg DHT into intact females and intact and castrated males. We measured linear growth rates and quantified color for ventral and dorsal surfaces. We found that DHT decreased growth rate and enhanced male-typical coloration in both males and females. We also found that, given adequate time, castration alone is sufficient to stimulate growth rate in males. The results presented here suggest that: (1) the effects of testosterone on growth and coloration are mediated by androgen receptors without requiring aromatization of testosterone into E2, and (2) females possess the androgen-receptor-mediated regulatory networks required for initiating male-typical inhibition of growth and enhanced coloration in response to androgens.
Collapse
Affiliation(s)
- Nicholas B Pollock
- Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, NJ 08901, USA
| | - Stephanie Feigin
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - Marko Drazenovic
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - Henry B John-Alder
- Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, NJ 08901, USA.,Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
34
|
Busayapongchai P, Siri S. Simple assay for screening phytoestrogenic compounds using the oestrogen receptor immobilised magnetite nanoparticles. IET Nanobiotechnol 2017; 11:395-402. [PMID: 28530188 DOI: 10.1049/iet-nbt.2016.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
With increasing interests of phytoestrogens for their potential applications, a rapid and simple tool for screening these phytochemicals is still required. In this study, a simple assay to detect phytoestrogens was developed based on the competition binding between the tested samples and the fluorescently labelled oestrogen (E2) to the human ligand binding domain of oestrogen receptor (LBD-ER) that was immobilised on the magnetite nanoparticles (MNPs). The 40-kDa LBD-ER peptide was produced in an Escherichia coli system. The synthesised 68.7-nm MNPs were silanised and subsequently covalently linked to the C-terminus of LBD-ER peptide. The LBD-ER immobilised MNPs demonstrated the specific binding for the standard E2 with the equilibrium dissociation constant of 9.56 nM and the binding capacity of 0.08 pmol/1 mg of the MNPs. The LBD-ER immobilised MNPs could evaluate oestrogenic activity of the extracts of Asparagus racemosus and Curcuma comosa, the reported phytoestrogenic plants, but not progesterone (P4) and Raphanus sativus extract, the negative controls. The results of this work clearly demonstrated a potential assay for detecting phytoestrogens of crude plant extracts, which is simple and easily adapted to a high throughput format.
Collapse
Affiliation(s)
| | - Sineenat Siri
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
35
|
Severin I, Souton E, Dahbi L, Chagnon MC. Use of bioassays to assess hazard of food contact material extracts: State of the art. Food Chem Toxicol 2017; 105:429-447. [PMID: 28476634 DOI: 10.1016/j.fct.2017.04.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/10/2017] [Accepted: 04/29/2017] [Indexed: 01/17/2023]
Abstract
This review focuses on the use of in vitro bioassays for the hazard assessment of food contact materials (FCM) as a relevant strategy, in complement to analytical methods. FCM may transfer constituents to foods, not always detected by analytical chemistry, resulting in low but measurable human exposures. Testing FCM extracts with bioassays represents the biological response of a combination of substances, able to be released from the finished materials. Furthermore, this approach is particularly useful regarding the current risk assessment challenges with unpredicted/unidentified non-intentionally added substances (NIAS) that can be leached from the FCM in the food. Bioassays applied to assess hazard of different FCM types are described for, to date, the toxicological endpoints able to be expressed at low levels; cytotoxicity, genotoxicity and endocrine disruption potential. The bioassay strengths and relative key points needed to correctly use and improve the performance of bioassays for an additional FCM risk assessment is developed. This review compiles studies showing that combining both chemical and toxicological analyses presents a very promising and pragmatic tool for identifying new undesirable NIAS (not predicted) which can represent a great part of the migrating substances and/or "cocktail effect".
Collapse
Affiliation(s)
- Isabelle Severin
- Derttech « Packtox », University of Bourgogne Franche-Comté, INSERM LNC UMR 1231, AgroSupDijon, F-21000 Dijon, France
| | - Emilie Souton
- Derttech « Packtox », University of Bourgogne Franche-Comté, INSERM LNC UMR 1231, AgroSupDijon, F-21000 Dijon, France
| | - Laurence Dahbi
- Derttech « Packtox », University of Bourgogne Franche-Comté, INSERM LNC UMR 1231, AgroSupDijon, F-21000 Dijon, France
| | - Marie Christine Chagnon
- Derttech « Packtox », University of Bourgogne Franche-Comté, INSERM LNC UMR 1231, AgroSupDijon, F-21000 Dijon, France.
| |
Collapse
|
36
|
Gassman NR. Induction of oxidative stress by bisphenol A and its pleiotropic effects. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:60-71. [PMID: 28181297 PMCID: PMC5458620 DOI: 10.1002/em.22072] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/18/2016] [Accepted: 12/19/2016] [Indexed: 05/23/2023]
Abstract
Bisphenol A (BPA) has become a target of intense public scrutiny since concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer have emerged. BPA is a highly prevalent chemical in consumer products, and human exposure is thought to be ubiquitous. Numerous studies have demonstrated its endocrine disrupting properties and attributed exposure with cytotoxic, genotoxic, and carcinogenic effects; however, the results of these studies are still highly debated and a consensus about BPA's safety and its role in human disease has not been reached. One of the contributing factors is a lack of molecular mechanisms or modes of action that explain the diverse and pleiotropic effects observed after BPA exposure. The increase in BPA research seen over the last ten years has resulted in more studies that examine molecular mechanisms and revealed links between BPA-induced oxidative stress and human disease. Here, a review of the current literature examining BPA exposure and the induction of reactive oxygen species (ROS) or oxidative stress will be provided to examine the landscape of the current BPA literature and provide a framework for understanding how induction of oxidative stress by BPA may contribute to the pleiotropic effects observed after exposure. Environ. Mol. Mutagen. 58:60-71, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Natalie R Gassman
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, 36604-1405
| |
Collapse
|
37
|
Geer LA, Pycke BFG, Waxenbaum J, Sherer DM, Abulafia O, Halden RU. Association of birth outcomes with fetal exposure to parabens, triclosan and triclocarban in an immigrant population in Brooklyn, New York. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:177-183. [PMID: 27156397 PMCID: PMC5018415 DOI: 10.1016/j.jhazmat.2016.03.028] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND Prior studies suggest associations between fetal exposure to antimicrobial and paraben compounds with adverse reproductive outcomes, mainly in animal models. We have previously reported elevated levels of these compounds for a cohort of mothers and neonates. OBJECTIVE We examined the relationship between human exposure to parabens and antimicrobial compounds and birth outcomes including birth weight, body length and head size, and gestational age at birth. METHODS Maternal third trimester urinary and umbilical cord blood plasma concentrations of methylparaben (MePB), ethylparaben (EtPB), propylparaben (PrPB), butylparaben (BuPB), benzylparaben (BePB), triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether or TCS) and triclocarban (1-(4-chlorophenyl)-3-(3,4-dichlorophenyl) urea or TCC), were measured in 185 mothers and 34 paired singleton neonates in New York, 2007-2009. RESULTS In regression models adjusting for confounders, adverse exposure-outcome associations observed included increased odds of PTB (BuPB), decreased gestational age at birth (BuPB and TCC) and birth weight (BuPB), decreased body length (PrPB) and protective effects on PTB (BePB) and LBW (3'-Cl-TCC) (p<0.05). No associations were observed for MePB, EtPB, or TCS. CONCLUSIONS This study provides the first evidence of associations between antimicrobials and potential adverse birth outcomes in neonates. Findings are consistent with animal data suggesting endocrine-disrupting potential resulting in developmental and reproductive toxicity.
Collapse
Affiliation(s)
- Laura A Geer
- Department of Environmental and Occupational Health Sciences, State University of New York, Downstate School of Public Health, BOX 43, 450 Clarkson Ave., Brooklyn, NY, USA.
| | - Benny F G Pycke
- Center for Environmental Security, The Biodesign Institute, Global Security Initiative, and School of Sustainable Engineering and the Built Environment, Arizona State University, 781 East Terrace Mall, Tempe, AZ 85287, USA
| | - Joshua Waxenbaum
- Department of Environmental and Occupational Health Sciences, State University of New York, Downstate School of Public Health, BOX 43, 450 Clarkson Ave., Brooklyn, NY, USA
| | - David M Sherer
- Department of Obstetrics and Gynecology, State University of New York Downstate Medical Center, 445 Lenox Road, Brooklyn, NY, USA
| | - Ovadia Abulafia
- Department of Obstetrics and Gynecology, State University of New York Downstate Medical Center, 445 Lenox Road, Brooklyn, NY, USA
| | - Rolf U Halden
- Center for Environmental Security, The Biodesign Institute, Global Security Initiative, and School of Sustainable Engineering and the Built Environment, Arizona State University, 781 East Terrace Mall, Tempe, AZ 85287, USA; Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
38
|
Busayapongchai P, Siri S. Sensitive detection of estradiol based on ligand binding domain of estrogen receptor and gold nanoparticles. Anal Biochem 2017; 518:60-68. [DOI: 10.1016/j.ab.2016.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 12/20/2022]
|
39
|
Endocrine Disruption and In Vitro Ecotoxicology: Recent Advances and Approaches. IN VITRO ENVIRONMENTAL TOXICOLOGY - CONCEPTS, APPLICATION AND ASSESSMENT 2017; 157:1-58. [DOI: 10.1007/10_2016_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Porreca I, Ulloa-Severino L, Almeida P, Cuomo D, Nardone A, Falco G, Mallardo M, Ambrosino C. Molecular targets of developmental exposure to bisphenol A in diabesity: a focus on endoderm-derived organs. Obes Rev 2017; 18:99-108. [PMID: 27776381 DOI: 10.1111/obr.12471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/08/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
Several studies associate foetal human exposure to bisphenol A (BPA) to metabolic/endocrine diseases, mainly diabesity. They describe the role of BPA in the disruption of pancreatic beta cell, adipocyte and hepatocyte functions. Indeed, the complexity of the diabesity phenotype is due to the involvement of different endoderm-derived organs, all targets of BPA. Here, we analyse this point delineating a picture of different mechanisms of BPA toxicity in endoderm-derived organs leading to diabesity. Moving from epidemiological data, we summarize the in vivo experimental data of the BPA effects on endoderm-derived organs (thyroid, pancreas, liver, gut, prostate and lung) after prenatal exposure. Mainly, we gather molecular data evidencing harmful effects at low-dose exposure, pointing to the risk to human health. Although the fragmentation of molecular data does not allow a clear conclusion to be drawn, the present work indicates that the developmental exposure to BPA represents a risk for endoderm-derived organs development as it deregulates the gene expression from the earliest developmental stages. A more systematic analysis of BPA impact on the transcriptomes of endoderm-derived organs is still missing. Here, we suggest in vitro toxicogenomics approaches as a tool for the identification of common mechanisms of BPA toxicity leading to the diabesity in organs having the same developmental origin.
Collapse
Affiliation(s)
| | - L Ulloa-Severino
- IRGS, Biogem, Ariano Irpino, Italy.,PhD School in Nanotechnology, University of Trieste, Trieste, Italy
| | - P Almeida
- STAB VIDA-Investigação e Serviços em Ciências Biológicas, Madan Parque, Caparica, Portugal
| | - D Cuomo
- IRGS, Biogem, Ariano Irpino, Italy
| | - A Nardone
- Department of Public Health, University of Naples 'Federico II', Naples, Italy
| | - G Falco
- IRGS, Biogem, Ariano Irpino, Italy.,Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - M Mallardo
- Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - C Ambrosino
- IRGS, Biogem, Ariano Irpino, Italy.,Department of Science and Technology, University of Sannio, Benevento, Italy
| |
Collapse
|
41
|
Hoffman TC, Zitomer DH, McNamara PJ. Pyrolysis of wastewater biosolids significantly reduces estrogenicity. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:579-584. [PMID: 27344259 DOI: 10.1016/j.jhazmat.2016.05.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 05/06/2016] [Accepted: 05/30/2016] [Indexed: 05/20/2023]
Abstract
Most wastewater treatment processes are not specifically designed to remove micropollutants. Many micropollutants are hydrophobic so they remain in the biosolids and are discharged to the environment through land-application of biosolids. Micropollutants encompass a broad range of organic chemicals, including estrogenic compounds (natural and synthetic) that reside in the environment, a.k.a. environmental estrogens. Public concern over land application of biosolids stemming from the occurrence of micropollutants hampers the value of biosolids which are important to wastewater treatment plants as a valuable by-product. This research evaluated pyrolysis, the partial decomposition of organic material in an oxygen-deprived system under high temperatures, as a biosolids treatment process that could remove estrogenic compounds from solids while producing a less hormonally active biochar for soil amendment. The estrogenicity, measured in estradiol equivalents (EEQ) by the yeast estrogen screen (YES) assay, of pyrolyzed biosolids was compared to primary and anaerobically digested biosolids. The estrogenic responses from primary solids and anaerobically digested solids were not statistically significantly different, but pyrolysis of anaerobically digested solids resulted in a significant reduction in EEQ; increasing pyrolysis temperature from 100°C to 500°C increased the removal of EEQ with greater than 95% removal occurring at or above 400°C. This research demonstrates that biosolids treatment with pyrolysis would substantially decrease (removal>95%) the estrogens associated with this biosolids product. Thus, pyrolysis of biosolids can be used to produce a valuable soil amendment product, biochar, that minimizes discharge of estrogens to the environment.
Collapse
Affiliation(s)
- T C Hoffman
- Department of Civil, Construction and Environmental Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| | - D H Zitomer
- Department of Civil, Construction and Environmental Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| | - P J McNamara
- Department of Civil, Construction and Environmental Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA.
| |
Collapse
|
42
|
Miller MM, Alyea RA, LeSommer C, Doheny DL, Rowley SM, Childs KM, Balbuena P, Ross SM, Dong J, Sun B, Andersen MA, Clewell RA. Editor's Highlight: Development of an In vitro Assay Measuring Uterine-Specific Estrogenic Responses for Use in Chemical Safety Assessment. Toxicol Sci 2016; 154:162-173. [PMID: 27503385 PMCID: PMC5091368 DOI: 10.1093/toxsci/kfw152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A toxicity pathway approach was taken to develop an in vitro assay using human uterine epithelial adenocarcinoma (Ishikawa) cells as a replacement for measuring an in vivo uterotrophic response to estrogens. The Ishikawa cell was determined to be fit for the purpose of recapitulating in vivo uterine response by verifying fidelity of the biological pathway components and the dose-response predictions to women of child-bearing age. Expression of the suite of estrogen receptors that control uterine proliferation (ERα66, ERα46, ERα36, ERβ, G-protein coupled estrogen receptor (GPER)) were confirmed across passages and treatment conditions. Phenotypic responses to ethinyl estradiol (EE) from transcriptional activation of ER-mediated genes, to ALP enzyme induction and cellular proliferation occurred at concentrations consistent with estrogenic activity in adult women (low picomolar). To confirm utility of this model to predict concentration-response for uterine proliferation with xenobiotics, we tested the concentration-response for compounds with known uterine estrogenic activity in humans and compared the results to assays from the ToxCast and Tox21 suite of estrogen assays. The Ishikawa proliferation assay was consistent with in vivo responses and was a more sensitive measure of uterine response. Because this assay was constructed by first mapping the key molecular events for cellular response, and then ensuring that the assay incorporated these events, the resulting cellular assay should be a reliable tool for identifying estrogenic compounds and may provide improved quantitation of chemical concentration response for in vitro-based safety assessments.
Collapse
Affiliation(s)
- Michelle M Miller
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
- ScitoVation, Research Triangle Park, North Carolina
| | - Rebecca A Alyea
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Caroline LeSommer
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Daniel L Doheny
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
- ScitoVation, Research Triangle Park, North Carolina
| | - Sean M Rowley
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
- ScitoVation, Research Triangle Park, North Carolina
| | - Kristin M Childs
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Pergentino Balbuena
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
- ScitoVation, Research Triangle Park, North Carolina
| | - Susan M Ross
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
- ScitoVation, Research Triangle Park, North Carolina
| | - Jian Dong
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Bin Sun
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Melvin A Andersen
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
- ScitoVation, Research Triangle Park, North Carolina
| | - Rebecca A Clewell
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina;
- ScitoVation, Research Triangle Park, North Carolina
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
43
|
Donat-Vargas C, Åkesson A, Berglund M, Glynn A, Wolk A, Kippler M. Dietary exposure to polychlorinated biphenyls and risk of breast, endometrial and ovarian cancer in a prospective cohort. Br J Cancer 2016; 115:1113-1121. [PMID: 27632375 PMCID: PMC5117780 DOI: 10.1038/bjc.2016.282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/15/2016] [Accepted: 08/15/2016] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Observational studies on polychlorinated biphenyl (PCB) exposure and hormone-related cancer risk are either inconsistent or lacking. We aimed to assess associations of dietary PCB exposure with breast, endometrial and ovarian cancer risk in middle-aged and elderly women. METHODS We included 36 777 cancer-free women at baseline in 1997 from the prospective population-based Swedish Mammography Cohort. Validated estimates of dietary PCB exposure were obtained via a food frequency questionnaire. Incident cancer cases were ascertained through register linkage. RESULTS During 14 years of follow-up, we ascertained 1593, 437 and 195 incident cases of breast, endometrial and ovarian cancer. We found no overall association between dietary PCB exposure and any of these cancer forms. The multivariable-adjusted relative risks comparing women in the highest and lowest tertile of PCB exposure were 0.96 (95% confidence interval (CI): 0.75, 1.24), 1.21 (95% CI: 0.73, 2.01) and 0.90 (95% CI: 0.45, 1.79) for breast, endometrial and ovarian cancer. In analyses stratified by factors influencing oestrogen exposure, possibly masking associations with PCBs, indications of higher risks were observed for endometrial cancer. CONCLUSIONS This study suggests that dietary exposure to PCBs play no critical role in the development of breast, endometrial or ovarian cancer during middle-age and old ages.
Collapse
Affiliation(s)
- Carolina Donat-Vargas
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain
- IDISNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Agneta Åkesson
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Anders Glynn
- Department of Risk and Benefit Assessment, National Food Agency, Box 622, SE-751 26 Uppsala, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| |
Collapse
|
44
|
Saillenfait AM, Ndiaye D, Sabaté JP. The estrogenic and androgenic potential of pyrethroids in vitro. Review. Toxicol In Vitro 2016; 34:321-332. [DOI: 10.1016/j.tiv.2016.02.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/09/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
|
45
|
Yi X, Leung EKY, Bridgman R, Koo S, Yeo KTJ. High-Sensitivity Micro LC-MS/MS Assay for Serum Estradiol without Derivatization. J Appl Lab Med 2016; 1:14-24. [DOI: 10.1373/jalm.2016.020362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 11/06/2022]
Abstract
Abstract
Background
There are considerable demands to accurately measure estradiol (E2) at low concentrations (<20 pg/mL) in postmenopausal women, men, pediatric patients, and patients receiving breast cancer treatment. Most current high-sensitivity LC-MS/MS E2 methods require large sample volumes and involve complex sample preparations with dansyl chloride derivatization. Our study aims to develop a high-sensitivity, underivatized method using micro LC-MS/MS to reliably measure E2 concentrations below 5 pg/mL by the use of low sample volume.
Methods
A total of 290 μL of sample was mixed with internal standard (IS), E2-d4, and extracted with a mixture of hexane/ethyl acetate (90/10) (v/v). After extraction, sample was separated by Eksigent Ekspert™ micro LC 200 system with a flow rate of 35 μL/min in a total run time of 3.5 min and detected by SCIEX QTRAP 6500 mass spectrometer in a negative mode using transitions: 271/145 (quantifier) and 271/143 (qualifier). In this method, it was crucial to use HPLC columns with stability at a pH >10.
Results
The validation study demonstrated broad linear ranges (3.0–820.0 pg/mL) with r2 > 0.999. Total precision was below 15% at all QC levels, and limit of quantification (LOQ) was 3.0 pg/mL. Our method showed good correlation with E2 RIA (r2 = 0.96, bias = −1.0 pg/mL) and modest correlation with E2 Roche Cobas automated immunoassay (r2 = 0.86, bias = 6.0 pg/mL).
Conclusions
In conclusion, we developed and validated a routinely applicable micro LC-MS/MS method without derivatization for E2 in blood samples with an LOQ of 3.0 pg/mL.
Collapse
Affiliation(s)
- Xin Yi
- Department of Pathology, The University of Chicago, Chicago, IL
- Current address: Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX
| | | | | | - Selene Koo
- Department of Pathology, The University of Chicago, Chicago, IL
| | | |
Collapse
|
46
|
Ng HW, Doughty SW, Luo H, Ye H, Ge W, Tong W, Hong H. Development and Validation of Decision Forest Model for Estrogen Receptor Binding Prediction of Chemicals Using Large Data Sets. Chem Res Toxicol 2015; 28:2343-51. [PMID: 26524122 DOI: 10.1021/acs.chemrestox.5b00358] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Some chemicals in the environment possess the potential to interact with the endocrine system in the human body. Multiple receptors are involved in the endocrine system; estrogen receptor α (ERα) plays very important roles in endocrine activity and is the most studied receptor. Understanding and predicting estrogenic activity of chemicals facilitates the evaluation of their endocrine activity. Hence, we have developed a decision forest classification model to predict chemical binding to ERα using a large training data set of 3308 chemicals obtained from the U.S. Food and Drug Administration's Estrogenic Activity Database. We tested the model using cross validations and external data sets of 1641 chemicals obtained from the U.S. Environmental Protection Agency's ToxCast project. The model showed good performance in both internal (92% accuracy) and external validations (∼ 70-89% relative balanced accuracies), where the latter involved the validations of the model across different ER pathway-related assays in ToxCast. The important features that contribute to the prediction ability of the model were identified through informative descriptor analysis and were related to current knowledge of ER binding. Prediction confidence analysis revealed that the model had both high prediction confidence and accuracy for most predicted chemicals. The results demonstrated that the model constructed based on the large training data set is more accurate and robust for predicting ER binding of chemicals than the published models that have been developed using much smaller data sets. The model could be useful for the evaluation of ERα-mediated endocrine activity potential of environmental chemicals.
Collapse
Affiliation(s)
- Hui Wen Ng
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration , 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Stephen W Doughty
- School of Pharmacy, University of Nottingham Malaysia Campus , Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Heng Luo
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration , 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Hao Ye
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration , 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Weigong Ge
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration , 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration , 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration , 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| |
Collapse
|
47
|
Suvorov A, Waxman DJ. Early programing of uterine tissue by bisphenol A: Critical evaluation of evidence from animal exposure studies. Reprod Toxicol 2015; 57:59-72. [PMID: 26028543 PMCID: PMC4550532 DOI: 10.1016/j.reprotox.2015.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 12/20/2022]
Abstract
Exposure to Bisphenol A (BPA) during the critical window of uterine development has been proposed to program the uterus for increased disease susceptibility based on well-documented effects of the potent xenoestrogen diethylstilbestrol. To investigate this proposal, we reviewed 37 studies of prenatal and/or perinatal BPA exposure in animal models and evaluated evidence for: molecular signatures of early BPA exposure; the development of adverse uterine health effects; and epigenetic changes linked to long-term dysregulation of uterine gene expression and health effects. We found substantial evidence for adult uterine effects of early BPA exposure. In contrast, experimental support for epigenetic actions of early BPA exposure is very limited, and largely consists of effects on Hoxa gene DNA methylation. Critical knowledge gaps were identified, including the need to fully characterize short-term and long-term uterine gene responses, interactions with estrogens and other endogenous hormones, and any long-lasting epigenetic signatures that impact adult disease.
Collapse
Affiliation(s)
- Alexander Suvorov
- Division of Cell and Molecular Biology, Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA; Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts-Amherst, 686-North Pleasant Str., Amherst, MA 01003-9303, USA
| | - David J Waxman
- Division of Cell and Molecular Biology, Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
48
|
Pan X, Wang X, Sun Y, Dou Z, Li Z. Inhibitory effects of preimplantation exposure to bisphenol-A on blastocyst development and implantation. Int J Clin Exp Med 2015; 8:8720-8729. [PMID: 26309523 PMCID: PMC4538079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/03/2015] [Indexed: 06/04/2023]
Abstract
The effect of preimplantation exposure to bisphenol-A (BPA) on blastocyst development and implantation is investigated. Mice were orally administered with BPA (200, 400, 600, and 800 mg/kg/day) from Day 0.5 to Day 3.5 of their pregnancy. Blastocyst development was examined on Day 4 of pregnancy. With 400 mg/kg/day BPA, implantation site number and implantation rate significantly reduced. With 600 and 800 mg/kg/day BPA, no implantation site was observed. BPA at 800 mg/kg/day significantly reduced blastocyst development rate and hatching rate. With 400 and 600 mg/kg/day BPA, Blastocyst development rate showed no significant difference whereas hatching rate was lower. With 400, 600, and 800 mg/kg/day BPA, some embryos were detected in the fallopian tube and hatched blastocysts showed greatly increased apoptosis level and endothelial nitric oxide synthase expression. In summary, high concentration BPA delayed the transfer of embryos to the uterus, damaged blastocyst development before implantation, and inhibited embryo implantation.
Collapse
Affiliation(s)
- Xiaoyan Pan
- Department of Histology and Embryology, Jilin Medical CollegeJilin, China
| | - Xuenan Wang
- Reproductive Medicine Center of The Affiliated Hospital of Jining Medical CollegeJining, China
| | - Yanmei Sun
- Department of Histology and Embryology, Jilin Medical CollegeJilin, China
| | - Zhaohua Dou
- Department of Histology and Embryology, Jilin Medical CollegeJilin, China
| | - Zhixin Li
- Department of Histology and Embryology, Jilin Medical CollegeJilin, China
| |
Collapse
|
49
|
Shirota M, Kawashima J, Nakamura T, Kamiie J, Shirota K, Yoshida M. Dose-dependent acceleration in the delayed effects of neonatal oral exposure to low-dose 17α-ethynylestradiol on reproductive functions in female Sprague-Dawley rats. J Toxicol Sci 2015; 40:727-38. [DOI: 10.2131/jts.40.727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Mariko Shirota
- Laboratory of Comparative Toxicology, School of Veterinary Medicine
| | - Jun Kawashima
- Laboratory of Comparative Toxicology, School of Veterinary Medicine
| | | | | | - Kinji Shirota
- Laboratory of Veterinary Pathology, Azabu University
- Research Institute of Biosciences, Azabu University
| | - Midori Yoshida
- Division of Pathology, National Institute of Health Sciences
| |
Collapse
|
50
|
Barrett JR. EDCs and estrogen receptor activity: a pathway to safer chemical design? ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:A339. [PMID: 25436941 PMCID: PMC4256693 DOI: 10.1289/ehp.122-a339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|