1
|
Liu C, Zhang B, Liu C, Zhang Y, Zhao K, Zhang P, Tian M, Lu Z, Guo X, Jia X. Association of ambient ozone exposure and greenness exposure with hemorrhagic stroke mortality at different times: A cohort study in Shandong Province, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116356. [PMID: 38678691 DOI: 10.1016/j.ecoenv.2024.116356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
Evidence on the association between long-term ozone exposure and greenness exposure and hemorrhagic stroke (HS) is limited, with mixed results. One potential source of this inconsistency is the difference in exposure time metrics. This study aimed to investigate the association between long-term exposure to ambient ozone, greenness, and mortality from HS using exposure metrics at different times. We also examined whether greenness exposure modified the relationship between ozone exposure and mortality due to HS. The study population consisted of 45771 participants aged ≥40 y residing in 20 counties in Shandong Province who were followed up from 2013 to 2019. Ozone exposure metrics (annual mean and warm season) and the normalized difference a measure of greenness exposure, were calculated. The relationship between environmental exposures (ozone and greenness exposures) and mortality from HS was assessed using time-dependent Cox proportional hazards models, and the modification of greenness exposure was examined using stratified analysis with interaction terms. The person-years at the end of follow-up were 90,663. With full adjustments, the risk of death from hemorrhagic stroke increased by 5% per interquartile range increase in warm season ozone [hazard ratio =1.05; 95 % confidence interval: 1.01-1.08]. No clear association was observed between annual ozone and mortality HS. Both the annual and summer NDVI were found to reduce the risk of HS mortality. The relationships were influenced by age, sex, and residence (urban or rural). Furthermore, greenness exposure was shown to have a modifying effect on the relationship between ozone exposure and the occurrence of HS mortality (P for interaction = 0.001). Long-term exposure to warm season O3 was positively associated with HS mortality, while greenness exposure was inversely associated with HS mortality. Greenness exposure may mitigate the negative effects of warm season ozone exposure on HS mortality.
Collapse
Affiliation(s)
- Chengrong Liu
- Department of Epidemiology and Statistics, Bengbu Medical University, Bengbu, China
| | - Bingyin Zhang
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Chao Liu
- Department of Epidemiology and Statistics, Bengbu Medical University, Bengbu, China
| | - Yingying Zhang
- Department of Epidemiology and Statistics, Bengbu Medical University, Bengbu, China
| | - Ke Zhao
- Department of Epidemiology and Statistics, Bengbu Medical University, Bengbu, China
| | - Peiyao Zhang
- Department of Epidemiology and Statistics, Bengbu Medical University, Bengbu, China
| | - Meihui Tian
- Department of Epidemiology and Statistics, Bengbu Medical University, Bengbu, China
| | - Zilong Lu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xiaolei Guo
- Shandong Center for Disease Control and Prevention, Jinan, China.
| | - Xianjie Jia
- Department of Epidemiology and Statistics, Bengbu Medical University, Bengbu, China.
| |
Collapse
|
2
|
Marchewka WM, Bryniarski KL, Marchewka JM, Popiołek I, Dębski G, Badacz R, Marchewka I, Podolec-Szczepara N, Jasiewicz-Honkisz B, Mikołajczyk TP, Guzik TJ. Sex-specific associations between the environmental exposures and low-grade inflammation and increased blood pressure in young, healthy subjects. Sci Rep 2024; 14:9588. [PMID: 38670971 PMCID: PMC11053153 DOI: 10.1038/s41598-024-59078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Long-term exposures to environmental factors including airborne as well as noise pollutants, are associated with cardiovascular risk. However, the influence of environmental pollution on the young population is controversial. Accordingly, we aimed to investigate the relationships between long-term exposures to different environmental factors and major cardiovascular and inflammatory parameters and biomarkers in young, healthy subjects. Representative sample of permanent residents of two cities differing in air and noise pollution levels, aged 15-21 years, were recruited. Krakow and Lublin, both located in southern Poland, were chosen in relation to their similarities in demographic and geopolitical characteristics, but differences in air pollution (higher in Krakow) and noise parameters (higher in Lublin). A total of 576 subjects were studied: 292 in Krakow and 284 in Lublin. All subjects underwent health questionnaire, blood pressure measurements and biomarker determinations. Inflammatory biomarkers, such as CRP, hs-CRP, fibrinogen as well as homocysteine were all significantly higher in subjects living in Krakow as opposed to subjects living in Lublin (for hsCRP: 0.52 (0.32-0.98) mg/l vs. 0.35 (0.22-0.67) mg/l; p < 0.001). Increased inflammatory biomarker levels were observed in Krakow in both male and female young adults. Interestingly, significant differences were observed in blood pressure between male and female subjects. Males from Krakow had significantly higher mean systolic blood pressure (127.7 ± 10.4 mm/Hg vs. 122.4 ± 13.0 mm/Hg; p = 0.001), pulse pressure (58.7 ± 8.9 mm/Hg vs. 51.4 ± 12.3 mm/Hg; p < 0.001) and lower heart rate (p < 0.001) as compared to males living in Lublin. This was not observed in young adult females. Long-term exposure to environmental factors related to the place of residence can significantly influence inflammatory and cardiovascular parameters, even in young individuals. Interestingly, among otherwise healthy young adults, blood pressure differences exhibited significant variations based on biological sex.
Collapse
Affiliation(s)
- Wojciech M Marchewka
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skarbowa 1, 31-121, Krakow, Poland
- Department of Radiology and Imaging Science, 5th Military Hospital, Krakow, Poland
| | - Krzysztof L Bryniarski
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jakub M Marchewka
- Department of Physiotherapy, University of Physical Education, Krakow, Poland
- Department of Orthopedics and Trauma Surgery, 5th Military Hospital, Krakow, Poland
| | - Iwona Popiołek
- Department of Toxicology and Environmental Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Grzegorz Dębski
- Department of Radiology and Imaging Science, 5th Military Hospital, Krakow, Poland
| | - Rafał Badacz
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Ida Marchewka
- Department of Ophthalmology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | | | - Barbara Jasiewicz-Honkisz
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skarbowa 1, 31-121, Krakow, Poland
| | - Tomasz P Mikołajczyk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skarbowa 1, 31-121, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz J Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skarbowa 1, 31-121, Krakow, Poland.
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland.
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Cui FP, Miao Y, Liu AX, Deng YL, Liu C, Zhang M, Zeng JY, Li YF, Liu HY, Liu CJ, Zeng Q. Associations of exposure to disinfection by-products with blood coagulation parameters among women: Results from the Tongji reproductive and environmental (TREE) study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115741. [PMID: 38029584 DOI: 10.1016/j.ecoenv.2023.115741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Experimental studies have shown that disinfection byproducts (DBPs) induce coagulotoxicity, but human evidence is scarce. OBJECTIVE This study aimed to explore the relationships of DBP exposures with blood coagulation parameters. METHODS Among 858 women from the Tongji Reproductive and Environmental (TREE) study, urinary dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were detected as internal biomarkers of DBP exposures. We measured activated partial thromboplastin time (APTT), fibrinogen (Fbg), international normalized ratio (INR), prothrombin time (PT), and thrombin time (TT) as blood coagulation parameters. Multivariable linear regression models were utilized to estimate the relationships between urinary DCAA and TCAA and blood coagulation parameters. The effect modifications by demographic and lifestyle characteristics were further explored. RESULTS Elevated tertiles of urinary DCAA concentrations were associated with increased PT and INR (11.29%, 95% CI: 1.66%, 20.92% and 0.99%, 95% CI: 0.08%, 1.90% for the third vs. first tertile, respectively; both P for trends < 0.05). Stratification analysis showed that the positive associations were only observed among younger (< 30 years), leaner (body mass index < 24.0 kg/m2), and non-passive smoking women. Moreover, elevated tertiles of urinary TCAA concentrations in positive associations with PT and INR were observed among younger women (17.89%, 95% CI: 2.50%, 33.29% and 1.82%, 95% CI: 0.34%, 3.30% for the third vs. first tertile, respectively; both P for trends < 0.05) but not among older women (both P for interactions < 0.05). CONCLUSION Higher levels of urinary DCAA and TCAA are associated with prolonged clotting time among women.
Collapse
Affiliation(s)
- Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - A-Xue Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu-Feng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hai-Yi Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chang-Jiang Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, PR China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
4
|
Li J, Lu A, Si S, Zhang K, Tang F, Yang F, Xue F. Exposure to various ambient air pollutants increases the risk of venous thromboembolism: A cohort study in UK Biobank. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157165. [PMID: 35839901 DOI: 10.1016/j.scitotenv.2022.157165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/08/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Epidemiological evidence for the association between air pollutants exposure and venous thromboembolism (VTE) remains controversial. In this study, a total of 389,659 participants from the UK Biobank who were free of VTE in 2010 were included, and the annual mean concentrations of air pollutants near where participants lived were collected. During a median follow-up period of 8.25 years, 4986 VTEs were determined from the hospital admission records. The Cox proportional hazard model was used to examine the association between air pollutants and VTE. We firstly investigated the associations between air pollutants concentration and VTE and found only NO2 and NO increased VTE risk (P < 0.05). We further calculated the product of air pollutant concentrations and outdoor time to measure personal daily cumulative exposure and found that the hazard rates (HRs) of VTE for a 50-μg/m3∗day increase in daily cumulative exposure to PM10, PM2.5, PM2.5-10, NO, and NO2 were 1.08 (1.05-1.12), 1.16 (1.09-1.24), 1.23 (1.11-1.37), 1.04 (1.01-1.06), and 1.05 (1.03-1.08), respectively. To measure joint exposure to various air pollutants and its effect on VTE, we created a weighted air pollutants exposure score (APES) and found a dose-response relationship between APES and VTE risk (P < 0.001 for trend). Compared with participants in the lowest quintile of APES, the HRs of VTE were 1.19 (1.08-1.30) for those within the highest quintile groups. Furthermore, we also found the effect of air pollutants on VTE was statistically significant only in individuals with low-middle VTE genetic risk score (GRS) (P < 0.05), but not in the high VTE GRS groups (P > 0.05). Our findings suggest that exposure to various air pollutants including PM2.5, PM2.5-10, PM10, NO, and NO2, either individually or jointly, were associated with an increased risk of VTE in a dose-response pattern. Our study highlights the importance of a comprehensive assessment of various air pollutants in VTE prevention.
Collapse
Affiliation(s)
- Jiqing Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; Healthcare Big Data Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Aimei Lu
- Department of Pharmacy, Shandong Public Health Clinical Center, Jinan 250100, Shandong, China
| | - Shucheng Si
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; Healthcare Big Data Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Kai Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; Healthcare Big Data Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Fang Tang
- Center for Big Data Research in Health and Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China; Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Yang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; Healthcare Big Data Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; Healthcare Big Data Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
5
|
Wang T, Chen X, Li H, Chen W, Xu Y, Yao Y, Zhang H, Han Y, Zhang L, Que C, Gong J, Qiu X, Zhu T. Pro-thrombotic changes associated with exposure to ambient ultrafine particles in patients with chronic obstructive pulmonary disease: roles of lipid peroxidation and systemic inflammation. Part Fibre Toxicol 2022; 19:65. [PMID: 36280873 PMCID: PMC9590143 DOI: 10.1186/s12989-022-00503-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exposure to particulate matter air pollution is associated with an increased risk of cardiovascular mortality in patients with chronic obstructive pulmonary disease (COPD), but the underlying mechanisms are not yet understood. Enhanced platelet and pro-thrombotic activity in COPD patients may explain their increased cardiovascular risk. We aim to explore whether short-term exposure to ambient particulate matter is associated with pro-thrombotic changes in adults with and without COPD, and investigate the underlying biological mechanisms in a longitudinal panel study. Serum concentration of thromboxane (Tx)B2 was measured to reflect platelet and pro-thrombotic activity. Lipoxygenase-mediated lipid peroxidation products (hydroxyeicosatetraenoic acids [HETEs]) and inflammatory biomarkers (interleukins [ILs], monocyte chemoattractant protein-1 [MCP-1], tumour necrosis factor alpha [TNF-α], and macrophage inflammatory proteins [MIPs]) were measured as potential mediating determinants of particle-associated pro-thrombotic changes. RESULTS 53 COPD and 82 non-COPD individuals were followed-up on a maximum of four visits conducted from August 2016 to September 2017 in Beijing, China. Compared to non-COPD individuals, the association between exposure to ambient ultrafine particles (UFPs) during the 3-8 days preceding clinical visits and the TxB2 serum concentration was significantly stronger in COPD patients. For example, a 103/cm3 increase in the 6-day average UFP level was associated with a 25.4% increase in the TxB2 level in the COPD group but only an 11.2% increase in the non-COPD group. The association in the COPD group remained robust after adjustment for the levels of fine particulate matter and gaseous pollutants. Compared to the non-COPD group, the COPD group also showed greater increases in the serum concentrations of 12-HETE (16.6% vs. 6.5%) and 15-HETE (9.3% vs. 4.5%) per 103/cm3 increase in the 6-day UFP average. The two lipid peroxidation products mediated 35% and 33% of the UFP-associated increase in the TxB2 level of COPD patients. UFP exposure was also associated with the increased levels of IL-8, MCP-1, MIP-1α, MIP-1β, TNF-α, and IL-1β in COPD patients, but these inflammatory biomarkers did not mediate the TxB2 increase. CONCLUSIONS Short-term exposure to ambient UFPs was associated with a greater pro-thrombotic change among patients with COPD, at least partially driven by lipoxygenase-mediated pathways following exposure. Trial registration ChiCTR1900023692 . Date of registration June 7, 2019, i.e. retrospectively registered.
Collapse
Affiliation(s)
- Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China.,Hebei Technology Innovation Center of Human Settlement in Green Building (TCHS), Shenzhen Institute of Building Research Co., Ltd., Xiongan, China
| | - Haonan Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yuan Yao
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Hanxiyue Zhang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China.,Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Lina Zhang
- Shi Cha Hai Community Health Service Center, Beijing, China
| | - Chengli Que
- Peking University First Hospital, Peking University, Beijing, China
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| |
Collapse
|
6
|
Stapelberg NJC, Branjerdporn G, Adhikary S, Johnson S, Ashton K, Headrick J. Environmental Stressors and the PINE Network: Can Physical Environmental Stressors Drive Long-Term Physical and Mental Health Risks? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13226. [PMID: 36293807 PMCID: PMC9603079 DOI: 10.3390/ijerph192013226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Both psychosocial and physical environmental stressors have been linked to chronic mental health and chronic medical conditions. The psycho-immune-neuroendocrine (PINE) network details metabolomic pathways which are responsive to varied stressors and link chronic medical conditions with mental disorders, such as major depressive disorder via a network of pathophysiological pathways. The primary objective of this review is to explore evidence of relationships between airborne particulate matter (PM, as a concrete example of a physical environmental stressor), the PINE network and chronic non-communicable diseases (NCDs), including mental health sequelae, with a view to supporting the assertion that physical environmental stressors (not only psychosocial stressors) disrupt the PINE network, leading to NCDs. Biological links have been established between PM exposure, key sub-networks of the PINE model and mental health sequelae, suggesting that in theory, long-term mental health impacts of PM exposure may exist, driven by the disruption of these biological networks. This disruption could trans-generationally influence health; however, long-term studies and information on chronic outcomes following acute exposure event are still lacking, limiting what is currently known beyond the acute exposure and all-cause mortality. More empirical evidence is needed, especially to link long-term mental health sequelae to PM exposure, arising from PINE pathophysiology. Relationships between physical and psychosocial stressors, and especially the concept of such stressors acting together to impact on PINE network function, leading to linked NCDs, evokes the concept of syndemics, and these are discussed in the context of the PINE network.
Collapse
Affiliation(s)
- Nicolas J. C. Stapelberg
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Grace Branjerdporn
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Sam Adhikary
- Mater Young Adult Health Centre, Mater Hospital, Brisbane, QID 4101, Australia
| | - Susannah Johnson
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
| | - Kevin Ashton
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - John Headrick
- School of Medical Science, Griffith University, Gold Coast, QID 4215, Australia
| |
Collapse
|
7
|
Bumroongkit C, Liwsrisakun C, Deesomchok A, Pothirat C, Theerakittikul T, Limsukon A, Trongtrakul K, Tajarernmuang P, Niyatiwatchanchai N, Euathrongchit J, Inchai J, Chaiwong W. Correlation of Air Pollution and Prevalence of Acute Pulmonary Embolism in Northern Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12808. [PMID: 36232104 PMCID: PMC9566050 DOI: 10.3390/ijerph191912808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The relationship between the level of air pollution and acute pulmonary embolism (APE) has had inconsistent results. OBJECTIVE This study aimed to analyze the relationship between the high level of air pollution exposure and APE. METHODS A ten-year retrospective cohort, single-center study was performed on patients diagnosed with APE from October 2010 to December 2020. The association between air pollution and monthly APE case diagnosis was analyzed. RESULTS A total number of 696 patients was included. The effect of every 10 µg/m3 increment of particulate matters with an aerodynamic diameter < 10 µm (PM10) on total monthly APE cases (unprovoked PE and provoked PE) was increased significantly at lag 4, 5 and 6 months with adjusted RR (95% CI) of 1.06 (1.01, 1.12), p = 0.011, 1.07 (1.01, 1.13), p = 0.021 and 1.06 (1.01, 1.12), p = 0.030, respectively. Adjusted RR for APE was significantly increased for PM10 in the second tertile ((adjusted RR (95% CI) 1.76 (1.12, 2.77)), p = 0.014. CONCLUSIONS We conclude that PM10 is associated with an increased prevalence of APE cases. The policy for tighter control of air pollution in our country is needed to reduce the impact of air pollutants on people's health.
Collapse
Affiliation(s)
- Chaiwat Bumroongkit
- Division of Pulmonary, Critical Care, and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chalerm Liwsrisakun
- Division of Pulmonary, Critical Care, and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Athavudh Deesomchok
- Division of Pulmonary, Critical Care, and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaicharn Pothirat
- Division of Pulmonary, Critical Care, and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Theerakorn Theerakittikul
- Division of Pulmonary, Critical Care, and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Atikun Limsukon
- Division of Pulmonary, Critical Care, and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Konlawij Trongtrakul
- Division of Pulmonary, Critical Care, and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pattraporn Tajarernmuang
- Division of Pulmonary, Critical Care, and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nutchanok Niyatiwatchanchai
- Division of Pulmonary, Critical Care, and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Juntima Euathrongchit
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Juthamas Inchai
- Division of Pulmonary, Critical Care, and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warawut Chaiwong
- Division of Pulmonary, Critical Care, and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Koo GPY, Zheng H, Pek PP, Hughes F, Lim SL, Yeo JW, Ong MEH, Ho AFW. Clustering of Environmental Parameters and the Risk of Acute Myocardial Infarction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148476. [PMID: 35886328 PMCID: PMC9318360 DOI: 10.3390/ijerph19148476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023]
Abstract
The association between days with similar environmental parameters and cardiovascular events is unknown. We investigate the association between clusters of environmental parameters and acute myocardial infarction (AMI) risk in Singapore. Using k-means clustering and conditional Poisson models, we grouped calendar days from 2010 to 2015 based on rainfall, temperature, wind speed and the Pollutant Standards Index (PSI) and compared the incidence rate ratios (IRR) of AMI across the clusters using a time-stratified case-crossover design. Three distinct clusters were formed with Cluster 1 having high wind speed, Cluster 2 high rainfall, and Cluster 3 high temperature and PSI. Compared to Cluster 1, Cluster 3 had a higher AMI incidence with IRR 1.04 (95% confidence interval 1.01–1.07), but no significant difference was found between Cluster 1 and Cluster 2. Subgroup analyses showed that increased AMI incidence was significant only among those with age ≥65, male, non-smokers, non-ST elevation AMI (NSTEMI), history of hyperlipidemia and no history of ischemic heart disease, diabetes or hypertension. In conclusion, we found that AMI incidence, especially NSTEMI, is likely to be higher on days with high temperature and PSI. These findings have public health implications for AMI prevention and emergency health services delivery during the seasonal Southeast Asian transboundary haze.
Collapse
Affiliation(s)
| | - Huili Zheng
- National Registry of Diseases Office, Health Promotion Board, Singapore 168937, Singapore;
| | - Pin Pin Pek
- Health Services & Systems Research, Duke-NUS Medical School, Singapore 169857, Singapore; (P.P.P.); (M.E.H.O.)
| | - Fintan Hughes
- Department of Anesthesiology, Duke University Hospital, Duke University, Durham, NC 27710, USA;
| | - Shir Lynn Lim
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore;
- Department of Medicine, National University Singapore, Singapore 119228, Singapore
| | - Jun Wei Yeo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Marcus E. H. Ong
- Health Services & Systems Research, Duke-NUS Medical School, Singapore 169857, Singapore; (P.P.P.); (M.E.H.O.)
- Department of Emergency Medicine, Singapore General Hospital, Singapore 169608, Singapore
| | - Andrew F. W. Ho
- Department of Emergency Medicine, Singapore General Hospital, Singapore 169608, Singapore
- Pre-Hospital and Emergency Research Centre, Duke-NUS Medical School Singapore, Singapore 169857, Singapore
- Correspondence:
| |
Collapse
|
9
|
Miao H, Li X, Wang X, Nie S. Air pollution increases the risk of pulmonary embolism: a meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:259-266. [PMID: 34107570 DOI: 10.1515/reveh-2021-0035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Air pollution can lead to many cardiovascular and respiratory diseases, but the impact of air pollution on pulmonary embolism is still uncertain. We conducted a meta-analysis to assess the relationship between air pollution and pulmonary embolism. CONTENT We searched PubMed, EMBASE, Web of Science, and the Cochran Library for citations on air pollutants (carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone and particulate matter) and pulmonary embolism. A total of nine citations met the inclusion criteria. There is no evidence of bias. CO, SO2, PM10 and PM2.5 had no significant effect on the occurrence of pulmonary embolism. NO2 and O3 can increase the risk of pulmonary embolism to a small extent. SUMMARY This meta-analysis suggests that some air pollutants are associated with an increased risk of pulmonary embolism. OUTLOOK Reducing air pollution and improving air quality can effectively reduce the risk of pulmonary embolism.
Collapse
Affiliation(s)
- Huangtai Miao
- Beijing An Zhen Hospital, Chaoyang-qu, Beijing, China
| | - Xiaoying Li
- Beijing Jishuitan Hospital, Beijing, Beijing, China
| | - Xiao Wang
- Beijing An Zhen Hospital, Chaoyang-qu, Beijing, China
| | - Shaoping Nie
- Beijing An Zhen Hospital, 2 Anzhen Rd, Chaoyang District, 100029, Chaoyang-qu, Beijing, China
| |
Collapse
|
10
|
Xu Z, Wang W, Liu Q, Li Z, Lei L, Ren L, Deng F, Guo X, Wu S. Association between gaseous air pollutants and biomarkers of systemic inflammation: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118336. [PMID: 34634403 DOI: 10.1016/j.envpol.2021.118336] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Studies have linked gaseous air pollutants to multiple health effects via inflammatory pathways. Several major inflammatory biomarkers, including C-reactive protein (CRP), fibrinogen, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) have also been considered as predictors of cardiovascular disease. However, there has been no meta-analysis to evaluate the associations between gaseous air pollutants and these typical biomarkers of inflammation to date. OBJECTIVES To evaluate the overall associations between short-term and long-term exposures to ambient ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon dioxide (CO) and major inflammatory biomarkers including CRP, fibrinogen, IL-6 and TNF-α. METHODS A meta-analysis was conducted for publications from PubMed, Web of Science, Scopus and EMBASE databases up to Feb 1st, 2021. RESULTS The meta-analysis included 38 studies conducted among 210,438 participants. Generally, we only observed significant positive associations between short-term exposures to gaseous air pollutants and inflammatory biomarkers. For a 10 μg/m3 increase in short-term exposure to O3, NO2, and SO2, there were significant increases of 1.05% (95%CI: 0.09%, 2.02%), 1.60% (95%CI: 0.49%, 2.72%), and 10.44% (95%CI: 4.20%, 17.05%) in CRP, respectively. Meanwhile, a 10 μg/m3 increase in NO2 was also associated with a 4.85% (95%CI: 1.10%, 8.73%) increase in TNF-α. Long-term exposures to gaseous air pollutants were not statistically associated with these biomarkers, but the study numbers were relatively small. Subgroup analyses found more apparent associations in studies with better study design, higher quality, and smaller sample size. Meanwhile, the associations also varied across studies conducted in different geographical regions. CONCLUSION Short-term exposure to gaseous air pollutants is associated with increased levels of circulating inflammatory biomarkers, suggesting that a systemic inflammatory state is activated upon exposure. More studies on long-term exposure to gaseous air pollutants and inflammatory biomarkers are warranted to verify the associations.
Collapse
Affiliation(s)
- Zhouyang Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Qisijing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Zichuan Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Lei Lei
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Lihua Ren
- Division of Maternal and Child Nursing, School of Nursing, Peking University, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| |
Collapse
|
11
|
Tang L, Shi S, Wang B, Liu L, Yang Y, Sun X, Ni Z, Wang X. Effect of urban air pollution on CRP and coagulation: a study on inpatients with acute exacerbation of chronic obstructive pulmonary disease. BMC Pulm Med 2021; 21:296. [PMID: 34537026 PMCID: PMC8449878 DOI: 10.1186/s12890-021-01650-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/28/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is an important event in the course of chronic obstructive pulmonary disease that negatively affects patients' quality of life and leads to higher socioeconomic costs. While previous studies have demonstrated a significant association between urban air pollution and hospitalization for AECOPD, there is a lack of research on the impact of particulate matter (PM) on inflammation and coagulation in AECOPD inpatients. Therefore, this study investigated the association of changes in coagulation function and C-reactive protein (CRP) with PM levels in the days preceding hospitalization. PATIENTS AND METHODS We reviewed the medical records of AECOPD patients admitted to Putuo Hospital, Shanghai University of Traditional Chinese Medicine, between March 2017 and September 2019. We analyzed the association of coagulation function and CRP level in AECOPD patients with PM levels in the days before hospitalization. Multivariate unconditional logistic regression analyses were used to evaluate the adjusted odds ratio (OR) and 95% confidence interval (CI) for the association of CRP data with hospitalization day. Kruskal-Wallis tests were used to evaluate mean aerodynamic diameter of ≥ 2.5 μm (PM2.5) exposure on the day before hospitalization; we assessed its association with changes in prothrombin time (PT) in AECOPD inpatients with different Global Initiative for Chronic Obstructive Lung Disease (GOLD) classes. RESULTS The peripheral blood PT of AECOPD patients with PM2.5 ≥ 25 mg/L on the day before hospitalization were lower than those of patients with PM2.5 < 25 mg/L (t = 2.052, p = 0.041). Patients with severe GOLD class exposed to greater than 25 mg/L of PM2.5on the day before hospitalization showed significant differences in PT (F = 9.683, p = 0.008). Peripheral blood CRP levels of AECOPD patients exposed to PM2.5 ≥ 25 mg/L and PM10 ≥ 50 mg/L on the day before hospitalization were higher than those of patients exposed to PM2.5 < 25 mg/L and PM10 < 50 mg/L (t = 2.008, p = 0.046; t = 2.637, p = 0.009). Exposure to < 25 mg/L of PM2.5 on the day before hospitalization was significantly associated with CRP levels (adjusted OR 1.91; 95% CI 1.101, 3.315; p = 0.024). CONCLUSION Exposure of patients with AECOPD to high PM levels on the day before hospitalization was associated with an increased CRP level and shortened PT. Moreover, PM2.5 had a greater effect on CRP level and PT than mean aerodynamic diameter of ≥ 10 μm (PM10). AECOPD patients with severe GOLD class were more sensitive to PM2.5-induced shortening of PT than those with other GOLD classes.
Collapse
Affiliation(s)
- Lingling Tang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Suofang Shi
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| | - Bohan Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Li Liu
- Department of Central Lab, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Ying Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Xianhong Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Zhenhua Ni
- Department of Central Lab, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Xiongbiao Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
12
|
Hung TH, Hsu TY, Tung TH, Tsai CC, Ou CY, Chung FF, Wan GH. The association between maternal exposure to outdoor air pollutants, inflammatory response, and birth weight in healthy women. ENVIRONMENTAL RESEARCH 2021; 196:110921. [PMID: 33639148 DOI: 10.1016/j.envres.2021.110921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Increased maternal inflammatory response has been noted in women with pregnancies complicated by preterm birth and small-for-gestational age infants. However, the association between gestational exposure to air pollutants, maternal inflammatory response, and fetal growth remains unclear. In this study, we aimed to investigate the association between exposure to air pollutants during pregnancy and the concentration of inflammatory indicators in maternal and fetal circulations, as well as fetal growth. We recruited 108 healthy pregnant women living in northern (n = 55) and southern (n = 53) areas of Taiwan and prospectively collected information of exposure to outdoor air pollutants throughout gestation. Maternal blood from each trimester and umbilical cord blood after delivery were collected and analyzed for inflammatory indicators including high sensitivity C-reactive protein (hs-CRP), interleukin-1β (IL-1β), and tumor necrosis factor (TNF)-α. Our results showed that exposure to particulate matter less than or equal to 10 μm (PM10) and ozone (O3) during the first trimester had a direct effect on reduction of birth weight, but the direct effect of PM10 mediated by hs-CRP and the direct effect of O3 mediated by TNF-α on fetal birth weight were not significant. Exposure to PM10 and PM2.5 during the second and third trimesters also directly affected birth weight. Furthermore, exposure to sulfur dioxide (SO2) caused changes in the concentrations of TNF-α in maternal blood during the second trimester, which subsequently resulted in reduced fetal weight. Together, these results indicate that exposure to air pollutants may cause both direct and indirect effects on the reduction of fetal weight.
Collapse
Affiliation(s)
- Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Te-Yao Hsu
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tao-Hsin Tung
- Department of Medical Research and Education, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Ching-Chang Tsai
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Yu Ou
- Department of Obstetrics, Po-Zen Hospital, Kaohsiung, Taiwan
| | - Fen-Fang Chung
- Department of Nursing, College of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Nursing, Linkuo Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Gwo-Hwa Wan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan; Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, Taiwan.
| |
Collapse
|
13
|
Lei J, Li Z, Huang X, Li X, Zhang G, Kan H, Chen R, Zhang Y. The Acute Effect of Diesel Exhaust Particles and Different Fractions Exposure on Blood Coagulation Function in Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084136. [PMID: 33919809 PMCID: PMC8070753 DOI: 10.3390/ijerph18084136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/10/2021] [Accepted: 04/08/2021] [Indexed: 11/27/2022]
Abstract
The toxicity and widespread exposure opportunity of diesel exhaust particles (DEP) has aroused public health concerns. This study aimed to investigate the acute effect of DEP and different fractions exposure on blood coagulation function in mice. In this study, nine- week-old C57BL/6J male mice were divided into four exposure groups (with 15 mice in each group). The water-soluble (WS) and water-insoluble (WIS) fractions of DEP were isolated, and intratracheal instillation was used for DEP, WS and WIS exposure. The phosphate buffer saline (PBS) exposure group was set as the control group. After 24 h exposure, the mice were sacrificed for blood routine, coagulation function and bleeding time examinations to estimate the acute effect of DEP, WS and WIS exposure on the blood coagulation function. In our results, no statistically significant difference in weight of body, brain and lung was observed in different exposure groups. While several core indexes in blood coagulation like bleeding time (BT), fibrinogen (FIB), activated partial thromboplastin time (APTT) and prothrombin time (PT) altered or showed a lower tendency after DEP, WS and WIS exposure. For example, BT was lower In WIS exposure group (211.00 s) compared with PBS exposure group (238.50 s) (p < 0.01), and FIB was lower in WS exposure group (233.00 g/L) compared with PBS exposure group (249.50 g/L) (p < 0.05). Additionally, systemic inflammation-related indexes like white blood cell count (WBC), neutrophil count (NEUT), lymphocyte count (LYMPH) altered after DEP, WS and WIS exposure. In conclusion, DEP, WS and WIS fractions exposure could result in the hypercoagulable state of blood in mice. The noteworthy effects of WS and WIS fractions exposure on blood coagulation function deserve further investigation of the potential mechanism.
Collapse
Affiliation(s)
- Jian Lei
- Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai 200032, China; (J.L.); (Z.L.); (X.H.); (H.K.); (R.C.)
| | - Zhouzhou Li
- Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai 200032, China; (J.L.); (Z.L.); (X.H.); (H.K.); (R.C.)
| | - Xingke Huang
- Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai 200032, China; (J.L.); (Z.L.); (X.H.); (H.K.); (R.C.)
| | - Xin Li
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (X.L.); (G.Z.)
| | - Guangzheng Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (X.L.); (G.Z.)
| | - Haidong Kan
- Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai 200032, China; (J.L.); (Z.L.); (X.H.); (H.K.); (R.C.)
| | - Renjie Chen
- Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai 200032, China; (J.L.); (Z.L.); (X.H.); (H.K.); (R.C.)
| | - Yuhao Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (X.L.); (G.Z.)
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Correspondence:
| |
Collapse
|
14
|
Vander Hoorn S, Murray K, Nedkoff L, Hankey GJ, Flicker L, Yeap BB, Almeida OP, Norman P, Brunekreef B, Nieuwenhuijsen M, Heyworth J. Long-term exposure to outdoor air pollution and risk factors for cardiovascular disease within a cohort of older men in Perth. PLoS One 2021; 16:e0248931. [PMID: 33780497 PMCID: PMC8006998 DOI: 10.1371/journal.pone.0248931] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
While there is clear evidence that high levels of pollution are associated with increased all-cause mortality and cardiovascular mortality and morbidity, the biological mechanisms that would explain this association are less understood. We examined the association between long-term exposure to air pollutants and risk factors associated with cardiovascular disease. Air pollutant concentrations were estimated at place of residence for cohort members in the Western Australian Centre for Health and Ageing Health in Men Study. Blood samples and blood pressure measures were taken for a cohort of 4249 men aged 70 years and above between 2001 and 2004. We examined the association between 1-year average pollutant concentrations with blood pressure, cholesterol, triglycerides, C-reactive protein, and total homocysteine. Linear regression analyses were carried out, with adjustment for confounding, as well as an assessment of potential effect modification. The four pollutants examined were fine particulate matter, black carbon (BC), nitrogen dioxide, and nitrogen oxides. We found that a 2.25 μg/m3 higher exposure to fine particulate matter was associated with a 1.1 percent lower high-density cholesterol (95% confidence interval: -2.4 to 0.1) and 4.0 percent higher serum triglycerides (95% confidence interval: 1.5 to 6.6). Effect modification of these associations by diabetes history was apparent. We found no evidence of an association between any of the remaining risk factors or biomarkers with measures of outdoor air pollution. These findings indicate that long-term PM2.5 exposure is associated with elevated serum triglycerides and decreased HDL cholesterol. This requires further investigation to determine the reasons for this association.
Collapse
Affiliation(s)
- Stephen Vander Hoorn
- School of Population and Global Health, The University of Western Australia, Perth, Australia
- Centre for Air Pollution, Energy and Health Research, Glebe, New South Wales, Australia
| | - Kevin Murray
- School of Population and Global Health, The University of Western Australia, Perth, Australia
| | - Lee Nedkoff
- School of Population and Global Health, The University of Western Australia, Perth, Australia
| | - Graeme J. Hankey
- Medical School, The University of Western Australia, Crawley, Australia
| | - Leon Flicker
- Medical School, The University of Western Australia, Crawley, Australia
- WA Centre for Health & Ageing, The University of Western Australia, Crawley, Australia
| | - Bu B. Yeap
- Medical School, The University of Western Australia, Crawley, Australia
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Osvaldo P. Almeida
- Medical School, The University of Western Australia, Crawley, Australia
- WA Centre for Health & Ageing, The University of Western Australia, Crawley, Australia
| | - Paul Norman
- Medical School, The University of Western Australia, Crawley, Australia
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | | | - Jane Heyworth
- School of Population and Global Health, The University of Western Australia, Perth, Australia
- Centre for Air Pollution, Energy and Health Research, Glebe, New South Wales, Australia
| |
Collapse
|
15
|
Tang H, Cheng Z, Li N, Mao S, Ma R, He H, Niu Z, Chen X, Xiang H. The short- and long-term associations of particulate matter with inflammation and blood coagulation markers: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115630. [PMID: 33254709 PMCID: PMC7687019 DOI: 10.1016/j.envpol.2020.115630] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 05/16/2023]
Abstract
Inflammation and the coagulation cascade are considered to be the potential mechanisms of ambient particulate matter (PM) exposure-induced adverse cardiovascular events. Tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and fibrinogen are arguably the four most commonly assayed markers to reflect the relationships of PM with inflammation and blood coagulation. This review summarized and quantitatively analyzed the existing studies reporting short- and long-term associations of PM2.5(PM with an aerodynamic diameter ≤2.5 μm)/PM10 (PM with an aerodynamic diameter≤10 μm) with important inflammation and blood coagulation markers (TNF-α, IL-6, IL-8, fibrinogen). We reviewed relevant studies published up to July 2020, using three English databases (PubMed, Web of Science, Embase) and two Chinese databases (Wang-Fang, China National Knowledge Infrastructure). The OHAT tool, with some modification, was applied to evaluate risk of bias. Meta-analyses were conducted with random-effects models for calculating the pooled estimate of markers. To assess the potential effect modifiers and the source of heterogeneity, we conducted subgroup analyses and meta-regression analyses where appropriate. The assessment and correction of publication bias were based on Begg's and Egger's test and "trim-and-fill" analysis. We identified 44 eligible studies. For short-term PM exposure, the percent change of a 10 μg/m3 PM2.5 increase on TNF-α and fibrinogen was 3.51% (95% confidence interval (CI): 1.21%, 5.81%) and 0.54% (95% confidence interval (CI): 0.21%, 0.86%) respectively. We also found a significant short-term association between PM10 and fibrinogen (percent change = 0.17%, 95% CI: 0.04%, 0.29%). Overall analysis showed that long-term associations of fibrinogen with PM2.5 and PM10 were not significant. Subgroup analysis showed that long-term associations of fibrinogen with PM2.5 and PM10 were significant only found in studies conducted in Asia. Our findings support significant short-term associations of PM with TNF-α and fibrinogen. Future epidemiological studies should address the role long-term PM exposure plays in inflammation and blood coagulation markers level change.
Collapse
Affiliation(s)
- Hong Tang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Zilu Cheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122# Luoshi Road, Wuhan, China
| | - Na Li
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Shuyuan Mao
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Runxue Ma
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Haijun He
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Zhiping Niu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Xiaolu Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China.
| |
Collapse
|
16
|
Scheers H, Nawrot TS, Nemery B, De Troeyer K, Callens M, De Smet F, Van Nieuwenhuyse A, Casas L. Antithrombotic medication and endovascular interventions associated with short-term exposure to particulate air pollution: A nationwide case-crossover study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115130. [PMID: 32652373 DOI: 10.1016/j.envpol.2020.115130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/31/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Short-term exposure to air pollution has pro-thrombotic effects and triggers thrombo-embolic events such as myocardial infarction or stroke in adults. This study evaluates the association between short-term variation in air pollution and treatments for acute thrombo-embolic events among the whole Belgian population. In a bidirectional time-stratified case-crossover design, we included 227,861 events treated with endovascular intervention and 74,942 with antithrombotic enzymes that were reimbursed by the Belgian Social Security between January 1st, 2009 and December 31st, 2013. We compared the concentrations of particulate matter (PM) air pollution (PM10 and PM2.5), as estimated at the municipality level on the day of the event (lag 0) and two days earlier (lag 1 and lag 2) with those of control days from the same month, matched by temperature and accounting for day of the week (weekend vs week days). We applied conditional logistic regression models to obtain odds ratios (OR) and their 95% CI for an increase of 10 μg/m3 (PM10) or 5 μg/m3 (PM2.5) in pollutant concentrations over three lag days (lag 0, 1 and 2). We observed significant associations of PM10 and PM2.5 with treatment of acute thrombo-embolic events at the three lags. The strongest associations were observed for air pollution concentrations on the day of the event (lag0). Increases of 10 μg/m3 PM10 and 5 μg/m3 PM2.5 on lag0 increased the odds of events treated with endovascular intervention by 2.7% (95%CI:2.3%-3.2%) and 1.3% (95%CI:1%-1.5%), respectively, and they increased the odds of events treated with antithrombotic enzymes by 1.9% (95%CI:1.1-2.7%) and 1.2% (95%CI:0.7%-1.6%), respectively. The associations were generally stronger during autumn months and among children. Our nationwide study confirms that acute exposure to outdoor air pollutants such as PM10 or PM2.5 increase the use of medication and interventions to treat thrombo-embolic events.
Collapse
Affiliation(s)
- Hans Scheers
- Centre for Environment and Health - Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Centre for Evidence-Based Practice, Rode Kruis-Vlaanderen, Mechelen, Belgium
| | - Tim S Nawrot
- Centre for Environment and Health - Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Centre for Environmental Sciences, Hasselt University, Agoralaan Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Benoit Nemery
- Centre for Environment and Health - Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Katrien De Troeyer
- Centre for Environment and Health - Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | - Frank De Smet
- Centre for Environment and Health - Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; IMA-AIM, Tervurenlaan 188A - box 9, 1150 Brussel, Belgium
| | - An Van Nieuwenhuyse
- Centre for Environment and Health - Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange, Luxembourg
| | - Lidia Casas
- Centre for Environment and Health - Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Epidemiology and Health Policy, Department of Epidemiology and Social Medicine, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| |
Collapse
|
17
|
Shkirkova K, Lamorie-Foote K, Connor M, Patel A, Barisano G, Baertsch H, Liu Q, Morgan TE, Sioutas C, Mack WJ. Effects of ambient particulate matter on vascular tissue: a review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:319-350. [PMID: 32972334 PMCID: PMC7758078 DOI: 10.1080/10937404.2020.1822971] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fine and ultra-fine particulate matter (PM) are major constituents of urban air pollution and recognized risk factors for cardiovascular diseases. This review examined the effects of PM exposure on vascular tissue. Specific mechanisms by which PM affects the vasculature include inflammation, oxidative stress, actions on vascular tone and vasomotor responses, as well as atherosclerotic plaque formation. Further, there appears to be a greater PM exposure effect on susceptible individuals with pre-existing cardiovascular conditions.
Collapse
Affiliation(s)
| | - Krista Lamorie-Foote
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | - Michelle Connor
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | - Arati Patel
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | | | - Hans Baertsch
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | - Qinghai Liu
- Zilkha Neurogenetic Institute, University of Southern California
| | - Todd E. Morgan
- Leonard Davis School of Gerontology, University of Southern California
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California
| | - William J. Mack
- Zilkha Neurogenetic Institute, University of Southern California
- Leonard Davis School of Gerontology, University of Southern California
| |
Collapse
|
18
|
de Miguel-Diez J, Blasco-Esquivias I, Rodriguez-Matute C, Bedate-Diaz P, Lopez-Reyes R, Fernandez-Capitan C, Garcia-Fuika S, Lobo-Beristain JL, Garcia-Lozaga A, Quezada CA, Murga-Arizabaleta I, Garcia-Ortega A, Rodríguez-Davila MA, Marin-Barrera L, Otero-Candelera R, Praena-Fernandez JM, Jara-Palomares L. Correlation between short-term air pollution exposure and unprovoked lung embolism. Prospective observational (Contamina-TEP Group). Thromb Res 2020; 192:134-140. [PMID: 32480167 DOI: 10.1016/j.thromres.2020.04.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND The aim was to analyze the temporal relationship between short-term air pollution exposure and acute symptomatic unprovoked pulmonary embolism (PE). PATIENTS/METHODS We performed a prospective, multicenter study in consecutive patients diagnosed with acute symptomatic unprovoked PE from February 2012 to January 2013. We analyzed demographic and clinical data, patients' addresses, meteorological and air pollutants data (PM10, SO2, CO, NO2, ozone emission data). We considered the number of days the patient had symptoms, and the study period constituted the previous 30 days. Likewise, the mean annual data of the reference season were calculated as well as the data of the 30-day study period corresponding to the same dates in the previous 3 years in order to obtain the monthly mean of the different pollutants for each period. RESULTS A total of 162 patients with acute symptomatic PE were recruited (43.2% unprovoked PE). The air pollutants could be determined in 50% of the patients with unprovoked PE, and a final analysis was performed in 35 patients. In the multiple comparison analysis to verify a possible correlation between the study period and the annual median, only NO2 showed a statistically significant association (p = 0.009). When comparing the study period with the previous 3 years, only NO2 maintained a statistically significant association for the 3 study periods. CONCLUSIONS We found a relationship between short-term exposure to NO2 and the presence of unprovoked PE.
Collapse
Affiliation(s)
- Javier de Miguel-Diez
- Servicio de Neumología, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | - Lucia Marin-Barrera
- Servicio de Neumología, Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Remedios Otero-Candelera
- Servicio de Neumología, Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío, Sevilla, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Luis Jara-Palomares
- Servicio de Neumología, Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío, Sevilla, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
19
|
Song J, Zhu J, Tian G, Li H, Li H, An Z, Jiang J, Fan W, Wang G, Zhang Y, Wu W. Short time exposure to ambient ozone and associated cardiovascular effects: A panel study of healthy young adults. ENVIRONMENT INTERNATIONAL 2020; 137:105579. [PMID: 32086080 DOI: 10.1016/j.envint.2020.105579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
The evidence that exposure to ambient ozone (O3) causes acute cardiovascular effects appears inconsistent. A repeated-measure study with 61 healthy young volunteers was conducted in Xinxiang, Central China. Real-time concentrations of O3 were monitored. Cardiovascular outcomes including blood pressure (BP), heart rate (HR), serum levels of high sensitivity C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), tissue-type plasminogen activator (t-PA), and platelet-monocyte aggregation (PMA) were repeated measured. Linear mixed-effect models were used to analyze the association of ambient O3 with these cardiovascular outcomes. Additionally, the modifying effects of glutathione S-transferase mu 1 (GSTM1) and glutathione S-transferase theta 1 (GSTT1) polymorphisms were estimated to explore the potential mechanisms and role of the association between O3 exposure and the above cardiovascular outcomes. A 10 μg/m3 increase in O3 was associated with increases of 9.2 mmHg (95% confidence interval [CI]: 2.5, 15.9), 7.2 mmHg (95% CI: 0.8, 13.6), and 21.2 bpm (95% CI: 5.8, 36.6) in diastolic BP (DBP, lag1), mean arterial BP (MABP, lag1), and HR (lag01), respectively. Meanwhile, the serum concentrations of hs-CRP, 8-OHdG, and t-PA were all increased by O3 exposure, but the PMA level was decreased. Stratification analyses showed that the estimated effects of O3 on DBP, MABP, and HR in GSTM1-sufficient subjects were significantly higher than in GSTM1-null subjects. Moreover, GSTM1-null genotype enhanced O3-induced increases, albeit insignificant, in levels of serum hs-CRP, 8-OHdG, and t-PA compared with GSTM1-sufficient genotype. Insignificant increases in hs-CRP and t-PA were also detected in GSTT1-null subjects. Taken together, our findings indicate that acute exposure to ambient O3 induces autonomic alterations, systemic inflammation, oxidative stress, and fibrinolysis in healthy young subjects. GSTM1 genotype presents the trend of modifying O3-induced cardiovascular effects.
Collapse
Affiliation(s)
- Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jingfang Zhu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Ge Tian
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Haibin Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Huijun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Wei Fan
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Gui Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yange Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
20
|
Shin S, Burnett RT, Kwong JC, Hystad P, van Donkelaar A, Brook JR, Goldberg MS, Tu K, Copes R, Martin RV, Liu Y, Kopp A, Chen H. Ambient Air Pollution and the Risk of Atrial Fibrillation and Stroke: A Population-Based Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:87009. [PMID: 31449466 PMCID: PMC6792368 DOI: 10.1289/ehp4883] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Although growing evidence links air pollution to stroke incidence, less is known about the effect of air pollution on atrial fibrillation (AF), an important risk factor for stroke. OBJECTIVES We assessed the associations between air pollution and incidence of AF and stroke. We also sought to characterize the shape of pollutant-disease relationships. METHODS The population-based cohort comprised 5,071,956 Ontario residents, age 35–85 y and without the diagnoses of both outcomes on 1 April 2001 and was followed up until 31 March 2015. AF and stroke cases were ascertained using health administrative databases with validated algorithms. Based on annual residential postal codes, we assigned 5-y running average concentrations of fine particulate matter ([Formula: see text]), nitrogen dioxide ([Formula: see text]), and ozone ([Formula: see text]) from satellite-derived data, a land-use regression model, and a fusion-based method, respectively, as well as redox-weighted averages of [Formula: see text] and [Formula: see text] ([Formula: see text]) for each year. Using Cox proportional hazards models, we estimated the hazard ratios (HRs) and 95% confidence intervals (95% CIs) of AF and stroke with each of these pollutants, adjusting for individual- and neighborhood-level variables. We used newly developed nonlinear risk models to characterize the shape of pollutant–disease relationships. RESULTS Between 2001 and 2015, we identified 313,157 incident cases of AF and 122,545 cases of stroke. Interquartile range increments of [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] were associated with increases in the incidence of AF [HRs (95% CIs): 1.03 (1.01, 1.04), 1.02 (1.01, 1.03), 1.01 (1.00, 1.02), and 1.01 (1.01, 1.02), respectively] and the incidence of stroke [HRs (95% CIs): 1.05 (1.03, 1.07), 1.04 (1.01, 1.06), 1.05 (1.03, 1.06), and 1.05 (1.04, 1.06), respectively]. Associations of similar magnitude were found in various sensitivity analyses. Furthermore, we found a near-linear association for stroke with [Formula: see text], whereas [Formula: see text], [Formula: see text]-, and [Formula: see text] relationships exhibited sublinear shapes. CONCLUSIONS Air pollution was associated with stroke and AF onset, even at very low concentrations. https://doi.org/10.1289/EHP4883.
Collapse
Affiliation(s)
- Saeha Shin
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Public Health Ontario, Toronto, Ontario, Canada
| | - Richard T. Burnett
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Jeffrey C. Kwong
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Public Health Ontario, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Perry Hystad
- College of Public Health and Human Studies, Oregon State University, Corvallis, Oregon, USA
| | - Aaron van Donkelaar
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jeffrey R. Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Air Quality Research Division, Environment Canada, Toronto, Ontario, Canada
| | - Mark S. Goldberg
- Department of Medicine, McGill University, Montréal, Québec, Canada
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Karen Tu
- Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ray Copes
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Public Health Ontario, Toronto, Ontario, Canada
| | - Randall V. Martin
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | | | | | - Hong Chen
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Public Health Ontario, Toronto, Ontario, Canada
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
- ICES, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Midouhas E, Kokosi T, Flouri E. Neighbourhood-level air pollution and greenspace and inflammation in adults. Health Place 2019; 58:102167. [PMID: 31325812 DOI: 10.1016/j.healthplace.2019.102167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 01/17/2023]
Abstract
Inflammation has been proposed as a pathway from adverse physical environments to poor physical and mental health. We estimated longitudinal associations of neighbourhood-level air pollution and greenspace with individual-level inflammation (measured with C-reactive protein and fibrinogen), using data from over 8000 adults living in England and Wales who participated in Understanding Society. Using linear regression, we found that neighbourhood-level nitrogen dioxide predicted later levels of fibrinogen, but not C-reactive protein. Area air pollution, but not area greenery, appears to predict inflammation, even after accounting for social deprivation in the area.
Collapse
Affiliation(s)
- Emily Midouhas
- Department of Psychology and Human Development, UCL Institute of Education, University College London, 25 Woburn Square, London, WC1H 0AA, UK.
| | - Theodora Kokosi
- Department of Psychology and Human Development, UCL Institute of Education, University College London, 25 Woburn Square, London, WC1H 0AA, UK
| | - Eirini Flouri
- Department of Psychology and Human Development, UCL Institute of Education, University College London, 25 Woburn Square, London, WC1H 0AA, UK
| |
Collapse
|
22
|
Zhang Z, Wang J, Liu F, Yuan L, Yuan J, Chen L, Zhong N, Lu W. Impacts of event-specific air quality improvements on total hospital admissions and reduced systemic inflammation in COPD patients. PLoS One 2019; 14:e0208687. [PMID: 30893301 PMCID: PMC6426198 DOI: 10.1371/journal.pone.0208687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/21/2018] [Indexed: 11/18/2022] Open
Abstract
There is limited evidence linking the impacts of reduced air pollution on hospital admissions. The potential biological mechanisms are still not completely understood. This study examined the effects of mitigated ambient pollution on hospital admissions and inflammatory biomarker levels in chronic obstructive pulmonary disease (COPD) COPD patients. Daily hospital admissions were compared over 51 days associated with the Asian Games period (Nov 1-Dec 21, 2010) with the identical calendar dates of baseline years (2004–2009 and 2011–2013). A three-year cohort study was conducted with 36 COPD patient participants. The daily particulate matter (PM10) decreased from 65.86 μg/m3 during the baseline period to 62.63 μg/m3 during the Asian Games period; the daily NO2 level decreased from 51.33 μg/m3 to 42.63 μg/m3. Between the baseline period and the Asian Games, daily hospital admissions from non-accidental diseases decreased from 116 to 93, respectively; respiratory diseases decreased from 20 to 17, respectively; and cardiovascular diseases decreased from 11 to 9 during the Asian Games period, respectively. No statistically significant reductions were seen in the remaining months of 2010 in Guangzhou, during the the Asian Games period in the control city, and two other control diseases. Furthermore, we identified significant improvement in CRP and fibrinogen by -20.4% and -15.4% from a pre-Asian game period to a during-Asian game period, respectively. For CRP, we found significant increases in NO2 at lag1-3 days after-Asian game period and significant increases in PM10 at lag1-2 days. Similar effects were also seen with fibrinogen. This discovery provides support for efforts to diminish air pollution and improve public health through human air pollutants intervention. Improved air pollution during the 2010 Asian games was correlated with decreases in biomarkers associated with systemic inflammation in COPD patient participants.
Collapse
Affiliation(s)
- Zili Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona, Tucson, AZ, United States of America
| | - Fei Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Liang Yuan
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Jili Yuan
- Department of Pediatrics, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Lianghua Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
- Department of Laboratory Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
- * E-mail:
| |
Collapse
|
23
|
Jiang M, Li Y, Zhang B, Zhou A, Zhu Y, Li J, Zhao H, Chen L, Hu J, Wu C, Peng Y, Liao J, Xia Z, Cai Z, Chen X, Xu B, Xia W, Xu S. Urinary concentrations of phthalate metabolites associated with changes in clinical hemostatic and hematologic parameters in pregnant women. ENVIRONMENT INTERNATIONAL 2018; 120:34-42. [PMID: 30059848 DOI: 10.1016/j.envint.2018.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/27/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Exposure to phthalates, one kind of widely used plasticizers, has been demonstrated to be associated with some clinical hematological changes in circulatory system from animal studies and in vitro experiments, but their relations to hemostatic and hematologic changes in human are unknown. OBJECTIVES We explored the relationships of urinary phthalate metabolites with clinical hemostatic and hematologic parameter changes in pregnant women. METHODS The present study population included 1482 pregnant women drawn from an ongoing prospective birth cohort study in Wuhan, China. Eight urinary phthalate metabolites and eight blood clinical parameters, including activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT), fibrinogen (Fg), total white blood cell counts (WBC), red blood cell counts (RBC), hemoglobin (Hb), and platelet counts (PLT) were measured in the late third trimester. The associations between phthalate metabolites and blood parameters were analyzed using general linear model. The odds ratios (ORs) for anemia during pregnancy associated with phthalates were also explored by using logistic regression models. RESULTS After adjustment for false discovery rate, a significantly negative association between ln-transformed urinary mono-ethyl phthalate (MEP) concentration and blood Fg, and a positive association between urinary mono-butyl phthalate (MBP) and APTT were found in this study. Higher concentrations of mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) and mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) were associated with lower Hb concentrations. In addition, higher levels of MEHP, MEOHP and MECPP were also associated with increased likelihood of anemia. No significant associations were found between phthalates and other hematologic parameters. CONCLUSIONS Higher urinary phthalate metabolites in late third trimester were associated with prolonged blood clotting time, decreased Hb concentrations, and increased likelihood of anemia in pregnant women. Further research is needed to replicate the observed findings and clarify the potential biological mechanism.
Collapse
Affiliation(s)
- Minmin Jiang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Bin Zhang
- Wuhan Medical and Healthcare Center for Women and Children, Wuhan, Hubei, People's Republic of China
| | - Aifen Zhou
- Wuhan Medical and Healthcare Center for Women and Children, Wuhan, Hubei, People's Republic of China
| | - Yingshuang Zhu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jiufeng Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, People's Republic of China
| | - Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, People's Republic of China
| | - Li Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jie Hu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chuansha Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yang Peng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jiaqiang Liao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhiguo Xia
- Wuhan Medical and Healthcare Center for Women and Children, Wuhan, Hubei, People's Republic of China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, People's Republic of China
| | - Xi Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Bing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
24
|
Liu WY, Yu ZB, Qiu HY, Wang JB, Chen XY, Chen K. Association between ambient air pollutants and preterm birth in Ningbo, China: a time-series study. BMC Pediatr 2018; 18:305. [PMID: 30236089 PMCID: PMC6147039 DOI: 10.1186/s12887-018-1282-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 09/12/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Exposure to air pollutants has been related to preterm birth, but little evidence can be available for PM2.5, O3 and CO in China. This study aimed to investigate the short-term effect of exposure to air pollutants on risk preterm birth during 2014-2016 in Ningbo, China. METHODS We conducted a time-series study to evaluate the associations between daily preterm birth and major air pollutants (including PM2.5, PM10, SO2, NO2, O3 and CO) in Ningbo during 2014-2016. A General Additive Model extend Poisson regression was used to evaluate the relationship between preterm birth and air pollution with adjustment for time-trend, meteorological factors and day of the week (DOW). We also conducted a subgroup analysis by season and age. RESULTS In this study, a total of 37,389 birth occurred between 2014 and 2016 from the Electronic Medical Records System of Ningbo Women and Children's Hospital, of which 5428 were verified as preterm birth. The single pollutant model suggested that lag effect of PM2.5, PM10, NO2 reached a peak at day 3 before delivery and day 6 for SO2, and no relationships were observed for O3 and preterm birth. Excess risks (95% confidence intervals) for an increase of IQR of air pollutant concentrations were 4.84 (95% CI: 1.77, 8.00) for PM2.5, 3.56 (95% CI: 0.07, 7.17) for PM10, 3.65 (95% CI: 0.86, 6.51) for SO2, 6.49 (95% CI: 1.86, 11.34) for NO2, - 0.90 (95% CI: -4.76, 3.11) for O3, and 3.36 (95% CI: 0.50, 6.30) for CO. Sensitivity analyses by exclusion of maternal age < 18 or > 35 years did not materially alter our results. CONCLUSIONS This study indicates that short-term exposure to air pollutants (including PM2.5, PM10, SO2, NO2) are positively associated with risk of preterm birth in Ningbo, China.
Collapse
Affiliation(s)
- Wen-Yuan Liu
- Key laboratory of maternal-fetal medicine, Ningbo Women and Children’s Hospital, Ningbo, 315012 China
| | - Zhe-Bin Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, 310058 China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, 310058 China
| | - Hai-Yan Qiu
- Key laboratory of maternal-fetal medicine, Ningbo Women and Children’s Hospital, Ningbo, 315012 China
| | - Jian-Bing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, 310058 China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, 310058 China
| | - Xue-Yu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, 310058 China
| | - Kun Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, 310058 China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
25
|
Zhang Z, Chan TC, Guo C, Chang LY, Lin C, Chuang YC, Jiang WK, Ho KF, Tam T, Woo KS, Lau AKH, Lao XQ. Long-term exposure to ambient particulate matter (PM 2.5) is associated with platelet counts in adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:432-439. [PMID: 29753251 DOI: 10.1016/j.envpol.2018.04.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND The prothrombotic effects of particulate matter (PM) may underlie the association of air pollution with increased risks of cardiovascular disease. This study aimed to investigate the association between long-term exposure to PM with an aerodynamic diameter ≤2.5 μm (PM2.5) and platelet counts, a marker of coagulation profiles. METHODS The study participants were from a cohort consisting of 362,396 Taiwanese adults who participated in a standard medical examination program between 2001 and 2014. Platelet counts were measured through Complete Blood Count tests. A satellite-based spatio-temporal model was used to estimate 2-year average ambient PM2.5 concentration at each participant's address. Mixed-effects linear regression models were used to investigate the association between PM2.5 exposure and platelet counts. RESULTS This analysis included 175,959 men with 396,248 observations and 186,437 women with 397,877 observations. Every 10-μg/m3 increment in the 2-year average PM2.5 was associated with increases of 0.42% (95% CI: 0.38%, 0.47%) and 0.49% (95% CI: 0.44%, 0.54%) in platelet counts in men and women, respectively. A series of sensitivity analyses, including an analysis in participants free of cardiometabolic disorders, confirmed the robustness of the observed associations. Baseline data analyses showed that every 10-μg/m3 increment in PM2.5 was associated with higher risk of 17% and 14% of having elevated platelet counts (≥90th percentile) in men and women, respectively. CONCLUSIONS Long-term exposure to PM2.5 appears to be associated with increased platelet counts, indicating potential adverse effects on blood coagulability.
Collapse
Affiliation(s)
- Zilong Zhang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Ta-Chien Chan
- Research Center for Humanities and Social Sciences, Academia Sinica, Taiwan
| | - Cui Guo
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Ly-Yun Chang
- MJ Health Research Foundation, MJ Group, Taiwan; Institute of Sociology, Academia Sinica, Taiwan
| | - Changqing Lin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong
| | | | | | - Kin Fai Ho
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Tony Tam
- Department of Sociology, The Chinese University of Hong Kong, Hong Kong
| | - Kam S Woo
- Institute of Future Cities, The Chinese University of Hong Kong, Hong Kong
| | - Alexis K H Lau
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong
| | - Xiang Qian Lao
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
26
|
Nuvolone D, Petri D, Voller F. The effects of ozone on human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8074-8088. [PMID: 28547375 DOI: 10.1007/s11356-017-9239-3] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/09/2017] [Indexed: 04/16/2023]
Abstract
Ozone is a highly reactive, oxidative gas associated with adverse health outcome, including mortality and morbidity. Data from monitoring sites worldwide show levels of ozone often exceeding EU legislation threshold and the more restrictive WHO guidelines for the protection of human health. Well-established evidence has been produced for short-term effects, especially on respiratory and cardiovascular systems, associated to ozone exposure. Less conclusive is the evidence for long-term effects, reporting suggestive associations with respiratory mortality, new-onset asthma in children and increased respiratory symptom effects in asthmatics. The growing epidemiological evidence and the increasing availability of routinely collected data on air pollutant concentrations and health statistics allow to produce robust estimates in health impact assessment routine. Most recent estimates indicate that in 2013 in EU-28, 16,000 premature deaths, equivalent to 192,000 years of life lost, are attributable to ozone exposure. Italy shows very high health impact estimates among EU countries, reporting 3380 premature deaths and 61 years of life lost (per 100,000 inhabitants) attributable to ozone exposure.
Collapse
Affiliation(s)
- Daniela Nuvolone
- Unit of Epidemiology, Regional Health Agency of Tuscany, via Pietro Dazzi 1, Florence, Italy.
| | - Davide Petri
- Unit of Epidemiology, Regional Health Agency of Tuscany, via Pietro Dazzi 1, Florence, Italy
| | - Fabio Voller
- Unit of Epidemiology, Regional Health Agency of Tuscany, via Pietro Dazzi 1, Florence, Italy
| |
Collapse
|
27
|
Robertson S, Miller MR. Ambient air pollution and thrombosis. Part Fibre Toxicol 2018; 15:1. [PMID: 29298690 PMCID: PMC5753450 DOI: 10.1186/s12989-017-0237-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
Air pollution is a growing public health concern of global significance. Acute and chronic exposure is known to impair cardiovascular function, exacerbate disease and increase cardiovascular mortality. Several plausible biological mechanisms have been proposed for these associations, however, at present, the pathways are incomplete. A seminal review by the American Heart Association (2010) concluded that the thrombotic effects of particulate air pollution likely contributed to their effects on cardiovascular mortality and morbidity. The aim of the current review is to appraise the newly accumulated scientific evidence (2009-2016) on contribution of haemostasis and thrombosis towards cardiovascular disease induced by exposure to both particulate and gaseous pollutants.Seventy four publications were reviewed in-depth. The weight of evidence suggests that acute exposure to fine particulate matter (PM2.5) induces a shift in the haemostatic balance towards a pro-thrombotic/pro-coagulative state. Insufficient data was available to ascertain if a similar relationship exists for gaseous pollutants, and very few studies have addressed long-term exposure to ambient air pollution. Platelet activation, oxidative stress, interplay between interleukin-6 and tissue factor, all appear to be potentially important mechanisms in pollution-mediated thrombosis, together with an emerging role for circulating microvesicles and epigenetic changes.Overall, the recent literature supports, and arguably strengthens, the contention that air pollution contributes to cardiovascular morbidity by promoting haemostasis. The volume and diversity of the evidence highlights the complexity of the pathophysiologic mechanisms by which air pollution promotes thrombosis; multiple pathways are plausible and it is most likely they act in concert. Future research should address the role gaseous pollutants play in the cardiovascular effects of air pollution mixture and direct comparison of potentially susceptible groups to healthy individuals.
Collapse
Affiliation(s)
- Sarah Robertson
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0RQ, UK.
| | - Mark R Miller
- University/BHF Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
28
|
Emmerechts J, De Vooght V, Haenen S, Loyen S, Van kerckhoven S, Hemmeryckx B, Vanoirbeek JAJ, Hoet PH, Nemery B, Hoylaerts MF. Thrombogenic changes in young and old mice upon subchronic exposure to air pollution in an urban roadside tunnel. Thromb Haemost 2017; 108:756-68. [DOI: 10.1160/th12-03-0161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/31/2012] [Indexed: 11/05/2022]
Abstract
SummaryEpidemiological studies indicate that elderly persons are particularly susceptible to the cardiovascular health complications of air pollution, but pathophysiological mechanisms behind the increased susceptibility remain unclear. Therefore, we investigated how continuous traffic-related air pollution exposure affects haemostasis parameters in young and old mice. Young (10 weeks) and old (20 months) mice were placed in an urban roadside tunnel or in a clean environment for 25 or 26 days and markers of inflammation and endothelial cells or blood platelet activation were measured, respectively. Plasma microvesicles and pro/ anticoagulant factors were analysed, and thrombin generation analysis was performed. Despite elevated macrophage carbon load, tunnel mice showed no overt pulmonary or systemic inflammation, yet manifested reduced pulmonary thrombomudulin expression and elevated endothelial von Willebrand factor (VWF) expression in lung capillaries. In young mice, soluble P-selectin (sP-sel) increased with exposure and correlated with soluble E-selectin and VWF. Baseline plasma factor VIII (FVIII), sP-sel and VWF were higher in old mice, but did not pronouncedly increase further with exposure. Traffic-related air pollution markedly raised red blood cell and blood platelet numbers in young and old mice and procoagulant blood platelet-derived microvesicle numbers in old animals. Changes in coagulation factors and thrombin generation were mild or absent. Hence, continuous traffic-related air pollution did not trigger overt lung inflammation, yet modified pulmonary endothelial cell function and enhanced platelet activity. In old mice, subchronic exposure to polluted air raised platelet numbers, VWF, sP-sel and microvesicles to the highest values presently recorded, collectively substantiating a further elevation of thrombogenicity, already high at old age.
Collapse
|
29
|
Wu XM, Basu R, Malig B, Broadwin R, Ebisu K, Gold EB, Qi L, Derby C, Green RS. Association between gaseous air pollutants and inflammatory, hemostatic and lipid markers in a cohort of midlife women. ENVIRONMENT INTERNATIONAL 2017; 107:131-139. [PMID: 28732305 PMCID: PMC5584622 DOI: 10.1016/j.envint.2017.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Exposures to ambient gaseous pollutants have been linked to cardiovascular diseases (CVDs), but the biological mechanisms remain uncertain. OBJECTIVES This study examined the changes in CVD marker levels resulting from elevated exposure to ambient gaseous pollutants in midlife women. METHODS Annual repeated measurements of several inflammatory, hemostatic and lipid makers were obtained from 2306 midlife women enrolled in the longitudinal Study of Women's Health Across the Nation (SWAN) between 1999 and 2004. Ambient carbon monoxide (CO), nitrogen dioxide (NO2), and sulfur dioxide (SO2) data were assigned to each woman based on proximity of the monitoring station to her residential address. Short- and long-term exposures were calculated, and their associations with markers were examined using linear mixed-effects regression models, adjusted for demographic, health and other factors. RESULTS Short-term CO exposure was associated with increased fibrinogen, i.e., every interquartile increase of average prior one-week exposure to CO was associated with 1.3% (95% CI: 0.6%, 2.0%) increase in fibrinogen. Long-term exposures to NO2 and SO2 were associated with reduced high-density lipoproteins and apolipoprotein A1, e.g., 4.0% (1.7%, 6.3%) and 4.7% (2.8%, 6.6%) decrease per interquartile increment in prior one-year average NO2 concentration, respectively. Fine particle (PM2.5) exposure confounded associations between CO/NO2 and inflammatory/hemostatic markers, while associations with lipoproteins were generally robust to PM2.5 adjustment. CONCLUSIONS Exposures to these gas pollutants at current ambient levels may increase thrombotic potential and disrupt cholesterol metabolism, contributing to greater risk of CVDs in midlife women. Caution should be exercised in evaluating the confounding by PM2.5 exposure.
Collapse
Affiliation(s)
- Xiangmei May Wu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA.
| | - Rupa Basu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Brian Malig
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Rachel Broadwin
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Keita Ebisu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Ellen B Gold
- Department of Public Health Sciences, University of California Davis, School of Medicine, Davis, CA, USA
| | - Lihong Qi
- Department of Public Health Sciences, University of California Davis, School of Medicine, Davis, CA, USA
| | - Carol Derby
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rochelle S Green
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| |
Collapse
|
30
|
Gorr MW, Falvo MJ, Wold LE. Air Pollution and Other Environmental Modulators of Cardiac Function. Compr Physiol 2017; 7:1479-1495. [PMID: 28915333 PMCID: PMC7249238 DOI: 10.1002/cphy.c170017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in developed regions and a worldwide health concern. Multiple external causes of CVD are well known, including obesity, diabetes, hyperlipidemia, age, and sedentary behavior. Air pollution has been linked with the development of CVD for decades, though the mechanistic characterization remains unknown. In this comprehensive review, we detail the background and epidemiology of the effects of air pollution and other environmental modulators on the heart, including both short- and long-term consequences. Then, we provide the experimental data and current hypotheses of how pollution is able to cause the CVD, and how exposure to pollutants is exacerbated in sensitive states. Published 2017. Compr Physiol 7:1479-1495, 2017.
Collapse
Affiliation(s)
- Matthew W. Gorr
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner College of Medicine, Columbus, Ohio, USA
- College of Nursing, The Ohio State University, Columbus, Ohio, USA
| | - Michael J. Falvo
- War Related Illness and Injury Study Center, Department of Veterans Affairs, New Jersey Health Care System, East Orange, New Jersey, USA
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Loren E. Wold
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner College of Medicine, Columbus, Ohio, USA
- College of Nursing, The Ohio State University, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
31
|
Rodrigues PCO, Ignotti E, Hacon SS. Association between weather seasonality and blood parameters in riverine populations of the Brazilian Amazon. J Pediatr (Rio J) 2017; 93:482-489. [PMID: 28549741 DOI: 10.1016/j.jped.2016.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/15/2016] [Accepted: 11/16/2016] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVE To analyze the seasonality of blood parameters related to iron homeostasis, inflammation, and allergy in two riverine populations from the Brazilian Amazon. METHODS This was a cross-sectional study of 120 children and adolescents of school age, living in riverine communities of Porto Velho, Rondonia, Brazil, describing the hematocrit, hemoglobin, ferritin, serum iron, total white blood cell count, lymphocytes, eosinophils, C-reactive protein, and immunoglobulin E levels in the dry and rainy seasons. The chi-squared test and the prevalence ratio were used for the comparison of proportions and mean analysis using paired Student's t-test. RESULTS Hemoglobin (13.3g/dL) and hematocrit (40.9%) showed higher average values in the dry season. Anemia prevalence was approximately 4% and 12% in the dry and rainy seasons, respectively. Serum iron was lower in the dry season, with a mean of 68.7 mcg/dL. The prevalence of iron deficiency was 25.8% in the dry season and 9.2% in the rainy season. Serum ferritin did not show abnormal values in both seasons; however, the mean values were higher in the dry season (48.5ng/mL). The parameters of eosinophils, lymphocytes, global leukocyte count, C-reactive protein and immunoglobulin E showed no seasonal differences. C-reactive protein and immunoglobulin E showed abnormal values in approximately 7% and 60% of the examinations, respectively. CONCLUSION Hematological parameters of the red cell series and blood iron homeostasis had seasonal variation, which coincided with the dry season in the region, in which an increase in atmospheric pollutants derived from fires is observed.
Collapse
Affiliation(s)
- Poliany C O Rodrigues
- Universidade do Estado de Mato Grosso (UNEMAT), Faculdade de Ciências da Saúde (FCS), Cáceres, MT, Brazil.
| | - Eliane Ignotti
- Universidade do Estado de Mato Grosso (UNEMAT), Programa de Pós-Graduaçao em Ciências Ambientais, Cáceres, MT, Brazil
| | - Sandra S Hacon
- Fundação Oswaldo Cruz (FIOCRUZ), Escola Nacional de Saúde Pública (ENSP), Departamento de Endemias Samuel Pessoa (DENSP), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
32
|
Rodrigues PC, Ignotti E, Hacon SS. Association between weather seasonality and blood parameters in riverine populations of the Brazilian Amazon. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2017. [DOI: 10.1016/j.jpedp.2017.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
33
|
|
34
|
Zhu J, Zhang X, Zhang X, Dong M, Wu J, Dong Y, Chen R, Ding X, Huang C, Zhang Q, Zhou W. The burden of ambient air pollution on years of life lost in Wuxi, China, 2012-2015: A time-series study using a distributed lag non-linear model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:689-697. [PMID: 28258859 DOI: 10.1016/j.envpol.2017.02.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 05/08/2023]
Abstract
Ambient air pollution ranks high among the risk factors that increase the global burden of disease. Previous studies focused on assessing mortality risk and were sparsely performed in populous developing countries with deteriorating environments. We conducted a time-series study to evaluate the air pollution-associated years of life lost (YLL) and mortality risk and to identify potential modifiers relating to the season and demographic characteristics. Using linear (for YLL) and Poisson (for mortality) regression models and controlling for time-varying factors, we found that an interquartile range (IQR) increase in a three-day average cumulative (lag 0-2 day) concentrations of PM2.5, PM10, NO2 and SO2 corresponded to increases in YLL of 12.09 (95% confidence interval [CI]: 2.98-21.20), 13.69 (95% CI: 3.32-24.07), 26.95 (95% CI: 13.99-39.91) and 24.39 (95% CI: 8.62-40.15) years, respectively, and to percent increases in mortality of 1.34% (95% CI: 0.67-2.01%), 1.56% (95% CI: 0.80-2.33%), 3.36% (95% CI: 2.39-4.33%) and 2.39% (95% CI: 1.24-3.55%), respectively. Among the specific causes of death, cardiovascular and respiratory diseases were positively associated with gaseous pollutants (NO2 and SO2), and diabetes was positively correlated with NO2 (in terms of the mortality risk). The effects of air pollutants were more pronounced in the cool season than in the warm season. The elderly (>65 years) and females were more vulnerable to air pollution. Studying effect estimates and their modifications by using YLL to detect premature death should support implementing health risk assessments, identifying susceptible groups and guiding policy-making and resource allocation according to specific local conditions.
Collapse
Affiliation(s)
- Jingying Zhu
- Wuxi Center for Disease Control and Prevention, 499 Jincheng Road, Liangxi District, Wuxi, Jiangsu, 214023, China
| | - Xuhui Zhang
- Wuxi Center for Disease Control and Prevention, 499 Jincheng Road, Liangxi District, Wuxi, Jiangsu, 214023, China
| | - Xi Zhang
- Wuxi Center for Disease Control and Prevention, 499 Jincheng Road, Liangxi District, Wuxi, Jiangsu, 214023, China
| | - Mei Dong
- Wuxi Municipal Environmental Monitoring Center, 58 Caozhangxincun, Liangxi District, Wuxi, Jiangsu, 214025, China
| | - Jiamei Wu
- Wuxi Municipal Meteorological Monitoring Center, 8 Jianheng Road, Xishan District, Wuxi, Jiangsu, 214101, China
| | - Yunqiu Dong
- Wuxi Center for Disease Control and Prevention, 499 Jincheng Road, Liangxi District, Wuxi, Jiangsu, 214023, China
| | - Rong Chen
- Wuxi Center for Disease Control and Prevention, 499 Jincheng Road, Liangxi District, Wuxi, Jiangsu, 214023, China
| | - Xinliang Ding
- Wuxi Center for Disease Control and Prevention, 499 Jincheng Road, Liangxi District, Wuxi, Jiangsu, 214023, China
| | - Chunhua Huang
- Wuxi Center for Disease Control and Prevention, 499 Jincheng Road, Liangxi District, Wuxi, Jiangsu, 214023, China
| | - Qi Zhang
- Wuxi Center for Disease Control and Prevention, 499 Jincheng Road, Liangxi District, Wuxi, Jiangsu, 214023, China
| | - Weijie Zhou
- Wuxi Center for Disease Control and Prevention, 499 Jincheng Road, Liangxi District, Wuxi, Jiangsu, 214023, China.
| |
Collapse
|
35
|
Signorelli SS, Ferrante M, Gaudio A, Fiore V. Deep vein thrombosis related to environment (Review). Mol Med Rep 2017; 15:3445-3448. [PMID: 28350083 DOI: 10.3892/mmr.2017.6395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/13/2017] [Indexed: 11/06/2022] Open
Abstract
The first-time venous thromboembolism (VTE) is less frequent than other thrombotic events, however, both the pulmonary embolism (PE) and the deep vein thrombosis (DVT) show a frequent morbidity. Many factors play as risk situations in determining VTE, and the air exposure to the fine and ultrafine particulate matter (PM) as PM10, PM2.5, PM0.1 is considered. Epidemiological studies have supported this association although both the effective burden of the association and the mechanisms are to date unclear. The PM concentrations and the exposure time are notable as emerging factors. Interestingly, the seasonal climate variations resulted as effective risk factor for appearance of VTE or DVT. There is a need to ameliorate the environment by reducing the air pollution at global scale.
Collapse
Affiliation(s)
| | - Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Technologies 'G.F. Ingrassia', University of Catania, I-95123 Catania, Italy
| | - Agostino Gaudio
- Department of Clinical and Experimental Medicine, University of Catania, I-95123 Catania, Italy
| | - Valerio Fiore
- Department of Clinical and Experimental Medicine, University of Catania, I-95123 Catania, Italy
| |
Collapse
|
36
|
Tang L, Wang QY, Cheng ZP, Hu B, Liu JD, Hu Y. Air pollution and venous thrombosis: a meta-analysis. Sci Rep 2016; 6:32794. [PMID: 27600652 PMCID: PMC5013712 DOI: 10.1038/srep32794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022] Open
Abstract
Exposure to air pollution has been linked to cardiovascular and respiratory disorders. However, the effect of air pollution on venous thrombotic disorders is uncertain. We performed a meta-analysis to assess the association between air pollution and venous thrombosis. PubMed, Embase, EBM Reviews, Healthstar, Global Health, Nursing Database, and Web of Science were searched for citations on air pollutants (carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and particulate matters) and venous thrombosis. Using a random-effects model, overall risk estimates were derived for each increment of 10 μg/m3 of pollutant concentration. Of the 485 in-depth reviewed studies, 8 citations, involving approximately 700,000 events, fulfilled the inclusion criteria. All the main air pollutants analyzed were not associated with an increased risk of venous thrombosis (OR = 1.005, 95% CI = 0.998–1.012 for PM2.5; OR = 0.995, 95% CI = 0.984–1.007 for PM10; OR = 1.006, 95% CI = 0.994–1.019 for NO2). Based on exposure period and thrombosis location, additional subgroup analyses provided results comparable with those of the overall analyses. There was no evidence of publication bias. Therefore, this meta analysis does not suggest the possible role of air pollution as risk factor for venous thrombosis in general population.
Collapse
Affiliation(s)
- Liang Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.,Collaborative Innovation Center of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qing-Yun Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhi-Peng Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Bei Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.,Collaborative Innovation Center of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing-Di Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.,Collaborative Innovation Center of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
37
|
Chiu YHM, Garshick E, Hart JE, Spiegelman D, Dockery DW, Smith TJ, Laden F. Occupational vehicle-related particulate exposure and inflammatory markers in trucking industry workers. ENVIRONMENTAL RESEARCH 2016; 148:310-317. [PMID: 27104805 PMCID: PMC4874883 DOI: 10.1016/j.envres.2016.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Previous studies have suggested an association between particulate air pollution and cardiovascular disease, but the mechanism is still unclear. OBJECTIVE We examined the association between workplace exposure to vehicle-related particles and cardiovascular disease related systemic inflammatory markers, C-reactive protein (hs-CRP), soluble intercellular adhesion molecule-1 (sICAM-1), and interleukin-6 (IL-6) in 137 trucking terminal workers (non-drivers) in the U.S. trucking industry. METHODS We visited two large trucking terminals in 2009 and measured vehicle-related elemental carbon (EC), organic carbon (OC), and particulate matter with aerodynamic diameter ≤2.5µm (PM2.5), for 5 days consecutively at the main work areas. Each participant provided a blood sample and completed a health questionnaire during the sampling period. Individual workplace exposure level was calculated by 12-h time weighted moving averages based on work shift. The association between each blood marker and exposure to each pollutant during 0-12, 12-24, 24-36, and 36-48h before the blood draw was examined by multivariable regression analyses. RESULTS In general, OC and EC had a positive association with sICAM-1, especially for exposure periods 12-24 (lag12-24) and 24-36 (lag24-36)h prior to blood draw [β=54.9 (95%CI: 12.3-97.5) for lag12-24 and β=46.5 (95%CI: 21.2-71.8) for lag12-24; change in sICAM-1 (in ng/mL) corresponding to an IQR increase in OC]. A similar pattern was found for EC and PM2.5. We did not find an association between measured pollutants up to 48h before blood draw and hs-CRP or IL-6. CONCLUSION In this group of healthy workers, short-term exposure to vehicle-related air pollutants may be associated with sICAM-1. Our findings may be dependent on the exposure period studied.
Collapse
Affiliation(s)
- Yueh-Hsiu Mathilda Chiu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Eric Garshick
- Pulmonary and Critical Care Medicine Section, VA Boston Healthcare System, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jaime E Hart
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Donna Spiegelman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Douglas W Dockery
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Thomas J Smith
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Francine Laden
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
38
|
Kodavanti UP. Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response. Biochim Biophys Acta Gen Subj 2016; 1860:2880-90. [PMID: 27166979 DOI: 10.1016/j.bbagen.2016.05.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023]
Abstract
Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus-pituitary-adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant - ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
39
|
Han MH, Yi HJ, Kim YS, Ko Y, Kim YS. Association between Diurnal Variation of Ozone Concentration and Stroke Occurrence: 24-Hour Time Series Study. PLoS One 2016; 11:e0152433. [PMID: 27015421 PMCID: PMC4807846 DOI: 10.1371/journal.pone.0152433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 03/14/2016] [Indexed: 11/18/2022] Open
Abstract
Background and Purpose Increasing ozone concentrations have been known to damage human health and ecosystems. Although ozone tends to display diurnal variation, most studies have reported only on the association between daily ozone concentrations and ischemic stroke occurrence on the same day, or with a 1-day lag. We investigated the effect of the diurnal variation of ozone on ischemic stroke occurrence during the same day. Methods We included a consecutive series of 1,734 patients from January 1, 2008, to December 31, 2014, at a single tertiary hospital in Seoul, South Korea. We evaluated differences between temperature and pollutants at the time of stroke onset for each time interval and averaged those parameters across the 7-year study period. Results During the interval from 13:00 to 16:59, we found a positive association between ischemic stroke occurrence and ozone concentration relative to other time periods. Upper median ozone levels from 13:00 to 16:59 were positively correlated with ischemic stroke (odds ratio, 1.550; 95% confidence intervals, 1.220 to 1.970; P = <0.001) when compared with lower median levels. Conclusions The results show diurnal patterns of ischemic stroke occurrence based on upper and lower median ozone levels for a 24-hour period, which extends understanding of the association between stroke occurrence and environmental influences.
Collapse
Affiliation(s)
- Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, 153 Gyeongchun-ro, Guri 471–701, Gyonggi-do, Korea
| | - Hyeong-Joong Yi
- Department of Neurosurgery, Hanyang University Medical Center, 222–1, Wangsimni-ro, Seongdong-gu, Seoul, Korea
- * E-mail:
| | - Young-Seo Kim
- Department of Neurology, Hanyang University Medical Center, 222–1, Wangsimni-ro, Seongdong-gu, Seoul, Korea
| | - Yong Ko
- Department of Neurosurgery, Hanyang University Medical Center, 222–1, Wangsimni-ro, Seongdong-gu, Seoul, Korea
| | - Young-Soo Kim
- Department of Neurosurgery, Hanyang University Medical Center, 222–1, Wangsimni-ro, Seongdong-gu, Seoul, Korea
| |
Collapse
|
40
|
Rodosthenous RS, Coull BA, Lu Q, Vokonas PS, Schwartz JD, Baccarelli AA. Ambient particulate matter and microRNAs in extracellular vesicles: a pilot study of older individuals. Part Fibre Toxicol 2016; 13:13. [PMID: 26956024 PMCID: PMC4782360 DOI: 10.1186/s12989-016-0121-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 02/10/2016] [Indexed: 12/11/2022] Open
Abstract
Background Air pollution from particulate matter (PM) has been linked to cardiovascular morbidity and mortality; however the underlying biological mechanisms remain to be uncovered. Gene regulation by microRNAs (miRNAs) that are transferred between cells by extracellular vesicles (EVs) may play an important role in PM-induced cardiovascular risk. This study sought to determine if ambient PM2.5 levels are associated with expression of EV-encapsulated miRNAs (evmiRNAs), and to investigate the participation of such evmiRNAs in pathways related to cardiovascular disease (CVD). Methods We estimated the short- (1-day), intermediate- (1-week and 1-month) and long-term (3-month, 6-month, and 1-year) moving averages of ambient PM2.5 levels at participants’ addresses using a validated hybrid spatio-temporal land-use regression model. We collected 42 serum samples from 22 randomly selected participants in the Normative Aging Study cohort and screened for 800 miRNAs using the NanoString nCounter® platform. Mixed effects regression models, adjusted for potential confounders were used to assess the association between ambient PM2.5 levels and evmiRNAs. All p-values were adjusted for multiple comparisons. In-silico Ingenuity Pathway Analysis (IPA) was performed to identify biological pathways that are regulated by PM-associated evmiRNAs. Results We found a significant association between long-term ambient PM2.5 exposures and levels of multiple evmiRNAs circulating in serum. In the 6-month window, ambient PM2.5 exposures were associated with increased levels of miR-126-3p (0.74 ± 0.21; p = 0.02), miR-19b-3p (0.52 ± 0.15; p = 0.02), miR-93-5p (0.78 ± 0.22; p = 0.02), miR-223-3p (0.74 ± 0.22; p = 0.02), and miR-142-3p (0.81 ± 0.21; p = 0.03). Similarly, in the 1-year window, ambient PM2.5 levels were associated with increased levels of miR-23a-3p (0.83 ± 0.23; p = 0.02), miR-150-5p (0.90 ± 0.24; p = 0.02), miR-15a-5p (0.70 ± 0.21; p = 0.02), miR-191-5p (1.20 ± 0.35; p = 0.02), and let-7a-5p (1.42 ± 0.39; p = 0.02). In silico pathway analysis on PM2.5-associated evmiRNAs identified several key CVD-related pathways including oxidative stress, inflammation, and atherosclerosis. Conclusions We found an association between long-term ambient PM2.5 levels and increased levels of evmiRNAs circulating in serum. Further observational studies are warranted to confirm and extend these important findings in larger and more diverse populations, and experimental studies are needed to elucidate the exact roles of evmiRNAs in PM-induced CVD. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0121-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Quan Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | | | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
41
|
Goodman JE, Prueitt RL, Sax SN, Pizzurro DM, Lynch HN, Zu K, Venditti FJ. Ozone exposure and systemic biomarkers: Evaluation of evidence for adverse cardiovascular health impacts. Crit Rev Toxicol 2016; 45:412-52. [PMID: 25959700 DOI: 10.3109/10408444.2015.1031371] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The US Environmental Protection Agency (EPA) recently concluded that there is likely to be a causal relationship between short-term (< 30 days) ozone exposure and cardiovascular (CV) effects; however, biological mechanisms to link transient effects with chronic cardiovascular disease (CVD) have not been established. Some studies assessed changes in circulating levels of biomarkers associated with inflammation, oxidative stress, coagulation, vasoreactivity, lipidology, and glucose metabolism after ozone exposure to elucidate a biological mechanism. We conducted a weight-of-evidence (WoE) analysis to determine if there is evidence supporting an association between changes in these biomarkers and short-term ozone exposure that would indicate a biological mechanism for CVD below the ozone National Ambient Air Quality Standard (NAAQS) of 75 parts per billion (ppb). Epidemiology findings were mixed for all biomarker categories, with only a few studies reporting statistically significant changes and with no consistency in the direction of the reported effects. Controlled human exposure studies of 2 to 5 hours conducted at ozone concentrations above 75 ppb reported small elevations in biomarkers for inflammation and oxidative stress that were of uncertain clinical relevance. Experimental animal studies reported more consistent results among certain biomarkers, although these were also conducted at ozone exposures well above 75 ppb and provided limited information on ozone exposure-response relationships. Overall, the current WoE does not provide a convincing case for a causal relationship between short-term ozone exposure below the NAAQS and adverse changes in levels of biomarkers within and across categories, but, because of study limitations, they cannot not provide definitive evidence of a lack of causation.
Collapse
|
42
|
Alimohammadi H, Fakhri S, Derakhshanfar H, Hosseini-Zijoud SM, Safari S, Hatamabadi HR. The Effects of Air Pollution on Ischemic Stroke Admission Rate. Chonnam Med J 2016; 52:53-8. [PMID: 26866000 PMCID: PMC4742610 DOI: 10.4068/cmj.2016.52.1.53] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 11/28/2022] Open
Abstract
The present study aimed to determine the relationship between the level of air pollutants and the rate of ischemic stroke (IS) admissions to hospitals. In this retrospective cross-sectional study, stroke admissions (January-March 2012 and 2013) to an emergency department and air pollution and meteorological data were gathered. The relationship between air pollutant levels and hospital admission rates were evaluated using the generalize additive model. In all 379 patients with IS were referred to the hospital (52.5% male; mean age 68.2±13.3 years). Both transient (p<0.001) and long-term (p<0.001) rises in CO level increases the risk of IS. Increased weekly (p<0.001) and monthly (p<0.001) average O3 levels amplifies this risk, while a transient increase in NO2 (p<0.001) and SO2 (p<0.001) levels has the same effect. Long-term changes in PM10 (p<0.001) and PM2.5 (p<0.001) also increase the risk of IS. The findings showed that the level of air pollutants directly correlates with the number of stroke admissions to the emergency department.
Collapse
Affiliation(s)
- Hossein Alimohammadi
- Department of Emergency Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fakhri
- Department of Emergency Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Derakhshanfar
- Department of Emergency Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed-Mostafa Hosseini-Zijoud
- Social Development and Health Promotion Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Safari
- Department of Emergency Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Hatamabadi
- Safety Promotion and Injury Prevention Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Zúñiga J, Tarajia M, Herrera V, Urriola W, Gómez B, Motta J. Assessment of the Possible Association of Air Pollutants PM10, O3, NO2 With an Increase in Cardiovascular, Respiratory, and Diabetes Mortality in Panama City: A 2003 to 2013 Data Analysis. Medicine (Baltimore) 2016; 95:e2464. [PMID: 26765444 PMCID: PMC4718270 DOI: 10.1097/md.0000000000002464] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In recent years, Panama has experienced a marked economic growth, and this, in turn, has been associated with rapid urban development and degradation of air quality. This study is the first evaluation done in Panama on the association between air pollution and mortality. Our objective was to assess the possible association between monthly levels of PM10, O3, and NO2, and cardiovascular, respiratory, and diabetes mortality, as well as the seasonal variation of mortality in Panama City, Panama.The study was conducted in Panama City, using air pollution data from January 2003 to December 2013. We utilized a Poisson regression model based on generalized linear models, to evaluate the association between PM10, NO2, and O3 exposure and mortality from diabetes, cardiovascular, and respiratory diseases. The sample size for PM10, NO2, and O2 was 132, 132, and 108 monthly averages, respectively.We found that levels of PM10, O3, and NO2 were associated with increases in cardiovascular, respiratory, and diabetes mortality. For PM10 levels ≥ 40 μg/m3, we found an increase in cardiovascular mortality of 9.7% (CI 5.8-13.6%), and an increase of 12.6% (CI 0.2-24.2%) in respiratory mortality. For O3 levels ≥ 20 μg/m3 we found an increase of 32.4% (IC 14.6-52.9) in respiratory mortality, after a 2-month lag period following exposure in the 65 to <74 year-old age group. For NO2 levels ≥20 μg/m3 we found an increase in respiratory mortality of 11.2% (IC 1.9-21.3), after a 2-month lag period following exposure among those aged between 65 and <74 years.There could be an association between the air pollution in Panama City and an increase in cardiovascular, respiratory, and diabetes mortality. This study confirms the urgent need to improve the measurement frequency of air pollutants in Panama.
Collapse
Affiliation(s)
- Julio Zúñiga
- From the Gorgas Memorial Institute for Health Studies (JZ, VH, BG, JM); Centro de Biología Molecular y Celular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (MT); Región de Panamá Oeste, Caja de Seguro Social, Panama City, Panama (MT); and Institute of Specialized Analysis of the University of Panama, Miraflores, Panama City, Panama (WU)
| | | | | | | | | | | |
Collapse
|
44
|
Goodman JE, Prueitt RL, Sax SN, Lynch HN, Zu K, Lemay JC, King JM, Venditti FJ. Weight-of-evidence evaluation of short-term ozone exposure and cardiovascular effects. Crit Rev Toxicol 2015; 44:725-90. [PMID: 25257961 DOI: 10.3109/10408444.2014.937854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is a relatively large body of research on the potential cardiovascular (CV) effects associated with short-term ozone exposure (defined by EPA as less than 30 days in duration). We conducted a weight-of-evidence (WoE) analysis to assess whether it supports a causal relationship using a novel WoE framework adapted from the US EPA's National Ambient Air Quality Standards causality framework. Specifically, we synthesized and critically evaluated the relevant epidemiology, controlled human exposure, and experimental animal data and made a causal determination using the same categories proposed by the Institute of Medicine report Improving the Presumptive Disability Decision-making Process for Veterans ( IOM 2008). We found that the totality of the data indicates that the results for CV effects are largely null across human and experimental animal studies. The few statistically significant associations reported in epidemiology studies of CV morbidity and mortality are very small in magnitude and likely attributable to confounding, bias, or chance. In experimental animal studies, the reported statistically significant effects at high exposures are not observed at lower exposures and thus not likely relevant to current ambient ozone exposures in humans. The available data also do not support a biologically plausible mechanism for CV effects of ozone. Overall, the current WoE provides no convincing case for a causal relationship between short-term exposure to ambient ozone and adverse effects on the CV system in humans, but the limitations of the available studies preclude definitive conclusions regarding a lack of causation. Thus, we categorize the strength of evidence for a causal relationship between short-term exposure to ozone and CV effects as "below equipoise."
Collapse
|
45
|
Kajbafzadeh M, Brauer M, Karlen B, Carlsten C, van Eeden S, Allen RW. The impacts of traffic-related and woodsmoke particulate matter on measures of cardiovascular health: a HEPA filter intervention study. Occup Environ Med 2015; 72:394-400. [PMID: 25896330 DOI: 10.1136/oemed-2014-102696] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/25/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND Combustion-generated fine particulate matter (PM2.5) is associated with cardiovascular morbidity. Both traffic-related air pollution and residential wood combustion may be important, but few studies have compared their impacts. OBJECTIVES To assess and compare effects of traffic-related and woodsmoke PM2.5 on endothelial function and systemic inflammation (C reactive protein, interleukin-6 and band cells) among healthy adults in Vancouver, British Columbia, Canada, using high efficiency particulate air (HEPA) filtration to introduce indoor PM2.5 exposure gradients. METHODS We recruited 83 healthy adults from 44 homes in traffic-impacted or woodsmoke-impacted areas to participate in this randomised, single-blind cross-over intervention study. PM2.5 concentrations were measured during two consecutive 7-day periods, one with filtration and the other with 'placebo filtration'. Endothelial function and biomarkers of systematic inflammation were measured at the end of each 7-day period. RESULTS HEPA filtration was associated with a 40% decrease in indoor PM2.5 concentrations. There was no relationship between PM2.5 exposure and endothelial function. There was evidence of an association between indoor PM2.5 and C reactive protein among those in traffic-impacted locations (42.1% increase in C reactive protein per IQR increase in indoor PM2.5, 95% CI 1.2% to 99.5%), but not among those in woodsmoke-impacted locations. There were no associations with interleukin-6 or band cells. CONCLUSIONS Evidence of an association between C reactive protein and indoor PM2.5 among healthy adults in traffic-impacted areas is consistent with the hypothesis that traffic-related particles, even at relatively low concentrations, play an important role in the cardiovascular effects of the urban PM mixture. TRIAL REGISTRATION NUMBER http://www.clinicaltrials.gov (NCT01570062).
Collapse
Affiliation(s)
- Majid Kajbafzadeh
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Brauer
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Barbara Karlen
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Chris Carlsten
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephan van Eeden
- Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan W Allen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
46
|
Kahle JJ, Neas LM, Devlin RB, Case MW, Schmitt MT, Madden MC, Diaz-Sanchez D. Interaction effects of temperature and ozone on lung function and markers of systemic inflammation, coagulation, and fibrinolysis: a crossover study of healthy young volunteers. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:310-6. [PMID: 25514459 PMCID: PMC4384199 DOI: 10.1289/ehp.1307986] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/12/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Trends in climate suggest that extreme weather events such as heat waves will become more common. High levels of the gaseous pollutant ozone are associated with elevated temperatures. Ozone has been associated with respiratory diseases as well as cardiovascular morbidity and mortality and can reduce lung function and alter systemic markers of fibrinolysis. The interaction between ozone and temperature is unclear. METHODS Sixteen healthy volunteers were exposed in a randomized crossover study to 0.3 ppm ozone and clean air for 2 hr at moderate (22°C) temperature and again at an elevated temperature (32.5°C). In each case lung function was performed and blood taken before and immediately after exposure and the next morning. RESULTS Ozone exposure at 22°C resulted in a decrease in markers of fibrinolysis the next day. There was a 51.8% net decrease in PAI-1 (plasminogen activator inhibitor-1), a 12.1% net decrease in plasminogen, and a 17.8% net increase in D-dimer. These significantly differed from the response at 32.5°C, where there was a 44.9% (p = 0.002) and a 27.9% (p = 0.001) increase in PAI-1 and plasminogen, respectively, and a 12.5% (p = 0.042) decrease in D-dimer. In contrast, decrements in lung function following ozone exposure were comparable at both moderate and elevated temperatures (forced expiratory volume in 1 sec, -12.4% vs. -7.5%, p > 0.05). No changes in systemic markers of inflammation were observed for either temperature. CONCLUSION Ozone-induced systemic but not respiratory effects varied according to temperature. Our study suggests that at moderate temperature ozone may activate the fibrinolytic pathway, while at elevated temperature ozone may impair it. These findings provide a biological basis for the interaction between temperature and ozone on mortality observed in some epidemiologic studies.
Collapse
Affiliation(s)
- Juliette J Kahle
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Møller P, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Klingberg H, Jensen DM, Christophersen DV, Hemmingsen JG, Cao Y, Loft S. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 762:133-66. [DOI: 10.1016/j.mrrev.2014.09.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/04/2014] [Accepted: 09/04/2014] [Indexed: 01/09/2023]
|
48
|
Johannesson S, Andersson EM, Stockfelt L, Barregard L, Sallsten G. Urban air pollution and effects on biomarkers of systemic inflammation and coagulation: a panel study in healthy adults. Inhal Toxicol 2014; 26:84-94. [PMID: 24495245 DOI: 10.3109/08958378.2013.856968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Urban particulate air pollution is associated with cardiovascular diseases and mortality, possibly mediated through systemic inflammation and increased blood viscosity. OBJECTIVES To examine short-term effects of exposure to urban air pollution on blood biomarkers for systemic inflammation and coagulation in a panel of healthy adults living in Gothenburg, Sweden. MATERIALS AND METHODS The 16 volunteers, all non-smokers, median age 35 years, were called for blood sampling the morning after a day with high levels of urban particulate matter (PM₁₀ > 30 µg/m³) or a day with low levels (PM₁₀ < 15 µg/m³ and NO₂ < 35 µg/m³). Associations between exposure to air pollution and each biomarker (C-reactive protein, fibrinogen, serum amyloid A, coagulation factor VIII, plasminogen activator inhibitor-1, p-selectin, soluble intercellular adhesion molecule-1, soluble vascular adhesion molecule-1, Clara cell protein 16 and surfactant protein D) were examined using a linear mixed-effects model. RESULTS In total, 12 sampling sessions were performed, six after high-pollution and six after low-pollution days, over 21 months. The ratio of air pollution levels between high- and low-pollution days was five for PM₁₀ (median: 49 and 10 µg/m³) and two for NO₂ (median: 47 and 24 µg/m³). No significant increase in blood levels of any of the biomarkers were seen after days with high air pollution levels compared with low levels. CONCLUSION Biomarkers of inflammation and coagulation were not found to be significantly increased in the mornings after days with elevated levels of urban air pollution compared with low levels when performing repeated blood samplings in healthy volunteers.
Collapse
Affiliation(s)
- Sandra Johannesson
- Department of Occupational and Environmental Medicine, Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | | | | | | | | |
Collapse
|
49
|
Kelishadi R, Hashemi M, Javanmard SH, Mansourian M, Afshani M, Poursafa P, Sadeghian B, Fakhri M. Effect of particulate air pollution and passive smoking on surrogate biomarkers of endothelial dysfunction in healthy children. Paediatr Int Child Health 2014; 34:165-9. [PMID: 24199613 DOI: 10.1179/2046905513y.0000000104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND This study aimed to determine the association of ambient particulate matter (PM) on surrogate markers of endothelial function and inflammation in healthy children with or without exposure to second-hand smoke. METHODS This cross-sectional study was conducted in 2011 in Isfahan, which is the second largest and second most air-polluted city in Iran. The areas of the city with lowest and highest air pollution were determined, and in each area, 25 pre-pubescent boys with or without exposure to daily tobacco smoke at home were selected, i.e. 100 children were studied in total. Serum levels of C-reactive protein (CRP) and nitric oxide (NO) were measured. RESULTS Mean (SD) NO concentration was 7·87 (2·18) and 7·75 (2·04) μmol/L for participants not exposed and exposed to passive smoking, respectively, which is not statistically significant. The corresponding figures for CRP concentrations were 1·69 (0·89) and 2·13 (1·19) μg/ml (P = 0·04). Mean (SD) CRP concentration was significantly higher in children living in the highly polluted area than in those in the area of low pollution [2·11 (1·91) vs 1·60 (1·43) μg/ml, respectively, P = 0·02]. This difference was not significant for NO concentration. The regression analysis that examined the association between PM concentration (as independent variable) and CRP and NO levels (as dependent variables) in children not exposed to passive smoking demonstrated that increased PM was associated with a decrease in NO and an increase in CRP concentration. This finding shows that, regardless of passive smoking, PM10 concentration has a significant independent association with serum CRP and is inversely associated with NO levels. CONCLUSION The findings suggest that in healthy children PM concentration has a significant independent association with biomarkers of endothelial dysfunction and inflammation.
Collapse
|
50
|
Lippmann M. Toxicological and epidemiological studies of cardiovascular effects of ambient air fine particulate matter (PM2.5) and its chemical components: coherence and public health implications. Crit Rev Toxicol 2014; 44:299-347. [PMID: 24494826 DOI: 10.3109/10408444.2013.861796] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Recent investigations on PM2.5 constituents' effects in community residents have substantially enhanced our knowledge on the impacts of specific components, especially the HEI-sponsored National Particle Toxicity Component (NPACT) studies at NYU and UW-LRRI that addressed the impact of long-term PM2.5 exposure on cardiovascular disease (CVD) effects. NYU's mouse inhalation studies at five sites showed substantial variations in aortic plaque progression by geographic region that was coherent with the regional variation in annual IHD mortality in the ACS-II cohort, with both the human and mouse responses being primarily attributable to the coal combustion source category. The UW regressions of associations of CVD events and mortality in the WHI cohort, and of CIMT and CAC progression in the MESA cohort, indicated that [Formula: see text] had stronger associations with CVD-related human responses than OC, EC, or Si. The LRRI's mice had CVD-related biomarker responses to [Formula: see text]. NYU also identified components most closely associated with daily hospital admissions (OC, EC, Cu from traffic and Ni and V from residual oil). For daily mortality, they were from coal combustion ([Formula: see text], Se, and As). While the recent NPACT research on PM2.5 components that affect CVD has clearly filled some major knowledge gaps, and helped to define remaining uncertainties, much more knowledge is needed on the effects in other organ systems if we are to identify and characterize the most effective and efficient means for reducing the still considerable adverse health impacts of ambient air PM. More comprehensive speciation data are needed for better definition of human responses.
Collapse
Affiliation(s)
- Morton Lippmann
- Department of Environmental Medicine, New York University School of Medicine , Tuxedo, NY , USA
| |
Collapse
|