1
|
Miller M, Douillet C, Cable PH, Krupenko SA, Shang B, Hartwell HJ, Zou F, Koller BH, Fry RC, de Villena FPM, Stýblo M. Metabolism of inorganic arsenic in mice carrying the human AS3MT gene and fed folate deficient or folate supplemented diet. Toxicol Appl Pharmacol 2024; 495:117173. [PMID: 39603428 DOI: 10.1016/j.taap.2024.117173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Arsenic (+3 oxidation state) methyltransferase (AS3MT) catalyzes the S-adenosylmethionine (SAM)-dependent methylation of inorganic arsenic (iAs), yielding monomethyl‑arsenic (MAs) and dimethyl‑arsenic (DMAs) metabolites. The formation of DMAs in this pathway is considered a key mechanism for iAs detoxification. Availability of SAM for iAs methylation depends in part on dietary intake of folate. Results of population studies suggest that supplementation with folate stimulates iAs methylation, increasing DMAs and decreasing iAs and MAs proportions in urine and/or blood. The goal of the present study was to determine if folate intake affects methylation and clearance of iAs in a recently established mouse strain that expresses human AS3MT and exhibits a human-like pattern of iAs metabolism. The humanized male and female mice were fed folate-deficient (FD) or folate-supplemented (FS) diet for 6 weeks, followed by exposure to 0 ppb or 400 ppb iAs in drinking water for 5 weeks, while on the same types of diet. The concentrations and proportions of iAs, MAs and DMAs were determined in urine, liver, kidneys, and spleen. The diet-, sex- and dose-related differences were assessed by t-test or a non-parametric test; Bonferroni test was used to correct for multiple comparisons. In general, proportions of DMAs were greater and proportions of iAs were smaller in urine and tissues of FS mice as compared to FD mice. However, folate supplementation also increased MAs proportions. Notably, the folate intake had no effect on the concentrations of total arsenic either in the urine or the tissues. These results suggest that, similar to humans, folate supplementation stimulates iAs methylation in the humanized mice. However, the stimulation of iAs methylation is not associated with clearance of arsenic from tissues, possibly due to an inefficient conversion of MAs to DMAs.
Collapse
Affiliation(s)
- Madison Miller
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Christelle Douillet
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Peter H Cable
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Sergey A Krupenko
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA; The UNC Nutrition Research Institute, Kannapolis, NC 28081, USA
| | - Bingzhen Shang
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Hadley J Hartwell
- Department of Environmental Sciences and Engineering, CB#7431, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7420, USA
| | - Beverly H Koller
- Department of Genetics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, CB#7431, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Miroslav Stýblo
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| |
Collapse
|
2
|
Koller BH, Jania LA, Li H, Barker WT, Melander RJ, Melander C. Adjuvants restore colistin sensitivity in mouse models of highly colistin-resistant isolates, limiting bacterial proliferation and dissemination. Antimicrob Agents Chemother 2024; 68:e0067124. [PMID: 39194205 PMCID: PMC11459950 DOI: 10.1128/aac.00671-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Antimicrobial resistance (AMR) has led to a marked reduction in the effectiveness of many antibiotics, representing a substantial and escalating concern for global health. Particularly alarming is resistance in Gram-negative bacteria due to the scarcity of therapeutic options for treating infections caused by these pathogens. This challenge is further compounded by the rising incidence of resistance to colistin, an antibiotic traditionally considered a last resort for the treatment of multi-drug resistant (MDR) Gram-negative bacterial infections. In this study, we demonstrate that adjuvants restore colistin sensitivity in vivo. We previously reported that the salicylanilide kinase inhibitor IMD-0354, which was originally developed to inhibit the human kinase IKKβ in the NFκB pathway, is a potent colistin adjuvant. Subsequent analog synthesis using an amide isostere approach led to the creation of a series of novel benzimidazole compounds with enhanced colistin adjuvant activity. Herein, we demonstrate that both IMD-0354 and a lead benzimidazole effectively restore colistin susceptibility in mouse models of highly colistin-resistant Klebsiella pneumoniae and Acinetobacter baumannii-induced peritonitis. These novel adjuvants show low toxicity in vivo, significantly reduce bacterial load, and prevent dissemination that could otherwise result in systemic infection.
Collapse
Affiliation(s)
- Beverly H. Koller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Leigh A. Jania
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Haoting Li
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - William T. Barker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Roberta J. Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
3
|
Li H, Fan X, Ding X, Zhang QY. Tissue-, Region-, and Gene-Specific Induction of Microsomal Epoxide Hydrolase Expression and Activity in the Mouse Intestine by Arsenic in Drinking Water. Drug Metab Dispos 2024; 52:681-689. [PMID: 38719743 PMCID: PMC11185820 DOI: 10.1124/dmd.124.001720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/30/2024] [Indexed: 06/19/2024] Open
Abstract
This study aimed to characterize the effects of arsenic exposure on the expression of microsomal epoxide hydrolase (mEH or EPHX1) and soluble epoxide hydrolase (sEH or EPHX2) in the liver and small intestine. C57BL/6 mice were exposed to sodium arsenite in drinking water at various doses for up to 28 days. Intestinal, but not hepatic, mEH mRNA and protein expression was induced by arsenic at 25 ppm, in both males and females, whereas hepatic mEH expression was induced by arsenic at 50 or 100 ppm. The induction of mEH was gene specific, as the arsenic exposure did not induce sEH expression in either tissue. Within the small intestine, mEH expression was induced only in the proximal, but not the distal segments. The induction of intestinal mEH was accompanied by increases in microsomal enzymatic activities toward a model mEH substrate, cis-stilbene oxide, and an epoxide-containing drug, oprozomib, in vitro, and by increases in the levels of PR-176, the main hydrolysis metabolite of oprozomib, in the proximal small intestine of oprozomib-treated mice. These findings suggest that intestinal mEH, playing a major role in converting xenobiotic epoxides to less reactive diols, but not sEH, preferring endogenous epoxides as substrates, is relevant to the adverse effects of arsenic exposure, and that further studies of the interactions between drinking water arsenic exposure and the disposition or possible adverse effects of epoxide-containing drugs and other xenobiotic compounds in the intestine are warranted. SIGNIFICANCE STATEMENT: Consumption of arsenic-contaminated water has been associated with increased risks of various adverse health effects, such as diabetes, in humans. The small intestinal epithelial cells are the main site of absorption of ingested arsenic, but they are not well characterized for arsenic exposure-related changes. This study identified gene expression changes in the small intestine that may be mechanistically linked to the adverse effects of arsenic exposure and possible interactions between arsenic ingestion and the pharmacokinetics of epoxide-containing drugs in vivo.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Xiaoyu Fan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| |
Collapse
|
4
|
Peña LCS, Hernández AB, Del Razo LM. Decreased Arsenic Disposition and Alteration of its Metabolic Profile in mice Coexposed to Fluoride. Biol Trace Elem Res 2024; 202:1594-1602. [PMID: 37450204 PMCID: PMC10859321 DOI: 10.1007/s12011-023-03764-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Inorganic arsenic (iAs) and fluoride (iF) are ubiquitous elements whose coexistence is frequent in several regions of the world due to the natural contamination of water sources destined for human consumption. It has been reported that coexposure to these two elements in water can cause toxic effects on health, which are controversial since antagonistic and synergistic effects have been reported. However, there is little information on the possible toxicological interaction between concurrent exposure to iAs and iF on the iAs metabolism profile.The goal of this study was to determine the effect of iF exposure on iAs methylation patterns in the urine and the tissues of female mice of the C57BL/6 strain, which were divided into four groups and exposed daily for 10 days through drinking water as follows: purified water (control); arsenite 1 mg/L, fluoride 50 mg/L and arsenite & fluoride 1:50 mg/L.To characterize the iAs methylation pattern in concomitant iF exposure, iAs and its methylated metabolites (MAs and DMAs) were quantified in the tissues and the urine of mice was exposed to iAs alone or in combination. Our results showed a statistically significant decrease in the arsenic species concentrations and altered relative proportions of arsenic species in tissues and urine in the As-iF coexposure group compared to the iAs-exposed group. These findings show that iF exposure decreases arsenic disposition and alters methylation capacity.Nevertheless, additional studies are required to elucidate the mechanisms involved in the iAs-iF interaction through iF exposure affecting iAs disposition and metabolism.
Collapse
Affiliation(s)
- Luz C Sanchez Peña
- Departmento de Toxicologia, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, San Pedro Zacatenco, Mexico City, 07360, Mexico
| | - Angel Barrera Hernández
- Departmento de Toxicologia, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, San Pedro Zacatenco, Mexico City, 07360, Mexico
| | - Luz M Del Razo
- Departmento de Toxicologia, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, San Pedro Zacatenco, Mexico City, 07360, Mexico.
| |
Collapse
|
5
|
Koller BH, Nguyen M, Snouwaert JN, Gabel CA, Ting JPY. Species-specific NLRP3 regulation and its role in CNS autoinflammatory diseases. Cell Rep 2024; 43:113852. [PMID: 38427558 DOI: 10.1016/j.celrep.2024.113852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 03/03/2024] Open
Abstract
The NLRP3 inflammasome is essential for caspase-1 activation and the release of interleukin (IL)-1β, IL-18, and gasdermin-D in myeloid cells. However, research on species-specific NLRP3's physiological impact is limited. We engineer mice with the human NLRP3 gene, driven by either the human or mouse promoter, via syntenic replacement at the mouse Nlrp3 locus. Both promoters facilitate hNLRP3 expression in myeloid cells, but the mouse promoter responds more robustly to LPS. Investigating the disease impact of differential NLRP3 regulation, we introduce the D305N gain-of-function mutation into both humanized lines. Chronic inflammation is evident with both promoters; however, CNS outcomes vary significantly. Despite poor response to LPS, the human promoter results in D305N-associated aseptic meningitis, mirroring human pathology. The mouse promoter, although leading to increased CNS expression post-LPS, does not induce meningitis in D305N mutants. Therefore, human-like NLRP3 expression may be crucial for accurate modeling of its role in disease pathogenesis.
Collapse
Affiliation(s)
- Beverly H Koller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - MyTrang Nguyen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John N Snouwaert
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Speer RM, Nandi SP, Cooper KL, Zhou X, Yu H, Guo Y, Hudson LG, Alexandrov LB, Liu KJ. Arsenic is a potent co-mutagen of ultraviolet light. Commun Biol 2023; 6:1273. [PMID: 38104187 PMCID: PMC10725444 DOI: 10.1038/s42003-023-05659-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
Arsenic enhances the carcinogenicity of ultraviolet radiation (UVR). However, the mechanisms of arsenic-driven oncogenesis are not well understood. Here, we utilize experimental systems to investigate the carcinogenic and mutagenic properties of co-exposure to arsenic and UVR. In vitro and in vivo exposures indicate that, by itself, arsenic is not mutagenic. However, in combination with UVR, arsenic exposure has a synergistic effect leading to an accelerated mouse skin carcinogenesis and to more than 2-fold enrichment of UVR mutational burden. Notably, mutational signature ID13, previously found only in UVR-associated human skin cancers, is observed exclusively in mouse skin tumors and cell lines jointly exposed to arsenic and UVR. This signature was not observed in any model system exposed purely to arsenic or purely to UVR, making ID13, to the best of our knowledge, the first co-exposure signature to be reported using controlled experimental conditions. Analysis of existing skin cancer genomics data reveals that only a subset of cancers harbor ID13 and these exhibit an elevated UVR mutagenesis. Our results report a unique mutational signature caused by a co-exposure to two environmental carcinogens and provide comprehensive evidence that arsenic is a potent co-mutagen and co-carcinogen of UVR.
Collapse
Affiliation(s)
- Rachel M Speer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Shuvro P Nandi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA
| | - Karen L Cooper
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Hui Yu
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Yan Guo
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA.
- Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA.
- Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA.
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA.
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, 11794, USA.
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY, 11794, USA.
| |
Collapse
|
7
|
Subramaniam NK, Gagnon N, Makhani K, Kukolj N, Mouradian MH, Giles BH, Srikannan H, Fruh V, Meliker J, Wellenius GA, Mann KK. In vitro and in vivo approaches to assess atherosclerosis following exposure to low-dose mixtures of arsenic and cadmium. Toxicol Appl Pharmacol 2023; 481:116763. [PMID: 37980961 PMCID: PMC11414205 DOI: 10.1016/j.taap.2023.116763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Worldwide, millions of people are co-exposed to arsenic and cadmium. Environmental exposure to both metals is linked with a higher risk of atherosclerosis. While studies have characterized the pro-atherosclerotic effects of arsenic and cadmium as single agents, little is known about the potential effects of metal mixtures, particularly at low doses. Here, we used a combination of in vitro and in vivo models to assess the effects of low-dose metals individually and as mixtures on early events and plaque development associated with atherosclerosis. In vitro, we investigated early pro-atherogenic changes in macrophages and endothelial cells with metal treatments. The combined cytotoxic effects of both metals at low concentrations were dose interactive, specifically, synergistic in macrophages, but antagonistic in endothelial cells. Despite this differential behavior across cell types, the mixtures did not initiate early pro-atherogenic events: neither reactive oxygen species generation in macrophages nor adhesion molecule expression on endothelial cells. In vivo, we utilized the well-characterized hyperlipidemic apolipoprotein E knock-out (ApoE-/-) mouse model. Previously, we have shown that low concentrations of arsenic (down to 10 ppb) enhance atherosclerosis in ApoE-/- mice. This model has also been used with cadmium to demonstrate pro-atherogenic effects, although at concentrations above human-relevant exposures. In both sexes, there are some small increases in atherosclerotic lesion size, but very few changes in plaque constituents in the ApoE-/- mouse model. Together, these results suggests that low-dose metal mixtures are not significantly more pro-atherogenic than either metal alone.
Collapse
Affiliation(s)
- Nivetha K Subramaniam
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| | - Natascha Gagnon
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| | - Kiran Makhani
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| | - Nikola Kukolj
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| | - Michael H Mouradian
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| | - Braeden H Giles
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| | - Harinee Srikannan
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| | - Victoria Fruh
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Jaymie Meliker
- Program in Public Health, Department of Family, Population, & Preventive Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Gregory A Wellenius
- Center for Climate and Health, Boston University School of Public Health, Boston, MA, USA.
| | - Koren K Mann
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
8
|
States JC, Barchowsky A. Invited Perspective: Humanized Mice for Arsenic Metabolism-A Better Model for Investigating Arsenic-Induced Diseases? ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:121308. [PMID: 38150314 PMCID: PMC10752413 DOI: 10.1289/ehp13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/12/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Affiliation(s)
- J. Christopher States
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Todero J, Douillet C, Shumway AJ, Koller BH, Kanke M, Phuong DJ, Stýblo M, Sethupathy P. Molecular and Metabolic Analysis of Arsenic-Exposed Humanized AS3MT Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127021. [PMID: 38150313 PMCID: PMC10752418 DOI: 10.1289/ehp12785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/30/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Chronic exposure to inorganic arsenic (iAs) has been associated with type 2 diabetes (T2D). However, potential sex divergence and the underlying mechanisms remain understudied. iAs is not metabolized uniformly across species, which is a limitation of typical exposure studies in rodent models. The development of a new "humanized" mouse model overcomes this limitation. In this study, we leveraged this model to study sex differences in the context of iAs exposure. OBJECTIVES The aim of this study was to determine if males and females exhibit different liver and adipose molecular profiles and metabolic phenotypes in the context of iAs exposure. METHODS Our study was performed on wild-type (WT) 129S6/SvEvTac and humanized arsenic + 3 methyl transferase (human AS3MT) 129S6/SvEvTac mice treated with 400 ppb of iAs via drinking water ad libitum. After 1 month, mice were sacrificed and the liver and gonadal adipose depots were harvested for iAs quantification and sequencing-based microRNA and gene expression analysis. Serum blood was collected for fasting blood glucose, fasting plasma insulin, and homeostatic model assessment for insulin resistance (HOMA-IR). RESULTS We detected sex divergence in liver and adipose markers of diabetes (e.g., miR-34a, insulin signaling pathways, fasting blood glucose, fasting plasma insulin, and HOMA-IR) only in humanized (not WT) mice. In humanized female mice, numerous genes that promote insulin sensitivity and glucose tolerance in both the liver and adipose are elevated compared to humanized male mice. We also identified Klf11 as a putative master regulator of the sex divergence in gene expression in humanized mice. DISCUSSION Our study underscored the importance of future studies leveraging the humanized mouse model to study iAs-associated metabolic disease. The findings suggested that humanized males are at increased risk for metabolic dysfunction relative to humanized females in the context of iAs exposure. Future investigations should focus on the detailed mechanisms that underlie the sex divergence. https://doi.org/10.1289/EHP12785.
Collapse
Affiliation(s)
- Jenna Todero
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alexandria J. Shumway
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Beverly H. Koller
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Daryl J. Phuong
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
10
|
Shang B, Venkatratnam A, Liu T, Douillet C, Shi Q, Miller M, Cable P, Zou F, Ideraabdullah FY, Fry RC, Stýblo M. Sex-specific transgenerational effects of preconception exposure to arsenite: metabolic phenotypes of C57BL/6 offspring. Arch Toxicol 2023; 97:2879-2892. [PMID: 37615676 PMCID: PMC10754030 DOI: 10.1007/s00204-023-03582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Chronic exposure to inorganic arsenic (iAs) has been linked to diabetes in both humans and mice, but the role of iAs exposure prior to conception and its transgenerational effects are understudied. The present study investigated transgenerational effects of preconception iAs exposure in C57BL/6J mice, focusing on metabolic phenotypes of G1 and G2 offspring. Body composition and diabetes indicators, including fasting blood glucose, fasting plasma insulin, glucose tolerance, and indicators of insulin resistance and beta cell function, were examined in both generations. The results suggest that the preconception iAs exposure in the parental (G0) generation induced diabetic phenotypes in G1 and G2 offspring in a sex-dependent manner. G1 females from iAs-exposed parents developed insulin resistance while no significant effects were found in G1 males. In the G2 generation, insulin resistance was observed only in males from iAs-exposed grandparents and was associated with higher bodyweights and adiposity. Similar trends were observed in G2 females from iAs-exposed grandparents, but these did not reach statistical significance. Thus, preconception iAs exposure altered metabolic phenotype across two generations of mouse offspring. Future research will investigate the molecular mechanisms underlying these transgenerational effects, including epigenomic and transcriptomic profiles of germ cells and tissues from G0, G1 and G2 generations.
Collapse
Affiliation(s)
- Bingzhen Shang
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Abhishek Venkatratnam
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, 27599-7431, USA
| | - Tianyi Liu
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Qing Shi
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Madison Miller
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Peter Cable
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Folami Y Ideraabdullah
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, 27599-7431, USA.
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA.
| |
Collapse
|
11
|
Yang X, Weber AA, Mennillo E, Secrest P, Chang M, Wong S, Le S, Liu J, Benner CW, Karin M, Gordts PL, Tukey RH, Chen S. Effects of Early Life Oral Arsenic Exposure on Intestinal Tract Development and Lipid Homeostasis in Neonatal Mice: Implications for NAFLD Development. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:97001. [PMID: 37668303 PMCID: PMC10478510 DOI: 10.1289/ehp12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/01/2023] [Accepted: 07/11/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Newborns can be exposed to inorganic arsenic (iAs) through contaminated drinking water, formula, and other infant foods. Epidemiological studies have demonstrated a positive association between urinary iAs levels and the risk of developing nonalcoholic fatty liver disease (NAFLD) among U.S. adolescents and adults. OBJECTIVES The present study examined how oral iAs administration to neonatal mice impacts the intestinal tract, which acts as an early mediator for NAFLD. METHODS Neonatal mice were treated with a single dose of iAs via oral gavage. Effects on the small intestine were determined by histological examination, RNA sequencing, and biochemical analysis. Serum lipid profiling was analyzed by fast protein liquid chromatography (FPLC), and hepatosteatosis was characterized histologically and biochemically. Liver X receptor-alpha (LXR α ) knockout (L x r α - / - ) mice and liver-specific activating transcription factor 4 (ATF4)-deficient (A t f 4 Δ H e p ) mice were used to define their roles in iAs-induced effects during the neonatal stage. RESULTS Neonatal mice exposed to iAs via oral gavage exhibited accumulation of dietary fat in enterocytes, with higher levels of enterocyte triglycerides and free fatty acids. These mice also showed accelerated enterocyte maturation and a longer small intestine. This was accompanied by higher levels of liver-derived very low-density lipoprotein and low-density lipoprotein triglycerides, and a lower level of high-density lipoprotein cholesterol in the serum. Mice exposed during the neonatal period to oral iAs also developed hepatosteatosis. Compared with the control group, iAs-induced fat accumulation in enterocytes became more significant in neonatal L x r α - / - mice, accompanied by accelerated intestinal growth, hypertriglyceridemia, and hepatosteatosis. In contrast, regardless of enterocyte fat accumulation, hepatosteatosis was largely reduced in iAs-treated neonatal A t f 4 Δ H e p mice. CONCLUSION Exposure to iAs in neonatal mice resulted in excessive accumulation of fat in enterocytes, disrupting lipid homeostasis in the serum and liver, revealing the importance of the gut-liver axis and endoplasmic reticulum stress in mediating iAs-induced NAFLD at an early age. https://doi.org/10.1289/EHP12381.
Collapse
Affiliation(s)
- Xiaojing Yang
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego (UC San Diego), La Jolla, California, USA
| | - André A. Weber
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego (UC San Diego), La Jolla, California, USA
| | - Elvira Mennillo
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego (UC San Diego), La Jolla, California, USA
| | - Patrick Secrest
- Department of Medicine, Division of Endocrinology and Metabolism, UC San Diego, La Jolla, California, USA
| | - Max Chang
- Department of Medicine, School of Medicine, UC San Diego, La Jolla, California, USA
| | - Samantha Wong
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego (UC San Diego), La Jolla, California, USA
| | - Sabrina Le
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego (UC San Diego), La Jolla, California, USA
| | - Junlai Liu
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, UC San Diego, La Jolla, California, USA
| | | | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, UC San Diego, La Jolla, California, USA
| | - Philip L.S.M. Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, UC San Diego, La Jolla, California, USA
| | - Robert H. Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego (UC San Diego), La Jolla, California, USA
| | - Shujuan Chen
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego (UC San Diego), La Jolla, California, USA
| |
Collapse
|
12
|
Douillet C, Miller M, Cable PH, Shi Q, El-Masri H, Matoušek T, Koller BH, Thomas DJ, Stýblo M. Fate of arsenicals in mice carrying the human AS3MT gene exposed to environmentally relevant levels of arsenite in drinking water. Sci Rep 2023; 13:3660. [PMID: 36871058 PMCID: PMC9985638 DOI: 10.1038/s41598-023-30723-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Although mice are widely used to study adverse effects of inorganic arsenic (iAs), higher rates of iAs methylation in mice than in humans may limit their utility as a model organism. A recently created 129S6 mouse strain in which the Borcs7/As3mt locus replaces the human BORCS7/AS3MT locus exhibits a human-like pattern of iAs metabolism. Here, we evaluate dosage dependency of iAs metabolism in humanized (Hs) mice. We determined tissue and urinary concentrations and proportions of iAs, methylarsenic (MAs), and dimethylarsenic (DMAs) in male and female Hs and wild-type (WT) mice that received 25- or 400-ppb iAs in drinking water. At both exposure levels, Hs mice excrete less total arsenic (tAs) in urine and retain more tAs in tissues than WT mice. Tissue tAs levels are higher in Hs females than in Hs males, particularly after exposure to 400-ppb iAs. Tissue and urinary fractions of tAs present as iAs and MAs are significantly greater in Hs mice than in WT mice. Notably, tissue tAs dosimetry in Hs mice resembles human tissue dosimetry predicted by a physiologically based pharmacokinetic model. These data provide additional support for use of Hs mice in laboratory studies examining effects of iAs exposure in target tissues or cells.
Collapse
Affiliation(s)
- Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Madison Miller
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Peter H Cable
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Qing Shi
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Hisham El-Masri
- Chemical Characterization and Exposure Division, Center for Computational Toxicology & Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
| | - Tomáš Matoušek
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveří 97, 602 00, Brno, Czech Republic
| | - Beverly H Koller
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David J Thomas
- Dinkey Creek Consulting, LLC, Chapel Hill, NC, 27517, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA.
| |
Collapse
|
13
|
Speer RM, Nandi SP, Cooper KL, Zhou X, Yu H, Guo Y, Hudson LG, Alexandrov LB, Liu KJ. Arsenic is a potent co-mutagen of ultraviolet light. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529578. [PMID: 36865271 PMCID: PMC9980120 DOI: 10.1101/2023.02.22.529578] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Environmental co-exposures are widespread and are major contributors to carcinogenic mechanisms. Two well-established environmental agents causing skin cancer are ultraviolet radiation (UVR) and arsenic. Arsenic is a known co-carcinogen that enhances UVR's carcinogenicity. However, the mechanisms of arsenic co-carcinogenesis are not well understood. In this study, we utilized primary human keratinocytes and a hairless mouse model to investigate the carcinogenic and mutagenic properties of co-exposure to arsenic and UVR. In vitro and in vivo exposures revealed that, on its own, arsenic is neither mutagenic nor carcinogenic. However, in combination with UVR, arsenic exposure has a synergistic effect leading to an accelerated mouse skin carcinogenesis as well as to more than 2-fold enrichment of UVR mutational burden. Notably, mutational signature ID13, previously found only in UVR-associated human skin cancers, was observed exclusively in mouse skin tumors and cell lines jointly exposed to arsenic and UVR. This signature was not observed in any model system exposed purely to arsenic or purely to UVR, making ID13 the first co-exposure signature to be reported using controlled experimental conditions. Analysis of existing genomics data from basal cell carcinomas and melanomas revealed that only a subset of human skin cancers harbor ID13 and, consistent with our experimental observations, these cancers exhibited an elevated UVR mutagenesis. Our results provide the first report of a unique mutational signature caused by a co-exposure to two environmental carcinogens and the first comprehensive evidence that arsenic is a potent co-mutagen and co-carcinogen of UVR. Importantly, our findings suggest that a large proportion of human skin cancers are not formed purely due to UVR exposure but rather due to a co-exposure of UVR and other co-mutagens such as arsenic.
Collapse
Affiliation(s)
- Rachel M. Speer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Shuvro P. Nandi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
| | - Karen L. Cooper
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Hui Yu
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico, Albuquerque, NM 87106, USA
| | - Yan Guo
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico, Albuquerque, NM 87106, USA
| | - Laurie G. Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87106, USA
- Stony Brook Cancer Center, Stony Brook University, Stony Brook NY 11794, USA
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| |
Collapse
|
14
|
Calderón-DuPont D, Romero-Córdoba S, Tello JK, Espinosa A, Guerrero B, Contreras AV, Morán-Ramos S, Díaz-Villaseñor A. Impaired white adipose tissue fatty acid metabolism in mice fed a high-fat diet worsened by arsenic exposure, primarily affecting retroperitoneal adipose tissue. Toxicol Appl Pharmacol 2023; 468:116428. [PMID: 36801214 DOI: 10.1016/j.taap.2023.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Fatty acid (FA) metabolism dysfunction of white adipose tissue (WAT) underlies obesity and insulin resistance in response to high calorie intake and/or endocrine-disrupting chemicals (EDCs), among other factors. Arsenic is an EDC that has been associated with metabolic syndrome and diabetes. However, the combined effect of a high-fat diet (HFD) and arsenic exposure on WAT FA metabolism has been little studied. FA metabolism was evaluated in visceral (epididymal and retroperitoneal) and subcutaneous WAT of C57BL/6 male mice fed control or HFD (12 and 40% kcal fat, respectively) for 16 weeks together with an environmentally relevant chronic arsenic exposure through drinking water (100 μg/l) during the second half of the study. In mice fed HFD, arsenic potentiated the increase of serum markers of selective insulin resistance in WAT and fatty acid re-esterification and the decrease in the lipolysis index. Retroperitoneal was the WAT most affected, where the combination of arsenic and HFD in contrast to HFD, generated higher weight, larger adipocytes, increased triglyceride content, and decreased fasting stimulated lipolysis evidenced by lower phosphorylation of HSL and perilipin. At the transcriptional level, arsenic in mice fed either diet downregulated genes involved in fatty acid uptake (LPL, CD36), oxidation (PPARα, CPT1), lipolysis (ADRß3) and glycerol transport (AQP7 and AQP9). Additionally, arsenic potentiated hyperinsulinemia induced by HFD, despite a slight increase in weight gain and food efficiency. Thus, the second hit of arsenic in sensitized mice by HFD worsens fatty acid metabolism impairment in WAT, mainly retroperitoneal, along with an exacerbated insulin resistance phenotype.
Collapse
Affiliation(s)
- Diana Calderón-DuPont
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Sandra Romero-Córdoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14000, Mexico
| | - Jessica K Tello
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Maestría en Nutrición Clínica, Universidad Anáhuac Campus Norte, Estado de México 52786, Mexico
| | - Aranza Espinosa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Brenda Guerrero
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Alejandra V Contreras
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genόmica (INMEGEN), Mexico City 14609, Mexico; Translational Molecular Biomarkers, Merck & Co., Inc, Rahway, NJ, USA
| | - Sofia Morán-Ramos
- Unidad de Genόmica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genόmica (INMEGEN), Mexico City 14609, Mexico; Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Andrea Díaz-Villaseñor
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico.
| |
Collapse
|
15
|
Chernoff MB, Delgado D, Tong L, Chen L, Oliva M, Tamayo LI, Best LG, Cole S, Jasmine F, Kibriya MG, Nelson H, Huang L, Haack K, Kent J, Umans JG, Graziano J, Navas-Acien A, Karagas MR, Ahsan H, Pierce BL. Sequencing-based fine-mapping and in silico functional characterization of the 10q24.32 arsenic metabolism efficiency locus across multiple arsenic-exposed populations. PLoS Genet 2023; 19:e1010588. [PMID: 36668670 PMCID: PMC9891528 DOI: 10.1371/journal.pgen.1010588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 02/01/2023] [Accepted: 12/20/2022] [Indexed: 01/22/2023] Open
Abstract
Inorganic arsenic is highly toxic and carcinogenic to humans. Exposed individuals vary in their ability to metabolize arsenic, and variability in arsenic metabolism efficiency (AME) is associated with risks of arsenic-related toxicities. Inherited genetic variation in the 10q24.32 region, near the arsenic methyltransferase (AS3MT) gene, is associated with urine-based measures of AME in multiple arsenic-exposed populations. To identify potential causal variants in this region, we applied fine mapping approaches to targeted sequencing data generated for exposed individuals from Bangladeshi, American Indian, and European American populations (n = 2,357, 557, and 648 respectively). We identified three independent association signals for Bangladeshis, two for American Indians, and one for European Americans. The size of the confidence sets for each signal varied from 4 to 85 variants. There was one signal shared across all three populations, represented by the same SNP in American Indians and European Americans (rs191177668) and in strong linkage disequilibrium (LD) with a lead SNP in Bangladesh (rs145537350). Beyond this shared signal, differences in LD patterns, minor allele frequency (MAF) (e.g., rs12573221 ~13% in Bangladesh ~0.2% among American Indians), and/or heterogeneity in effect sizes across populations likely contributed to the apparent population specificity of the additional identified signals. One of our potential causal variants influences AS3MT expression and nearby DNA methylation in numerous GTEx tissue types (with rs4919690 as a likely causal variant). Several SNPs in our confidence sets overlap transcription factor binding sites and cis-regulatory elements (from ENCODE). Taken together, our analyses reveal multiple potential causal variants in the 10q24.32 region influencing AME, including a variant shared across populations, and elucidate potential biological mechanisms underlying the impact of genetic variation on AME.
Collapse
Affiliation(s)
- Meytal Batya Chernoff
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, United States of America
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, Illinois, United States of America
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, United States of America
| | - Dayana Delgado
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, United States of America
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, United States of America
| | - Lin Chen
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, United States of America
| | - Meritxell Oliva
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, United States of America
| | - Lizeth I. Tamayo
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, United States of America
| | - Lyle G. Best
- Missouri Breaks Industries Research Inc, Eagle Butte, South Dakota, United States of America
| | - Shelley Cole
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, United States of America
| | - Muhammad G. Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, United States of America
| | - Heather Nelson
- School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Lei Huang
- Center for Research Informatics, University of Chicago, Chicago, Illinois, United States of America
| | - Karin Haack
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Jack Kent
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Jason G. Umans
- MedStar Health Research Institute, Hyattsville, Maryland, United States of America
- Georgetown-Howard Universities Center for Clinical and Translational Science, Georgetown University, Washington, District of Columbia, United States of America
| | - Joseph Graziano
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- Department of Pharmacology, Columbia University, New York City, New York, United States of America
| | - Ana Navas-Acien
- Mailman School of Public Health, Columbia University, New York City, New York, United States of America
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Habib Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, United States of America
- Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Brandon L. Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, United States of America
- Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
16
|
Ding X, Han J, Van Winkle LS, Zhang QY. Detection of Transgene Location in the CYP2A13/2B6/2F1-transgenic Mouse Model using Optical Genome Mapping Technology. Drug Metab Dispos 2023; 51:46-53. [PMID: 36273825 PMCID: PMC9832375 DOI: 10.1124/dmd.122.001090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 01/14/2023] Open
Abstract
Most transgenic mouse models are generated through random integration of the transgene. The location of the transgene provides valuable information for assessing potential effects of the transgenesis on the host and for designing genotyping protocols that can amplify across the integration site, but it is challenging to identify. Here, we report the successful utility of optical genome mapping technology to identify the transgene insertion site in a CYP2A13/2B6/2F1-transgenic mouse model, which produces three human cytochrome P450 (P450) enzymes (CYP2A13, CYP2B6, and CYP2F1) that are encoded by neighboring genes on human chromosome 19. These enzymes metabolize many drugs, respiratory toxicants, and chemical carcinogens. Initial efforts to identify candidate insertion sites by whole genome sequencing was unsuccessful, apparently because the transgene is located in a region of the mouse genome that contains highly repetitive sequences. Subsequent utility of the optical genome mapping approach, which compares genome-wide marker distribution between the transgenic mouse genome and a reference mouse (GRCm38) or human (GRCh38) genome, localized the insertion site to mouse chromosome 14, between two marker positions at 4451324 base pair and 4485032 base pair. A transgene-mouse genome junction sequence was further identified through long-polymerase chain reaction amplification and DNA sequencing at GRCm38 Chr.14:4484726. The transgene insertion (∼2.4 megabase pair) contained 5-7 copies of the human transgenes, which replaced a 26.9-33.4 kilobase pair mouse genomic region, including exons 1-4 of Gm3182, a predicted and highly redundant gene. Finally, the sequencing results enabled the design of a new genotyping protocol that can distinguish between hemizygous and homozygous CYP2A13/2B6/2F1-transgenic mice. SIGNIFICANCE STATEMENT: This study characterizes the genomic structure of, and provides a new genotyping method for, a transgenic mouse model that expresses three human P450 enzymes, CYP2A13, CYP2B6, and CYP2F1, that are important in xenobiotic metabolism and toxicity. The demonstrated success in applying the optical genome mapping technology for identification of transgene insertion sites should encourage others to do the same for other transgenic models generated through random integration, including most of the currently available human P450 transgenic mouse models.
Collapse
Affiliation(s)
- Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (X.D., J.H., Q.-Y.Z.) and Center for Health and the Environment and Department of Anatomy Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, California (L.S.V.W.)
| | - John Han
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (X.D., J.H., Q.-Y.Z.) and Center for Health and the Environment and Department of Anatomy Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, California (L.S.V.W.)
| | - Laura S Van Winkle
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (X.D., J.H., Q.-Y.Z.) and Center for Health and the Environment and Department of Anatomy Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, California (L.S.V.W.)
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (X.D., J.H., Q.-Y.Z.) and Center for Health and the Environment and Department of Anatomy Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, California (L.S.V.W.)
| |
Collapse
|
17
|
Xenakis JG, Douillet C, Bell TA, Hock P, Farrington J, Liu T, Murphy CEY, Saraswatula A, Shaw GD, Nativio G, Shi Q, Venkatratnam A, Zou F, Fry RC, Stýblo M, Pardo-Manuel de Villena F. An interaction of inorganic arsenic exposure with body weight and composition on type 2 diabetes indicators in Diversity Outbred mice. Mamm Genome 2022; 33:575-589. [PMID: 35819478 PMCID: PMC9761582 DOI: 10.1007/s00335-022-09957-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/24/2022] [Indexed: 12/01/2022]
Abstract
Type 2 diabetes (T2D) is a complex metabolic disorder with no cure and high morbidity. Exposure to inorganic arsenic (iAs), a ubiquitous environmental contaminant, is associated with increased T2D risk. Despite growing evidence linking iAs exposure to T2D, the factors underlying inter-individual differences in susceptibility remain unclear. This study examined the interaction between chronic iAs exposure and body composition in a cohort of 75 Diversity Outbred mice. The study design mimics that of an exposed human population where the genetic diversity of the mice provides the variation in response, in contrast to a design that includes untreated mice. Male mice were exposed to iAs in drinking water (100 ppb) for 26 weeks. Metabolic indicators used as diabetes surrogates included fasting blood glucose and plasma insulin (FBG, FPI), blood glucose and plasma insulin 15 min after glucose challenge (BG15, PI15), homeostatic model assessment for [Formula: see text]-cell function and insulin resistance (HOMA-B, HOMA-IR), and insulinogenic index. Body composition was determined using magnetic resonance imaging, and the concentrations of iAs and its methylated metabolites were measured in liver and urine. Associations between cumulative iAs consumption and FPI, PI15, HOMA-B, and HOMA-IR manifested as significant interactions between iAs and body weight/composition. Arsenic speciation analyses in liver and urine suggest little variation in the mice's ability to metabolize iAs. The observed interactions accord with current research aiming to disentangle the effects of multiple complex factors on T2D risk, highlighting the need for further research on iAs metabolism and its consequences in genetically diverse mouse strains.
Collapse
Affiliation(s)
- James G Xenakis
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Timothy A Bell
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pablo Hock
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joseph Farrington
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tianyi Liu
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Caroline E Y Murphy
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Avani Saraswatula
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ginger D Shaw
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gustavo Nativio
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Qing Shi
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Abhishek Venkatratnam
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rebecca C Fry
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Institute for Environmental Health Solutions, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Institute for Environmental Health Solutions, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
18
|
Yoshinaga-Sakurai K, Rossman TG, Rosen BP. Regulation of arsenic methylation: identification of the transcriptional region of the human AS3MT gene. Cell Biol Toxicol 2022; 38:765-780. [PMID: 33956289 PMCID: PMC8571124 DOI: 10.1007/s10565-021-09611-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/27/2021] [Indexed: 12/19/2022]
Abstract
The human enzyme As(III) S-adenosylmethionine methyltransferase (AS3MT) catalyzes arsenic biotransformations and is considered to contribute to arsenic-related diseases. AS3MT is expressed in various tissues and cell types including liver, brain, adrenal gland, and peripheral blood mononuclear cells but not in human keratinocytes, urothelial, or brain microvascular endothelial cells. This indicates that AS3MT expression is regulated in a tissue/cell type-specific manner, but the mechanism of transcriptional regulation of expression of the AS3MT gene is not known. In this study, we define the DNA sequence of the core promoter region of the human AS3MT gene. We identify a GC box in the promoter to which the stress-related transcription factor Sp1 binds, indicating involvement of regulatory elements in AS3MT gene expression.
Collapse
Affiliation(s)
- Kunie Yoshinaga-Sakurai
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Toby G Rossman
- Department of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA.
| |
Collapse
|
19
|
Speer RM, Zhou X, Volk LB, Liu KJ, Hudson LG. Arsenic and cancer: Evidence and mechanisms. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:151-202. [PMID: 36858772 DOI: 10.1016/bs.apha.2022.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Arsenic is a potent carcinogen and poses a significant health concern worldwide. Exposure occurs through ingestion of drinking water and contaminated foods and through inhalation due to pollution. Epidemiological evidence shows arsenic induces cancers of the skin, lung, liver, and bladder among other tissues. While studies in animal and cell culture models support arsenic as a carcinogen, the mechanisms of arsenic carcinogenesis are not fully understood. Arsenic carcinogenesis is a complex process due its ability to be metabolized and because of the many cellular pathways it targets in the cell. Arsenic metabolism and the multiple forms of arsenic play distinct roles in its toxicity and contribute differently to carcinogenic endpoints, and thus must be considered. Arsenic generates reactive oxygen species increasing oxidative stress and damaging DNA and other macromolecules. Concurrently, arsenic inhibits DNA repair, modifies epigenetic regulation of gene expression, and targets protein function due its ability to replace zinc in select proteins. While these mechanisms contribute to arsenic carcinogenesis, there remain significant gaps in understanding the complex nature of arsenic cancers. In the future improving models available for arsenic cancer research and the use of arsenic induced human tumors will bridge some of these gaps in understanding arsenic driven cancers.
Collapse
Affiliation(s)
- Rachel M Speer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Lindsay B Volk
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States; Stony Brook Cancer Center, Renaissance School of Medicine, State University of New York Stony Brook, Stony Brook, NY, United States.
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
20
|
Li H, Fan X, Wu X, Han W, Amistadi MK, Liu P, Zhang D, Chorover J, Ding X, Zhang QY. Differential Effects of Arsenic in Drinking Water on Mouse Hepatic and Intestinal Heme Oxygenase-1 Expression. Antioxidants (Basel) 2022; 11:1835. [PMID: 36139908 PMCID: PMC9495312 DOI: 10.3390/antiox11091835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Arsenic exposure has been associated with the risks of various diseases, including cancers and metabolic diseases. The aim of this study was to examine the effects of arsenic exposure via drinking water on the expression of heme oxygenase-1 (HO-1), a major responsive gene to arsenic-induced oxidative stress, in mouse intestinal epithelial cells which is the first site of exposure for ingested arsenic, and the liver, a known target of arsenic toxicity. The expression of HO-1 was determined at mRNA, protein, or enzymic activity levels in mice exposed to sodium arsenite through drinking water, at various doses (0, 2.5, 10, 25, 100 ppm), and for various time periods (1, 3, 7, or 28 days). HO-1 was significantly induced in the intestine, but not liver, at arsenic doses of 25 ppm or lower. The intestinal HO-1 induction was seen in both males and females, plateaued within 1-3 days of exposure, and was accompanied by increases in microsomal HO activity. In mice exposed to 25-ppm of arsenite for 7 days, total arsenic and As(III) levels in intestinal epithelial cells were significantly higher than in the liver. These findings identify intestinal epithelial cells as likely preferential targets for arsenic toxicity and support further studies on the functional consequences of intestinal HO-1 induction.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Xiaoyu Fan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Xiangmeng Wu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Weiguo Han
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Mary Kay Amistadi
- Department of Environmental Science, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Donna Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Jon Chorover
- Department of Environmental Science, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
21
|
Yin N, Cai X, Wang P, Feng R, Du H, Fu Y, Sun G, Cui Y. Predictive capabilities of in vitro colon bioaccessibility for estimating in vivo relative bioavailability of arsenic from contaminated soils: Arsenic speciation and gut microbiota considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151804. [PMID: 34808186 DOI: 10.1016/j.scitotenv.2021.151804] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) transformation by human gut microbiota has been evidenced to impact As toxicity and human health. However, little is known about the influence of gut microbiota on As bioavailability from incidental ingestion of soil. In this study, we assessed As relative bioavailability (RBA) using an in vivo mouse model and As bioaccessibility in the colon phase of in vitro assays. Strong in vivo-in vitro correlations (R2 = 0.70-0.92, P < 0.05) were observed between soil As RBA (10.2%-57.7%) and colon bioaccessibility (4.8%-49.0%) in 13 As-contaminated soils. Upon in vitro incubation of human colon microbiota, we found a high degree of As transformation and 65.9% of generated As(III) was observed in soil residues. For in vivo mouse assay, DMA(V) accounted for 79.0% of cumulative urinary As excretion. Except for As(V), dominant As species including As(III), DMA(V) and As sulfides were also detected in mouse feces. Gut bacteria (families Rikenellaceae and Marinifilaceae) could be significantly correlated with As intake and excretion in mice (P < 0.05). Our findings provide evidence that gut microbiota can affect transformation, bioavailability, and fate of the orally ingested soil As in human gastrointestinal tract.
Collapse
Affiliation(s)
- Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Run Feng
- Beijing Laboratory Animal Research Center (BLARC), Beijing 100012, PR China
| | - Huili Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yaqi Fu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Guoxin Sun
- Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
22
|
Ghosh S, Banerjee M, Haribabu B, Jala VR. Urolithin A attenuates arsenic-induced gut barrier dysfunction. Arch Toxicol 2022; 96:987-1007. [PMID: 35122514 PMCID: PMC10867785 DOI: 10.1007/s00204-022-03232-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/20/2022] [Indexed: 01/16/2023]
Abstract
Environmental chemicals such as inorganic arsenic (iAs) significantly contribute to redox toxicity in the human body by enhancing oxidative stress. Imbalanced oxidative stress rapidly interferes with gut homeostasis and affects variety of cellular processes such as proliferation, apoptosis, and maintenance of intestinal barrier integrity. It has been shown that gut microbiota are essential to protect against iAs3+-induced toxicity. However, the effect of microbial metabolites on iAs3+-induced toxicity and loss of gut barrier integrity has not been investigated. The objectives of the study are to investigate impact of iAs on gut barrier function and determine benefits of gut microbial metabolite, urolithin A (UroA) against iAs3+-induced adversaries on gut epithelium. We have utilized both colon epithelial cells and in a human intestinal 3D organoid model system to investigate iAs3+-induced cell toxicity, oxidative stress, and gut barrier dysfunction in the presence or absence of UroA. Here, we report that treatment with UroA attenuated iAs3+-induced cell toxicity, apoptosis, and oxidative stress in colon epithelial cells. Moreover, our data suggest that UroA significantly reduces iAs3+-induced gut barrier permeability and inflammatory markers in both colon epithelial cells and in a human intestinal 3D organoid model system. Mechanistically, UroA protected against iAs3+-induced disruption of tight junctional proteins in intestinal epithelial cells through blockade of oxidative stress and markers of inflammation. Taken together, our studies for the first time suggest that microbial metabolites such as UroA can potentially be used to protect against environmental hazards by reducing intestinal oxidative stress and by enhancing gut barrier function.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, UofL Health-Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, 505 South Hancock Street # 323, Louisville, KY, 40202, USA
| | - Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, UofL Health-Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, 505 South Hancock Street # 323, Louisville, KY, 40202, USA
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, UofL Health-Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, 505 South Hancock Street # 323, Louisville, KY, 40202, USA.
| |
Collapse
|
23
|
Schmidt S. Navigating a Two-Way Street: Metal Toxicity and the Human Gut Microbiome. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:32001. [PMID: 35302387 PMCID: PMC8932408 DOI: 10.1289/ehp9731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/07/2021] [Indexed: 05/21/2023]
|
24
|
Ghiuzeli CM, Stýblo M, Saunders J, Calabro A, Budman D, Allen S, Devoe C, Dhingra R. The pharmacokinetics of therapeutic arsenic trioxide in acute promyelocytic leukemia patients. Leuk Lymphoma 2021; 63:653-663. [PMID: 34689693 DOI: 10.1080/10428194.2021.1978084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Arsenic trioxide (ATO) treats Acute Promyelocytic Leukemia (APL). ATO is converted from inorganic arsenic (iAs) to methylated (MAs) and dimethylated (DMAs) metabolites, which are excreted in the urine. Methylation of iAs is important in detoxification, as iAs exposure is deleterious to health. We examined ATO metabolism in 25 APL patients, measuring iAs, MAs, and DMAs. Plasma total iAs increased after ATO administration, followed by a rapid decline, reaching trough levels by 4-6 h. We identified two patterns of iAs metabolism between 6 and 24 h after infusion: in Group 1, iAs increased and were slowly converted to MAs and DMAs, whereas in Group 2, iAs was rapidly metabolized. These patterns were associated with smoking and different treatments: ATO with all-trans retinoic acid (ATRA) alone vs. ATO preceded by ATRA and chemotherapy. Our data suggest that smoking and prior chemotherapy exposure may be associated with ATO metabolism stimulation, thus lowering the effective blood ATO dose.
Collapse
Affiliation(s)
- Cristina M Ghiuzeli
- Northwell Health Cancer Institute, Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jesse Saunders
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony Calabro
- Department of Medicine, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Daniel Budman
- Northwell Health Cancer Institute, Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Steven Allen
- Northwell Health Cancer Institute, Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Craig Devoe
- Northwell Health Cancer Institute, Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Radhika Dhingra
- Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
25
|
Abuawad A, Bozack AK, Saxena R, Gamble MV. Nutrition, one-carbon metabolism and arsenic methylation. Toxicology 2021; 457:152803. [PMID: 33905762 PMCID: PMC8349595 DOI: 10.1016/j.tox.2021.152803] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
Exposure to arsenic (As) is a major public health concern globally. Inorganic As (InAs) undergoes hepatic methylation to form monomethyl (MMAs)- and dimethyl (DMAs)-arsenical species, facilitating urinary As elimination. MMAsIII is considerably more toxic than either InAsIII or DMAsV, and a higher proportion of MMAs in urine has been associated with risk for a wide range of adverse health outcomes. Efficiency of As methylation differs substantially between species, between individuals, and across populations. One-carbon metabolism (OCM) is a biochemical pathway that provides methyl groups for the methylation of As, and is influenced by folate and other micronutrients, such as vitamin B12, choline, betaine and creatine. A growing body of evidence has demonstrated that OCM-related micronutrients play a critical role in As methylation. This review will summarize observational epidemiological studies, interventions, and relevant experimental evidence examining the role that OCM-related micronutrients have on As methylation, toxicity of As, and risk for associated adverse health-related outcomes. There is fairly robust evidence supporting the impact of folate on As methylation, and some evidence from case-control studies indicating that folate nutritional status influences risk for As-induced skin lesions and bladder cancer. However, the potential for folate to be protective for other As-related health outcomes, and the potential beneficial effects of other OCM-related micronutrients on As methylation and risk for health outcomes are less well studied and warrant additional research.
Collapse
Affiliation(s)
- Ahlam Abuawad
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Anne K Bozack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Roheeni Saxena
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
26
|
Arsenic methylation - Lessons from three decades of research. Toxicology 2021; 457:152800. [PMID: 33901604 PMCID: PMC10048126 DOI: 10.1016/j.tox.2021.152800] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 01/26/2023]
Abstract
Between 1990 and 2020, our understanding of the significance of arsenic biomethylation changed in remarkable ways. At the beginning of this period, the conversion of inorganic arsenic into mono- and di-methylated metabolites was viewed primarily as a process that altered the kinetic behavior of arsenic. By increasing the rate of clearance of arsenic, the formation of methylated metabolites reduced exposure to this toxin; that is, methylation was detoxification. By 2020, it was clear that at least some of the toxic effects associated with As exposure depended on formation of methylated metabolites containing trivalent arsenic. Because the trivalent oxidation state of arsenic is associated with increased potency as a cytotoxin and clastogen, these findings were consistent with methylation-related changes in the dynamic behavior of arsenic. That is, methylation was activation. Our current understanding of the role of methylation as a modifier of kinetic and dynamic behaviors of arsenic is the product of research at molecular, cellular, organismic, and population levels. This information provides a basis for refining our estimates of risk associated with long term exposure to inorganic arsenic in environmental media, food, and water. This report summarizes the growth of our knowledge of enzymatically catalyzed methylation of arsenic over this period and considers the prospects for new discoveries.
Collapse
|
27
|
Cohen JM, Beck BD, Rhomberg LR. Historical perspective on the role of cell proliferation in carcinogenesis for DNA-reactive and non-DNA-reactive carcinogens: Arsenic as an example. Toxicology 2021; 456:152783. [PMID: 33872731 DOI: 10.1016/j.tox.2021.152783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Abstract
Our understanding of the etiology of cancer has developed significantly over the past fifty years, beginning with a single-hit linear no-threshold (LNT) conceptual model based on early studies conducted in Drosophila. Over the past several decades, multiple lines of evidence have accumulated to support a contemporary model of chemical carcinogenesis: a multi-hit model involving a prolonged stress environment that over time may drive the mutation of multiple cells into an injured state that ultimately could lead to uncontrolled proliferation via clonal expansion of mutation-carrying daughter cells. Arsenic carcinogenicity offers a useful case study for further exploration of advanced conceptual models for chemical carcinogenesis. A threshold for arsenic carcinogenicity is supported by its mode of action, characterized by repeating cycles of cytotoxicity and cellular regeneration. Furthermore, preliminary meta-analyses of epidemiology dose-response data for inorganic arsenic (iAs) and bladder cancer, correlated to dose-response data measured in vitro, support a threshold of effect in humans on the order of 50-100 μg/L in drinking water. In light of recent developments in our understanding of cancer etiology, we urge strong consideration of the existing mode-of-action evidence supporting a threshold of effect for arsenic carcinogenicity, as well as consideration of the potential methodological pitfalls in evaluating epidemiology dose-response data that could potentially bias in the direction of low-dose linearity.
Collapse
|
28
|
Douillet C, Ji J, Meenakshi IL, Lu K, de Villena FPM, Fry RC, Stýblo M. Diverse genetic backgrounds play a prominent role in the metabolic phenotype of CC021/Unc and CC027/GeniUNC mice exposed to inorganic arsenic. Toxicology 2021; 452:152696. [PMID: 33524430 DOI: 10.1016/j.tox.2021.152696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/12/2020] [Accepted: 01/23/2021] [Indexed: 12/30/2022]
Abstract
Arsenic methyltransferase (AS3MT) is the key enzyme in the pathway for the methylation of inorganic arsenic (iAs), a potent human carcinogen and diabetogen. AS3MT converts iAs to mono- and dimethylated arsenic species (MAs, DMAs) that are excreted mainly in urine. Polymorphisms in AS3MT is a key genetic factor affecting iAs metabolism and toxicity. The present study examined the role of As3mt polymorphisms in the susceptibility to the diabetogenic effects of iAs exposure using two Collaborative Cross mouse strains, CC021/Unc and CC027/GeniUnc, carrying different As3mt haplotypes. Male mice from the two strains were exposed to iAs in drinking water (0, 0.1 or 50 ppm) for 11 weeks. Blood glucose and plasma insulin levels were measured after 6-h fasting and 15 min after i.p. injection of glucose. Body composition was determined using magnetic resonance imaging. To asses iAs metabolism, the concentrations of iAs, MAs and DMAs were measured in urine. The results show that CC021 mice, both iAs-exposed and controls, had higher body fat percentage, lower fasting blood glucose, higher fasting plasma insulin, and were more insulin resistant than their CC027 counterparts. iAs exposure had a minor effect on diabetes indicators and only in CC027 mice. Blood glucose levels 15 min after glucose injection were significantly higher in CC027 mice exposed to 0.1 ppm iAs than in control mice. No significant differences were found in the concentrations or proportions of arsenic species in urine of CC021 and CC027 mice at the same exposure level. These results suggest that the differences in As3mt haplotypes did not affect the profiles of iAs or its metabolites in mouse urine. The major differences in diabetes indicators were associated with the genetic backgrounds of CC021 and CC027 mice. The effects of iAs exposure, while minor, were genotype- and dose-dependent.
Collapse
Affiliation(s)
- Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jinglin Ji
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Immaneni Lakshmi Meenakshi
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
29
|
Schmidt S. Matching Rodents to People: A Humanized Mouse Model of iAs Methylation. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:104003. [PMID: 33054428 PMCID: PMC7560904 DOI: 10.1289/ehp8093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
|