1
|
Castiblanco-Rubio GA, Baston M, Hernandez-F M, Martinez-Mier EA, Cantoral A. Associations between Dietary Patterns, Fluoride Intake and Excretion in Women Exposed to Fluoridated Salt: A Preliminary Study. Nutrients 2024; 16:3404. [PMID: 39408371 PMCID: PMC11479219 DOI: 10.3390/nu16193404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Abundant information exists on fluoride intake and excretion in populations exposed to fluoridated water, but not fluoridated salt, where fluoride is eaten through a combination of foods and beverages. This study assessed associations between dietary patterns, fluoride intake and excretion in Mexican women exposed to fluoridated salt. We estimated dietary fluoride intake and excretion (mg/day) from 31 women using 24-h recalls (ASA24) and 24-h urine collections (HDMS diffusion method) and assessed agreement among both estimates of exposure with a Bland-Altman plot. Dietary patterns among the sample were explored by Principal Component Analysis and associations between these patterns and both fluoride intake and excretion were estimated. using Quantile Regressions. Median dietary fluoride intake and excretion were 0.95 and 0.90 mg/day, respectively, with better agreement at values below 1.5 mg/day. We identified three dietary patterns: "Urban Convenience", "Plant-based" and "Egg-based". The "Urban Convenience" pattern, characterized by dairy and convenience foods was associated with an increase of 0.25 mg and 0.34 mg of F in the 25th and 50th percentiles of intake respectively, (p < 0.01), and a marginal 0.22 mg decrease in urinary fluoride (p = 0.06). In conclusion, in this sample of Mexican women, a dietary pattern rich in dairy and convenience foods, was associated with both fluoride intake and excretion.
Collapse
Affiliation(s)
- Gina A. Castiblanco-Rubio
- Department of Dental Public Health and Dental Informatics, Indiana University School of Dentistry, Indianapolis, IN 46203, USA; (G.A.C.-R.); (E.A.M.-M.)
| | - Michele Baston
- Health Department, Universidad Iberoamericana, Mexico City 01376, Mexico
| | - Mauricio Hernandez-F
- Research Institute for Equitable Development EQUIDE, Universidad Iberoamericana, Mexico City 01376, Mexico;
| | - E. Angeles Martinez-Mier
- Department of Dental Public Health and Dental Informatics, Indiana University School of Dentistry, Indianapolis, IN 46203, USA; (G.A.C.-R.); (E.A.M.-M.)
| | - Alejandra Cantoral
- Health Department, Universidad Iberoamericana, Mexico City 01376, Mexico
| |
Collapse
|
2
|
Lee WS, Kim JH, Han B, Lee GC, Jung HR, Shin YJ, Ha EK, Lee E, Lee S, Han MY. Association of fluoride exposure with disease burden and neurodevelopment outcomes in children in South Korea. World J Pediatr 2024; 20:1029-1042. [PMID: 38937407 DOI: 10.1007/s12519-024-00820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Community water fluoridation is an effective public health strategy for preventing dental caries, yet. Concerns exist about potential health problems. This study explores associations between tap water fluoride levels and pediatric disease burden, as well as neurodevelopmental outcomes at 6 years of age. METHODS This nationwide population-based cohort study included children born in Korean cities with and without tap water fluoridation projects, between 2006 and 2012, aiming for a fluoride concentration of 0.8 ± 0.2 mg/L in treated tap water. Data from the National Health Insurance Service were used, spanning from birth to 2018. The relationship between exposure to fluoridated tap water and incidence of 16 childhood diseases that were previously identified as potentially linked to fluoride exposure were examined. Additionally, we evaluated the neurodevelopmental outcomes across various domains, including gross motor, fine motor, cognition, language, social skills, and self-help functions. These assessments were performed using data from a comprehensive national health screening program for children aged six years. RESULTS A fluoride-unexposed group included 22,881 children, whereas a fluoride-exposed group comprised 29,991 children (52% males). Children in the fluoride-exposed group had a decreased risk of dental caries and bone fractures [hazard ratio (95% confidence interval, CI), 0.76 (0.63-0.93) and 0.89 (0.82-0.93), respectively] and increased risk of hepatic failures [1.85, (1.14-2.98)] compared to those in the unexposed group. Additionally, the risk ratio of abnormal neurodevelopmental screening outcomes increased by 9%, but this was statistically uncertain (95% CI, 0.95-1.26). CONCLUSIONS Fluoridated tap water was associated with an increased risk of hepatic failure but a decreased risk of bone fractures in children. The association between fluoridated tap water and neurodevelopmental screening outcomes at 6 years remains unclear, highlighting the need for further studies to clarify this association.
Collapse
Affiliation(s)
- Won Seok Lee
- Department of Pediatrics, CHA Ilsan Medical Center, CHA University School of Medicine, Goyang, Republic of Korea
| | - Ju Hee Kim
- Department of Pediatrics, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Boeun Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
- Multi-Omics Research Center, CHA Future Medicine Research Institute, Seongnam, Republic of Korea
| | - Gi Chun Lee
- Department of Computer Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hye Ri Jung
- School of Medicine, CHA University, Pocheon, Republic of Korea
| | - Ye Jin Shin
- School of Medicine, CHA University, Pocheon, Republic of Korea
| | - Eun Kyo Ha
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Man Yong Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| |
Collapse
|
3
|
Kong H, He Z, Li H, Xing D, Lin J. The Association between Fluoride and Bone Mineral Density in US Children and Adolescents: A Pilot Study. Nutrients 2024; 16:2948. [PMID: 39275266 PMCID: PMC11397378 DOI: 10.3390/nu16172948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
The aim of this study was to examine the association between fluoride exposure and bone mineral density (BMD) in children and adolescents. We used data from the National Health and Nutrition Examination Survey (NHANES) 2015-2016. The fluoride concentrations in the water samples, plasma samples, and urine samples were measured electrometrically using an ion-specific electrode. Total body less head BMD (TBLH BMD) was measured using dual-energy X-ray absorptiometry (DXA). Weighted generalized linear regression models and restricted cubic splines (RCS) regression models were used to analyze the relationships between the three types of fluoride exposure and TBLH BMD. We performed subgroup analyses stratified by sex. A total of 1413 US children and adolescents were included in our study. In our linear regression models, we found inverse associations between fluoride concentrations in water and plasma and TBLH BMD. Additionally, we discovered a non-linear association between fluoride concentrations in water and plasma and TBLH BMD. No significant association or non-linear relationship was found between urine fluoride levels and TBLH BMD. This nationally representative sample study provides valuable insight into the intricate connection between fluoride exposure and skeletal health in children and adolescents.
Collapse
Affiliation(s)
- Haichen Kong
- Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Zihao He
- Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Hui Li
- Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Dan Xing
- Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Jianhao Lin
- Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| |
Collapse
|
4
|
Guo JY, Wang SN, Zhang ZL, Luan M. Associations between organophosphate esters and bone mineral density in adults in the United States: 2011-2018 NHANES. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116414. [PMID: 38714086 DOI: 10.1016/j.ecoenv.2024.116414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND Organophosphate esters (OPEs) are used extensively as flame retardants and plasticizers. Laboratory studies have shown that OPEs exhibit osteotoxicity by inhibiting osteoblast differentiation; however, little is known about how OPEs exposure is associated with bone health in humans. OBJECTIVES We conducted a cross-sectional study to investigate the association between OPEs exposure and bone mineral density (BMD) in adults in the United States using data from the 2011-2018 National Health and Nutrition Examination Survey (NHANES). METHODS Multivariate linear regression models were used to assess the association between concentrations of individual OPE metabolites and BMDs. We also used the Bayesian kernel machine regression (BKMR) and quantile g-computation (qgcomp) models to estimate joint associations between OPE mixture exposure and BMDs. All the analyses were stratified according to gender. RESULTS A total of 3546 participants (median age, 40 years [IQR, 30-50 years]; 50.11% male) were included in this study. Five urinary OPE metabolites with a detection rate of > 50% were analyzed. After adjusting for the potential confounders, OPE metabolite concentrations were associated with decreased total-body BMD and lumbar spine BMD in males, although some associations only reached significance for bis(1-chloro-2-propyl) phosphate (BCPP), dibutyl phosphate (DBUP), and bis(2-chloroethyl) phosphate (BCEP) (β = -0.013, 95% CI: -0.026, -0.001 for BCPP and total-body BMD; β = -0.022, 95% CI: -0.043, -0.0001 for DBUP and lumbar spine BMD; β=-0.018, 95% CI: -0.034, -0.002 for BCEP and lumbar spine BMD). OPE mixture exposure was also inversely associated with BMD in males, as demonstrated in the BMKR and qgcomp models. CONCLUSIONS This study provides preliminary evidence that urinary OPE metabolite concentrations are inversely associated with BMD. The results also suggested that males were more vulnerable than females. However, further studies are required to confirm these findings.
Collapse
Affiliation(s)
- Jing-Yi Guo
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Su-Na Wang
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen-Lin Zhang
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Min Luan
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Ba Y, Feng Z, Fu X, Chen R, Jiao X, Du Y, Liu X, Huang H, Yu F, Zhou G. Mediation of mitochondrial DNA copy number and oxidative stress in fluoride-related bone mineral density alteration in Chinese farmers. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:184. [PMID: 38695941 DOI: 10.1007/s10653-024-01970-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/25/2024] [Indexed: 06/17/2024]
Abstract
Excessive fluoride can adversely affect bone mineral density (BMD). Oxidative stress and mitochondrial dysfunction are crucial mechanisms of health damage induced by fluoride. Here, a cross-sectional survey involving 907 Chinese farmers (aged 18-60) was carried out in Tongxu County in 2017, aiming to investigate the significance of mitochondrial DNA copy number (mtDNAcn) and oxidative stress in fluoride-related BMD change. Concentrations of urinary fluoride (UF), serum oxidative stress biomarkers, including total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA), as well as relative mtDNAcn in peripheral blood were determined. The multivariable linear model and mediation analysis were performed to assess associations between UF, oxidative stress, and relative mtDNAcn with BMD. Results showed that GSH-Px levels increased by 6.98 U/mL [95% confidence interval (CI) 3.41-10.56)] with each 1.0 mg/L increment of UF. After stratification, the T-AOC, relative mtDNAcn, and BMD decreased by 0.04 mmol/L (-0.08 ~ -0.01), 0.29-unit (-0.55 ~ -0.04), and 0.18-unit (-0.33 ~ -0.03) with every 1.0 mg/L elevation of UF in the excessive fluoride group (EFG, adults with UF > 1.6 mg/L), respectively. Furthermore, T-AOC and relative mtDNAcn were favorably related to the BMD in the EFG (β = 0.82, 95%CI 0.16-1.48 for T-AOC; β = 0.11, 95%CI 0.02-0.19 for relative mtDNAcn). Mediation analysis showed that relative mtDNAcn and T-AOC mediated 15.4% and 17.1% of the connection between excessive fluoride and reduced BMD, respectively. Findings suggested that excessive fluoride was related to lower BMD in adults, and the decrement of T-AOC and relative mtDNAcn partially mediate this relationship.
Collapse
Affiliation(s)
- Yue Ba
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zichen Feng
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaoli Fu
- Department of Health Management, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Ruiqin Chen
- Department of Epidemiology, Jinshui District Center for Disease Control and Prevention, Zhengzhou, 450053, Henan, China
| | - Xuecheng Jiao
- Department of Epidemic Prevention and Control, Puyang Center for Disease Control and Prevention, Puyang, 457001, Henan, China
| | - Yuhui Du
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaoxue Liu
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Hui Huang
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Fangfang Yu
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Guoyu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
6
|
Taher MK, Momoli F, Go J, Hagiwara S, Ramoju S, Hu X, Jensen N, Terrell R, Hemmerich A, Krewski D. Systematic review of epidemiological and toxicological evidence on health effects of fluoride in drinking water. Crit Rev Toxicol 2024; 54:2-34. [PMID: 38318766 DOI: 10.1080/10408444.2023.2295338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Fluoride is a naturally occurring substance that is also added to drinking water, dental hygiene products, and food supplements for preventing dental caries. Concerns have been raised about several other potential health risks of fluoride. OBJECTIVE To conduct a robust synthesis of evidence regarding human health risks due to exposure to fluoride in drinking water, and to develop a point of departure (POD) for setting a health-based value (HBV) for fluoride in drinking water. METHODS A systematic review of evidence published since recent reviews of human, animal, and in vitro data was carried out. Bradford Hill considerations were used to weigh the evidence for causality. Several key studies were considered for deriving PODs. RESULTS The current review identified 89 human studies, 199 animal studies, and 10 major in vitro reviews. The weight of evidence on 39 health endpoints was presented. In addition to dental fluorosis, evidence was considered strong for reduction in IQ scores in children, moderate for thyroid dysfunction, weak for kidney dysfunction, and limited for sex hormone disruptions. CONCLUSION The current review identified moderate dental fluorosis and reduction in IQ scores in children as the most relevant endpoints for establishing an HBV for fluoride in drinking water. PODs were derived for these two endpoints, although there is still some uncertainty in the causal weight of evidence for causality for reducing IQ scores in children and considerable uncertainty in the derivation of its POD. Given our evaluation of the overall weight of evidence, moderate dental fluorosis is suggested as the key endpoint until more evidence is accumulated on possible reduction of IQ scores effects. A POD of 1.56 mg fluoride/L for moderate dental fluorosis may be preferred as a starting point for setting an HBV for fluoride in drinking water to protect against moderate and severe dental fluorosis. Although outside the scope of the current review, precautionary concerns for potential neurodevelopmental cognitive effects may warrant special consideration in the derivation of the HBV for fluoride in drinking water.
Collapse
Affiliation(s)
- Mohamed Kadry Taher
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada
| | - Franco Momoli
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Risk Sciences International, Ottawa, ON, Canada
| | - Jennifer Go
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Risk Sciences International, Ottawa, ON, Canada
| | - Shintaro Hagiwara
- School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada
- Risk Sciences International, Ottawa, ON, Canada
| | - Siva Ramoju
- Risk Sciences International, Ottawa, ON, Canada
| | - Xuefeng Hu
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
| | - Natalie Jensen
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Risk Sciences International, Ottawa, ON, Canada
| | - Rowan Terrell
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Risk Sciences International, Ottawa, ON, Canada
| | - Alex Hemmerich
- Risk Sciences International, Ottawa, ON, Canada
- Faculty of Education, Queen's University, Kingston, ON, Canada
| | - Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada
- Risk Sciences International, Ottawa, ON, Canada
| |
Collapse
|
7
|
Kjellevold M, Kippler M. Fluoride - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67:10327. [PMID: 38187801 PMCID: PMC10770722 DOI: 10.29219/fnr.v67.10327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/23/2022] [Accepted: 10/25/2023] [Indexed: 01/09/2024] Open
Abstract
Fluoride has a well-documented role in the prevention and treatment of dental caries, but the mechanism is attributed to local effects on the tooth enamel surface rather than systemic effects. Fluoride is not considered essential for humans, no deficiencies are known, and no optimal range, which will not result in moderate fluorosis in some individuals, can be set. Recently, research studies have shown evidence for a relationship between fluoride intake and cognitive outcomes and interaction with iodine nutrition, but the evidence is weak so more data are warranted. For performing longitudinal cohort studies in the Nordic and Baltic region, data on fluoride in food and beverages need to be implemented in food composition tables. As the preventive effects of fluoride are mainly from topical treatment, monitoring of fluoride intake and establishing reference values for fluoride in urine and plasma are warranted to establish safe intake values.
Collapse
Affiliation(s)
- Marian Kjellevold
- Department of Seafood, Nutrition and Environmental State, Institute of Marine Research, Bergen, Norway
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Sun Y, Wang YX, Liu C, Mustieles V, Pan XF, Zhang Y, Messerlian C. Exposure to Trihalomethanes and Bone Mineral Density in US Adolescents: A Cross-Sectional Study (NHANES). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21616-21626. [PMID: 38091484 DOI: 10.1021/acs.est.3c07214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Animal and human studies have suggested that trihalomethane (THM) has toxicity to bone. In this study, we included adolescents from the National Health and Nutrition Examination Survey who had quantified blood and tap water THM concentrations [chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)] and lumbar spine or total body less head (TBLH) bone mineral density (BMD). A 2.7-fold increase in concentrations of blood TCM, DBCM, chlorinated THMs (the sum of TCM, BDCM, and DBCM), and total THMs (the sum of 4 THMs) was associated with lower lumbar spine BMD z-scores by -0.06 [95% confidence interval (CI): -0.12, -0.01], -0.06 (95% CI: -0.11, -0.003), -0.08 (95% CI: -0.14, -0.02), and -0.07 (95% CI: -0.13, -0.003), respectively, in adjusted models. Similarly, a 2.7-fold increase in blood BDCM, DBCM, and chlorinated THM concentrations was associated with lower TBLH BMD z-scores by -0.10 (95% CI: -0.17, -0.02), -0.10 (95% CI: -0.17, -0.03), and -0.11 (95% CI: -0.20, -0.01), respectively. Low-to-moderate predictive power was attained when tap water THM concentrations were used to predict blood THM measurements. Notably, the inverse associations for blood THMs persisted exclusively between water concentrations of DBCM and Br-THMs and the TBLH BMD z-scores. Our findings suggest that exposure to THMs may adversely affect the adolescent BMD.
Collapse
Affiliation(s)
- Yang Sun
- Department of Otolaryngology-Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Yi-Xin Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chong Liu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Granada 18016,Spain
- Instituto de Investigación Biosanitaria Ibs GRANADA, Granada 18012,Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid 28029, Spain
| | - Xiong-Fei Pan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu 610041, China
| | - Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
9
|
Snega Priya P, Pratiksha Nandhini P, Arockiaraj J. A comprehensive review on environmental pollutants and osteoporosis: Insights into molecular pathways. ENVIRONMENTAL RESEARCH 2023; 237:117103. [PMID: 37689340 DOI: 10.1016/j.envres.2023.117103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
A significant problem that has an impact on community wellbeing is environmental pollution. Environmental pollution due to air, water, or soil pollutants might pose a severe risk to global health, necessitating intense scientific effort. Osteoporosis is a common chronic condition with substantial clinical implications on mortality, morbidity, and quality of life. It is closely linked to bone fractures. Worldwide, osteoporosis affects around 200 million people, and every year, there are almost 9 million fractures. There is evidence that certain environmental factors may increase the risk of osteoporosis in addition to traditional risk factors. It is crucial to understand the molecular mechanisms at play because there is a connection between osteoporosis and exposure to environmental pollutants such as heavy metals, air pollutants, endocrine disruptors, metal ions and trace elements. Hence, in this scoping review, we explore potential explanations for the link between pollutants and bone deterioration through deep insights into molecular pathways. Understanding and recognizing these pollutants as modifiable risk factors for osteoporosis would possibly help to enhance environmental policy thereby aiding in the improvement of bone health and improving patient quality of life.
Collapse
Affiliation(s)
- P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - P Pratiksha Nandhini
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
10
|
Jin Y, Zhou BH, Zhao J, Ommati MM, Wang S, Wang HW. Fluoride-induced osteoporosis via interfering with the RANKL/RANK/OPG pathway in ovariectomized rats: Oophorectomy shifted skeletal fluorosis from osteosclerosis to osteoporosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122407. [PMID: 37597730 DOI: 10.1016/j.envpol.2023.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Osteosclerosis and osteoporosis are the two main clinical manifestations of skeletal fluorosis. However, the reasons for the different clinical manifestations are unclear. In this study, we established the fluoride (F) -exposed ovariectomized (OVX) and non-OVX rat models to assess the potential role of ovarian function loss in osteosclerosis and osteoporosis. Micro-CT scanning showed that excessive F significantly induced a high bone mass in non-OVX rats. In contrast, a low bone mass manifestation was presented in OVX F-exposed rats. Also, a prominent feature of increasing trabecular connectivity, collagen area, growth plate thickness, and reduced trabecular space was found by histopathological morphology in non-OVX F-exposed rats; an opposite result was observed in OVX F-exposed. These alterations indicated ovariectomy was a vital factor leading to osteosclerosis or osteoporosis in skeletal fluorosis. Furthermore, levels of bone alkaline phosphatase (BALP) and tartrate-resistant acid phosphatase (TRAP) increased, combined with the increasing osteoclasts number, showing a sign of high bone turnover in both OVX and non-OVX F-exposed rats. Mechanistically, oophorectomy considerably activated the RANKL/RANK/OPG signaling pathway. Meanwhile, it was discovered that upregulated NF-κB positively facilitated the accumulation of nuclear factor of activated T-cells 1 (NFATC1), significantly promoting osteoclast differentiation. To sum up, this study greatly enriched the causes of clinical skeletal fluorosis and provided a new perspective for studying the pathogenesis of skeletal fluorosis.
Collapse
Affiliation(s)
- Ye Jin
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Bian-Hua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Shuai Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
11
|
Lindsay SE, Smith S, Yang S, Yoo J. Community Water Fluoridation and Rate of Pediatric Fractures. J Am Acad Orthop Surg Glob Res Rev 2023; 7:01979360-202310000-00001. [PMID: 37796978 PMCID: PMC10558222 DOI: 10.5435/jaaosglobal-d-22-00221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND The effect of community water fluoridation on bone fragility and fracture has been inconclusive in the literature. The null hypothesis of this study was that no association was observed between water fluoride level and risk of fracture in children. METHODS Community fluoridation data were obtained from the Centers for Disease Control and Prevention while data on fracture rates were obtained from the PearlDiver database. The rate of fracture type for each state was then compared with state-level fluoridation data using Pearson correlation coefficients and Wilcoxon rank-sum tests. RESULTS Positive correlations were found between the percentage of state water fluoridation and fracture rates for both bone forearm fracture (BBFFx) and femur fracture. Fluoride levels had positive correlations with fracture rates for all fracture types. Increased fracture rates were found between states in the highest quartiles of percentage of state water fluoridation and fluoride water levels for supracondylar humerus fracture and BBFFx. CONCLUSIONS A higher level of water fluoridation was associated with higher rates of supracondylar humerus fracture and BBFFx in children aged 4 to 10 years. These findings do not imply causality, but they suggest that additional investigation into the effect of fluoride on pediatric bone health may be indicated.
Collapse
Affiliation(s)
| | - Spencer Smith
- From the Oregon Health & Science University, Portland, OR
| | - Scott Yang
- From the Oregon Health & Science University, Portland, OR
| | - Jung Yoo
- From the Oregon Health & Science University, Portland, OR
| |
Collapse
|
12
|
Li Y, Yin N, Cai X, Wang P, Fan C, Chang X, Liu X, Geng Z, Cui L, Du X, Cui Y. Effects of calcium supplements on oral bioavailability of fluoride in soil based on In Vivo and In Vitro methods. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131663. [PMID: 37224715 DOI: 10.1016/j.jhazmat.2023.131663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/30/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
Dietary calcium (Ca) intake can alleviate fluoride (F) induced fluorosis to maintain bone health. However, it is unclear whether calcium supplements can reduce the oral bioavailability of F present in contaminated soils. Here we evaluated the effects of Ca supplements on F bioavailability in three soils using an in vitro method (Physiologically Based Extraction Test) and an in vivo mouse model. Seven Ca salts, commonly used in calcium supplements, significantly reduced the F bioaccessibility in the gastric and small intestinal phases. Particularly for Ca phosphate at 150 mg Ca supplementation, F bioaccessibility in the small intestinal phase was reduced from 35.1-38.8% to 0.7-1.9% where soluble F concentrations were less than 1 mg/L. Overall, the eight Ca tablets tested in this study showed greater efficiency at decreasing F solubility. The in vitro bioaccessibility after Ca supplementation was consistent with the relative bioavailability of F. As supported by X-ray photoelectron spectroscopy, a possible mechanism is that freed F can be bound by Ca to form insoluble CaF2 and exchanged with OH groups from Al/Fe hydroxide to strongly adsorb F. These findings provide evidence of Ca supplementation in reducing health risks associated soil F exposure.
Collapse
Affiliation(s)
- Yunpeng Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Chuanfang Fan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xuhui Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiaotong Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Ziqi Geng
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Liwei Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xin Du
- CHINALCO Environmental protection and Energy Conservation Group Co. Ltd., Beijing 101300, PR China
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
13
|
Skalny AV, Aschner M, Silina EV, Stupin VA, Zaitsev ON, Sotnikova TI, Tazina SI, Zhang F, Guo X, Tinkov AA. The Role of Trace Elements and Minerals in Osteoporosis: A Review of Epidemiological and Laboratory Findings. Biomolecules 2023; 13:1006. [PMID: 37371586 DOI: 10.3390/biom13061006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The objective of the present study was to review recent epidemiological and clinical data on the association between selected minerals and trace elements and osteoporosis, as well as to discuss the molecular mechanisms underlying these associations. We have performed a search in the PubMed-Medline and Google Scholar databases using the MeSH terms "osteoporosis", "osteogenesis", "osteoblast", "osteoclast", and "osteocyte" in association with the names of particular trace elements and minerals through 21 March 2023. The data demonstrate that physiological and nutritional levels of trace elements and minerals promote osteogenic differentiation through the up-regulation of BMP-2 and Wnt/β-catenin signaling, as well as other pathways. miRNA and epigenetic effects were also involved in the regulation of the osteogenic effects of trace minerals. The antiresorptive effect of trace elements and minerals was associated with the inhibition of osteoclastogenesis. At the same time, the effect of trace elements and minerals on bone health appeared to be dose-dependent with low doses promoting an osteogenic effect, whereas high doses exerted opposite effects which promoted bone resorption and impaired bone formation. Concomitant with the results of the laboratory studies, several clinical trials and epidemiological studies demonstrated that supplementation with Zn, Mg, F, and Sr may improve bone quality, thus inducing antiosteoporotic effects.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ekaterina V Silina
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Victor A Stupin
- Department of Hospital Surgery No. 1, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg N Zaitsev
- Department of Physical Education, Yaroslavl State Technical University, 150023 Yaroslavl, Russia
| | - Tatiana I Sotnikova
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- City Clinical Hospital n. a. S.P. Botkin of the Moscow City Health Department, 125284 Moscow, Russia
| | - Serafima Ia Tazina
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
14
|
Irigoyen-Camacho ME, Perez-Perez N, Zepeda-Zepeda MA, Velazquez-Alva MC, Castaño-Seiquer A, Barbero-Navarro I, Sanchez-Perez L. Relationships between dental fluorosis and fluoride concentrations in bottled water and groundwater in low-income children in Mexico. FRONTIERS IN ORAL HEALTH 2023; 4:1187463. [PMID: 37377524 PMCID: PMC10291056 DOI: 10.3389/froh.2023.1187463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction The aim of the current study was to investigate associations between dental fluorosis in children living in low socioeconomic areas in Mexico, and fluoride concentrations in tap water, fluoride concentrations and in bottled water, and body mass index (BMI). Methods A cross-sectional study involving 585 schoolchildren aged 8-12 years was conducted in communities in a southern state of Mexico with >0.7 parts per million (ppm) fluoride in the groundwater. The Thylstrup and Fejerskov index (TFI) was used to evaluate dental fluorosis, and the World Health Organization growth standards were used to calculate age-adjusted and sex-adjusted BMI Z-scores. A BMI Z-score ≤ -1 SD was used as the cut-off point for thinness, and multiple logistic regression models for dental fluorosis (TFI ≥ 4) were constructed. Results The mean fluoride concentration in tap water was 1.39 ppm (SD 0.66), and the mean fluoride concentration in bottled water was 0.32 ppm (SD 0.23). Eighty-four children (14.39%) had a BMI Z-score ≤ -1 SD. More than half (56.1%) of the children presented with dental fluorosis in TFI categories ≥ 4. Children living in areas with higher fluoride concentrations in the tap water [odds ratio (OR) 1.57, p = 0.002] and bottled water (OR 3.03, p < .001) were more likely to have dental fluorosis in the severe categories (TFI ≥ 4). BMI Z-score was associated with the probability of dental fluorosis (TFI ≥ 4; OR 2.11, p < 0.001), and the effect size was 29.3%. Discussion A low BMI Z-score was associated with a higher prevalence of dental fluorosis in the severe category. Awareness of the fluoride concentrations in bottled water may help prevent dental fluorosis, particularly in children exposed to several high fluoride content sources. Children with a low BMI may be more vulnerable to dental fluorosis.
Collapse
Affiliation(s)
| | - Nora Perez-Perez
- School of Dentistry, Regional University of the Southeast, Oaxaca de Juárez, Mexico
| | | | | | | | | | - Leonor Sanchez-Perez
- Health Care Department, Metropolitan Autonomous University-Xochimilco, Mexico City, Mexico
| |
Collapse
|
15
|
Rokoff LB, Seshasayee SM, Carwile JL, Rifas-Shiman SL, Botelho JC, Gordon CM, Hauser R, James-Todd T, Young JG, Rosen CJ, Calafat AM, Oken E, Fleisch AF. Associations of urinary metabolite concentrations of phthalates and phthalate replacements with body composition from mid-childhood to early adolescence. ENVIRONMENTAL RESEARCH 2023; 226:115629. [PMID: 36889566 PMCID: PMC10101932 DOI: 10.1016/j.envres.2023.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Phthalates may adversely influence body composition by lowering anabolic hormones and activating peroxisome-proliferator activated receptor gamma. However, data are limited in adolescence when body mass distributions rapidly change and bone accrual peaks. Also, potential health effects of certain phthalate/replacements [e.g., di-2-ethylhexyl terephthalate (DEHTP)] have not been well studied. METHODS Among 579 children in the Project Viva cohort, we used linear regression to evaluate associations of urinary concentrations of 19 phthalate/replacement metabolites from mid-childhood (median: 7.6 years; 2007-2010) with annualized change in areal bone mineral density (aBMD) and lean, total fat, and truncal fat mass as measured by dual-energy X-ray absorptiometry between mid-childhood and early adolescence (median: 12.8 years). We used quantile g-computation to assess associations of the overall chemical mixture with body composition. We adjusted for sociodemographics and tested for sex-specific associations. RESULTS Urinary concentrations were highest for mono-2-ethyl-5-carboxypentyl phthalate [median (IQR): 46.7 (69.1) ng/mL]. We detected metabolites of most replacement phthalates in a relatively small number of participants [e.g., 28% for mono-2-ethyl-5-hydrohexyl terephthalate (MEHHTP; metabolite of DEHTP)]. Detectable (vs. non-detectable) MEHHTP was associated with less bone and greater fat accrual in males and greater bone and lean mass accrual in females [e.g., change in aBMD Z-score/year (95% CI): -0.049 (-0.085, -0.013) in males versus 0.042 (0.007, 0.076) in females; pinteraction<0.01]. Children with higher concentrations of mono-oxo-isononyl phthalate and mono-3-carboxypropyl phthalate (MCPP) had greater bone accrual. Males with higher concentrations of MCPP and mono-carboxynonyl phthalate had greater accrual of lean mass. Other phthalate/replacement biomarkers, and their mixtures, were not associated with longitudinal changes in body composition. CONCLUSIONS Concentrations of select phthalate/replacement metabolites in mid-childhood were associated with changes in body composition through early adolescence. As use of phthalate replacements such as DEHTP may be increasing, further investigation can help better understand the potential effects of early-life exposures.
Collapse
Affiliation(s)
- Lisa B Rokoff
- Center for Interdisciplinary Population & Health Research, MaineHealth Institute for Research, Portland, ME, USA.
| | - Shravanthi M Seshasayee
- Center for Interdisciplinary Population & Health Research, MaineHealth Institute for Research, Portland, ME, USA
| | - Jenny L Carwile
- Center for Interdisciplinary Population & Health Research, MaineHealth Institute for Research, Portland, ME, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Julianne Cook Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Catherine M Gordon
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Russ Hauser
- Department of Environmental Health and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tamarra James-Todd
- Department of Environmental Health and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jessica G Young
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Clifford J Rosen
- Center for Clinical and Translational Science, MaineHealth Institute for Research, Scarborough, ME, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Abby F Fleisch
- Center for Interdisciplinary Population & Health Research, MaineHealth Institute for Research, Portland, ME, USA; Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, ME, USA
| |
Collapse
|
16
|
Zhou J, Sun D, Wei W. Necessity to Pay Attention to the Effects of Low Fluoride on Human Health: an Overview of Skeletal and Non-skeletal Damages in Epidemiologic Investigations and Laboratory Studies. Biol Trace Elem Res 2023; 201:1627-1638. [PMID: 35661326 DOI: 10.1007/s12011-022-03302-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
Abstract
Due to the implementation of water improvement and fluoride reduction plans supported by central and local governments in recent years, areas with high fluoride exposure are being gradually decreased. Therefore, it is of practical importance to study the effect of low fluoride on human health. Epidemiologic investigations and in vivo and in vitro studies based on low fluoride have also confirmed that fluoride not only causes skeletal damage, such as dental fluorosis, but also causes non-skeletal damage involving the cardiovascular system, nervous system, hepatic and renal function, reproductive system, thyroid function, blood glucose homeostasis, and the immune system. This article summarizes the effects of low fluoride on human and animal skeletal and non-skeletal systems. A preliminary exploration of corresponding mechanisms that will help to fully understand the harm of low fluoride on human health was undertaken to provide the basis for establishing new water fluoride standards and help to implement individual guidance.
Collapse
Affiliation(s)
- Jing Zhou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- National Health Commission, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, 150081, Harbin, Heilongjiang Province, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- National Health Commission, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, 150081, Harbin, Heilongjiang Province, China
| | - Wei Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- National Health Commission, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, Heilongjiang Province, China.
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, 150081, Harbin, Heilongjiang Province, China.
| |
Collapse
|
17
|
Valadas LAR, Girão Júnior FJ, Lotif MAL, Fernández CE, Bandeira MAM, Fonteles MMDF, Bottenberg P, Squassi A. Fluoride concentration in teas derived from Camellia Sinensis produced in Argentina. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:682. [PMID: 35976461 DOI: 10.1007/s10661-022-10345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
To evaluate the fluoride concentration and pH of tea derived from Camellia sinensis produced and commercialized in Argentina. Forty-eight varieties of tea (black (n = 16), green (n = 21), red (n = 7), and white (n = 4)) commercialized in the form of leaves or tea bags were acquired. One bag or 2.0 ± 0.05 g of each product was infused for 5 min in 200 mL of distilled boiled water. The F- concentration was determined using an ion-selective electrode and pH was measured using a pH meter. The found fluoride concentrations ranged from 0.1 to 9.7 µg/mL and the pH ranged from 2.7 to 5.1. A higher fluoride concentration was observed in the leaves group (2.75 ± 2.65 µg/mL) compared to tea bags (1.10 ± 0.82 µg/mL) (p < 0.05). Regarding the type of tea, green and black tea were richer in F- than red and white tea. Fluoride and pH appeared not to be correlated (Pearson test). All the studied tea samples presented fluoride concentrations greater than the threshold recommended for drinking water. The pH proved to be low, which could be a risk for erosive tooth wear.
Collapse
Affiliation(s)
- Lídia Audrey Rocha Valadas
- Departmento de Odontología Y Comunitaria, Facultad de Odontología, Universidad de Buenos Aires, 2142 Marcelo Torcuato de Alvear, C1122, Buenos Aires, Argentina.
| | | | - Mara Assef Leitão Lotif
- Natural Products Laboratory, School of Pharmacy, Federal University of Ceara, Fortaleza, Brazil
| | | | | | | | | | - Aldo Squassi
- Departmento de Odontología Y Comunitaria, Facultad de Odontología, Universidad de Buenos Aires, 2142 Marcelo Torcuato de Alvear, C1122, Buenos Aires, Argentina
| |
Collapse
|
18
|
Wang H, Yang L, Gao P, Deng P, Yue Y, Tian L, Xie J, Chen M, Luo Y, Liang Y, Qing W, Zhou Z, Pi H, Yu Z. Fluoride exposure induces lysosomal dysfunction unveiled by an integrated transcriptomic and metabolomic study in bone marrow mesenchymal stem cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113672. [PMID: 35617906 DOI: 10.1016/j.ecoenv.2022.113672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Fluoride has received much attention for its predominant bone toxicity in the human body. However, the toxic mechanism of bone injury caused by fluoride exposure remains largely unclear. Bone marrow mesenchymal stem cells (BMSCs) are widely used as model cells for evaluating bone toxicity after environmental toxicant exposure. In this study, BMSCs were exposed to fluoride at 1, 2, and 4 mM for 24 h, and fluoride significantly inhibited cell viability at 2 and 4 mM. A multiomics analysis combining transcriptomics with metabolomics was employed to detect alterations in genes and metabolites in BMSCs treated with 2 mM fluoride. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of transcriptomics profiles identified "lysosomes" as the top enriched pathway, which was severely damaged by fluoride exposure. Lysosomal damage was indicated by decreases in the expression of lysosomal associated membrane protein 2 (LAMP 2) and cathepsin B (CTSB) as well as an increase in pH. Upregulation of the lysosome-related genes Atp6v0b and Gla was observed, which may be attributed to a compensatory lysosomal biogenesis transcriptional response. Interestingly, inhibition of glutathione metabolism was observed in fluoride-treated BMSCs at the metabolomic level. Moreover, an integrative analysis between altered genes, metabolites and lysosome signaling pathways was conducted. Palmitic acid, prostaglandin C2, and prostaglandin B2 metabolites were positively associated with Atp6v0b, a lysosome-related gene. Overall, our results provide novel insights into the mechanism responsible for fluoride-induced bone toxicity.
Collapse
Affiliation(s)
- Hui Wang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Lu Yang
- Hunan Province Prevention and Treatment Hospital for Occupational Diseases, Hunan, China
| | - Peng Gao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Yang Yue
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Yidan Liang
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Weijia Qing
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China; The 63710th Military Hospital of PLA, Xinzhou, Shanxi, China
| | - Zhou Zhou
- Department of Environmental Medicine, School of Public Health, and Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China.
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China.
| |
Collapse
|
19
|
Kuiper JR, Braun JM, Calafat AM, Lanphear BP, Cecil KM, Chen A, Xu Y, Yolton K, Kalkwarf HJ, Buckley JP. Associations of pregnancy phthalate concentrations and their mixture with early adolescent bone mineral content and density: The Health Outcomes and Measures of the Environment (HOME) study. Bone 2022; 154:116251. [PMID: 34740813 PMCID: PMC8671261 DOI: 10.1016/j.bone.2021.116251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The developing fetus may be particularly susceptibility to environmental osteotoxicants, but studies of pregnancy phthalate exposures and childhood bone health are scarce. OBJECTIVES To examine relations of pregnancy phthalate exposure biomarkers with early adolescent bone mineral density (BMD) and bone mineral content (BMC) in a prospective birth cohort. METHODS We used data from 223 pregnant mothers and their children enrolled in a Cincinnati, OH area cohort from 2003 to 2006. We quantified monoethyl phthalate (MEP), monoisobutyl phthalate, monobutyl phthalate, monobenzyl phthalate, mono-(3-carboxypropyl) phthalate (MCPP), and four metabolites of di-2-ethylhexyl phthalate in maternal urine collected at 16 and 26 weeks gestation, and calculated the average of creatinine-standardized concentrations. Using dual x-ray absorptiometry measures at age 12 years, we calculated BMD and BMC Z-scores for six skeletal sites. In overall and sex-stratified models, we estimated covariate-adjusted associations per 2-fold increase in phthalate biomarker concentrations using linear regression, and estimated joint effects of the phthalate biomarkers mixture using Bayesian kernel machine regression (BKMR) and quantile g-computation. RESULTS In single phthalate models, several biomarkers were positively associated with BMC and BMD. For example, each doubling of MEP and MCPP, 1/3rd distal radius BMD Z-score increased by 0.09 (95% CI: 0.01, 0.17) and 0.16 (95% CI: 0.01, 0.31), respectively. For phthalate mixtures, associations were generally U-shaped among males and positive-linear among females, using both statistical methods. Mixture associations were strongest with forearm sites: in BKMR models, increasing all biomarkers from the 50th to 90th percentile was associated with a 0.64 (95% CI: 0.01, 1.28) greater 1/3rd distal radius BMD Z-score in males, and a 0.49 (95% CI: -0.13, 1.10) greater ultradistal radius BMD Z-score in females. DISCUSSION In this study, phthalate exposures during gestation were associated with increased BMD Z-scores in early adolescence, though further research is needed to determine implications for long-term skeletal health.
Collapse
Affiliation(s)
- Jordan R Kuiper
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Kim M Cecil
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Heidi J Kalkwarf
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
20
|
Nicole W. Denser but Not Stronger? Fluoride-Induced Bone Growth and Increased Risk of Hip Fractures. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:74001. [PMID: 34251877 PMCID: PMC8274691 DOI: 10.1289/ehp9533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
|
21
|
Riddell JK, Malin AJ, McCague H, Flora DB, Till C. Urinary Fluoride Levels among Canadians with and without Community Water Fluoridation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6203. [PMID: 34201160 PMCID: PMC8226595 DOI: 10.3390/ijerph18126203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 11/17/2022]
Abstract
Drinking water is a major source of dietary fluoride intake in communities with water fluoridation. We examined the association between urinary fluoride adjusted for specific gravity (UFSG) and tap water fluoride levels, by age and sex, among individuals living in Canada. Participants included 1629 individuals aged 3 to 79 years from Cycle 3 (2012-2013) of the Canadian Health Measures Survey. We used multiple linear regression to estimate unique associations of tap water fluoride levels, age, sex, ethnicity, body mass index (BMI), use of fluoride-containing dental products, smoking in the home, and tea consumption with UFSG. UFSG concentration was significantly higher among participants who received fluoridated drinking water (mean = 1.06 mg/L, standard deviation = 0.83) than among those who did not (M = 0.58 mg/L, SD = 0.47), p < 0.01. UFSG increased over adulthood (ages 19 to 79). Higher UFSG concentration was associated with being female, tea drinking, and smoking in the home. In conclusion, community water fluoridation is a major source of contemporary fluoride exposure for Canadians. Lifestyle factors including tea consumption, as well as demographic variables such as age and sex, also predict urinary fluoride level, and are therefore important factors when interpreting population-based fluoride biomonitoring data.
Collapse
Affiliation(s)
- Julia K. Riddell
- Department of Clinical Health Psychology, University of Manitoba, Winnipeg, MB N3E 3N4, Canada
| | - Ashley J. Malin
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA 90032, USA;
| | - Hugh McCague
- Institute for Social Research, York University, Toronto, ON M3J 1P3, Canada; (H.M.); (D.B.F.)
| | - David B. Flora
- Institute for Social Research, York University, Toronto, ON M3J 1P3, Canada; (H.M.); (D.B.F.)
- Faculty of Health, York University, Toronto, ON M3J 1P3, Canada;
| | - Christine Till
- Faculty of Health, York University, Toronto, ON M3J 1P3, Canada;
| |
Collapse
|