1
|
Ren Z, Harriot AD, Mair DB, Chung MK, Lee PHU, Kim DH. Biomanufacturing of 3D Tissue Constructs in Microgravity and their Applications in Human Pathophysiological Studies. Adv Healthc Mater 2023; 12:e2300157. [PMID: 37483106 DOI: 10.1002/adhm.202300157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/27/2023] [Indexed: 07/25/2023]
Abstract
The growing interest in bioengineering in-vivo-like 3D functional tissues has led to novel approaches to the biomanufacturing process as well as expanded applications for these unique tissue constructs. Microgravity, as seen in spaceflight, is a unique environment that may be beneficial to the tissue-engineering process but cannot be completely replicated on Earth. Additionally, the expense and practical challenges of conducting human and animal research in space make bioengineered microphysiological systems an attractive research model. In this review, published research that exploits real and simulated microgravity to improve the biomanufacturing of a wide range of tissue types as well as those studies that use microphysiological systems, such as organ/tissue chips and multicellular organoids, for modeling human diseases in space are summarized. This review discusses real and simulated microgravity platforms and applications in tissue-engineered microphysiological systems across three topics: 1) application of microgravity to improve the biomanufacturing of tissue constructs, 2) use of tissue constructs fabricated in microgravity as models for human diseases on Earth, and 3) investigating the effects of microgravity on human tissues using biofabricated in vitro models. These current achievements represent important progress in understanding the physiological effects of microgravity and exploiting their advantages for tissue biomanufacturing.
Collapse
Affiliation(s)
- Zhanping Ren
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Anicca D Harriot
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Devin B Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | | | - Peter H U Lee
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, 02720, USA
| | - Deok-Ho Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD, 21205, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, 21218, USA
| |
Collapse
|
2
|
Cui Y, Liu W, Zhao S, Zhao Y, Dai J. Advances in Microgravity Directed Tissue Engineering. Adv Healthc Mater 2023; 12:e2202768. [PMID: 36893386 DOI: 10.1002/adhm.202202768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/28/2023] [Indexed: 03/11/2023]
Abstract
Tissue engineering aims to generate functional biological substitutes to repair, sustain, improve, or replace tissue function affected by disease. With the rapid development of space science, the application of simulated microgravity has become an active topic in the field of tissue engineering. There is a growing body of evidence demonstrating that microgravity offers excellent advantages for tissue engineering by modulating cellular morphology, metabolism, secretion, proliferation, and stem cell differentiation. To date, there have been many achievements in constructing bioartificial spheroids, organoids, or tissue analogs with or without scaffolds in vitro under simulated microgravity conditions. Herein, the current status, recent advances, challenges, and prospects of microgravity related to tissue engineering are reviewed. Current simulated-microgravity devices and cutting-edge advances of microgravity for biomaterials-dependent or biomaterials-independent tissue engineering to offer a reference for guiding further exploration of simulated microgravity strategies to produce engineered tissues are summarized and discussed.
Collapse
Affiliation(s)
- Yi Cui
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China
| | - Weiyuan Liu
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Shuaijing Zhao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Yannan Zhao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jianwu Dai
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| |
Collapse
|
3
|
Li W, Shu X, Zhang X, Zhang Z, Sun S, Li N, Long M. Potential Roles of YAP/TAZ Mechanotransduction in Spaceflight-Induced Liver Dysfunction. Int J Mol Sci 2023; 24:ijms24032197. [PMID: 36768527 PMCID: PMC9917057 DOI: 10.3390/ijms24032197] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Microgravity exposure during spaceflight causes the disordered regulation of liver function, presenting a specialized mechano-biological coupling process. While YAP/TAZ serves as a typical mechanosensitive pathway involved in hepatocyte metabolism, it remains unclear whether and how it is correlated with microgravity-induced liver dysfunction. Here, we discussed liver function alterations induced by spaceflight or simulated effects of microgravity on Earth. The roles of YAP/TAZ serving as a potential bridge in connecting liver metabolism with microgravity were specifically summarized. Existing evidence indicated that YAP/TAZ target gene expressions were affected by mechanotransductive pathways and phase separation, reasonably speculating that microgravity might regulate YAP/TAZ activation by disrupting these pathways via cytoskeletal remodeling or nuclear deformation, or disturbing condensates formation via diffusion limit, and then breaking liver homeostasis.
Collapse
Affiliation(s)
- Wang Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Shu
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Zhang
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziliang Zhang
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shujin Sun
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (N.L.); (M.L.)
| | - Mian Long
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (N.L.); (M.L.)
| |
Collapse
|
4
|
Cell spinpods are a simple inexpensive suspension culture device to deliver fluid shear stress to renal proximal tubular cells. Sci Rep 2021; 11:21296. [PMID: 34716334 PMCID: PMC8556299 DOI: 10.1038/s41598-021-00304-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Rotating forms of suspension culture allow cells to aggregate into spheroids, prevent the de-differentiating influence of 2D culture, and, perhaps most importantly of all, provide physiologically relevant, in vivo levels of shear stress. Rotating suspension culture technology has not been widely implemented, in large part because the vessels are prohibitively expensive, labor-intensive to use, and are difficult to scale for industrial applications. Our solution addresses each of these challenges in a new vessel called a cell spinpod. These small 3.5 mL capacity vessels are constructed from injection-molded thermoplastic polymer components. They contain self-sealing axial silicone rubber ports, and fluoropolymer, breathable membranes. Here we report the two-fluid modeling of the flow and stresses in cell spinpods. Cell spinpods were used to demonstrate the effect of fluid shear stress on renal cell gene expression and cellular functions, particularly membrane and xenobiotic transporters, mitochondrial function, and myeloma light chain, cisplatin and doxorubicin, toxicity. During exposure to myeloma immunoglobulin light chains, rotation increased release of clinically validated nephrotoxicity cytokine markers in a toxin-specific pattern. Addition of cisplatin or doxorubicin nephrotoxins reversed the enhanced glucose and albumin uptake induced by fluid shear stress in rotating cell spinpod cultures. Cell spinpods are a simple, inexpensive, easily automated culture device that enhances cellular functions for in vitro studies of nephrotoxicity.
Collapse
|
5
|
Abstract
Microbial research in space is being conducted for almost 50 years now. The closed system of the International Space Station (ISS) has acted as a microbial observatory for the past 10 years, conducting research on adaptation and survivability of microorganisms exposed to space conditions. This adaptation can be either beneficial or detrimental to crew members and spacecraft. Therefore, it becomes crucial to identify the impact of two primary stress conditions, namely, radiation and microgravity, on microbial life aboard the ISS. Elucidating the mechanistic basis of microbial adaptation to space conditions aids in the development of countermeasures against their potentially detrimental effects and allows us to harness their biotechnologically important properties. Several microbial processes have been studied, either in spaceflight or using devices that can simulate space conditions. However, at present, research is limited to only a few microorganisms, and extensive research on biotechnologically important microorganisms is required to make long-term space missions self-sustainable.
Collapse
Affiliation(s)
- Swati Bijlani
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Elisa Stephens
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Nitin Kumar Singh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| |
Collapse
|
6
|
Serras AS, Rodrigues JS, Cipriano M, Rodrigues AV, Oliveira NG, Miranda JP. A Critical Perspective on 3D Liver Models for Drug Metabolism and Toxicology Studies. Front Cell Dev Biol 2021; 9:626805. [PMID: 33732695 PMCID: PMC7957963 DOI: 10.3389/fcell.2021.626805] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
The poor predictability of human liver toxicity is still causing high attrition rates of drug candidates in the pharmaceutical industry at the non-clinical, clinical, and post-marketing authorization stages. This is in part caused by animal models that fail to predict various human adverse drug reactions (ADRs), resulting in undetected hepatotoxicity at the non-clinical phase of drug development. In an effort to increase the prediction of human hepatotoxicity, different approaches to enhance the physiological relevance of hepatic in vitro systems are being pursued. Three-dimensional (3D) or microfluidic technologies allow to better recapitulate hepatocyte organization and cell-matrix contacts, to include additional cell types, to incorporate fluid flow and to create gradients of oxygen and nutrients, which have led to improved differentiated cell phenotype and functionality. This comprehensive review addresses the drug-induced hepatotoxicity mechanisms and the currently available 3D liver in vitro models, their characteristics, as well as their advantages and limitations for human hepatotoxicity assessment. In addition, since toxic responses are greatly dependent on the culture model, a comparative analysis of the toxicity studies performed using two-dimensional (2D) and 3D in vitro strategies with recognized hepatotoxic compounds, such as paracetamol, diclofenac, and troglitazone is performed, further highlighting the need for harmonization of the respective characterization methods. Finally, taking a step forward, we propose a roadmap for the assessment of drugs hepatotoxicity based on fully characterized fit-for-purpose in vitro models, taking advantage of the best of each model, which will ultimately contribute to more informed decision-making in the drug development and risk assessment fields.
Collapse
Affiliation(s)
- Ana S. Serras
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Madalena Cipriano
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Armanda V. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Effects of Space Flight on Mouse Liver versus Kidney: Gene Pathway Analyses. Int J Mol Sci 2018; 19:ijms19124106. [PMID: 30567358 PMCID: PMC6321533 DOI: 10.3390/ijms19124106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/08/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022] Open
Abstract
Understanding genome wide, tissue-specific, and spaceflight-induced changes in gene expression is critical to develop effective countermeasures. Transcriptome analysis has been performed on diverse tissues harvested from animals flown in space, but not the kidney. We determined the genome wide gene expression using a gene array analysis of kidney and liver tissue from mice flown in space for 12 days versus ground based control animals. By comparing the transcriptome of liver and kidney from animals flown in space versus ground control animals, we tested a unique hypothesis: Are there common gene expression pathways activated in multiple tissue types in response to spaceflight stimuli? Although there were tissue-specific changes, both liver and kidney overexpressed genes in the same four areas: (a) cellular responses to peptides, hormones, and nitrogen/organonitrogen compounds; (b) apoptosis and cell death; (c) fat cell differentiation and (d) negative regulation of protein kinase.
Collapse
|
8
|
Hepatocyte CYP2B6 Can Be Expressed in Cell Culture Systems by Exerting Physiological Levels of Shear: Implications for ADME Testing. J Toxicol 2017; 2017:1907952. [PMID: 29081796 PMCID: PMC5610861 DOI: 10.1155/2017/1907952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/27/2017] [Accepted: 08/07/2017] [Indexed: 11/18/2022] Open
Abstract
Cytochrome 2B6 (CYP2B6) has substantial clinical effects on morbidity and mortality and its effects on drug metabolism should be part of hepatotoxicity screening. Examples of CYP2B6's impacts include its linkage to mortality during cyclophosphamide therapy and its role in determining hepatotoxicity and CNS toxicity during efavirenz therapy for HIV infection. CYP2B6 is key to metabolism of many common drugs from opioids to antidepressants, anesthetics, and anticonvulsants. But CYP2B6 has been extremely difficult to express in cell culture, and as a result, it has been largely deemphasized in preclinical toxicity studies. It has now been shown that CYP2B6 expression can be supported for extended periods of time using suspension culture techniques that exert physiological levels of shear. New understanding of CYP2B6 has identified five clinically significant genetic polymorphisms that have a high incidence in many populations and that convey a substantial dynamic range of activity. We propose that, with the use of culture devices exerting physiological shear levels, CYP2B6 dependent drug testing, including definition of polymorphisms and application of specific inhibitors, should be a standard part of preclinical absorption, distribution, metabolism, and excretion (ADME) testing.
Collapse
|
9
|
Wang Y, Kim MH, Tabaei SR, Park JH, Na K, Chung S, Zhdanov VP, Cho NJ. Spheroid Formation of Hepatocarcinoma Cells in Microwells: Experiments and Monte Carlo Simulations. PLoS One 2016; 11:e0161915. [PMID: 27571565 PMCID: PMC5003351 DOI: 10.1371/journal.pone.0161915] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
The formation of spherical aggregates during the growth of cell population has long been observed under various conditions. We observed the formation of such aggregates during proliferation of Huh-7.5 cells, a human hepatocarcinoma cell line, in a microfabricated low-adhesion microwell system (SpheroFilm; formed of mass-producible silicone elastomer) on the length scales up to 500 μm. The cell proliferation was also tracked with immunofluorescence staining of F-actin and cell proliferation marker Ki-67. Meanwhile, our complementary 3D Monte Carlo simulations, taking cell diffusion and division, cell-cell and cell-scaffold adhesion, and gravity into account, illustrate the role of these factors in the formation of spheroids. Taken together, our experimental and simulation results provide an integrative view of the process of spheroid formation for Huh-7.5 cells.
Collapse
Affiliation(s)
- Yan Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore
| | - Myung Hee Kim
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore
| | - Seyed R. Tabaei
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore
| | - Jae Hyeok Park
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore
| | - Kyuhwan Na
- School of Mechanical Engineering, Korea University, Seoul, Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, Korea
| | - Vladimir P. Zhdanov
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
- * E-mail:
| |
Collapse
|
10
|
Bauer J, Bussen M, Wise P, Wehland M, Schneider S, Grimm D. Searching the literature for proteins facilitates the identification of biological processes, if advanced methods of analysis are linked: a case study on microgravity-caused changes in cells. Expert Rev Proteomics 2016; 13:697-705. [DOI: 10.1080/14789450.2016.1197775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Johann Bauer
- Informationsvermittlung, Max-Planck Institute for Biochemistry, Martinsried, Germany
| | - Markus Bussen
- Lifescience, Elsevier Information System GmbH, Frankfurt am Main, Germany
| | - Petra Wise
- Hematology/Oncology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sabine Schneider
- Informationsvermittlung, Max-Planck Institute for Biochemistry, Martinsried, Germany
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Institute of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Hammond T, Allen P, Birdsall H. Is There a Space-Based Technology Solution to Problems with Preclinical Drug Toxicity Testing? Pharm Res 2016; 33:1545-51. [PMID: 27183841 PMCID: PMC4891399 DOI: 10.1007/s11095-016-1942-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/06/2016] [Indexed: 11/05/2022]
Abstract
Even the finest state-of-the art preclinical drug testing, usually in primary hepatocytes, remains an imperfect science. Drugs continue to be withdrawn from the market due to unforeseen toxicity, side effects, and drug interactions. The space program may be able to provide a lifeline. Best known for rockets, space shuttles, astronauts and engineering, the space program has also delivered some serious medical science. Optimized suspension culture in NASA’s specialized suspension culture devices, known as rotating wall vessels, uniquely maintains Phase I and Phase II drug metabolizing pathways in hepatocytes for weeks in cell culture. Previously prohibitively expensive, new materials and 3D printing techniques have the potential to make the NASA rotating wall vessel available inexpensively on an industrial scale. Here we address the tradeoffs inherent in the rotating wall vessel, limitations of alternative approaches for drug metabolism studies, and the market to be addressed. Better pre-clinical drug testing has the potential to significantly reduce the morbidity and mortality of one of the most common problems in modern medicine: adverse events related to pharmaceuticals.
Collapse
Affiliation(s)
- Timothy Hammond
- Medicine Service Line/Nephrology Section, Durham VA Medical Center, Building 15, Room 109, 508 Fulton Street, Durham, North Carolina, 27705, USA. .,Nephrology Division, Department of Internal Medicine, Duke University School of Medicine, Durham, North Carolina, 27705, USA. .,Space Policy Institute, Elliott School of International Affairs, Washington, District of Columbia, 20052, USA.
| | - Patricia Allen
- Medicine Service Line/Nephrology Section, Durham VA Medical Center, Building 15, Room 109, 508 Fulton Street, Durham, North Carolina, 27705, USA
| | - Holly Birdsall
- Space Policy Institute, Elliott School of International Affairs, Washington, District of Columbia, 20052, USA.,Office of Research & Development, Department of Veterans Affairs, Washington, District of Columbia, 20420, USA.,Department of Otorhinolaryngology, Baylor College of Medicine, Houston, Texas, 77030, USA.,Department of Immunology, Baylor College of Medicine, Houston, Texas, 77030, USA.,Department of Psychiatry, Baylor College of Medicine, Houston, Texas, 77030, USA
| |
Collapse
|
12
|
Taguchi T, Endo Y. Crosslinking liposomes/cells using cholesteryl group-modified tilapia gelatin. Int J Mol Sci 2014; 15:13123-34. [PMID: 25056548 PMCID: PMC4139895 DOI: 10.3390/ijms150713123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 11/17/2022] Open
Abstract
Cholesteryl group-modified tilapia gelatins (Chol-T-Gltns) with various Chol contents from 3 to 69 mol % per amino group of Gltn were prepared for the assembly of liposomes and cells. Liposomes were physically crosslinked by anchoring Chol groups of Chol-T-Gltns into lipid membranes. The resulting liposome gels were enzymatically degraded by addition of collagenase. Liposome gels prepared using Chol-T-Gltn with high Chol content (69Chol-T-Gltn) showed slower enzymatic degradation when compared with gels prepared using Chol-T-Gltn with low Chol content (3Chol-T-Gltn). The hepatocyte cell line HepG2 showed good assembly properties and no cytotoxic effects after addition of 69Chol-T-Gltns. In addition, the number of HepG2 cells increased with concentration of 69Chol-T-Gltns. Therefore, Chol-T-Gltn, particularly, 69Chol-T-Gltn, can be used as an assembling material for liposomes and various cell types. The resulting organization can be applied to various biomedical fields, such as drug delivery systems, tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tetsushi Taguchi
- Biomaterials Unit, Nano-Life Field, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Yoshiaki Endo
- Biomaterials Unit, Nano-Life Field, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
13
|
Chang TT, Hughes-Fulford M. Molecular mechanisms underlying the enhanced functions of three-dimensional hepatocyte aggregates. Biomaterials 2013; 35:2162-71. [PMID: 24332390 DOI: 10.1016/j.biomaterials.2013.11.063] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/21/2013] [Indexed: 12/17/2022]
Abstract
Three-dimensional (3D) culture of hepatocytes leads to improved and prolonged synthetic and metabolic functions, but the underlying molecular mechanisms are unknown. In order to investigate the role of 3D cell-cell interactions in maintaining hepatocyte differentiated functions ex vivo, primary mouse hepatocytes were cultured either as monolayers on tissue culture dishes (TCD) or as 3D aggregates in rotating wall vessel (RWV) bioreactors. Global gene expression analyses revealed that genes upregulated in 3D culture were distinct from those upregulated during liver development and liver regeneration. Instead, they represented a diverse array of hepatocyte-specific functional genes with significant over-representation of hepatocyte nuclear factor 4α (Hnf4a) binding sites in their promoters. Expression of Hnf4a and many of its downstream target genes were significantly increased in RWV cultures as compared to TCD. Conversely, there was concomitant suppression of mesenchymal and cytoskeletal genes in RWV cultures that were induced in TCDs. These findings illustrate the importance of 3D cell-cell interactions in maintaining fundamental molecular pathways of hepatocyte function and serve as a basis for rational design of biomaterials that aim to optimize hepatocyte functions ex vivo for biomedical applications.
Collapse
Affiliation(s)
- Tammy T Chang
- Department of Surgery, University of California, San Francisco, CA 94143, USA; Liver Center, University of California, San Francisco, CA 94143, USA.
| | - Millie Hughes-Fulford
- Department of Medicine, University of California, San Francisco, CA 94143, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| |
Collapse
|
14
|
Development of amphiphilic, enzymatically-degradable PEG-peptide conjugate as cell crosslinker for spheroid formation. Colloids Surf B Biointerfaces 2013; 101:223-7. [DOI: 10.1016/j.colsurfb.2012.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/26/2012] [Indexed: 11/19/2022]
|
15
|
Wang Y, Zhang Y, Zhang S, Peng G, Liu T, Li Y, Xiang D, Wassler MJ, Shelat HS, Geng Y. Rotating Microgravity-Bioreactor Cultivation Enhances the Hepatic Differentiation of Mouse Embryonic Stem Cells on Biodegradable Polymer Scaffolds. Tissue Eng Part A 2012; 18:2376-85. [DOI: 10.1089/ten.tea.2012.0097] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yingjie Wang
- The Artificial Liver Lab., Southwest Hospital, The Third Military Medical University, Chongqing, China
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
| | - Yunping Zhang
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
- Department of Emergency Medicine, JaoTong University, Shanghai, China
| | - Shichang Zhang
- The Artificial Liver Lab., Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Guangyong Peng
- Division of Immunobiology, Department of Internal Medicine, Saint Louis University School of Medicine, Edward A Doisy Research Center, St. Louis, Missouri
| | - Tao Liu
- The Artificial Liver Lab., Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Yangxin Li
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
| | - Dedong Xiang
- The Artificial Liver Lab., Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Michael J. Wassler
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
| | - Harnath S. Shelat
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
| | - Yongjian Geng
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
| |
Collapse
|
16
|
Corcoran J, Lange A, Winter MJ, Tyler CR. Effects of pharmaceuticals on the expression of genes involved in detoxification in a carp primary hepatocyte model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:6306-6314. [PMID: 22559005 DOI: 10.1021/es3005305] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fish in many surface freshwaters are exposed to a range of pharmaceuticals via wastewater treatment works effluent discharges. In mammals the pregnane X receptor (PXR) plays a key role in the regulation of a suite of genes involved in drug biotransformation, but information on the role of this response pathway in fish is limited. Here we investigated the effects of exposure of carp (Cyprinus carpio) primary hepatocytes to the human PXR agonist rifampicin (RIF) on expression of target genes involved in phase I (cyp2k, cyp3a) and phase II (gstα, gstπ) drug metabolism and drug transporters mdr1 and mrp2. RIF induced expression of all target genes measured and the PXR antagonist ketoconazole (KET) inhibited responses of cyp2k and cyp3a. Exposure of the primary carp hepatocytes to the pharmaceuticals ibuprofen (IBU), clotrimazole (CTZ), clofibric acid (CFA) and propranolol (PRP), found responses to IBU and CFA, but not CTZ or PRP. This is in contrast with mammals, where CTZ is a potent PXR-agonist. Collectively our data indicate potential PXR involvement in regulating selected genes involved in drug metabolism in fish, but suggest some divergence in the regulation pathways with those in mammals. The carp primary hepatocyte model serves as a useful system for screening for responses in these target genes involved in drug metabolism.
Collapse
Affiliation(s)
- Jenna Corcoran
- University of Exeter, Biosciences, College of Life & Environmental Sciences, Exeter, United Kingdom
| | | | | | | |
Collapse
|
17
|
Wittgen HGM, van den Heuvel JJMW, van den Broek PHH, Siissalo S, Groothuis GMM, de Graaf IAM, Koenderink JB, Russel FGM. Transport of the coumarin metabolite 7-hydroxycoumarin glucuronide is mediated via multidrug resistance-associated proteins 3 and 4. Drug Metab Dispos 2012; 40:1076-9. [PMID: 22415933 DOI: 10.1124/dmd.111.044438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Coumarin (1,2-benzopyrone) is a natural compound that has been used as a fragrance in the food and perfume industry and could have therapeutic usefulness in the treatment of lymphedema and different types of cancer. Several previous pharmacokinetic studies of coumarin have been performed in humans, which revealed extensive first-pass metabolism of the compound. 7-Hydroxycoumarin (7-HC) and its glucuronide (7-HC-G) are the main metabolites formed in humans, and via this route, 80 to 90% of the absorbed coumarin is excreted into urine, mainly as 7-HC-G. Active transport processes play a role in the urinary excretion of 7-HC-G; however, until now, the transporters involved remained to be elucidated. In this study, we investigated whether the efflux transporters multidrug resistance-associated proteins (MRP)1-4, breast cancer resistance protein, or P-glycoprotein play a role in 7-HC and 7-HC-G transport. For this purpose, we measured uptake of the metabolites into membrane vesicles overexpressing these transporters. Our results showed that 7-HC is not transported by any of the efflux transporters tested, whereas 7-HC-G was a substrate of MRP3 and MRP4. These results are in line with the pharmacokinetic profile of coumarin and suggest that MRP3 and MRP4 are the main transporters involved in the excretion of the coumarin metabolite 7-HC-G from liver and kidney.
Collapse
Affiliation(s)
- Hanneke G M Wittgen
- Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Chao Y, Wu Q, Shepard C, Wells A. Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clin Exp Metastasis 2012; 29:39-50. [PMID: 21964676 PMCID: PMC3991430 DOI: 10.1007/s10585-011-9427-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 09/19/2011] [Indexed: 01/05/2023]
Abstract
Post-extravasation survival is a key rate-limiting step of metastasis; however, not much is known about the factors that enable survival of the metastatic cancer cell at the secondary site. Furthermore, metastatic nodules are often refractory to current therapies, necessitating the elucidation of molecular changes that affect the chemosensitivity of metastases. Drug resistance exhibited by tumor spheroids has been shown to be mediated by cell adhesion and can be abrogated by addition of E-cadherin blocking antibody. We have previously shown that hepatocyte coculture induces the re-expression of E-cadherin in breast and prostate cancer cells. In this study, we show that this E-cadherin re-expression confers a survival advantage, particularly in the liver microenvironment. E-cadherin re-expression in MDA-MB-231 breast cancer cells resulted in increased attachment to hepatocytes. This heterotypic adhesion between cancer cells and secondary organ parenchymal cells activated ERK MAP kinase, suggesting a functional pro-survival role for E-cadherin during metastatic colonization of the liver. In addition, breast cancer cells that re-expressed E-cadherin in hepatocyte coculture were more chemoresistant compared to 231-shEcad cells unable to re-express E-cadherin. Similar results were obtained in DU-145 prostate cancer cells induced to re-express E-cadherin in hepatocyte coculture or following chemical induction by the GnRH agonist buserelin or the EGFR inhibitor PD153035. These results suggest that E-cadherin re-expression and other molecular changes imparted by a partial mesenchymal to epithelial reverting transition at the secondary site increase post-extravasation survival of the metastatic cancer cell and may help to elucidate why chemotherapy commonly fails to treat metastatic breast cancer.
Collapse
Affiliation(s)
- Yvonne Chao
- Department of Pathology, Pittsburgh VAMC and University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
19
|
The MAPK MEK1/2-ERK1/2 Pathway and Its Implication in Hepatocyte Cell Cycle Control. Int J Hepatol 2012; 2012:328372. [PMID: 23133759 PMCID: PMC3485978 DOI: 10.1155/2012/328372] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 12/15/2022] Open
Abstract
Primary cultures of hepatocytes are powerful models in studying the sequence of events that are necessary for cell progression from a G0-like state to S phase. The models mimic the physiological process of hepatic regeneration after liver injury or partial hepatectomy. Many reports suggest that the mitogen-activated protein kinase (MAPK) ERK1/2 can support hepatocyte proliferation in vitro and in vivo and the MEK/ERK cascade acts as an essential element in hepatocyte responses induced by the EGF. Moreover, its disregulation has been associated with the promotion of tumor cell growth of a variety of tumors, including hepatocellular carcinoma. Whereas the strict specificity of action of ERK1 and ERK2 is still debated, the MAPKs may have specific biological functions under certain contexts and according to the differentiation status of the cells, notably hepatocytes. In this paper, we will focus on MEK1/2-ERK1/2 activations and roles in normal rodent hepatocytes in vitro and in vivo after partial hepatectomy and in human hepatocarcinoma cells. The possible specificity of ERK1 and ERK2 in normal and transformed hepatocyte will be discussed in regard to other differentiated and undifferentiated cellular models.
Collapse
|
20
|
Taguchi T. Assembly of cells and vesicles for organ engineering. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2011; 12:064703. [PMID: 27877453 PMCID: PMC5090668 DOI: 10.1088/1468-6996/12/6/064703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 10/10/2011] [Accepted: 07/29/2011] [Indexed: 06/02/2023]
Abstract
The development of materials and technologies for the assembly of cells and/or vesicles is a key for the next generation of tissue engineering. Since the introduction of the tissue engineering concept in 1993, various types of scaffolds have been developed for the regeneration of connective tissues in vitro and in vivo. Cartilage, bone and skin have been successfully regenerated in vitro, and these regenerated tissues have been applied clinically. However, organs such as the liver and pancreas constitute numerous cell types, contain small amounts of extracellular matrix, and are highly vascularized. Therefore, organ engineering will require the assembly of cells and/or vesicles. In particular, adhesion between cells/vesicles will be required for regeneration of organs in vitro. This review introduces and discusses the key technologies and materials for the assembly of cells/vesicles for organ regeneration.
Collapse
Affiliation(s)
- Tetsushi Taguchi
- Biofunctional Materials Unit, Nano-Bio Field, Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
21
|
Taguchi T, Rao Z, Ito M, Matsuda M. Induced albumin secretion from HepG2 spheroids prepared using poly(ethylene glycol) derivative with oleyl groups. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:2357-2363. [PMID: 21842139 DOI: 10.1007/s10856-011-4414-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 08/03/2011] [Indexed: 05/31/2023]
Abstract
We developed a poly(ethylene glycol) (PEG) derivative with oleyl groups, so-called "cell adhesive", for the promotion of human hepatocellular carcinoma HepG2 cell spheroids. Our approach was based on crosslinking of the cell membrane with a cell adhesive via a hydrophobic interaction. A cell adhesive, PEG derivative with hydrophobic oleyl groups at both ends was synthesized and characterized. HepG2 spheroids formed when the adhesive was added to cell suspensions. The size of the spheroids increased with time in culture. In addition, Ammonia elimination of HepG2 spheroid with cell adhesive was 3.4 times higher than that without cell adhesive. Furthermore, albumin secretion from HeG2 spheroids grown with the cell adhesive for 7 days was 3.3 times that from HepG2 spheroids grown without cell adhesive. Fluorescence microscopy showed greater albumin staining in spheroids grown with cell adhesive compared with spheroids grown without adhesive. This cell adhesive may be useful not only for single type of cells but also for multi types of cells to form artificial organs. This cell adhesive will be a key material for liver tissue engineering when it will apply to primary hepatocytes.
Collapse
Affiliation(s)
- Tetsushi Taguchi
- Biomaterials Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan.
| | | | | | | |
Collapse
|
22
|
Kammer NN, Billecke N, Morgul MH, Adonopoulou MK, Mogl M, Huang MD, Florek S, Schmitt KR, Raschzok N, Sauer IM. Labeling of Primary Human Hepatocytes With Micron-Sized Iron Oxide Particles in Suspension Culture Suitable for Large-Scale Preparation. Artif Organs 2011; 35:E91-100. [DOI: 10.1111/j.1525-1594.2010.01177.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Leite SB, Teixeira AP, Miranda JP, Tostões RM, Clemente JJ, Sousa MF, Carrondo MJT, Alves PM. Merging bioreactor technology with 3D hepatocyte-fibroblast culturing approaches: Improved in vitro models for toxicological applications. Toxicol In Vitro 2011; 25:825-32. [PMID: 21315144 DOI: 10.1016/j.tiv.2011.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 01/20/2011] [Accepted: 02/03/2011] [Indexed: 02/03/2023]
Abstract
During the last years an increasing number of in vitro models have been developed for drug screening and toxicity testing. Primary cultures of hepatocytes are, by far, the model of choice for those high-throughput studies but their spontaneous dedifferentiation after some time in culture hinders long-term studies. Thus, novel cell culture systems allowing extended hepatocyte maintenance and more predictive long term in vitro studies are required. It has been shown that hepatocytes functionality can be improved and extended in time when cultured as 3D-cell aggregates in environmental controlled stirred bioreactors. In this work, aiming at further improving hepatocytes functionality in such 3D cellular structures, co-cultures with fibroblasts were performed. An inoculum concentration of 1.2×10(5) cell/mL and a 1:2 hepatocyte:mouse embryonic fibroblast ratio allowed to improve significantly the albumin secretion rate and both ECOD (phase I) and UGT (phase II) enzymatic activities in 3D co-cultures, as compared to the routinely used 2D hepatocyte monocultures. Significant improvements were also observed in relation to 3D monocultures of hepatocytes. Furthermore, hepatocytes were able to respond to the addition of beta-Naphtoflavone by increasing ECOD activity showing CYP1A inducibility. The dependence of CYP activity on oxygen concentration was also observed. In summary, the improved hepatocyte specific functions during long term incubation of 3D co-cultures of hepatocytes with fibroblasts indicate that this system is a promising in vitro model for long term toxicological studies.
Collapse
Affiliation(s)
- Sofia B Leite
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Yates C, Shepard CR, Papworth G, Dash A, Beer Stolz D, Tannenbaum S, Griffith L, Wells A. Novel three-dimensional organotypic liver bioreactor to directly visualize early events in metastatic progression. Adv Cancer Res 2009; 97:225-46. [PMID: 17419948 DOI: 10.1016/s0065-230x(06)97010-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Metastatic seeding leads to most of the morbidity from carcinomas. However, little is known of this key event as current methods to study the cellular behaviors utilize nonrepresentative in vitro models or follow indirect subsequent developments in vivo. Therefore, we developed a system to visualize over a multiday to multiweek period the interactions between tumor cells and target organ parenchyma. We employ an ex vivo microscale perfusion culture system that provides a tissue-relevant environment to assess metastatic seeding behavior. The bioreactor recreates many features of the fluid flow, scale, and biological functionality of a hepatic parenchyma, a common site of metastatic spread for a wide range of carcinomas. As a test of this model, prostate and breast carcinoma cells were introduced. Tumor cell invasion and expansion could be observed by two-photon microscopy of red fluorescent protein (RFP)- and CellTracker-labeled carcinoma cells against a green fluorescent protein (GFP)-labeled hepatic tissue bed over a 14-day period. Tumors visible to the naked eye could be formed by day 25, without evident necrosis in the >0.3-mm tumor mass. These tumor cells failed to grow in the absence of the supporting three-dimensional (3D) hepatic microtissue, suggesting paracrine or stromal support function for the liver structure in tumor progression. Initial ultrastructural studies suggest that early during the tumor-parenchyma interactions, there are extensive interactions between and accommodations of the cancer and host cells, suggesting that the tumor-related epithelial-mesenchymal transition (EMT) reverts, at least transiently, to promote metastatic seeding. In sum, our 3D ex vivo organotypic liver tissue system presents a critical vehicle to examine tumor-host interactions during cancer metastasis and/or invasion. It also circumvents current limitations in assays to assess early events in metastasis, and provides new approaches to study molecular events during tumor progression.
Collapse
Affiliation(s)
- Clayton Yates
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Miranda JP, Leite SB, Muller-Vieira U, Rodrigues A, Carrondo MJT, Alves PM. Towards an extended functional hepatocyte in vitro culture. Tissue Eng Part C Methods 2009; 15:157-67. [PMID: 19072051 DOI: 10.1089/ten.tec.2008.0352] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Primary cultures of human hepatocytes are a reference cellular model, because they maintain key features of liver cells in vivo, such as expression of drug-metabolizing enzymes, response to enzyme inducers, and generation of hepatic metabolites. However, there is a restricted availability of primary hepatocytes, and they show phenotypic instability in culture. Thus, different alternatives have been developed to overcome the culture limitations and to mimic in vivo tissue material. Herein, culture conditions, such as medium composition, impeller type, and cell inoculum concentration, were optimized in stirred culture vessels and applied to a three-dimensional (3D) bioreactor system. Cultures of rat hepatocytes as 3D structures on bioreactor, better resembling in vivo cellular organization, were compared to traditional monolayer cultures. Liver-specific functions, such as albumin and urea secretion, phase I and phase II enzyme activities, and the capacity to metabolize diphenhydramine and troglitazone, were measured over time. Hepatocyte functions were preserved for longer time in the 3D bioreactor than in the monolayer system. Moreover, rat hepatocytes grown in 3D system maintained the ability to metabolize such compounds, as well as in vivo. Our results indicate that hepatocytes cultured as 3D structures are a qualified model system to study hepatocyte drug metabolism over a long period of time. Moreover, these cultures can be used as feeding systems to obtain cells for other tests in a short time.
Collapse
Affiliation(s)
- Joana P Miranda
- Animal Cell Technology Laboratory, IBET/ITQB-UNL, Apartado 12, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
26
|
Enhanced insulin secretion of physically crosslinked pancreatic beta-cells by using a poly(ethylene glycol) derivative with oleyl groups. Acta Biomater 2009; 5:2945-52. [PMID: 19427934 DOI: 10.1016/j.actbio.2009.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/27/2009] [Accepted: 04/17/2009] [Indexed: 11/21/2022]
Abstract
A polymeric crosslinker was developed to promote the formation of cellular spheroids. Our approach was based on the crosslinking of cell membrane using a polymeric crosslinker that worked via hydrophobic interaction. The crosslinker, a poly(ethylene glycol) derivative with oleyl groups as a hydrophobic group at both ends, was synthesized and characterized by gel permeation chromatography and Fourier-transform infrared spectroscopy. Cell culture experiments were then performed to confirm spheroid formation. The rat pancreatic islet beta-cell line RIN, which possesses the ability to secrete insulin, was cultured with the crosslinker in a round-bottomed 96-well plate. The formation of a spheroid was achieved when the crosslinker was added to the cell suspension, especially in the absence of serum. The size of the spheroid decreased with time and with increasing crosslinker concentration, and depended on the number of cells plated in each well. The number of cells cultured with crosslinker was almost constant during 7 days and hardly proliferated in crosslinker concentrations of 0-2.5 mg ml(-1), while the number of cells showed a decrease in the 25 mg ml(-1) crosslinker concentration. It was shown that the insulin protein secretion in the spheroid cultured with crosslinker for 1 week was enhanced. The cell adhesion protein E-cadherin mRNA expression of the resulting spheroid was also enhanced. These results indicate that the promoted cell function was due to the cell-cell and cell-matrix interactions in the spheroid, suggesting that this polymeric crosslinker was useful for the formation of cell spheroids.
Collapse
|
27
|
Development of a practical small-scale circulation bioreactor and application to a drug metabolism simulator. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2008.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Pampaloni F, Stelzer EHK. Three-Dimensional Cell Cultures in Toxicology. Biotechnol Genet Eng Rev 2009; 26:117-38. [DOI: 10.5661/bger-26-117] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Liu Tsang V, Chen AA, Cho LM, Jadin KD, Sah RL, DeLong S, West JL, Bhatia SN. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J 2006; 21:790-801. [PMID: 17197384 DOI: 10.1096/fj.06-7117com] [Citation(s) in RCA: 375] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have fabricated a hepatic tissue construct using a multilayer photopatterning platform for embedding cells in hydrogels of complex architecture. We first explored the potential of established hepatocyte culture models to stabilize isolated hepatocytes for photoencapsulation (e.g., double gel, Matrigel, cocultivation with nonparenchymal cells). Using photopolymerizable PEG hydrogels, we then tailored both the chemistry and architecture of the hydrogels to further support hepatocyte survival and liver-specific function. Specifically, we incorporated adhesive peptides to ligate key integrins on these adhesion-dependent cells. To identify the appropriate peptides for incorporation, the integrin expression of cultured hepatocytes was monitored by flow cytometry and their functional role in cell adhesion was assessed on full-length extracellular matrix (ECM) molecules and their adhesive peptide domains. In addition, we modified the hydrogel architecture to minimize barriers to nutrient transport for these highly metabolic cells. Viability of encapsulated cells was improved in photopatterned hydrogels with structural features of 500 microm in width over unpatterned, bulk hydrogels. Based on these findings, we fabricated a multilayer photopatterned PEG hydrogel structure containing the adhesive RGD peptide sequence to ligate the alpha5beta1 integrin of cocultured hepatocytes. Three-dimensional photopatterned constructs were visualized by digital volumetric imaging and cultured in a continuous flow bioreactor for 12 d where they performed favorably in comparison to unpatterned, unperfused constructs. These studies will have impact in the field of liver biology as well as provide enabling tools for tissue engineering of other organs.
Collapse
Affiliation(s)
- Valerie Liu Tsang
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Damelin LH, Coward S, Choudhury SF, Chalmers SA, Cox IJ, Robertson NJ, Revial G, Miles M, Tootle R, Hodgson HJF, Selden C. Altered mitochondrial function and cholesterol synthesis influences protein synthesis in extended HepG2 spheroid cultures. Arch Biochem Biophys 2004; 432:167-77. [PMID: 15542055 DOI: 10.1016/j.abb.2004.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 09/22/2004] [Indexed: 11/26/2022]
Abstract
Cultures of hepatocytes and HepG2 cells provide useful in vitro models of liver specific function. In this study, we investigated metabolic and biosynthetic function in 3-D HepG2 spheroid cultures, in particular to characterise changes on prolonged culture. We show that HepG2 cells cultured in spheroids demonstrate a reduction in mitochondrial membrane potential and respiration following 10 days of culture. This coincides with a modest reduction in glycolysis but an increase in glucose uptake where increased glycogen synthesis occurs at the expense of the intracellular ATP pool. Lowered biosynthesis coincides with and is linked to mitochondrial functional decline since low glucose-adapted spheroids, which exhibit extended mitochondrial function, have stable biosynthetic activity during extended culture although biosynthetic function is lower. This indicates that glucose is required for biosynthetic output but sustained mitochondrial function is required for the maintenance of biosynthetic function. Furthermore, we show that cholesterol synthesis is markedly increased in spheroids cf. monolayer culture and that inhibition of cholesterol synthesis by lovastatin extends mitochondrial and biosynthetic function. Therefore, increased cholesterol synthesis and/or its derivatives contributes to mitochondrial functional decline in extended HepG2 spheroid cultures.
Collapse
Affiliation(s)
- Leonard H Damelin
- Department of Medicine, Royal Free Campus, Royal Free and UCL Medical School, Rowland Hill Street, Hampstead, London, NW3 2PF, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|