1
|
Ma S, Wang Y, Ji X, Dong S, Wang S, Zhang S, Deng F, Chen J, Lin B, Khan BA, Liu W, Hou K. Relationship between gut microbiota and the pathogenesis of gestational diabetes mellitus: a systematic review. Front Cell Infect Microbiol 2024; 14:1364545. [PMID: 38868299 PMCID: PMC11168118 DOI: 10.3389/fcimb.2024.1364545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/01/2024] [Indexed: 06/14/2024] Open
Abstract
Introduction Gestational diabetes mellitus (GDM) is a form of gestational diabetes mellitus characterized by insulin resistance and abnormal function of pancreatic beta cells. In recent years, genomic association studies have revealed risk and susceptibility genes associated with genetic susceptibility to GDM. However, genetic predisposition cannot explain the rising global incidence of GDM, which may be related to the increased influence of environmental factors, especially the gut microbiome. Studies have shown that gut microbiota is closely related to the occurrence and development of GDM. This paper reviews the relationship between gut microbiota and the pathological mechanism of GDM, in order to better understand the role of gut microbiota in GDM, and to provide a theoretical basis for clinical application of gut microbiota in the treatment of related diseases. Methods The current research results on the interaction between GDM and gut microbiota were collected and analyzed through literature review. Keywords such as "GDM", "gut microbiota" and "insulin resistance" were used for literature search, and the methodology, findings and potential impact on the pathophysiology of GDM were systematically evaluated. Results It was found that the composition and diversity of gut microbiota were significantly associated with the occurrence and development of GDM. Specifically, the abundance of certain gut bacteria is associated with an increased risk of GDM, while other changes in the microbiome may be associated with improved insulin sensitivity. In addition, alterations in the gut microbiota may affect blood glucose control through a variety of mechanisms, including the production of short-chain fatty acids, activation of inflammatory pathways, and metabolism of the B vitamin group. Discussion The results of this paper highlight the importance of gut microbiota in the pathogenesis of GDM. The regulation of the gut microbiota may provide new directions for the treatment of GDM, including improving insulin sensitivity and blood sugar control through the use of probiotics and prebiotics. However, more research is needed to confirm the generality and exact mechanisms of these findings and to explore potential clinical applications of the gut microbiota in the management of gestational diabetes. In addition, future studies should consider the interaction between environmental and genetic factors and how together they affect the risk of GDM.
Collapse
Affiliation(s)
- Sheng Ma
- Anhui Province Maternity & Child Health Hospital, Hefei, Anhui, China
| | - Yuping Wang
- School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiaoxia Ji
- Nursing Department, Shantou Central Hospital, Shantou, Guangdong, China
| | - Sunjuan Dong
- School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shengnan Wang
- School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shuo Zhang
- Shantou University Medical College, Shantou, Guangdong, China
| | - Feiying Deng
- Shantou University Medical College, Shantou, Guangdong, China
| | - Jingxian Chen
- Shantou University Medical College, Shantou, Guangdong, China
| | - Benwei Lin
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Barkat Ali Khan
- Drug Delivery and Cosmetic Lab (DDCL), Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Weiting Liu
- School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Kaijian Hou
- School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
- School of Public Health, Shantou University, Shantou, Guangdong, China
| |
Collapse
|
2
|
Wang S, Cui Z, Yang H. Interactions between host and gut microbiota in gestational diabetes mellitus and their impacts on offspring. BMC Microbiol 2024; 24:161. [PMID: 38730357 PMCID: PMC11083820 DOI: 10.1186/s12866-024-03255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/08/2024] [Indexed: 05/12/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is characterized by insulin resistance and low-grade inflammation, and most studies have demonstrated gut dysbiosis in GDM pregnancies. Overall, they were manifested as a reduction in microbiome diversity and richness, depleted short chain fatty acid (SCFA)-producing genera and a dominant of Gram-negative pathogens releasing lipopolysaccharide (LPS). The SCFAs functioned as energy substance or signaling molecules to interact with host locally and beyond the gut. LPS contributed to pathophysiology of diseases through activating Toll-like receptor 4 (TLR4) and involved in inflammatory responses. The gut microbiome dysbiosis was not only closely related with GDM, it was also vital to fetal health through vertical transmission. In this review, we summarized gut microbiota signature in GDM pregnancies of each trimester, and presented a brief introduction of microbiome derived SCFAs. We then discussed mechanisms of microbiome-host interactions in the physiopathology of GDM and associated metabolic disorders. Finally, we compared offspring microbiota composition from GDM with that from normal pregnancies, and described the possible mechanism.
Collapse
Affiliation(s)
- Shuxian Wang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Zifeng Cui
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China.
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China.
| |
Collapse
|
3
|
Lu X, Shi Z, Jiang L, Zhang S. Maternal gut microbiota in the health of mothers and offspring: from the perspective of immunology. Front Immunol 2024; 15:1362784. [PMID: 38545107 PMCID: PMC10965710 DOI: 10.3389/fimmu.2024.1362784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024] Open
Abstract
Due to the physiological alteration during pregnancy, maternal gut microbiota changes following the metabolic processes. Recent studies have revealed that maternal gut microbiota is closely associated with the immune microenvironment in utero during pregnancy and plays a vital role in specific pregnancy complications, including preeclampsia, gestational diabetes, preterm birth and recurrent miscarriages. Some other evidence has also shown that aberrant maternal gut microbiota increases the risk of various diseases in the offspring, such as allergic and neurodevelopmental disorders, through the immune alignment between mother and fetus and the possible intrauterine microbiota. Probiotics and the high-fiber diet are effective inventions to prevent mothers and fetuses from diseases. In this review, we summarize the role of maternal gut microbiota in the development of pregnancy complications and the health condition of future generations from the perspective of immunology, which may provide new therapeutic strategies for the health management of mothers and offspring.
Collapse
Affiliation(s)
- Xiaowen Lu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| | - Zhan Shi
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
4
|
Wang Y, Rui B, Ze X, Liu Y, Yu D, Liu Y, Li Z, Xi Y, Ning X, Lei Z, Yuan J, Li L, Zhang X, Li W, Deng Y, Yan J, Li M. Sialic acid-based probiotic intervention in lactating mothers improves the neonatal gut microbiota and immune responses by regulating sialylated milk oligosaccharide synthesis via the gut-breast axis. Gut Microbes 2024; 16:2334967. [PMID: 38630006 PMCID: PMC11028031 DOI: 10.1080/19490976.2024.2334967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are vital milk carbohydrates that help promote the microbiota-dependent growth and immunity of infants. Sialic acid (SA) is a crucial component of sialylated milk oligosaccharides (S-MOs); however, the effects of SA supplementation in lactating mothers on S-MO biosynthesis and their breastfed infants are unknown. Probiotic intervention during pregnancy or lactation demonstrates promise for modulating the milk glycobiome. Here, we evaluated whether SA and a probiotic (Pro) mixture could increase S-MO synthesis in lactating mothers and promote the microbiota development of their breastfed neonates. The results showed that SA+Pro intervention modulated the gut microbiota and 6'-SL contents in milk of maternal rats more than the SA intervention, which promoted Lactobacillus reuteri colonization in neonates and immune development. Deficient 6'-SL in the maternal rat milk of St6gal1 knockouts (St6gal1-/-) disturbed intestinal microbial structures in their offspring, thereby impeding immune tolerance development. SA+Pro intervention in lactating St6gal1± rats compromised the allergic responses of neonates by promoting 6'-SL synthesis and the neonatal gut microbiota. Our findings from human mammary epithelial cells (MCF-10A) indicated that the GPR41-PI3K-Akt-PPAR pathway helped regulate 6'-SL synthesis in mammary glands after SA+Pro intervention through the gut - breast axis. We further validated our findings using a human-cohort study, confirming that providing SA+Pro to lactating Chinese mothers increased S-MO contents in their breast milk and promoted gut Bifidobacterium spp. and Lactobacillus spp. colonization in infants, which may help enhance immune responses. Collectively, our findings may help alter the routine supplementation practices of lactating mothers to modulate milk HMOs and promote the development of early-life gut microbiota and immunity.
Collapse
Affiliation(s)
- Yushuang Wang
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
- Department of Clinical Laboratory, Central Hospital of Dalian University of Technology, Dalian, China
| | - Binqi Rui
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiaolei Ze
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Yujia Liu
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Da Yu
- The Third Ward of Obstetrics and Gynecology at Chunliu District, Dalian Women and Children Medical Center (Group), Dalian, China
| | - Yinhui Liu
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Zhi Li
- Department of Clinical Laboratory, Central Hospital of Dalian University of Technology, Dalian, China
| | - Yu Xi
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Xixi Ning
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Zengjie Lei
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Jieli Yuan
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Liang Li
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Xuguang Zhang
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Wenzhe Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yanjie Deng
- The Third Ward of Obstetrics and Gynecology at Chunliu District, Dalian Women and Children Medical Center (Group), Dalian, China
| | - Jingyu Yan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian, China
| | - Ming Li
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Liu J, Liu H, Cao G, Cui Y, Wang H, Chen X, Xu F, Li X. Microbiota Characterization of the Cow Mammary Gland Microenvironment and Its Association with Somatic Cell Count. Vet Sci 2023; 10:699. [PMID: 38133250 PMCID: PMC10747812 DOI: 10.3390/vetsci10120699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Subclinical mastitis is a common disease that threatens the welfare and health of dairy cows and causes huge economic losses. Somatic cell count (SCC) is the most suitable indirect index used to evaluate the degree of mastitis. To explore the relationship between SCC, diversity in the microbiome, and subclinical mastitis, we performed next-generation sequencing of the 16S rRNA gene of cow's milk with different SCC ranges. The data obtained showed that the microbiota was rich and coordinated with SCC below 2 × 105. SCC above 2 × 105 showed a decrease in the diversity of microbial genera. When SCC was below 2 × 105, the phylum Actinobacteriota accounted for the most. When SCC was between 2 × 105 and 5 × 105, Firmicutes accounted for the most, and when SCC exceeded 5 × 105, Firmicutes and Proteobacteria accounted for the most. Pathogenic genera such as Streptococcus spp. were absent, while SCC above 2 × 105 showed a decrease in the diversity of microbial genera. SCC was positively correlated with the percentage of Romboutsia, Turicibacter, and Paeniclostridium and negatively correlated with the percentage of Staphylococcus, Psychrobacter, Aerococcus, and Streptococcus. Romboutsia decreased 6.19 times after the SCC exceeded 2 × 105; the SCC increased exponentially from 2 × 105 to 5 × 105 and above 1 × 106 in Psychrobacter. Analysis of the microbiota of the different SCC ranges suggests that the development of mastitis may not only be a primary infection but may also be the result of dysbiosis in the mammary gland.
Collapse
Affiliation(s)
- Jing Liu
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.L.)
| | - Huan Liu
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.L.)
| | - Guangjie Cao
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.L.)
| | - Yifang Cui
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100081, China
| | - Huanhuan Wang
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.L.)
| | - Xiaojie Chen
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.L.)
- Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Fei Xu
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.L.)
- Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiubo Li
- National Feed Drug Reference Laboratories, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.L.)
- Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
6
|
Montoya-Hernández D, Dufoo-Hurtado E, Cruz-Hernández A, Campos-Vega R. Spent coffee grounds and its antioxidant dietary fiber promote different colonic microbiome signatures: Benefits for subjects with chronodisruption. Microb Pathog 2023; 185:106431. [PMID: 37984489 DOI: 10.1016/j.micpath.2023.106431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
Chronodisruption, commonly displayed by people living with obesity (PLO), is linked to colonic microbiota dysbiosis, and may increase the risk of many chronic non-communicable diseases, whereas dietary interventions-called chrononutrition may mitigate it. We evaluated the in vitro effects of spent coffee grounds (SCG), and their antioxidant dietary fiber (SCG-DF) on the colonic microbiota of an obese donor displaying dysbiosis and chronodisruption. Basal microbiota pattern was associated with an increased risk of non-communicable chronic diseases. Both samples decrease species richness and increase microbiota diversity (p < 0.05; Chao and Shannon index, respectively), positively enhancing Firmicutes/Bacteroidetes index (SCG, p < 0.04; SCG-DF, p < 0.02). SCG and SCG-DF modulated the microbiota, but SCG-DF induced greater changes, significantly increasing. p_Actonobacterias (SCG p < 0.04; SCG-DF, p < 0.02), and reducing g_Alistipes; s_putredinis, g_Prevotella;s_copri. The highest increase was displayed by p_Proteobacteria (f_Desulfovibrionaceae and f_Alcanigenaceae, p < 0.05), while g_Haemophilus; s_parainfluenzae decreased (p < 0.05). However, neither SCG nor SCG-DF modulated g_Alistipes (evening-type colonic microbial marker) beneficially. SCG and SCG-DF reduced (p < 0.05) g_Lachnospira, a microbial evening-type marker, among other microbial populations, of an obese donor displaying chronodisruption and dysbiosis. SCG and SCG-DF displayed a prebiotic effect with the potential to mitigate diseases linked to chronodisruption.
Collapse
Affiliation(s)
- Diego Montoya-Hernández
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, 76010, Qro, Mexico.
| | - Elisa Dufoo-Hurtado
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, 76010, Qro, Mexico.
| | - Andrés Cruz-Hernández
- Escuela de Agronomía, Universidad De La Salle Bajío Campus Campestre, Av. Universidad 602, Col. Lomas del Campestre, León, 37150, Mexico.
| | - Rocio Campos-Vega
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, 76010, Qro, Mexico.
| |
Collapse
|
7
|
Song Q, Zhou T, Chen S, Liao Y, Huang H, Xiao B, Zhang JV, Ma L, Zhu Y. Association of Gestational Diabetes With the Dynamic Changes of Gut Microbiota in Offspring From 1 to 6 Months of Age. J Clin Endocrinol Metab 2023; 108:2315-2323. [PMID: 36869837 DOI: 10.1210/clinem/dgad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
AIMS The present study aimed to prospectively evaluate the influence of gestational diabetes mellitus (GDM) on the gut microbiota in 1- and 6-month-old offspring, as well as the dynamic changes from 1 to 6 months of age. METHODS Seventy-three mother-infant dyads (34 GDM vs 39 non-GDM) were included in this longitudinal study. Two fecal samples were collected for each included infant at home by the parents at 1 month of age ("M1 phase") and again at 6 months of age ("M6 phase"). Gut microbiota were profiled by 16S rRNA gene sequencing. RESULTS Although no significant differences were observed in diversity and composition between GDM and non-GDM groups in the M1 phase, we observed differential structures and composition in the M6 phase between the 2 groups (P < .05), with lower levels of diversity, 6 depleted and 10 enriched gut microbes among infants born to GDM mothers. The dynamic changes in alpha diversity from the M1 to M6 phase were also significantly different according to GDM status (P < .05). Moreover, we found that the altered gut bacteria in the GDM group were correlated with infants' growth. CONCLUSION Maternal GDM was associated not only with the community structure and composition in the gut microbiota of offspring at a specific time point, but also with the differential changes from birth to infancy. Altered colonization of the GDM infants' gut microbiota might affect their growth. Our findings underscore the critical impact of GDM on the formation of early-life gut microbiota and on the growth and development of infants.
Collapse
Affiliation(s)
- Qiying Song
- Clinical Research Academy, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen 518036, China
- Department of Child Healthcare, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518100, China
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518071, China
| | - Tao Zhou
- Department of Epidemiology and Biostatistics, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Shaoyun Chen
- Maternal-Fetal Medicine Institute, Department of Obstetrics, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518100, China
| | - Ying Liao
- Maternal-Fetal Medicine Institute, Department of Obstetrics, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518100, China
| | - Hongli Huang
- Department of Obstetrics, Shenzhen Luohu Maternity and Child Health Care Hospital, Shenzhen 518019, China
| | - Bin Xiao
- Department of Child Healthcare, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518100, China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518071, China
| | - Liya Ma
- Department of Child Healthcare, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518100, China
| | - Yuanfang Zhu
- Maternal-Fetal Medicine Institute, Department of Obstetrics, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518100, China
| |
Collapse
|
8
|
Teixeira RA, Silva C, Ferreira AC, Martins D, Leite-Moreira A, Miranda IM, Barros AS. The Association between Gestational Diabetes and the Microbiome: A Systematic Review and Meta-Analysis. Microorganisms 2023; 11:1749. [PMID: 37512921 PMCID: PMC10385443 DOI: 10.3390/microorganisms11071749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Gestational diabetes, affecting about 10% of pregnancies, is characterized by impaired glucose regulation and can lead to complications for health of pregnant women and their offspring. The microbiota, the resident microbes within the body, have been linked to the development of several metabolic conditions. This systematic review with meta-analysis aims to summarize the evidence on the differences in microbiota composition in pregnant women with gestational diabetes and their offspring compared to healthy pregnancies. A thorough search was conducted in the PubMed, Scopus, and Web of Science databases, and data from 21 studies were analyzed utilizing 41 meta-analyses. In the gut microbiota, Bifidobacterium and Alistipes were found to be more abundant in healthy pregnancies, while Roseburia appears to be more abundant in gestational diabetes. The heterogeneity among study findings regarding the microbiota in the meconium is considerable. The placental microbiota exhibited almost no heterogeneity, with an increased abundance of Firmicutes in the gestational diabetes group and a higher abundance of Proteobacteria in the control. The role of the microbiota in gestational diabetes is reinforced by these findings, which additionally point to the potential of microbiome-targeted therapies. To completely comprehend the interactions between gestational diabetes and the microbiome, standardizing methodologies and further research is necessary.
Collapse
Affiliation(s)
- Rita Almeida Teixeira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - Cláudia Silva
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - António Carlos Ferreira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - Diana Martins
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - Isabel M Miranda
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - António S Barros
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
9
|
An Investigation into the Correlation of Intestinal Flora with Obesity and Gestational Diabetes Mellitus. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5677073. [PMID: 35880087 PMCID: PMC9308517 DOI: 10.1155/2022/5677073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/22/2022]
Abstract
Method Thirty-two pregnant women aged 25-35 who were hospitalized in Shanxi Maternal and Child Health Hospital from January 2019 to December 2019 were included for evaluation, including 15 normal pregnant women (NG_NO group), 6 pregnant women with GDM alone (G_NO group), and 7 pregnant women with overweight alone (NG_O group). Stools were collected from pregnant women at 24 and 37 weeks of gestation and newborns' first meconium. The v3-v4 variable region of the gut flora 16s rRNA was double-ended sequenced and bioinformatically analyzed using the Illumina MiSeq PE300 sequencing platform. Results In the third trimester of pregnancy, there were significant differences in the composition of intestinal flora between the simple overweight group, simple GDM group, and normal pregnant group. From the second trimester to the third trimester, there was no significant change in the relative distribution of intestinal flora at the phyla classification level in normal pregnant women. The relative distribution of intestinal flora at the phylum level of newborns was significantly different from that of their mothers. The characteristic intestinal microbes of newborns in simple GDM group were g_Diaphorobacter, while the simple recombinant neonates were Nocardiaceae (f_Nocardioidaceae). In addition, the results showed significant differences in intestinal flora among the normal pregnant women group, simple GDM group, simple overweight group, and GDM overweight group. The results of β diversity analysis showed a significant difference in intestinal microflora species composition structure between the simple overweight group and the normal pregnant group in the second trimester of pregnancy. The species composition structure of intestinal flora was similar between the simple GDM group and the normal pregnant group. In the third trimester of pregnancy, there was no significant difference in the β diversity index among the groups, and the composition and structure of intestinal flora were similar. There were significant differences in the composition structure (β diversity) of intestinal flora between pregnant women and their newborns in each group (P < 0.05). Correlation analysis showed that the blood glucose values of oral glucose tolerance test (OGTT)_1 h and OGTT_2 h were positively correlated with Bacteroides (Bacteroides) and negatively correlated with Proteus (Prevotella), prepregnancy BMI was negatively correlated with Bacteroides, and weight gain during pregnancy was negatively correlated with Vibrio (Desulfovibrio) in Proteus. The birth weight of newborns was positively correlated with Actinomycetes (Actinomyces), Bacteroides (Faecalibacterium), and microbacilli (Dialister) and negatively correlated with Rolston (Ralstonia). Conclusion Gut microbiota is strongly linked to obesity and gestational diabetes.
Collapse
|
10
|
Jovandaric MZ, Milenkovic SJ, Babovic IR, Babic S, Dotlic J. The Effect of Glucose Metabolism and Breastfeeding on the Intestinal Microbiota of Newborns of Women with Gestational Diabetes Mellitus. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:413. [PMID: 35334589 PMCID: PMC8955385 DOI: 10.3390/medicina58030413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/19/2022] [Accepted: 03/03/2022] [Indexed: 12/14/2022]
Abstract
Gestational diabetes mellitus (GDM) is a pregnancy complication in which women without previously diagnosed diabetes develop chronic hyperglycemia during gestation. The diet and lifestyle of the mother during pregnancy as well as lactation have long-term effects on the child's health and development. Detection of early risk markers of adult-age chronic diseases that begin during prenatal life and the application of complex nutritional interventions at the right time may reduce the risk of these diseases. Newborns adapt to the ectopic environment by developing intestinal immune homeostasis. Adequate initial colonization of bacteria is necessary for sufficient development of intestinal immunity. The environmental determinant of adequate colonization is breast milk. Although a developing newborn is capable of producing an immune response, the effector immune component requires bacterial stimulation. Breast milk stimulates the proliferation of a well-balanced and diverse microbiota, which initially influences the switch from an intrauterine TH2 predominant to a TH1/TH2 balanced response and the activation of T-regulatory cells by breast milk-stimulated specific organisms (Bifidobacteria, Lactobacillus, and Bacteroides). Breastfeeding in newborns of mothers with diabetes mellitus regulates the adequate immune response of the newborn and prevents diseases of the neonatal and postnatal period.
Collapse
Affiliation(s)
- Miljana Z. Jovandaric
- Department of Neonatology, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Svetlana J. Milenkovic
- Department of Neonatology, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Ivana R. Babovic
- Department of Gynecology and Obstretics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (I.R.B.); (S.B.); (J.D.)
- Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | - Sandra Babic
- Department of Gynecology and Obstretics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (I.R.B.); (S.B.); (J.D.)
| | - Jelena Dotlic
- Department of Gynecology and Obstretics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (I.R.B.); (S.B.); (J.D.)
- Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
11
|
Gao S, Zhao LH, Tian X, Kong MW, He JQ, Ge XC, Liu XY, Feng ZB, Gao Y. Characteristics of Gut Microbiota in Female Patients with Diabetic Microvascular Complications. J Diabetes Res 2022; 2022:2980228. [PMID: 36339086 PMCID: PMC9633191 DOI: 10.1155/2022/2980228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/08/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To explore the characteristics and analyze the gut microbiota in female patients with diabetic microvascular complications (DMC). METHODS Thirty-seven female patients with type 2 diabetes mellitus (T2DM) were included in the study. These patients were divided into DM group with microvascular complications (T2DM-MC, n = 17) and no microvascular complications group (T2DM-0, n = 20). Patients in the microvascular group presented with the involvement of at least one of the following: kidney, retinal, or peripheral nerves. Using real-time fluorescence quantitative polymerase chain reaction, fecal samples from the two groups were tested for Bacteroides, Prevotella, Bifidobacterium spp, Lactobacillus, Faecalibacterium prausnitzii, Enterococcus spp, Eubacterium rectale, Veillonellaceae, Clostridium leptum, and Roseburia inulinivorans. Levels of fasting and 2 h postprandial blood glucose, glycosylated hemoglobin (HbA1c), lipids, and creatinine were determined to explore the correlation between gut microbiota and blood sugar. Mann-Whitney U test was used to analyze the differences between the two groups. Spearman correlation analysis was used to determine the correlation between gut microbiota and blood glucose. Multifactor logistic regression was used to analyze the risk factors for DMC. RESULTS The HbA1c levels in the T2DM-MC group were higher than those in the T2DM-0 group. The abundances of Bacteroides and Enterococcus spp in the T2DM-MC group were higher than that in the T2DM-0 group. The abundances of Bacteroides and Enterococcus spp in the T2DM-MC group were lower than that in the T2DM-0 group. Spearman's correlation analysis showed that Bacteroides, Prevotella, Lactobacillus, C. leptum, and R. inulinivorans were related to the levels of HbA1c or blood glucose (p < 0.05). Logistic regression analysis showed that after adjusting for confounding factors such as age, body mass index, family history, HbA1c, hypertension, dyslipidemia, and creatinine, Bacteroides remained an independent risk factor in female patients with DMC. CONCLUSION Gut microbiota is related to blood glucose levels. Female patients with DMC experience gut microbiota disorders. The abundances of Bacteroidesare related to DMC, and the abundances of intestinal flora may affect the blood sugar levels of the body.
Collapse
Affiliation(s)
- Shan Gao
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Li-hua Zhao
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Xue Tian
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Mo-wei Kong
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Jian-qiu He
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Xiao-chun Ge
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Xiao-yan Liu
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Zeng-bin Feng
- Department of Cardiac Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Yu Gao
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
12
|
Yan M, Guo X, Ji G, Huang R, Huang D, Li Z, Zhang D, Chen S, Cao R, Yang X, Wu W. Mechanismbased role of the intestinal microbiota in gestational diabetes mellitus: A systematic review and meta-analysis. Front Immunol 2022; 13:1097853. [PMID: 36936475 PMCID: PMC10020587 DOI: 10.3389/fimmu.2022.1097853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 03/06/2023] Open
Abstract
Background Metabolic disorders caused by intestinal microbial dysregulation are considered to be important causes of gestational diabetes mellitus (GDM). Increasing evidence suggests that the diversity and composition of gut microbes are altered in disease states, yet the critical microbes and mechanisms of disease regulation remain unidentified. Methods PubMed® (National Library of Medicine, Bethesda, MD, USA), Embase® (Elsevier, Amsterdam, the Netherlands), the Web of Science™ (Clarivate™, Philadelphia, PA, USA), and the Cochrane Library databases were searched to identify articles published between 7 July 2012 and 7 July 2022 reporting on case-control and controlled studies that analyzed differences in enterobacteria between patients with GDM and healthy individuals. Information on the relative abundance of enterobacteria was collected for comparative diversity comparison, and enterobacterial differences were analyzed using random effects to calculate standardized mean differences at a p-value of 5%. Results A total of 22 studies were included in this review, involving a total of 965 GDM patients and 1,508 healthy control participants. Alpha diversity did not differ between the participant groups, but beta diversity was significantly different. Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were the dominant bacteria, but there was no significant difference between the two groups. Qualitative analysis showed differences between the groups in the Firmicutes/Bacteroidetes ratio, Blautia, and Collinsella, but these differences were not statistically different. Conclusion Enterobacterial profiles were significantly different between the GDM and non-GDM populations. Alpha diversity in patients with GDM is similar to that in healthy people, but beta diversity is significantly different. Firmicutes/Bacteroidetes ratios were significantly increased in GDM, and this, as well as changes in the abundance of species of Blautia and Collinsella, may be responsible for changes in microbiota diversity. Although the results of our meta-analysis are encouraging, more well-conducted studies are needed to clarify the role of the gut microbiome in GDM. The systematic review was registered with PROSPERO (https://www.crd.york.ac.uk/prospero/) as CRD42022357391.
Collapse
Affiliation(s)
- Min Yan
- School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xiaoying Guo
- School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Guiyuan Ji
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Rui Huang
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Dongyi Huang
- School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Zhifeng Li
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Dantao Zhang
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Siyi Chen
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Rong Cao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xingfen Yang
- School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Xingfen Yang, ; Wei Wu,
| | - Wei Wu
- School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- *Correspondence: Xingfen Yang, ; Wei Wu,
| |
Collapse
|