1
|
Gabe CM, Bui AT, Lukashova L, Verdelis K, Vasquez B, Beniash E, Margolis HC. Role of amelogenin phosphorylation in regulating dental enamel formation. Matrix Biol 2024; 131:17-29. [PMID: 38759902 PMCID: PMC11363587 DOI: 10.1016/j.matbio.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Amelogenin (AMELX), the predominant matrix protein in enamel formation, contains a singular phosphorylation site at Serine 16 (S16) that greatly enhances AMELX's capacity to stabilize amorphous calcium phosphate (ACP) and inhibit its transformation to apatitic enamel crystals. To explore the potential role of AMELX phosphorylation in vivo, we developed a knock-in (KI) mouse model in which AMELX phosphorylation is prevented by substituting S16 with Ala (A). As anticipated, AMELXS16A KI mice displayed a severe phenotype characterized by weak hypoplastic enamel, absence of enamel rods, extensive ectopic calcifications, a greater rate of ACP transformation to apatitic crystals, and progressive cell pathology in enamel-forming cells (ameloblasts). In the present investigation, our focus was on understanding the mechanisms of action of phosphorylated AMELX in amelogenesis. We have hypothesized that the absence of AMELX phosphorylation would result in a loss of controlled mineralization during the secretory stage of amelogenesis, leading to an enhanced rate of enamel mineralization that causes enamel acidification due to excessive proton release. To test these hypotheses, we employed microcomputed tomography (µCT), colorimetric pH assessment, and Fourier Transform Infrared (FTIR) microspectroscopy of apical portions of mandibular incisors from 8-week old wildtype (WT) and KI mice. As hypothesized, µCT analyses demonstrated significantly higher rates of enamel mineral densification in KI mice during the secretory stage compared to the WT. Despite a greater rate of enamel densification, maximal KI enamel thickness increased at a significantly lower rate than that of the WT during the secretory stage of amelogenesis, reaching a thickness in mid-maturation that is approximately half that of the WT. pH assessments revealed a lower pH in secretory enamel in KI compared to WT mice, as hypothesized. FTIR findings further demonstrated that KI enamel is comprised of significantly greater amounts of acid phosphate compared to the WT, consistent with our pH assessments. Furthermore, FTIR microspectroscopy indicated a significantly higher mineral-to-organic ratio in KI enamel, as supported by µCT findings. Collectively, our current findings demonstrate that phosphorylated AMELX plays crucial mechanistic roles in regulating the rate of enamel mineral formation, and in maintaining physico-chemical homeostasis and the enamel growth pattern during early stages of amelogenesis.
Collapse
Affiliation(s)
- Claire M Gabe
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, 335 Sutherland Drive (UPSDM), Pittsburgh, PA 15260, USA; Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, USA
| | - Ai Thu Bui
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, 335 Sutherland Drive (UPSDM), Pittsburgh, PA 15260, USA; Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, USA
| | | | - Kostas Verdelis
- Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, USA; Department of Endodontics, UPSDM, Pittsburgh, PA, USA
| | - Brent Vasquez
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, 335 Sutherland Drive (UPSDM), Pittsburgh, PA 15260, USA; Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, USA
| | - Elia Beniash
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, 335 Sutherland Drive (UPSDM), Pittsburgh, PA 15260, USA; Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, USA
| | - Henry C Margolis
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, 335 Sutherland Drive (UPSDM), Pittsburgh, PA 15260, USA; Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, USA; Department of Periodontics and Preventive Dentistry, UPSDM, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Souza Bomfim GH, Mitaishvili E, Schnetkamp PP, Lacruz RS. Na+/Ca2+ exchange in enamel cells is dominated by the K+-dependent NCKX exchanger. J Gen Physiol 2024; 156:e202313372. [PMID: 37947795 PMCID: PMC10637953 DOI: 10.1085/jgp.202313372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/15/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Calcium (Ca2+) extrusion is an essential function of the enamel-forming ameloblasts, providing Ca2+ for extracellular mineralization. The plasma membrane Ca2+ ATPases (PMCAs) remove cytosolic Ca2+ (cCa2+) and were recently shown to be efficient when ameloblasts experienced low cCa2+ elevation. Sodium-calcium (Na+/Ca2+) exchange has higher capacity to extrude cCa2+, but there is limited evidence on the function of the two main families of Na+/Ca2+ exchangers in enamel formation. The purpose of this study was to analyze the function of the NCX (coded by SLC8) and the K+-dependent NCKX (coded by SLC24) exchangers in rat ameloblasts and to compare their efficacy in the two main stages of enamel formation: the enamel forming secretory stage and the mineralizing or maturation stage. mRNA expression profiling confirmed the expression of Slc8 and Slc24 genes in enamel cells, Slc24a4 being the most highly upregulated transcript during the maturation stage, when Ca2+ transport increases. Na+/Ca2+ exchange was analyzed in the Ca2+ influx mode in Fura-2 AM-loaded ameloblasts. We show that maturation-stage ameloblasts have a higher Na+/Ca2+ exchange capacity than secretory-stage cells. We also show that Na+/Ca2+ exchange in both stages is dominated by NCKX over NCX. The importance of NCKX function in ameloblasts may partly explain why mutations in the SLC24A4 gene, but not in SLC8 genes, result in enamel disease. Our results demonstrate that Na+/Ca2+ exchangers are fully operational in ameloblasts and that their contribution to Ca2+ homeostasis increases in the maturation stage, when Ca2+ transport need is higher.
Collapse
Affiliation(s)
| | - Erna Mitaishvili
- Department of Chemistry, Herbert H. Lehman College, City University of New York. PhD Program in Biology, The Graduate Center of The City University of New York, New York, NY, USA
| | - Paul P.M. Schnetkamp
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Rodrigo S. Lacruz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
3
|
Shah FA. High-resolution Raman spectroscopy reveals compositional differences between pigmented incisor enamel and unpigmented molar enamel in Rattus norvegicus. Sci Rep 2023; 13:12301. [PMID: 37516744 PMCID: PMC10387050 DOI: 10.1038/s41598-023-38792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
Dental enamel is a peculiar biological tissue devoid of any self-renewal capacity as opposed to bone. Thus, a thorough understanding of enamel composition is essential to develop novel strategies for dental enamel repair. While the mineral found in bone and dental enamel is generally viewed as the biologically-produced equivalent of hydroxy(l)apatite, the formation of these bioapatites is controlled by different organic matrix frameworks-mainly type-I collagen in bone and amelogenin in enamel. In lower vertebrates, such as rodents, two distinct types of enamel are produced. Iron-containing pigmented enamel protects the continuously growing incisor teeth while magnesium-rich unpigmented enamel covers the molar teeth. Using high-resolution Raman spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy, this work explores the differences in acid phosphate (HPO42-), carbonate (CO32-), hydroxyl (OH-), iron, and magnesium content of pigmented incisor enamel and unpigmented molar enamel of Sprague Dawley rats. Bundles of hydroxy(l)apatite nanowires comprise the enamel prisms, where prisms in pigmented enamel are wider and longer than those in unpigmented molars. In contrast to magnesium-rich unpigmented enamel, higher mineral crystallinity, and higher HPO42- and OH- levels are hallmark features of iron-rich pigmented enamel. Furthermore, the apparent absence of iron oxides or oxy(hydroxides) indicates that iron is introduced into the apatite lattice at the expense of calcium, albeit in amounts that do not alter the Raman signatures of the PO43- internal modes. Compositional idiosyncrasies of iron-rich pigmented and nominally iron-free unpigmented enamel offer new insights into enamel biomineralisation supporting the notion that, in rodents, ameloblast function differs significantly between the incisors and the molars.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
4
|
Bui AT, Lukashova L, Verdelis K, Vasquez B, Bhogadi L, Gabe CM, Margolis HC, Beniash E. Identification of stages of amelogenesis in the continuously growing mandiblular incisor of C57BL/6J male mice throughout life using molar teeth as landmarks. Front Physiol 2023; 14:1144712. [PMID: 36846326 PMCID: PMC9950101 DOI: 10.3389/fphys.2023.1144712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Continuously growing mouse incisors are widely used to study amelogenesis, since all stages of this process (i.e., secretory, transition and maturation) are present in a spatially determined sequence at any given time. To study biological changes associated with enamel formation, it is important to develop reliable methods for collecting ameloblasts, the cells that regulate enamel formation, from different stages of amelogenesis. Micro-dissection, the key method for collecting distinct ameloblast populations from mouse incisors, relies on positions of molar teeth as landmarks for identifying critical stages of amelogenesis. However, the positions of mandibular incisors and their spatial relationships with molars change with age. Our goal was to identify with high precision these relationships throughout skeletal growth and in older, skeletally mature animals. Mandibles from 2, 4, 8, 12, 16, and 24-week-old, and 18-month-old C57BL/6J male mice, were collected and studied using micro-CT and histology to obtain incisal enamel mineralization profiles and to identify corresponding changes in ameloblast morphology during amelogenesis with respect to positions of molars. As reported here, we have found that throughout active skeletal growth (weeks 2-16) the apices of incisors and the onset of enamel mineralization move distally relative to molar teeth. The position of the transition stage also moves distally. To test the accuracy of the landmarks, we micro-dissected enamel epithelium from mandibular incisors of 12-week-old animals into five segments, including 1) secretory, 2) late secretory - transition - early maturation, 3) early maturation, 4) mid-maturation and 5) late maturation. Isolated segments were pooled and subjected to expression analyses of genes encoding key enamel matrix proteins (EMPs), Amelx, Enam, and Odam, using RT-qPCR. Amelx and Enam were strongly expressed during the secretory stage (segment 1), while their expression diminished during transition (segment 2) and ceased in maturation (segments 3, 4, and 5). In contrast, Odam's expression was very low during secretion and increased dramatically throughout transition and maturation stages. These expression profiles are consistent with the consensus understanding of enamel matrix proteins expression. Overall, our results demonstrate the high accuracy of our landmarking method and emphasize the importance of selecting age-appropriate landmarks for studies of amelogenesis in mouse incisors.
Collapse
Affiliation(s)
- Ai Thu Bui
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine (UPSDM), Pittsburgh, PA, United States,Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, United States
| | - Lyudmila Lukashova
- Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, United States
| | - Kostas Verdelis
- Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, United States,Department of Endodontics, UPSDM, Pittsburgh, PA, United States
| | - Brent Vasquez
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine (UPSDM), Pittsburgh, PA, United States
| | - Lasya Bhogadi
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine (UPSDM), Pittsburgh, PA, United States
| | - Claire M. Gabe
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine (UPSDM), Pittsburgh, PA, United States,Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, United States
| | - Henry C. Margolis
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine (UPSDM), Pittsburgh, PA, United States,Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, United States,Department of Periodontics and Preventive Dentistry, UPSDM, Pittsburgh, PA, United States
| | - Elia Beniash
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine (UPSDM), Pittsburgh, PA, United States,Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, United States,*Correspondence: Elia Beniash,
| |
Collapse
|
5
|
Zheng X, Huang W, He Z, Li Y, Li S, Song Y. Effects of Fam83h truncation mutation on enamel developmental defects in male C57/BL6J mice. Bone 2023; 166:116595. [PMID: 36272714 DOI: 10.1016/j.bone.2022.116595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Truncation mutations in family with sequence similarity, member H (FAM83H) gene are considered the main cause of autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI); however, its pathogenic mechanism in amelogenesis remains poorly characterized. This study aimed to investigate the effects of truncated FAM83H on developmental defects in enamel. CRISPR/Cas9 technology was used to develop a novel Fam83h c.1186C > T (p.Q396*) knock-in mouse strain, homologous to the human FAM83H c.1192C > T mutation in ADHCAI. The Fam83hQ396⁎/Q396⁎ mice showed poor growth, a sparse and scruffy coat, scaly skin and early mortality compared to control mice. Moreover, the forelimbs of homozygous mice were swollen, exhibiting a significant inflammatory response. Incisors of Fam83hQ396⁎/Q396⁎ mice appeared chalky white, shorter, and less sharp than those of control mice, and energy dispersive X-ray spectroscopy (EDS) analysis and Prussian blue staining helped identify decreased iron and increased calcium (Ca) and phosphorus (P) levels, with an unchanged Ca/P ratio. The expression of iron transportation proteins, transferrin receptor (TFRC) and solute carrier family 40 member 1 (SLC40A1), was decreased in Fam83h-mutated ameloblasts. Micro-computed tomography revealed enamel defects in Fam83hQ396⁎/Q396⁎ mice. Fam83hQ396⁎/Q396⁎ enamel showed decreased Vickers hardness and distorted enamel rod structure and ameloblast arrangement. mRNA sequencing showed that the cell adhesion pathway was most notably clustered in LS8-Fam83h-mutated cells. Immunofluorescence analysis further revealed decreased protein expression of desmoglein 3, a component of desmosomes, in Fam83h-mutated ameloblasts. The FAM83H-casein kinase 1α (CK1α)-keratin 14 (K14)-amelogenin (AMELX) interaction was detected in ameloblasts. And K14 and AMELX were disintegrated from the tetramer in Fam83h-mutated ameloblasts in vitro and in vivo. In secretory stage ameloblasts of Fam83hQ396⁎/Q396⁎ mice, AMELX secretion exhibited obvious retention in the cytoplasm. In conclusion, truncated FAM83H exerted dominant-negative effects on gross development, amelogenesis, and enamel biomineralization by disturbing iron transportation, influencing the transportation and secretion of AMELX, and interfering with cell-cell adhesion in ameloblasts.
Collapse
Affiliation(s)
- Xueqing Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wushuang Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhenru He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shiyu Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaling Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Zhang Y, Jin T, Zhu W, Pandya M, Gopinathan G, Allen M, Reed D, Keiderling T, Liao X, Diekwisch TGH. Highly acidic pH facilitates enamel protein self-assembly, apatite crystal growth and enamel protein interactions in the early enamel matrix. Front Physiol 2022; 13:1019364. [PMID: 36569763 PMCID: PMC9772882 DOI: 10.3389/fphys.2022.1019364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Tooth enamel develops within a pH sensitive amelogenin-rich protein matrix. The purpose of the present study is to shed light on the intimate relationship between enamel matrix pH, enamel protein self-assembly, and enamel crystal growth during early amelogenesis. Universal indicator dye staining revealed highly acidic pH values (pH 3-4) at the exocytosis site of secretory ameloblasts. When increasing the pH of an amelogenin solution from pH 5 to pH 7, there was a gradual increase in subunit compartment size from 2 nm diameter subunits at pH 5 to a stretched configuration at pH6 and to 20 nm subunits at pH 7. HSQC NMR spectra revealed that the formation of the insoluble amelogenin self-assembly structure at pH6 was critically mediated by at least seven of the 11 histidine residues of the amelogenin coil domain (AA 46-117). Comparing calcium crystal growth on polystyrene plates, crystal length was more than 20-fold elevated at pH 4 when compared to crystals grown at pH 6 or pH 7. To illustrate the effect of pH on enamel protein self-assembly at the site of initial enamel formation, molar teeth were immersed in phosphate buffer at pH4 and pH7, resulting in the formation of intricate berry tree-like assemblies surrounding initial enamel crystal assemblies at pH4 that were not evident at pH7 nor in citrate buffer. Amelogenin and ameloblastin enamel proteins interacted at the secretory ameloblast pole and in the initial enamel layer, and co-immunoprecipitation studies revealed that this amelogenin/ameloblastin interaction preferentially takes place at pH 4-pH 4.5. Together, these studies highlight the highly acidic pH of the very early enamel matrix as an essential contributing factor for enamel protein structure and self-assembly, apatite crystal growth, and enamel protein interactions.
Collapse
Affiliation(s)
- Youbin Zhang
- Department of Oral Biology, University of Illinois at Chicago, Dallas, Illinois, United States
| | - Tianquan Jin
- Department of Oral Biology, University of Illinois at Chicago, Dallas, Illinois, United States
| | - Weiying Zhu
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Mirali Pandya
- Center for Craniofacial Research and Diagnosis, Texas A and M College of Dentistry, Dallas, Texas, United States
| | - Gokul Gopinathan
- Center for Craniofacial Research and Diagnosis, Texas A and M College of Dentistry, Dallas, Texas, United States
| | - Michael Allen
- Department of Medicine, University of Chicago, Chicago, Illinois, United States
| | - David Reed
- Department of Oral Biology, University of Illinois at Chicago, Dallas, Illinois, United States
| | - Timothy Keiderling
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States,*Correspondence: Timothy Keiderling, ; Xiubei Liao, ; Thomas G. H. Diekwisch,
| | - Xiubei Liao
- Department of Biochemistry, University of Illinois at Chicago, Chicago, Illinois, United States,*Correspondence: Timothy Keiderling, ; Xiubei Liao, ; Thomas G. H. Diekwisch,
| | - Thomas G. H. Diekwisch
- Department of Oral Biology, University of Illinois at Chicago, Dallas, Illinois, United States,Center for Craniofacial Research and Diagnosis, Texas A and M College of Dentistry, Dallas, Texas, United States,*Correspondence: Timothy Keiderling, ; Xiubei Liao, ; Thomas G. H. Diekwisch,
| |
Collapse
|
7
|
Wang Y, Weremiejczyk L, Strzelecka‐Kiliszek A, Maniti O, Amabile Veschi E, Bolean M, Ramos AP, Ben Trad L, Magne D, Bandorowicz‐Pikula J, Pikula S, Millán JL, Bottini M, Goekjian P, Ciancaglini P, Buchet R, Dou WT, Tian H, Mebarek S, He XP, Granjon T. Fluorescence evidence of annexin A6 translocation across membrane in model matrix vesicles during apatite formation. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e38. [PMID: 38939118 PMCID: PMC11080897 DOI: 10.1002/jex2.38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 06/29/2024]
Abstract
Matrix vesicles (MVs) are 100-300 nm spherical structures released by mineralization competent cells to initiate formation of apatite, the mineral component in bones. Among proteins present in MVs, annexin A6 (AnxA6) is thought to be ubiquitously distributed in the MVs' lumen, on the surface of the internal and external leaflets of the membrane and also inserted in the lipid bilayer. To determine the molecular mechanism(s) that lead to the different locations of AnxA6, we hypothesized the occurrence of a pH drop during the mineralization. Such a change would induce the AnxA6 protonation, which in turn, and because of its isoelectric point of 5.41, would change the protein hydrophobicity facilitating its insertion into the MVs' bilayer. The various distributions of AnxA6 are likely to disturb membrane phospholipid organization. To examine this possibility, we used fluorescein as pH reporter, and established that pH decreased inside MVs during apatite formation. Then, 4-(14-phenyldibenzo[a,c]phenazin-9(14H)-yl)-phenol, a vibration-induced emission fluorescent probe, was used as a reporter of changes in membrane organization occurring with the varying mode of AnxA6 binding. Proteoliposomes containing AnxA6 and 1,2-Dimyristoyl-sn-glycero-3phosphocholine (DMPC) or 1,2-Dimyristoyl-sn-glycero-3phosphocholine: 1,2-Dipalmitoyl-sn-glycero-3-phosphoserine (DMPC:DPPS 9:1), to mimic the external and internal MV membrane leaflet, respectively, served as biomimetic models to investigate the nature of AnxA6 binding. Addition of Anx6 to DMPC at pH 7.4 and 5.4, or DMPC:DPPS (9:1) at pH 7.4 induced a decrease in membrane fluidity, consistent with AnxA6 interactions with the bilayer surface. In contrast, AnxA6 addition to DMPC:DPPS (9:1) at pH 5.4 increased the fluidity of the membrane. This latest result was interpreted as reflecting the insertion of AnxA6 into the bilayer. Taken together, these findings point to a possible mechanism of AnxA6 translocation in MVs from the surface of the internal leaflet into the phospholipid bilayer stimulated upon acidification of the MVs' lumen during formation of apatite.
Collapse
Affiliation(s)
- Yubo Wang
- Univ LyonUCBLCNRSICBMS UMR 5246IMBLLyonFrance
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CentreEast China University of Science and TechnologyShanghaiChina
| | - Liliana Weremiejczyk
- Laboratory of Biochemistry of LipidsNencki Institute of Experimental BiologyWarsawPoland
| | | | | | - Ekeveliny Amabile Veschi
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Mayte Bolean
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Ana Paula Ramos
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | | | - David Magne
- Univ LyonUCBLCNRSICBMS UMR 5246IMBLLyonFrance
| | | | - Slawomir Pikula
- Laboratory of Biochemistry of LipidsNencki Institute of Experimental BiologyWarsawPoland
| | - Jose Luis Millán
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Massimo Bottini
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
| | | | - Pietro Ciancaglini
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - René Buchet
- Univ LyonUCBLCNRSICBMS UMR 5246IMBLLyonFrance
| | - Wei Tao Dou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CentreEast China University of Science and TechnologyShanghaiChina
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CentreEast China University of Science and TechnologyShanghaiChina
| | | | - Xiao P. He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CentreEast China University of Science and TechnologyShanghaiChina
| | | |
Collapse
|
8
|
Du T, Niu Y, Jia Z, Liu Y, Qiao A, Yang H, Niu X. Orthophosphate and alkaline phosphatase induced the formation of apatite with different multilayered structures and mineralization balance. NANOSCALE 2022; 14:1814-1825. [PMID: 35037677 DOI: 10.1039/d1nr06016c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mineralized collagen is a natural organic-inorganic composite. The combination of organic collagen and inorganic apatite to form different nanostructures is the key to producing bone substitutes with biomechanical properties that are as identical to normal bone as possible. However, the formation of apatite with different nanostructures during collagen mineralization is unexplored. Here, pyrophosphate (Pyro-P), as an important hydrolysate of adenosine triphosphate in the body, was introduced to prepare mineralized collagen under the regulation of alkaline phosphatase (ALP) and orthophosphate (Ortho-P). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results showed that mineralized collagen, which combined with different crystallinities and multilayered structured apatite, was successfully prepared. A combination of ion chromatography (IC), Fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD), and thermogravimetry (TG) analyses revealed the crucial role of Ortho-P in the formation of multilayered flower-shaped apatite with different crystallinities and in the maintenance of mineralization balance. Mineralization balance is of great significance for maintaining normal bone morphology during bone regeneration. Overall, our results provide a promising method to produce new bone substitute materials for the repair of large bone defects and a deeper insight into the mechanisms of biomineralization.
Collapse
Affiliation(s)
- Tianming Du
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Yumiao Niu
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Zhenzhen Jia
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Youjun Liu
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Aike Qiao
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Haisheng Yang
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
9
|
Fernandes MS, Sabino-Arias IT, Dionizio A, Fabricio MF, Trevizol JS, Martini T, Azevedo LB, Valentine RA, Maguire A, Zohoori FV, L. Amaral S, Buzalaf MAR. Effect of Physical Exercise and Genetic Background on Glucose Homeostasis and Liver/Muscle Proteomes in Mice. Metabolites 2022; 12:metabo12020117. [PMID: 35208192 PMCID: PMC8878675 DOI: 10.3390/metabo12020117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
We compared the parameters related to glucose homeostasis, and liver and muscle proteomes in fluorosis-susceptible (A/J; S) and fluorosis-resistant (129P3/J; R) mice in response to fluoride (F) exposure and exercise. Ninety male mice (45 R-mice and 45 S-mice) were randomized into three groups: (SI; RI) No-F, No-Exercise, (SII; RII) 50 ppm F, No-Exercise, (SIII; RIII) 50 ppm F, Exercise. Overall, mean F concentrations in the plasma and femur were significantly higher in R-mice compared with S-mice. In R-mice, exercise resulted in an increase in F accumulation in the femur. In S-mice, the mean plasma glucose level was significantly higher in Group II compared with Groups I and III. There was an increase in liver proteins involved in energy flux and antioxidant enzymes in non-exercise groups (I, II) of S-mice in comparison with the corresponding groups of R-mice. The results also showed a decrease in muscle protein expression in Group I S-mice compared with their R-mice counterparts. In conclusion, the findings suggest an increased state of oxidative stress in fluorosis-susceptible mice that might be exacerbated by the treatment with F. In addition, fluorosis-susceptible mice have plasma glucose levels higher than fluorosis-resistant mice on exposure to F, and this is not affected by exercise.
Collapse
Affiliation(s)
- Mileni S. Fernandes
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Isabela T. Sabino-Arias
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Aline Dionizio
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Mayara F. Fabricio
- Department of Physical Education, School of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil; (M.F.F.); (S.L.A.)
| | - Juliana S. Trevizol
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Tatiana Martini
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Liane B. Azevedo
- School of Human and Health Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK;
| | - Ruth A. Valentine
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK; (R.A.V.); (A.M.)
| | - Anne Maguire
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK; (R.A.V.); (A.M.)
| | - Fatemeh V. Zohoori
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
- Correspondence: (F.V.Z.); (M.A.R.B.)
| | - Sandra L. Amaral
- Department of Physical Education, School of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil; (M.F.F.); (S.L.A.)
| | - Marília A. R. Buzalaf
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
- Correspondence: (F.V.Z.); (M.A.R.B.)
| |
Collapse
|
10
|
Ji M, Duan X, Han X, Sun J, Zhang D. Exogenous transforming growth factor-β1 prevents the inflow of fluoride to ameleoblasts through regulation of voltage-gated chloride channels 5 and 7. Exp Ther Med 2021; 21:615. [PMID: 33936272 PMCID: PMC8082615 DOI: 10.3892/etm.2021.10047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Dental fluorosis is a global issue. Although there are multiple causes of dental fluorosis, the precise mechanism remains controversial. Previous studies have demonstrated that extracellular fluoride may promote an accumulation of fluoride ions in ameloblasts, which may induce oxidative and endoplasmic reticulum stresses, leading to dental fluorosis. However, the exact process by which fluoride ions enter cells has not been determined. In the present study, intracellular fluoride concentration was determined using a newly developed specific fluorescent probe called probe 1. Under high extracellular fluoride concentrations, the fluorescence intensity of the ameloblasts increased, however, exogenous transforming growth factor-β1 (TGF-β1) was able to inhibit the increase. Furthermore, changes in the expression of the voltage-gated chloride channels 5 and 7 (ClC5 and ClC-7), which are responsible for the transport of fluoride were investigated. The results indicated that fluoride reduced the expression of endogenous TGF-β1 and increased the expression of ClC-5 and ClC-7. Additionally, exogenous TGF-β1 reduced the expression of ClC-5 and ClC-7. The results of the present study indicate that exogenous TGF-β1 may prevent accumulation of fluoride in ameloblasts through the regulation of ClC-5 and ClC-7 under high extracellular fluoride concentrations.
Collapse
Affiliation(s)
- Mei Ji
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xuejing Duan
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiaohui Han
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jing Sun
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Dongsheng Zhang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
11
|
Green DR, Schulte F, Lee KH, Pugach MK, Hardt M, Bidlack FB. Mapping the Tooth Enamel Proteome and Amelogenin Phosphorylation Onto Mineralizing Porcine Tooth Crowns. Front Physiol 2019; 10:925. [PMID: 31417410 PMCID: PMC6682599 DOI: 10.3389/fphys.2019.00925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/09/2019] [Indexed: 01/13/2023] Open
Abstract
Tooth enamel forms in an ephemeral protein matrix where changes in protein abundance, composition and posttranslational modifications are critical to achieve healthy enamel properties. Amelogenin (AMELX) with its splice variants is the most abundant enamel matrix protein, with only one known phosphorylation site at serine 16 shown in vitro to be critical for regulating mineralization. The phosphorylated form of AMELX stabilizes amorphous calcium phosphate, while crystalline hydroxyapatite forms in the presence of the unphosphorylated protein. While AMELX regulates mineral transitions over space and time, it is unknown whether and when un-phosphorylated amelogenin occurs during enamel mineralization. This study aims to reveal the spatiotemporal distribution of the cleavage products of the most abundant AMLEX splice variants including the full length P173, the shorter leucine-rich amelogenin protein (LRAP), and the exon 4-containing P190 in forming enamel, all within the context of the changing enamel matrix proteome during mineralization. We microsampled permanent pig molars, capturing known stages of enamel formation from both crown surface and inner enamel. Nano-LC-MS/MS proteomic analyses after tryptic digestion rendered more than 500 unique protein identifications in enamel, dentin, and bone. We mapped collagens, keratins, and proteolytic enzymes (CTSL, MMP2, MMP10) and determined distributions of P173, LRAP, and P190 products, the enamel proteins enamelin (ENAM) and ameloblastin (AMBN), and matrix-metalloprotease-20 (MMP20) and kallikrein-4 (KLK4). All enamel proteins and KLK4 were near-exclusive to enamel and in excellent agreement with published abundance levels. Phosphorylated P173 and LRAP products decreased in abundance from recently deposited matrix toward older enamel, mirrored by increasing abundances of testicular acid phosphatase (ACPT). Our results showed that hierarchical clustering analysis of secretory enamel links closely matching distributions of unphosphorylated P173 and LRAP products with ACPT and non-traditional amelogenesis proteins, many associated with enamel defects. We report higher protein diversity than previously published and Gene Ontology (GO)-defined protein functions related to the regulation of mineral formation in secretory enamel (e.g., casein α-S1, CSN1S1), immune response in erupted enamel (e.g., peptidoglycan recognition protein, PGRP), and phosphorylation. This study presents a novel approach to characterize and study functional relationships through spatiotemporal mapping of the ephemeral extracellular matrix proteome.
Collapse
Affiliation(s)
- Daniel R Green
- The Forsyth Institute, Cambridge, MA, United States.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | | | - Kyu-Ha Lee
- The Forsyth Institute, Cambridge, MA, United States.,Department of Oral Health Policy and Epidemiology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Megan K Pugach
- The Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Markus Hardt
- The Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Felicitas B Bidlack
- The Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
12
|
Eckstein M, Lacruz RS. CRAC channels in dental enamel cells. Cell Calcium 2018; 75:14-20. [PMID: 30114531 PMCID: PMC6435299 DOI: 10.1016/j.ceca.2018.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/09/2023]
Abstract
Enamel mineralization relies on Ca2+ availability provided by Ca2+ release activated Ca2+ (CRAC) channels. CRAC channels are modulated by the endoplasmic reticulum Ca2+ sensor STIM1 which gates the pore subunit of the channel known as ORAI1, found the in plasma membrane, to enable sustained Ca2+ influx. Mutations in the STIM1 and ORAI1 genes result in CRAC channelopathy, an ensemble of diseases including immunodeficiency, muscular hypotonia, ectodermal dysplasia with defects in sweat gland function and abnormal enamel mineralization similar to amelogenesis imperfecta (AI). In some reports, the chief medical complain has been the patient's dental health, highlighting the direct and important link between CRAC channels and enamel. The reported enamel defects are apparent in both the deciduous and in permanent teeth and often require extensive dental treatment to provide the patient with a functional dentition. Among the dental phenotypes observed in the patients, discoloration, increased wear, hypoplasias (thinning of enamel) and chipping has been reported. These findings are not universal in all patients. Here we review the mutations in STIM1 and ORAI1 causing AI-like phenotype, and evaluate the enamel defects in CRAC channel deficient mice. We also provide a brief overview of the role of CRAC channels in other mineralizing systems such as dentine and bone.
Collapse
Affiliation(s)
- M Eckstein
- Dept. Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24th Street, New York 10010, USA
| | - R S Lacruz
- Dept. Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24th Street, New York 10010, USA.
| |
Collapse
|
13
|
Ji M, Xiao L, Xu L, Huang S, Zhang D. How pH is regulated during amelogenesis in dental fluorosis. Exp Ther Med 2018; 16:3759-3765. [PMID: 30402142 DOI: 10.3892/etm.2018.6728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022] Open
Abstract
Amelogenesis is a complicated process that concerns the interaction between growing hydroxyapatite crystals and extracellular proteins, which requires the tight regulation of pH. In dental fluorosis, the balance of pH regulation is broken, leading to abnormal mineralization. The current review focuses on the electrolyte transport processes associated with pH homeostasis, particularly regarding the changes in ion transporters that occur during amelogenesis, following exposure to excessive fluoride. Furthermore, the possible mechanism of fluorosis is discussed on the basis of acid hypothesis. There are two main methods by which F- accelerates crystal formation in ameloblasts. Firstly, it induces the release of protons, lowering the pH of the cell microenvironment. The decreased pH stimulates the upregulation of ion transporters, which attenuates further declines in the pH. Secondly, F- triggers an unknown signaling pathway, causing changes in the transcription of ion transporters and upregulating the expression of bicarbonate transporters. This results in the release of a large amount of bicarbonate from ameloblasts, which may neutralize the pH to form a microenvironment that favors crystal nucleation. The decreased pH stimulates the diffusion of F- into the cytoplasm of amelobalsts along the concentration gradient formed by the release of protons. The retention of F- causes a series of pathological changes, including oxidative and endoplasmic reticulum stress. If the buffering capacity of ameloblasts facing F- toxicity holds, normal mineralization occurs; however, if F- levels are high enough to overwhelm the buffering capacity of ameloblasts, abnormal mineralization occurs, leading to dental fluorosis.
Collapse
Affiliation(s)
- Mei Ji
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Lili Xiao
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Le Xu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Shengyun Huang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Dongsheng Zhang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
14
|
Eckstein M, Aulestia FJ, Nurbaeva MK, Lacruz RS. Altered Ca 2+ signaling in enamelopathies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1778-1785. [PMID: 29750989 DOI: 10.1016/j.bbamcr.2018.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 10/16/2022]
Abstract
Biomineralization requires the controlled movement of ions across cell barriers to reach the sites of crystal growth. Mineral precipitation occurs in aqueous phases as fluids become supersaturated with specific ionic compositions. In the biological world, biomineralization is dominated by the presence of calcium (Ca2+) in crystal lattices. Ca2+ channels are intrinsic modulators of this process, facilitating the availability of Ca2+ within cells in a tightly regulated manner in time and space. Unequivocally, the most mineralized tissue produced by vertebrates, past and present, is dental enamel. With some of the longest carbonated hydroxyapatite (Hap) crystals known, dental enamel formation is fully coordinated by specialized epithelial cells of ectodermal origin known as ameloblasts. These cells form enamel in two main developmental stages: a) secretory; and b) maturation. The secretory stage is marked by volumetric growth of the tissue with limited mineralization, and the opposite is found in the maturation stage, as enamel crystals expand in width concomitant with increased ion transport. Disruptions in the formation and/or mineralization stages result, in most cases, in permanent alterations in the crystal assembly. This introduces weaknesses in the material properties affecting enamel's hardness and durability, thus limiting its efficacy as a biting, chewing tool and increasing the possibility of pathology. Here, we briefly review enamel development and discuss key properties of ameloblasts and their Ca2+-handling machinery, and how alterations in this toolkit result in enamelopathies.
Collapse
Affiliation(s)
- Miriam Eckstein
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, United States
| | - Francisco J Aulestia
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, United States
| | - Meerim K Nurbaeva
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, United States
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, United States.
| |
Collapse
|
15
|
Bidlack FB, Xia Y, Pugach MK. Dose-Dependent Rescue of KO Amelogenin Enamel by Transgenes in Vivo. Front Physiol 2017; 8:932. [PMID: 29201008 PMCID: PMC5696357 DOI: 10.3389/fphys.2017.00932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/02/2017] [Indexed: 01/22/2023] Open
Abstract
Mice lacking amelogenin (KO) have hypoplastic enamel. Overexpression of the most abundant amelogenin splice variant M180 and LRAP transgenes can substantially improve KO enamel, but only ~40% of the incisor thickness is recovered and the prisms are not as tightly woven as in WT enamel. This implies that the compositional complexity of the enamel matrix is required for different aspects of enamel formation, such as organizational structure and thickness. The question arises, therefore, how important the ratio of different matrix components, and in particular amelogenin splice products, is in enamel formation. Can optimal expression levels of amelogenin transgenes representing both the most abundant splice variants and cleavage product at protein levels similar to that of WT improve the enamel phenotype of KO mice? Addressing this question, our objective was here to understand dosage effects of amelogenin transgenes (Tg) representing the major splice variants M180 and LRAP and cleavage product CTRNC on enamel properties. Amelogenin KO mice were mated with M180Tg, CTRNCTg and LRAPTg mice to generate M180Tg and CTRNCTg double transgene and M180Tg, CTRNCTg, LRAPTg triple transgene mice with transgene hemizygosity (on one allelle) or homozygosity (on both alleles). Transgene homo- vs. hemizygosity was determined by qPCR and relative transgene expression confirmed by Western blot. Enamel volume and mineral density were analyzed by microCT, thickness and structure by SEM, and mechanical properties by Vickers microhardness testing. There were no differences in incisor enamel thickness between amelogenin KO mice with three or two different transgenes, but mice homozygous for a given transgene had significantly thinner enamel than mice hemizygous for the transgene (p < 0.05). The presence of the LRAPTg did not improve the phenotype of M180Tg/CTRNCTg/KO enamel. In the absence of endogenous amelogenin, the addition of amelogenin transgenes representing the most abundant splice variants and cleavage product can rescue abnormal enamel properties and structure, but only up to a maximum of ~80% that of molar and ~40% that of incisor wild-type enamel.
Collapse
Affiliation(s)
- Felicitas B Bidlack
- Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Yan Xia
- Forsyth Institute, Cambridge, MA, United States
| | - Megan K Pugach
- Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
16
|
Lacruz RS, Habelitz S, Wright JT, Paine ML. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE. Physiol Rev 2017; 97:939-993. [PMID: 28468833 DOI: 10.1152/physrev.00030.2016] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022] Open
Abstract
Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Stefan Habelitz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - J Timothy Wright
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Michael L Paine
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| |
Collapse
|
17
|
Lacruz RS. Enamel: Molecular identity of its transepithelial ion transport system. Cell Calcium 2017; 65:1-7. [PMID: 28389033 PMCID: PMC5944837 DOI: 10.1016/j.ceca.2017.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
Enamel is the most calcified tissue in vertebrates. It differs from bone in a number of characteristics including its origin from ectodermal epithelium, lack of remodeling capacity by the enamel forming cells, and absence of collagen. The enamel-forming cells known as ameloblasts, choreograph first the synthesis of a unique protein-rich matrix, followed by the mineralization of this matrix into a tissue that is ∼95% mineral. To do this, ameloblasts arrange the coordinated movement of ions across a cell barrier while removing matrix proteins and monitoring extracellular pH using a variety of buffering systems to enable the growth of carbonated apatite crystals. Although our knowledge of these processes and the molecular identity of the proteins involved in transepithelial ion transport has increased in the last decade, it remains limited compared to other cells. Here we present an overview of the evolution and development of enamel, its differences with bone, and describe the ion transport systems associated with ameloblasts.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Dept. Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24th Street, New York, NY 10010, United States.
| |
Collapse
|
18
|
Martin C, Maureille B, Amiot R, Touzeau A, Royer A, Fourel F, Panczer G, Flandrois JP, Lécuyer C. Record of Nile seasonality in Nubian neonates. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2017; 53:223-242. [PMID: 28276733 DOI: 10.1080/10256016.2016.1229667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
The oxygen isotope compositions of bones (n = 11) and teeth (n = 20) from 12 Sudanese individuals buried on Sai Island (Nubia) were analysed to investigate the registration of the evolution of the Nile environment from 3700 to 500 years BP and the potential effects of ontogeny on the oxygen isotope ratios. The isotopic compositions were converted into the composition of drinking water, ultimately originating from the Nile. δ18O values decrease during ontogeny; this is mainly related to breastfeeding and physiology. Those of neonates present very large variations. Neonates have a very high bone turnover and are thus able to record seasonal δ18O variations of the Nile waters. These variations followed a pattern very similar to the present one. Nile δ18O values increased from 1.4 to 4.4 ‰ (Vienna Standard Mean Ocean Water) from the Classic Kerma (∼3500 BP) through the Christian period (∼1000 BP), traducing a progressive drying of Northeast Africa.
Collapse
Affiliation(s)
- Céline Martin
- a Laboratoire de Géologie de Lyon LGL-TPE, UMR CNRS 5276, Université Claude Bernard Lyon 1 , Villeurbanne , France
- h Aix-Marseille Université, CNRS, IRD, CEREGE UM34 , Aix-en-Provence , France
| | - Bruno Maureille
- b PACEA, UMR CNRS 5199, Université de Bordeaux , Pessac , France
| | - Romain Amiot
- a Laboratoire de Géologie de Lyon LGL-TPE, UMR CNRS 5276, Université Claude Bernard Lyon 1 , Villeurbanne , France
| | | | - Aurélien Royer
- d Université de Bourgogne, Biogéosciences, UMR CNRS 6282 , Dijon , France
- e Ecole Pratique des Hautes Etudes, Laboratoire EPHE PALEVO , Dijon , France
| | - François Fourel
- a Laboratoire de Géologie de Lyon LGL-TPE, UMR CNRS 5276, Université Claude Bernard Lyon 1 , Villeurbanne , France
| | - Gérard Panczer
- f Institut Lumière Matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon , Villeurbanne , France
| | - Jean-Pierre Flandrois
- g LBBE, UMR CNRS 5558, Université de Lyon 1 , Faculté de Médecine Lyon-Sud , Villeurbanne , France
| | - Christophe Lécuyer
- a Laboratoire de Géologie de Lyon LGL-TPE, UMR CNRS 5276, Université Claude Bernard Lyon 1 , Villeurbanne , France
- i Institut Universitaire de France , Paris , France
| |
Collapse
|
19
|
Abstract
Hypomineralization of developing enamel is associated with changes in ameloblast modulation during the maturation stage. Modulation (or pH cycling) involves the cyclic transformation of ruffle-ended (RE) ameloblasts facing slightly acidic enamel into smooth-ended (SE) ameloblasts near pH-neutral enamel. The mechanism of ameloblast modulation is not clear. Failure of ameloblasts of Cftr-null and anion exchanger 2 ( Ae2)-null mice to transport Cl- into enamel acidifies enamel, prevents modulation, and reduces mineralization. It suggests that pH regulation is critical for modulation and for completion of enamel mineralization. This report presents a review of the major types of transmembrane molecules that ameloblasts express to transport calcium to form crystals and bicarbonates to regulate pH. The type of transporter depends on the developmental stage. Modulation is proposed to be driven by the pH of enamel fluid and the compositional and/or physicochemical changes that result from increased acidity, which may turn RE ameloblasts into SE mode. Amelogenins delay outgrowth of crystals and keep the intercrystalline space open for diffusion of mineral ions into complete depth of enamel. Modulation enables stepwise removal of amelogenins from the crystal surface, their degradation, and removal from the enamel. Removal of matrix allows slow expansion of crystals. Modulation also reduces the stress that ameloblasts experience when exposed to high acid levels generated by mineral formation or by increased intracellular Ca2+. By cyclically interrupting Ca2+ transport by RE ameloblasts and their transformation into SE ameloblasts, proton production ceases shortly and enables the ameloblasts to recover. Modulation also improves enamel crystal quality by selectively dissolving immature Ca2+-poor crystals, removing impurities as Mg2+ and carbonates, and recrystallizing into more acid-resistant crystals.
Collapse
Affiliation(s)
- A L J J Bronckers
- 1 Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute, Amsterdam, Netherlands
| |
Collapse
|
20
|
Parry DA, Smith CE, El-Sayed W, Poulter JA, Shore RC, Logan CV, Mogi C, Sato K, Okajima F, Harada A, Zhang H, Koruyucu M, Seymen F, Hu JCC, Simmer JP, Ahmed M, Jafri H, Johnson CA, Inglehearn CF, Mighell AJ. Mutations in the pH-Sensing G-protein-Coupled Receptor GPR68 Cause Amelogenesis Imperfecta. Am J Hum Genet 2016; 99:984-990. [PMID: 27693231 PMCID: PMC5065684 DOI: 10.1016/j.ajhg.2016.08.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023] Open
Abstract
Amelogenesis is the process of dental enamel formation, leading to the deposition of the hardest tissue in the human body. This process requires the intricate regulation of ion transport and controlled changes to the pH of the developing enamel matrix. The means by which the enamel organ regulates pH during amelogenesis is largely unknown. We identified rare homozygous variants in GPR68 in three families with amelogenesis imperfecta, a genetically and phenotypically heterogeneous group of inherited conditions associated with abnormal enamel formation. Each of these homozygous variants (a large in-frame deletion, a frameshift deletion, and a missense variant) were predicted to result in loss of function. GPR68 encodes a proton-sensing G-protein-coupled receptor with sensitivity in the pH range that occurs in the developing enamel matrix during amelogenesis. Immunohistochemistry of rat mandibles confirmed localization of GPR68 in the enamel organ at all stages of amelogenesis. Our data identify a role for GPR68 as a proton sensor that is required for proper enamel formation.
Collapse
|
21
|
Bronckers ALJJ, Lyaruu DM, Jalali R, DenBesten PK. Buffering of protons released by mineral formation during amelogenesis in mice. Eur J Oral Sci 2016; 124:415-425. [PMID: 27422589 DOI: 10.1111/eos.12287] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2016] [Indexed: 12/17/2022]
Abstract
Regulation of pH by ameloblasts during amelogenesis is critical for enamel mineralization. We examined the effects of reduced bicarbonate secretion and the presence or absence of amelogenins on ameloblast modulation and enamel mineralization. To that end, the composition of fluorotic and non-fluorotic enamel of several different mouse mutants, including enamel of cystic fibrosis transmembrane conductance regulator-deficient (Cftr null), anion exchanger-2-deficient (Ae2a,b null), and amelogenin-deficient (Amelx null) mice, was determined by quantitative X-ray microanalysis. Correlation analysis was carried out to compare the effects of changes in the levels of sulfated-matrix (S) and chlorine (Cl; for bicarbonate secretion) on mineralization and modulation. The chloride (Cl- ) levels in forming enamel determined the ability of ameloblasts to modulate, remove matrix, and mineralize enamel. In general, the lower the Cl- content, the stronger the negative effects. In Amelx-null mice, modulation was essentially normal and the calcium content was reduced least. Retention of amelogenins in enamel of kallikrein-4-deficient (Klk4-null) mice resulted in decreased mineralization and reduced the length of the first acid modulation band without changing the total length of all acidic bands. These data suggest that buffering by bicarbonates is critical for modulation, matrix removal and enamel mineralization. Amelogenins also act as a buffer but are not critical for modulation.
Collapse
Affiliation(s)
- Antonius L J J Bronckers
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam, the Netherlands. .,VU University Amsterdam, MOVE Research Institute, Amsterdam, the Netherlands.
| | - Don M Lyaruu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam, the Netherlands
| | - Rozita Jalali
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam, the Netherlands
| | - Pamela K DenBesten
- Department of Oral Sciences, University of California in San Francisco, CA, USA
| |
Collapse
|
22
|
Yamamoto T, Oida S, Inage T. Gene Expression and Localization of Insulin-like Growth Factors and Their Receptors throughout Amelogenesis in Rat Incisors. J Histochem Cytochem 2016; 54:243-52. [PMID: 16260589 DOI: 10.1369/jhc.5a6821.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insulin-like growth factors (IGFs) are expressed in many tissues and control cell differentiation, proliferation, and apoptosis. In teeth, the temporo-spatial pattern of expression IGFs and their receptors has not been fully characterized. The purpose of this study was to obtain a comprehensive profile of their expression throughout the life cycle of ameloblasts, using the continuously erupting rat incisor model. Upper incisors of young male rats were fixed by perfusion, decalcified, and embedded in paraffin. Sections were processed for in situ hybridization and immunohistochemistry. mRNA and protein expression profiles IGF-I, IGF-II, IGF-IR, and IGF-IIR mRNA were essentially identical. At the apical loop of the incisor, very strong signals were seen in the outer enamel epithelium while the inner enamel epithelium showed a moderate reaction. In the region of ameloblasts facing pulp, inner enamel epithelium cells were still moderately reactive while signals over the outer enamel epithelium were slightly reduced. In the region of ameloblasts facing dentin and the initial portion of the secretory zone, signals in ameloblasts were weak while those over the outer enamel epithelium were strong. In the region of postsecretory transition, signals in both ameloblasts and papillary layer cells gradually increased. In maturation proper, signals in ameloblasts appeared as alternating bands of strong and weak reactivities, which corresponded to the regions of ruffle-ended and smooth-ended ameloblasts, respectively. Papillary layer cells also showed alternations in signal intensity that matched those in ameloblasts. These results suggest that the IGF family may act as an autocrine/paracrine system that influences not only cell differentiation but also the physiological activity of ameloblasts.
Collapse
Affiliation(s)
- Tatsuya Yamamoto
- Department of Anatomy, School of Dentistry, Nihon University, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, Japan.
| | | | | |
Collapse
|
23
|
Kierdorf U, Death C, Hufschmid J, Witzel C, Kierdorf H. Developmental and Post-Eruptive Defects in Molar Enamel of Free-Ranging Eastern Grey Kangaroos (Macropus giganteus) Exposed to High Environmental Levels of Fluoride. PLoS One 2016; 11:e0147427. [PMID: 26895178 PMCID: PMC4760926 DOI: 10.1371/journal.pone.0147427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/04/2016] [Indexed: 11/18/2022] Open
Abstract
Dental fluorosis has recently been diagnosed in wild marsupials inhabiting a high-fluoride area in Victoria, Australia. Information on the histopathology of fluorotic marsupial enamel has thus far not been available. This study analyzed the developmental and post-eruptive defects in fluorotic molar enamel of eastern grey kangaroos (Macropus giganteus) from the same high-fluoride area using light microscopy and backscattered electron imaging in the scanning electron microscope. The fluorotic enamel exhibited a brownish to blackish discolouration due to post-eruptive infiltration of stains from the oral cavity and was less resistant to wear than normally mineralized enamel of kangaroos from low-fluoride areas. Developmental defects of enamel included enamel hypoplasia and a pronounced hypomineralization of the outer (sub-surface) enamel underneath a thin rim of well-mineralized surface enamel. While the hypoplastic defects denote a disturbance of ameloblast function during the secretory stage of amelogenesis, the hypomineralization is attributed to an impairment of enamel maturation. In addition to hypoplastic defects, the fluorotic molars also exhibited numerous post-eruptive enamel defects due to the flaking-off of portions of the outer, hypomineralized enamel layer during mastication. The macroscopic and histopathological lesions in fluorotic enamel of M. giganteus match those previously described for placental mammals. It is therefore concluded that there exist no principal differences in the pathogenic mechanisms of dental fluorosis between marsupial and placental mammals. The regular occurrence of hypomineralized, opaque outer enamel in the teeth of M. giganteus and other macropodids must be considered in the differential diagnosis of dental fluorosis in these species.
Collapse
Affiliation(s)
- Uwe Kierdorf
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| | - Clare Death
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Jasmin Hufschmid
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Carsten Witzel
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| | - Horst Kierdorf
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| |
Collapse
|
24
|
Jalali R, Zandieh-Doulabi B, DenBesten PK, Seidler U, Riederer B, Wedenoja S, Micha D, Bronckers ALJJ. Slc26a3/Dra and Slc26a6 in Murine Ameloblasts. J Dent Res 2015; 94:1732-9. [PMID: 26394631 DOI: 10.1177/0022034515606873] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Formation of apatite crystals during enamel development generates protons. To sustain mineral accretion, maturation ameloblasts need to buffer these protons. The presence of cytosolic carbonic anhydrases, the basolateral Na(+) bicarbonate cotransporter Nbce1, and the basolateral anion exchanger Ae2a,b in maturation ameloblasts suggests that these cells secrete bicarbonates into the forming enamel, but it is unknown by which mechanism. Solute carrier (Slc) family 26A encodes different anion exchangers that exchange Cl(-)/HCO3 (-), including Slc26a3/Dra, Slc26a6/Pat-1, and Slc26a4/pendrin. Previously, we showed that pendrin is expressed in ameloblasts but is not critical for enamel formation. In this study, we tested the hypothesis that maturation ameloblasts express Dra and Slc26a6 to secrete bicarbonate into the enamel space in exchange for Cl(-). Real-time polymerase chain reaction detected mRNA transcripts for Dra and Slc26a6 in mouse incisor enamel organs, and Western blotting confirmed their translation into protein. Both isoforms were immunolocalized in ameloblasts, principally at maturation stage. Mice with null mutation of either Dra or Slc26a6 had a normal dental or skeletal phenotype without changes in mineral density, as measured by micro-computed tomography. In enamel organs of Slc26a6-null mice, Dra and pendrin protein levels were both elevated by 52% and 55%, respectively. The amount of Slc26a6 protein was unchanged in enamel organs of Ae2a,b- and Cftr-null mice but reduced in Dra-null mice by 36%. Our data show that ameloblasts express Dra, pendrin, or Slc26a6 but each of these separately is not critical for formation of dental enamel. The data suggest that in ameloblasts, Slc26a isoforms can functionally compensate for one another.
Collapse
Affiliation(s)
- R Jalali
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, and MOVE Research Institute, VU University Amsterdam, Amsterdam, Netherlands
| | - B Zandieh-Doulabi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, and MOVE Research Institute, VU University Amsterdam, Amsterdam, Netherlands
| | - P K DenBesten
- Department of Oral Sciences, University of California, San Francisco, CA, USA
| | - U Seidler
- Abteilung Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - B Riederer
- Abteilung Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - S Wedenoja
- Department of Medical Genetics, Biomedicum Helsinki, University of Helsinki, Finland
| | - D Micha
- Department of Clinical Genetics, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - A L J J Bronckers
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, and MOVE Research Institute, VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
25
|
Geng S, White SN, Paine ML, Snead ML. Protein Interaction between Ameloblastin and Proteasome Subunit α Type 3 Can Facilitate Redistribution of Ameloblastin Domains within Forming Enamel. J Biol Chem 2015; 290:20661-20673. [PMID: 26070558 DOI: 10.1074/jbc.m115.640185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 11/06/2022] Open
Abstract
Enamel is a bioceramic tissue composed of thousands of hydroxyapatite crystallites aligned in parallel within boundaries fabricated by a single ameloblast cell. Enamel is the hardest tissue in the vertebrate body; however, it starts development as a self-organizing assembly of matrix proteins that control crystallite habit. Here, we examine ameloblastin, a protein that is initially distributed uniformly across the cell boundary but redistributes to the lateral margins of the extracellular matrix following secretion thus producing cell-defined boundaries within the matrix and the mineral phase. The yeast two-hybrid assay identified that proteasome subunit α type 3 (Psma3) interacts with ameloblastin. Confocal microscopy confirmed Psma3 co-distribution with ameloblastin at the ameloblast secretory end piece. Co-immunoprecipitation assay of mouse ameloblast cell lysates with either ameloblastin or Psma3 antibody identified each reciprocal protein partner. Protein engineering demonstrated that only the ameloblastin C terminus interacts with Psma3. We show that 20S proteasome digestion of ameloblastin in vitro generates an N-terminal cleavage fragment consistent with the in vivo pattern of ameloblastin distribution. These findings suggest a novel pathway participating in control of protein distribution within the extracellular space that serves to regulate the protein-mineral interactions essential to biomineralization.
Collapse
Affiliation(s)
- Shuhui Geng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90033
| | - Shane N White
- School of Dentistry, UCLA, Los Angeles, California 90095
| | - Michael L Paine
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90033
| | - Malcolm L Snead
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90033.
| |
Collapse
|
26
|
MicroRNA 224 Regulates Ion Transporter Expression in Ameloblasts To Coordinate Enamel Mineralization. Mol Cell Biol 2015; 35:2875-90. [PMID: 26055330 DOI: 10.1128/mcb.01266-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 06/04/2015] [Indexed: 02/05/2023] Open
Abstract
Enamel mineralization is accompanied by the release of protons into the extracellular matrix, which is buffered to regulate the pH value in the local microenvironment. The present study aimed to investigate the role of microRNA 224 (miR-224) as a regulator of SLC4A4 and CFTR, encoding the key buffering ion transporters, in modulating enamel mineralization. miR-224 was significantly downregulated as ameloblasts differentiated, in parallel with upregulation of SLC4A4 and CFTR. Overexpression of miR-224 downregulated SLC4A4 and CFTR expression in cultured human epithelial cells. A microRNA luciferase assay confirmed the specific binding of miR-224 to the 3' untranslated regions (UTRs) of SLC4A4 and CFTR mRNAs, thereby inhibiting protein translation. miR-224 agomir injection in mouse neonatal incisors resulted in normal enamel length and thickness, but with disturbed organization of the prism structure and deficient crystal growth. Moreover, the enamel Ca/P ratio and microhardness were markedly reduced after miR-224 agomir administration. These results demonstrate that miR-224 plays a pivotal role in fine tuning enamel mineralization by modulating SLC4A4 and CFTR to maintain pH homeostasis and support enamel mineralization.
Collapse
|
27
|
Snead ML. Biomineralization of a self-assembled-, soft-matrix precursor: Enamel. JOM (WARRENDALE, PA. : 1989) 2015; 67:788-795. [PMID: 26052186 PMCID: PMC4454482 DOI: 10.1007/s11837-015-1305-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Enamel is the bioceramic covering of teeth, a composite tissue composed of hierarchical organized hydroxyapatite crystallites fabricated by cells under physiologic pH and temperature. Enamel material properties resist wear and fracture to serve a lifetime of chewing. Understanding the cellular and molecular mechanisms for enamel formation may allow a biology-inspired approach to material fabrication based on self-assembling proteins that control form and function. Genetic understanding of human diseases expose insight from Nature's errors by exposing critical fabrication events that can be validated experimentally and duplicated in mice using genetic engineering to phenocopy the human disease so that it can be explored in detail. This approach led to assessment of amelogenin protein self-assembly which, when altered, disrupts fabrication of the soft enamel protein matrix. A misassembled protein matrix precursor results in loss of cell to matrix contacts essential to fabrication and mineralization.
Collapse
Affiliation(s)
- Malcolm L Snead
- Center for Craniofacial Molecular Biology Hermann Ostrow School of Dentistry of USC The University of Southern California 2250 Alcazar St., CSA Room 142, HSC Los Angeles, CA 90032
| |
Collapse
|
28
|
Bronckers ALJJ, Lyaruu DM, Guo J, Bijvelds MJC, Bervoets TJM, Zandieh-Doulabi B, Medina JF, Li Z, Zhang Y, DenBesten PK. Composition of mineralizing incisor enamel in cystic fibrosis transmembrane conductance regulator-deficient mice. Eur J Oral Sci 2014; 123:9-16. [PMID: 25557910 DOI: 10.1111/eos.12163] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2014] [Indexed: 12/25/2022]
Abstract
Formation of crystals in the enamel space releases protons that need to be buffered to sustain mineral accretion. We hypothesized that apical cystic fibrosis transmembrane conductance regulator (CFTR) in maturation ameloblasts transduces chloride into forming enamel as a critical step to secrete bicarbonates. We tested this by determining the calcium, chloride, and fluoride levels in developing enamel of Cftr-null mice by quantitative electron probe microanalysis. Maturation-stage enamel from Cftr-null mice contained less chloride and calcium than did wild-type enamel, was more acidic when stained with pH dyes ex vivo, and formed no fluorescent modulation bands after in vivo injection of the mice with calcein. To acidify the enamel further we exposed Cftr-null mice to fluoride in drinking water to stimulate proton release during formation of hypermineralized lines. In Cftr-deficient mice, fluoride further lowered enamel calcium without further reducing chloride levels. The data support the view that apical CFTR in maturation ameloblasts tranduces chloride into developing enamel as part of the machinery to buffer protons released during mineral accretion.
Collapse
Affiliation(s)
- Antonius L J J Bronckers
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Guo J, Lyaruu DM, Takano Y, Gibson CW, DenBesten PK, Bronckers ALJJ. Amelogenins as potential buffers during secretory-stage amelogenesis. J Dent Res 2014; 94:412-20. [PMID: 25535204 DOI: 10.1177/0022034514564186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amelogenins are the most abundant protein species in forming dental enamel, taken to regulate crystal shape and crystal growth. Unprotonated amelogenins can bind protons, suggesting that amelogenins could regulate the pH in enamel in situ. We hypothesized that without amelogenins the enamel would acidify unless ameloblasts were buffered by alternative ways. To investigate this, we measured the mineral and chloride content in incisor enamel of amelogenin-knockout (AmelX(-/-)) mice and determined the pH of enamel by staining with methyl-red. Ameloblasts were immunostained for anion exchanger-2 (Ae2), a transmembrane pH regulator sensitive for acid that secretes bicarbonate in exchange for chloride. The enamel of AmelX(-/-) mice was 10-fold thinner, mineralized in the secretory stage 1.8-fold more than wild-type enamel and containing less chloride (suggesting more bicarbonate secretion). Enamel of AmelX(-/-) mice stained with methyl-red contained no acidic bands in the maturation stage as seen in wild-type enamel. Secretory ameloblasts of AmelX(-/-) mice, but not wild-type mice, were immunopositive for Ae2, and stained more intensely in the maturation stage compared with wild-type mice. Exposure of AmelX(-/-) mice to fluoride enhanced the mineral content in the secretory stage, lowered chloride, and intensified Ae2 immunostaining in the enamel organ in comparison with non-fluorotic mutant teeth. The results suggest that unprotonated amelogenins may regulate the pH of forming enamel in situ. Without amelogenins, Ae2 could compensate for the pH drop associated with crystal formation.
Collapse
Affiliation(s)
- J Guo
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute, Amsterdam, the Netherlands
| | - D M Lyaruu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute, Amsterdam, the Netherlands
| | - Y Takano
- Section of Biostructural Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - C W Gibson
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - P K DenBesten
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California in San Francisco, CA, USA
| | - A L J J Bronckers
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Pugach MK, Gibson CW. Analysis of enamel development using murine model systems: approaches and limitations. Front Physiol 2014; 5:313. [PMID: 25278900 PMCID: PMC4166228 DOI: 10.3389/fphys.2014.00313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/01/2014] [Indexed: 11/24/2022] Open
Abstract
A primary goal of enamel research is to understand and potentially treat or prevent enamel defects related to amelogenesis imperfecta (AI). Rodents are ideal models to assist our understanding of how enamel is formed because they are easily genetically modified, and their continuously erupting incisors display all stages of enamel development and mineralization. While numerous methods have been developed to generate and analyze genetically modified rodent enamel, it is crucial to understand the limitations and challenges associated with these methods in order to draw appropriate conclusions that can be applied translationally, to AI patient care. We have highlighted methods involved in generating and analyzing rodent enamel and potential approaches to overcoming limitations of these methods: (1) generating transgenic, knockout, and knockin mouse models, and (2) analyzing rodent enamel mineral density and functional properties (structure and mechanics) of mature enamel. There is a need for a standardized workflow to analyze enamel phenotypes in rodent models so that investigators can compare data from different studies. These methods include analyses of gene and protein expression, developing enamel histology, enamel pigment, degree of mineralization, enamel structure, and mechanical properties. Standardization of these methods with regard to stage of enamel development and sample preparation is crucial, and ideally investigators can use correlative and complementary techniques with the understanding that developing mouse enamel is dynamic and complex.
Collapse
Affiliation(s)
- Megan K Pugach
- Department of Mineralized Tissue Biology, The Forsyth Institute, Harvard School of Dental Medicine, Harvard University Cambridge, MA, USA
| | - Carolyn W Gibson
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
31
|
Wen X, Kurtz I, Paine ML. Prevention of the disrupted enamel phenotype in Slc4a4-null mice using explant organ culture maintained in a living host kidney capsule. PLoS One 2014; 9:e97318. [PMID: 24828138 PMCID: PMC4020772 DOI: 10.1371/journal.pone.0097318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/18/2014] [Indexed: 01/27/2023] Open
Abstract
Slc4a4-null mice are a model of proximal renal tubular acidosis (pRTA). Slc4a4 encodes the electrogenic sodium base transporter NBCe1 that is involved in transcellular base transport and pH regulation during amelogenesis. Patients with mutations in the SLC4A4 gene and Slc4a4-null mice present with dysplastic enamel, amongst other pathologies. Loss of NBCe1 function leads to local abnormalities in enamel matrix pH regulation. Loss of NBCe1 function also results in systemic acidemic blood pH. Whether local changes in enamel pH and/or a decrease in systemic pH are the cause of the abnormal enamel phenotype is currently unknown. In the present study we addressed this question by explanting fetal wild-type and Slc4a4-null mandibles into healthy host kidney capsules to study enamel formation in the absence of systemic acidemia. Mandibular E11.5 explants from NBCe1−/− mice, maintained in host kidney capsules for 70 days, resulted in teeth with enamel and dentin with morphological and mineralization properties similar to cultured NBCe1+/+ mandibles grown under identical conditions. Ameloblasts express a number of proteins involved in dynamic changes in H+/base transport during amelogenesis. Despite the capacity of ameloblasts to dynamically modulate the local pH of the enamel matrix, at least in the NBCe1−/− mice, the systemic pH also appears to contribute to the enamel phenotype. Extrapolating these data to humans, our findings suggest that in patients with NBCe1 mutations, correction of the systemic metabolic acidosis at a sufficiently early time point may lead to amelioration of enamel abnormalities.
Collapse
Affiliation(s)
- Xin Wen
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Ira Kurtz
- Division of Nephrology and Brain Research Institute, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
| | - Michael L. Paine
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Abstract
Human enamel development of the permanent teeth takes place during childhood and stresses encountered during this period can have lasting effects on the appearance and structural integrity of the enamel. One of the most common examples of this is the development of dental fluorosis after childhood exposure to excess fluoride, an elemental agent used to increase enamel hardness and prevent dental caries. Currently the molecular mechanism responsible for dental fluorosis remains unknown; however, recent work suggests dental fluorosis may be the result of activated stress response pathways in ameloblasts during the development of permanent teeth. Using fluorosis as an example, the role of stress response pathways during enamel maturation is discussed.
Collapse
|
33
|
Shin M, Hu Y, Tye CE, Guan X, Deagle CC, Antone JV, Smith CE, Simmer JP, Bartlett JD. Matrix metalloproteinase-20 over-expression is detrimental to enamel development: a Mus musculus model. PLoS One 2014; 9:e86774. [PMID: 24466234 PMCID: PMC3900650 DOI: 10.1371/journal.pone.0086774] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/17/2013] [Indexed: 12/25/2022] Open
Abstract
Background Matrix metalloproteinase-20 (Mmp20) ablated mice have enamel that is thin and soft with an abnormal rod pattern that abrades from the underlying dentin. We asked if introduction of transgenes expressing Mmp20 would revert this Mmp20 null phenotype back to normal. Unexpectedly, for transgenes expressing medium or high levels of Mmp20, we found opposite enamel phenotypes depending on the genetic background (Mmp20−/− or Mmp20+/+) in which the transgenes were expressed. Methodology/Principal Findings Amelx-promoter-Mmp20 transgenic founder mouse lines were assessed for transgene expression and those expressing low, medium or high levels of Mmp20 were selected for breeding into the Mmp20 null background. Regardless of expression level, each transgene brought the null enamel back to full thickness. However, the high and medium expressing Mmp20 transgenes in the Mmp20 null background had significantly harder more mineralized enamel than did the low transgene expresser. Strikingly, when the high and medium expressing Mmp20 transgenes were present in the wild-type background, the enamel was significantly less well mineralized than normal. Protein gel analysis of enamel matrix proteins from the high and medium expressing transgenes present in the wild-type background demonstrated that greater than normal amounts of cleavage products and smaller quantities of higher molecular weight proteins were present within their enamel matrices. Conclusions/Significance Mmp20 expression levels must be within a specific range for normal enamel development to occur. Creation of a normally thick enamel layer may occur over a wider range of Mmp20 expression levels, but acquisition of normal enamel hardness has a narrower range. Since over-expression of Mmp20 results in decreased enamel hardness, this suggests that a balance exists between cleaved and full-length enamel matrix proteins that are essential for formation of a properly hardened enamel layer. It also suggests that few feedback controls are present in the enamel matrix to prevent excessive MMP20 activity.
Collapse
Affiliation(s)
- Masashi Shin
- Department of Mineralized Tissue Biology and Harvard School of Dental Medicine, The Forsyth Institute, Cambridge Massachusetts, United States of America
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - Coralee E. Tye
- Department of Mineralized Tissue Biology and Harvard School of Dental Medicine, The Forsyth Institute, Cambridge Massachusetts, United States of America
| | - Xiaomu Guan
- Department of Mineralized Tissue Biology and Harvard School of Dental Medicine, The Forsyth Institute, Cambridge Massachusetts, United States of America
| | - Craig C. Deagle
- Program in Endodontics, Harvard School of Dental Medicine, Boston Massachusetts, United States of America
| | - Jerry V. Antone
- Department of Mineralized Tissue Biology and Harvard School of Dental Medicine, The Forsyth Institute, Cambridge Massachusetts, United States of America
| | - Charles E. Smith
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
- Facility for Electron Microscopy Research, Department of Anatomy & Cell Biology, and Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - John D. Bartlett
- Department of Mineralized Tissue Biology and Harvard School of Dental Medicine, The Forsyth Institute, Cambridge Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
Lacruz RS, Brookes SJ, Wen X, Jimenez JM, Vikman S, Hu P, White SN, Lyngstadaas SP, Okamoto CT, Smith CE, Paine ML. Adaptor protein complex 2-mediated, clathrin-dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis. J Bone Miner Res 2013; 28:672-87. [PMID: 23044750 PMCID: PMC3562759 DOI: 10.1002/jbmr.1779] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/14/2012] [Accepted: 09/18/2012] [Indexed: 12/14/2022]
Abstract
Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real-time PCR, we show that the expression of clathrin and adaptor protein subunits are upregulated in maturation stage rodent enamel organ cells. AP complex 2 (AP-2) is the most upregulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts, with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin-dependent endocytosis, thus implying the likelihood of specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also upregulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1); cluster of differentiation 63 and 68 (Cd63 and Cd68); ATPase, H(+) transporting, lysosomal V0 subunit D2 (Atp6v0d2); ATPase, H(+) transporting, lysosomal V1 subunit B2 (Atp6v1b2); chloride channel, voltage-sensitive 7 (Clcn7); and cathepsin K (Ctsk). Immunohistologic data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain showed upregulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor-regulated pathway for the endocytosis of enamel matrix proteins. These data together define an endocytotic pathway likely used by ameloblasts to remove the enamel matrix during enamel maturation.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90605, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ghosh A, Mukherjee K, Ghosh SK, Saha B. Sources and toxicity of fluoride in the environment. RESEARCH ON CHEMICAL INTERMEDIATES 2012. [DOI: 10.1007/s11164-012-0841-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Bronckers ALJJ, Guo J, Zandieh-Doulabi B, Bervoets TJ, Lyaruu DM, Li X, Wangemann P, DenBesten P. Developmental expression of solute carrier family 26A member 4 (SLC26A4/pendrin) during amelogenesis in developing rodent teeth. Eur J Oral Sci 2012; 119 Suppl 1:185-92. [PMID: 22243245 DOI: 10.1111/j.1600-0722.2011.00901.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ameloblasts need to regulate pH during the formation of enamel crystals, a process that generates protons. Solute carrier family 26A member 4 (SLC26A4, or pendrin) is an anion exchanger for chloride, bicarbonate, iodine, and formate. It is expressed in apical membranes of ion-transporting epithelia in kidney, inner ear, and thyroid where it regulates luminal pH and fluid transport. We hypothesized that maturation ameloblasts express SLC26A4 to neutralize acidification of enamel fluid in forming enamel. In rodents, secretory and maturation ameloblasts were immunopositive for SLC26A4. Staining was particularly strong in apical membranes of maturation ameloblasts facing forming enamel. RT-PCR confirmed the presence of mRNA transcripts for Slc26a4 in enamel organs. SLC26A4 immunostaining was also found in mineralizing connective tissues, including odontoblasts, osteoblasts, osteocytes, osteoclasts, bone lining cells, cellular cementoblasts, and cementocytes. However, Slc26a4-null mutant mice had no overt dental phenotype. The presence of SLC26A4 in apical plasma membranes of maturation ameloblasts is consistent with a potential function as a pH regulator. SLC26A4 does not appear to be critical for ameloblast function and is probably compensated by other pH regulators.
Collapse
Affiliation(s)
- Antonius L J J Bronckers
- Department of Oral Cell Biology ACTA, University of Amsterdam and VU-University of Amsterdam, Research Institute MOVE, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lacruz RS, Smith CE, Chen YB, Hubbard MJ, Hacia JG, Paine ML. Gene-expression analysis of early- and late-maturation-stage rat enamel organ. Eur J Oral Sci 2012; 119 Suppl 1:149-57. [PMID: 22243241 DOI: 10.1111/j.1600-0722.2011.00881.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enamel maturation is a dynamic process that involves high rates of mineral acquisition, associated fluctuations in extracellular pH, and resorption of extracellular enamel proteins. During maturation, ameloblasts change from having a tall, thin, and highly polarized organization, characteristic of the secretory stage, to having a low columnar and widened morphology in the maturation stage. To identify potential differences in gene expression throughout maturation, we obtained enamel organ epithelial cells derived from the early- and late-maturation stages of rat incisor and analyzed the global gene-expression profiles at each stage. Sixty-three candidate genes were identified as having potential roles in the maturation process. Quantitative PCR was used to confirm the results of this genome-wide analysis in a subset of genes. Transcripts enriched during late maturation (n = 38) included those associated with lysosomal activity, solute carrier transport, and calcium signaling. Also up-regulated were transcripts involved in cellular responses to oxidative stress, proton transport, cell death, and the immune system. Transcripts down-regulated during the late maturation stage (n =25) included those with functions related to cell adhesion, cell signaling, and T-cell activation. These results indicate that ameloblasts undergo widespread molecular changes during the maturation stage of amelogenesis and hence provide a basis for future functional investigations into the mechanistic basis of enamel mineralization.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Lacruz RS, Smith CE, Bringas P, Chen YB, Smith SM, Snead ML, Kurtz I, Hacia JG, Hubbard MJ, Paine ML. Identification of novel candidate genes involved in mineralization of dental enamel by genome-wide transcript profiling. J Cell Physiol 2012; 227:2264-75. [PMID: 21809343 DOI: 10.1002/jcp.22965] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The gene repertoire regulating vertebrate biomineralization is poorly understood. Dental enamel, the most highly mineralized tissue in mammals, differs from other calcifying systems in that the formative cells (ameloblasts) lack remodeling activity and largely degrade and resorb the initial extracellular matrix. Enamel mineralization requires that ameloblasts undergo a profound functional switch from matrix-secreting to maturational (calcium transport, protein resorption) roles as mineralization progresses. During the maturation stage, extracellular pH decreases markedly, placing high demands on ameloblasts to regulate acidic environments present around the growing hydroxyapatite crystals. To identify the genetic events driving enamel mineralization, we conducted genome-wide transcript profiling of the developing enamel organ from rat incisors and highlight over 300 genes differentially expressed during maturation. Using multiple bioinformatics analyses, we identified groups of maturation-associated genes whose functions are linked to key mineralization processes including pH regulation, calcium handling, and matrix turnover. Subsequent qPCR and Western blot analyses revealed that a number of solute carrier (SLC) gene family members were up-regulated during maturation, including the novel protein Slc24a4 involved in calcium handling as well as other proteins of similar function (Stim1). By providing the first global overview of the cellular machinery required for enamel maturation, this study provide a strong foundation for improving basic understanding of biomineralization and its practical applications in healthcare.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bronckers ALJJ, Lyaruu DM, Bervoets TJ, Medina JF, DenBesten P, Richter J, Everts V. Murine ameloblasts are immunonegative for Tcirg1, the v-H-ATPase subunit essential for the osteoclast plasma proton pump. Bone 2012; 50:901-8. [PMID: 22245629 PMCID: PMC3345336 DOI: 10.1016/j.bone.2011.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/23/2011] [Accepted: 12/26/2011] [Indexed: 12/14/2022]
Abstract
Maturation stage ameloblasts of rodents express vacuolar type-H-ATPase in the ruffled border of their plasma membrane in contact with forming dental enamel, similar to osteoclasts that resorb bone. It has been proposed that in ameloblasts this v-H-ATPase acts as proton pump to acidify the enamel space, required to complete enamel mineralization. To examine whether this v-H-ATPase in mouse ameloblasts is a proton pump, we determined whether these cells express the lysosomal, T-cell, immune regulator 1 (Tcirg1, v-H-Atp6v(0)a(3)), which is an essential part of the plasma membrane proton pump that is present in osteoclasts. Mutation of this subunit in Tcirg1 null (or oc/oc) mice leads to severe osteopetrosis. No immunohistochemically detectable Tcirg1 was seen in mouse maturation stage ameloblasts. Strong positive staining in secretory and maturation stage ameloblasts however was found for another subunit of v-H-ATPase, subunit b, brain isoform (v-H-Atp6v(1)b(2)). Mouse osteoclasts and renal tubular epithelium stained strongly for both Tcirg1 and v-H-Atp6v(1)b(2). In Tcirg1 null mice osteoclasts and renal epithelium were negative for Tcirg1 but remained positive for v-H-Atp6v(1)b(2). The bone in these mutant mice was osteopetrotic, tooth eruption was inhibited or delayed, and teeth were often morphologically disfigured. However, enamel formation in these mutant mice was normal, ameloblasts structurally unaffected and the mineral content of enamel similar to that of wild type mice. We concluded that Tcirg1, which is essential for osteoclasts to pump protons into the bone, is not appreciably expressed in maturation stage mouse ameloblasts. Our data suggest that the reported v-H-ATPase in maturation stage ameloblasts is not the typical osteoclast-type plasma membrane associated proton pump which acidifies the extracellular space, but rather a v-H-ATPase potentially involved in intracellular acidification.
Collapse
Affiliation(s)
- Antonius L J J Bronckers
- Dept of Oral Cell Biology ACTA, University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Gustav Mahlerlaan 3004, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
40
|
Mohazab L, Koivisto L, Jiang G, Kytömäki L, Haapasalo M, Owen G, Wiebe C, Xie Y, Heikinheimo K, Yoshida T, Smith C, Heino J, Häkkinen L, McKee M, Larjava H. Critical role for αvβ6 integrin in enamel biomineralization. J Cell Sci 2012; 126:732-44. [DOI: 10.1242/jcs.112599] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tooth enamel has the highest degree of biomineralization of all vertebrate hard tissues. During the secretory stage of enamel formation, ameloblasts deposit an extracellular matrix that is in direct contact with ameloblast plasma membrane. Although it is known that integrins mediate cell-matrix adhesion and regulate cell signaling in most cell types, the receptors that regulate ameloblast adhesion and matrix production are not well characterized. Thus, we hypothesized that αvβ6 integrin is expressed in ameloblasts where it regulates biomineralization of enamel. Human and mouse ameloblasts were found to express both β6 integrin mRNA and protein. The maxillary incisors of Itgb6−/− mice lacked yellow pigment and their mandibular incisors appeared chalky and rounded. Molars of Itgb6−/− mice showed signs of reduced mineralization and severe attrition. The mineral-to-protein ratio in the incisors was significantly reduced in Itgb6−/− enamel, mimicking hypomineralized amelogenesis imperfecta. Interestingly, amelogenin-rich extracellular matrix abnormally accumulated between the ameloblast layer of Itgb6−/− mouse incisors and the forming enamel surface, and also between ameloblasts. This accumulation was related to increased synthesis of amelogenin, rather than to reduced removal of the matrix proteins. This was confirmed in cultured ameloblast-like cells, which did not use αvβ6 integrin as an endocytosis receptor for amelogenins, although it participated in cell adhesion on this matrix indirectly via endogenously produced matrix proteins. In summary, integrin αvβ6 is expressed by ameloblasts and it plays a crucial role in regulating amelogenin deposition/turnover and subsequent enamel biomineralization.
Collapse
|
41
|
Smith CE, Richardson AS, Hu Y, Bartlett JD, Hu JCC, Simmer JP. Effect of kallikrein 4 loss on enamel mineralization: comparison with mice lacking matrix metalloproteinase 20. J Biol Chem 2011; 286:18149-60. [PMID: 21454549 DOI: 10.1074/jbc.m110.194258] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Enamel formation depends on a triad of tissue-specific matrix proteins (amelogenin, ameloblastin, and enamelin) to help initiate and stabilize progressively elongating, thin mineral ribbons of hydroxyapatite formed during an appositional growth phase. Subsequently, these proteins are eradicated to facilitate lateral expansion of the hydroxyapatite crystallites. The purpose of this study was to investigate changes in enamel mineralization occurring in mice unable to produce kallikrein 4 (Klk4), a proteinase associated with terminal extracellular degradation of matrix proteins during the maturation stage. Mice lacking functional matrix metalloproteinase 20 (Mmp20), a proteinase associated with early cleavage of matrix proteins during the secretory stage, were also analyzed as a frame of reference. The results indicated that mice lacking Klk4 produce enamel that is normal in thickness and overall organization in terms of layers and rod/inter-rod structure, but there is a developmental defect in enamel rods where they first form near the dentinoenamel junction. Mineralization is normal up to early maturation after which the enamel both retains and gains additional proteins and is unable to mature beyond 85% mineral by weight. The outmost enamel is hard, but inner regions are soft and contain much more protein than normal. The rate of mineral acquisition overall is lower by 25%. Mice lacking functional Mmp20 produce enamel that is thin and structurally abnormal. Relatively high amounts of protein remain throughout maturation, but the enamel is able to change from 67 to 75% mineral by weight during maturation. These findings reaffirm the importance of secreted proteinases to enamel mineral acquisition.
Collapse
Affiliation(s)
- Charles E Smith
- Facility for Electron Microscopy Research, Department of Anatomy and Cell Biology and Faculty of Dentistry, McGill University, Montreal, Quebec H3A 2B2, Canada.
| | | | | | | | | | | |
Collapse
|
42
|
Snead ML, Zhu DH, Lei Y, Luo W, Bringas PO, Sucov HM, Rauth RJ, Paine ML, White SN. A simplified genetic design for mammalian enamel. Biomaterials 2011; 32:3151-7. [PMID: 21295848 DOI: 10.1016/j.biomaterials.2011.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/08/2011] [Indexed: 01/30/2023]
Abstract
A biomimetic replacement for tooth enamel is urgently needed because dental caries is the most prevalent infectious disease to affect man. Here, design specifications for an enamel replacement material inspired by Nature are deployed for testing in an animal model. Using genetic engineering we created a simplified enamel protein matrix precursor where only one, rather than dozens of amelogenin isoforms, contributed to enamel formation. Enamel function and architecture were unaltered, but the balance between the competing materials properties of hardness and toughness was modulated. While the other amelogenin isoforms make a modest contribution to optimal biomechanical design, the enamel made with only one amelogenin isoform served as a functional substitute. Where enamel has been lost to caries or trauma a suitable biomimetic replacement material could be fabricated using only one amelogenin isoform, thereby simplifying the protein matrix parameters by one order of magnitude.
Collapse
Affiliation(s)
- Malcolm L Snead
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Urzúa B, Ortega-Pinto A, Morales-Bozo I, Rojas-Alcayaga G, Cifuentes V. Defining a new candidate gene for amelogenesis imperfecta: from molecular genetics to biochemistry. Biochem Genet 2010; 49:104-21. [PMID: 21127961 DOI: 10.1007/s10528-010-9392-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/23/2010] [Indexed: 10/18/2022]
Abstract
Amelogenesis imperfecta is a group of genetic conditions that affect the structure and clinical appearance of tooth enamel. The types (hypoplastic, hypocalcified, and hypomature) are correlated with defects in different stages of the process of enamel synthesis. Autosomal dominant, recessive, and X-linked types have been previously described. These disorders are considered clinically and genetically heterogeneous in etiology, involving a variety of genes, such as AMELX, ENAM, DLX3, FAM83H, MMP-20, KLK4, and WDR72. The mutations identified within these causal genes explain less than half of all cases of amelogenesis imperfecta. Most of the candidate and causal genes currently identified encode proteins involved in enamel synthesis. We think it is necessary to refocus the search for candidate genes using biochemical processes. This review provides theoretical evidence that the human SLC4A4 gene (sodium bicarbonate cotransporter) may be a new candidate gene.
Collapse
Affiliation(s)
- Blanca Urzúa
- Department of Physical and Chemical Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile.
| | | | | | | | | |
Collapse
|
44
|
Wiedemann-Bidlack FB, Kwak SY, Beniash E, Yamakoshi Y, Simmer JP, Margolis HC. Effects of phosphorylation on the self-assembly of native full-length porcine amelogenin and its regulation of calcium phosphate formation in vitro. J Struct Biol 2010; 173:250-60. [PMID: 21074619 DOI: 10.1016/j.jsb.2010.11.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/16/2010] [Accepted: 11/04/2010] [Indexed: 11/18/2022]
Abstract
The self-assembly of the predominant extracellular enamel matrix protein amelogenin plays an essential role in regulating the growth and organization of enamel mineral during early stages of dental enamel formation. The present study describes the effect of the phosphorylation of a single site on the full-length native porcine amelogenin P173 on self-assembly and on the regulation of spontaneous calcium phosphate formation in vitro. Studies were also conducted using recombinant non-phosphorylated (rP172) porcine amelogenin, along with the most abundant amelogenin cleavage product (P148) and its recombinant form (rP147). Amelogenin self-assembly was assessed using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Using these approaches, we have shown that self-assembly of each amelogenin is very sensitive to pH and appears to be affected by both hydrophilic and hydrophobic interactions. Furthermore, our results suggest that the phosphorylation of the full-length porcine amelogenin P173 has a small but potentially important effect on its higher-order self-assembly into chain-like structures under physiological conditions of pH, temperature, and ionic strength. Although phosphorylation has a subtle effect on the higher-order assembly of full-length amelogenin, native phosphorylated P173 was found to stabilize amorphous calcium phosphate for extended periods of time, in sharp contrast to previous findings using non-phosphorylated rP172. The biological relevance of these findings is discussed.
Collapse
|
45
|
Simmer JP, Papagerakis P, Smith CE, Fisher DC, Rountrey AN, Zheng L, Hu JCC. Regulation of dental enamel shape and hardness. J Dent Res 2010; 89:1024-38. [PMID: 20675598 DOI: 10.1177/0022034510375829] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal interactions guide tooth development through its early stages and establish the morphology of the dentin surface upon which enamel will be deposited. Starting with the onset of amelogenesis beneath the future cusp tips, the shape of the enamel layer covering the crown is determined by five growth parameters: the (1) appositional growth rate, (2) duration of appositional growth (at the cusp tip), (3) ameloblast extension rate, (4) duration of ameloblast extension, and (5) spreading rate of appositional termination. Appositional growth occurs at a mineralization front along the ameloblast distal membrane in which amorphous calcium phosphate (ACP) ribbons form and lengthen. The ACP ribbons convert into hydroxyapatite crystallites as the ribbons elongate. Appositional growth involves a secretory cycle that is reflected in a series of incremental lines. A potentially important function of enamel proteins is to ensure alignment of successive mineral increments on the tips of enamel ribbons deposited in the previous cycle, causing the crystallites to lengthen with each cycle. Enamel hardens in a maturation process that involves mineral deposition onto the sides of existing crystallites until they interlock with adjacent crystallites. Neutralization of acidity generated by hydroxyapatite formation is a key part of the mechanism. Here we review the growth parameters that determine the shape of the enamel crown as well as the mechanisms of enamel appositional growth and maturation.
Collapse
Affiliation(s)
- J P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N. University, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Haro Durand LA, Mesones RV, Nielsen FH, Gorustovich AA. Histomorphometric and microchemical characterization of maturing dental enamel in rats fed a boron-deficient diet. Biol Trace Elem Res 2010; 135:242-52. [PMID: 19756402 DOI: 10.1007/s12011-009-8512-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 08/25/2009] [Indexed: 10/20/2022]
Abstract
Few reports are available in the literature on enamel formation under nutritional deficiencies. Thus, we performed a study to determine the effects of boron (B) deficiency on the maturing dental enamel, employing the rat continuously erupting incisor as the experimental model. Male Wistar rats, 21 days old, were used throughout. They were divided into two groups, each containing ten animals: +B (adequate; 3-mg B/kg diet) and -B (boron deficient; 0.07-mg B/kg diet). The animals were maintained on their respective diets for 14 days and then euthanized. The mandibles were resected, fixed, and processed for embedding in paraffin and/or methyl methacrylate. Oriented histological sections of the continuously erupting incisor were obtained at the level of the mesial root of the first molar, allowing access to the maturation zone of the developing enamel. Dietary treatment did not affect food intake and body weight. Histomorphometric evaluation using undecalcified sections showed a reduction in enamel thickness (hypoplasia), whereas microchemical characterization by energy-dispersive X-ray spectrometry did not reveal alterations in enamel mineralization.
Collapse
Affiliation(s)
- Luis A Haro Durand
- Research Laboratory, National Atomic Energy Commission CNEA-Regional Noroeste, Argentina National Research Council CONICET, A4408FTV, Salta C1033AAJ, Argentina
| | | | | | | |
Collapse
|
47
|
Sharma R, Tsuchiya M, Skobe Z, Tannous BA, Bartlett JD. The acid test of fluoride: how pH modulates toxicity. PLoS One 2010; 5:e10895. [PMID: 20531944 PMCID: PMC2878349 DOI: 10.1371/journal.pone.0010895] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/09/2010] [Indexed: 01/04/2023] Open
Abstract
Background It is not known why the ameloblasts responsible for dental enamel formation are uniquely sensitive to fluoride (F−). Herein, we present a novel theory with supporting data to show that the low pH environment of maturating stage ameloblasts enhances their sensitivity to a given dose of F−. Enamel formation is initiated in a neutral pH environment (secretory stage); however, the pH can fall to below 6.0 as most of the mineral precipitates (maturation stage). Low pH can facilitate entry of F− into cells. Here, we asked if F− was more toxic at low pH, as measured by increased cell stress and decreased cell function. Methodology/Principal Findings Treatment of ameloblast-derived LS8 cells with F− at low pH reduced the threshold dose of F− required to phosphorylate stress-related proteins, PERK, eIF2α, JNK and c-jun. To assess protein secretion, LS8 cells were stably transduced with a secreted reporter, Gaussia luciferase, and secretion was quantified as a function of F− dose and pH. Luciferase secretion significantly decreased within 2 hr of F− treatment at low pH versus neutral pH, indicating increased functional toxicity. Rats given 100 ppm F− in their drinking water exhibited increased stress-mediated phosphorylation of eIF2α in maturation stage ameloblasts (pH<6.0) as compared to secretory stage ameloblasts (pH∼7.2). Intriguingly, F−-treated rats demonstrated a striking decrease in transcripts expressed during the maturation stage of enamel development (Klk4 and Amtn). In contrast, the expression of secretory stage genes, AmelX, Ambn, Enam and Mmp20, was unaffected. Conclusions The low pH environment of maturation stage ameloblasts facilitates the uptake of F−, causing increased cell stress that compromises ameloblast function, resulting in dental fluorosis.
Collapse
Affiliation(s)
- Ramaswamy Sharma
- Department of Cytokine Biology, Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Masahiro Tsuchiya
- Division of Aging and Geriatric Dentistry, Tohoku University, Sendai, Japan
| | - Ziedonis Skobe
- Department of Cytokine Biology, Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Bakhos A. Tannous
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John D. Bartlett
- Department of Cytokine Biology, Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
48
|
Bronckers A, Kalogeraki L, Jorna HJN, Wilke M, Bervoets TJ, Lyaruu DM, Zandieh-Doulabi B, Denbesten P, de Jonge H. The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in maturation stage ameloblasts, odontoblasts and bone cells. Bone 2010; 46:1188-96. [PMID: 20004757 PMCID: PMC2842452 DOI: 10.1016/j.bone.2009.12.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 11/29/2009] [Accepted: 12/02/2009] [Indexed: 02/05/2023]
Abstract
Patients with cystic fibrosis (CF) have mild defects in dental enamel. The gene mutated in these patients is CFTR, a Cl(-) channel involved in transepithelial salt and water transport and bicarbonate secretion. We tested the hypothesis that Cftr channels are present and operating in the plasma membranes of mouse ameloblasts. Tissue sections of young mouse jaws and fetal human jaws were immunostained with various anti-Cftr antibodies. Specificity of the antibodies was validated in Cftr-deficient murine and human tissues. Immunostaining for Cftr was obtained in the apical plasma membranes of mouse maturation ameloblasts of both incisor and molar tooth germs. A granular intracellular immunostaining of variable intensity was also noted in bone cells and odontoblasts. In Cftr-deficient mice the incisors were chalky white and eroded much faster than in wild type mice. Histologically, only maturation ameloblasts of incisors were structurally affected in Cftr-deficient mice. Some antibody species gave also a positive cytosolic staining in Cftr-deficient cells. Transcripts of Cftr were found in maturation ameloblasts, odontoblasts and bone cells. Similar data were obtained in forming human dentin and bone. We conclude that Cftr protein locates in the apical plasma membranes of mouse maturation ameloblasts. In mouse incisors Cftr is critical for completion of enamel mineralization and conceivably functions as a regulator of pH during rapid crystal growth. Osteopenia found in CF patients as well as in Cftr-deficient mice is likely associated with defective Cftr operating in bone cells.
Collapse
Affiliation(s)
- Antonius Bronckers
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE , University of Amsterdam and VU University Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lacruz RS, Nanci A, Kurtz I, Wright JT, Paine ML. Regulation of pH During Amelogenesis. Calcif Tissue Int 2010; 86:91-103. [PMID: 20016979 PMCID: PMC2809306 DOI: 10.1007/s00223-009-9326-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 11/24/2009] [Indexed: 12/31/2022]
Abstract
During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation.
Collapse
Affiliation(s)
- Rodrigo S. Lacruz
- School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA Room 103, Los Angeles, CA 90033 USA
| | - Antonio Nanci
- Faculty of Dentistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montreal, QC H3C 3J7 Canada
| | - Ira Kurtz
- David Geffen School Medicine at the University of California at Los Angeles, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095 USA
| | - J. Timothy Wright
- Department of Pediatric Dentistry, School of Dentistry, University of North Carolina at Chapel Hill, CB No. 7450 Brauer Hall, Chapel Hill, NC 27599 USA
| | - Michael L. Paine
- School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA Room 103, Los Angeles, CA 90033 USA
| |
Collapse
|
50
|
Smith CE, Wazen R, Hu Y, Zalzal SF, Nanci A, Simmer JP, Hu JCC. Consequences for enamel development and mineralization resulting from loss of function of ameloblastin or enamelin. Eur J Oral Sci 2009; 117:485-97. [PMID: 19758243 DOI: 10.1111/j.1600-0722.2009.00666.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although the nonamelogenin proteins, ameloblastin and enamelin, are both low-abundance and rapidly degrading components of forming enamel, they seem to serve essential developmental functions, as suggested by findings that an enamel layer fails to appear on teeth of mice genetically engineered to produce either a truncated form of ameloblastin (exons 5 and 6 deleted) or no enamelin at all (null). The purpose of this study was to characterize, by direct micro weighing, changes in enamel mineralization occurring on maxillary and mandibular incisors of mice bred for these alterations in nonamelogenin function (Ambn(+/+, +/-5,6, -5,6/-5,6), Enam(+/+, +/- ,-/-)). The results indicated similar changes to enamel-mineralization patterns within the altered genotypes, including significant decreases by as much as 50% in the mineral content of maturing enamel from heterozygous mice and the formation of a thin, crusty, and disorganized mineralized layer, rather than true enamel, on the labial (occlusal) surfaces of incisors and molars along with ectopic calcifications within enamel organ cells in Ambn(-5,6/-5,6) and Enam(-/-) homozygous mice. These findings confirm that both ameloblastin and enamelin are required by ameloblasts to create an enamel layer by appositional growth as well as to assist in achieving its unique high level of mineralization.
Collapse
Affiliation(s)
- Charles E Smith
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculté de Médecine Dentaire, Université de Montréal, Montreal, QC, Canada.
| | | | | | | | | | | | | |
Collapse
|