1
|
Chan DD, Guilak F, Sah RL, Calve S. Mechanobiology of Hyaluronan: Connecting Biomechanics and Bioactivity in Musculoskeletal Tissues. Annu Rev Biomed Eng 2024; 26:25-47. [PMID: 38166186 DOI: 10.1146/annurev-bioeng-073123-120541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Hyaluronan (HA) plays well-recognized mechanical and biological roles in articular cartilage and synovial fluid, where it contributes to tissue structure and lubrication. An understanding of how HA contributes to the structure of other musculoskeletal tissues, including muscle, bone, tendon, and intervertebral discs, is growing. In addition, the use of HA-based therapies to restore damaged tissue is becoming more prevalent. Nevertheless, the relationship between biomechanical stimuli and HA synthesis, degradation, and signaling in musculoskeletal tissues remains understudied, limiting the utility of HA in regenerative medicine. In this review, we discuss the various roles and significance of endogenous HA in musculoskeletal tissues. We use what is known and unknown to motivate new lines of inquiry into HA biology within musculoskeletal tissues and in the mechanobiology governing HA metabolism by suggesting questions that remain regarding the relationship and interaction between biological and mechanical roles of HA in musculoskeletal health and disease.
Collapse
Affiliation(s)
- Deva D Chan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA
| | - Robert L Sah
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
2
|
Kikuchi T, Udagawa K, Sasazaki Y. High-molecular-weight Hyaluronan Administration Inhibits Bone Resorption and Promotes Bone Formation in Young-age Osteoporosis Rats. J Histochem Cytochem 2024; 72:373-385. [PMID: 38804525 PMCID: PMC11179592 DOI: 10.1369/00221554241255724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Osteoporosis poses a significant global health concern, affecting both the elderly and young individuals, including athletes. Despite the development of numerous antiosteoporotic drugs, addressing the unique needs of young osteoporosis patients remains challenging. This study focuses on young rats subjected to ovariectomy (OVX) to explore the impact of high-molecular-weight hyaluronan (HA) on preventing OVX-induced osteoporosis. Twenty-four rats underwent OVX, while 12 underwent sham procedures (sham control group). Among the OVX rats, half received subcutaneous injections of HA (MW: 2700 kDa) at 10 mg/kg/week into their backs (OVX-HA group), whereas the other half received saline injections (0.5 ml/week) at the same site (OVX-saline group). OVX-HA group exhibited significantly higher percentages of osteoclast surface (Oc. S/BS), osteoblast surface per bone surface (Ob. S/BS), and bone volume/tissue volume (BV/TV) compared with OVX-saline group at the same age. The proportions of Ob. S/BS and BV/TV in the OVX-HA group closely resembled those of the sham control group, whereas the proportion of Oc. S/BS in the OVX-HA group was notably higher than that in the sham control group. In summary, the administration of HA significantly mitigated bone resorption and enhanced bone formation, suggesting a crucial role for HA in the treatment of young adult osteoporosis.
Collapse
Affiliation(s)
- Toshiyuki Kikuchi
- National Hospital Organization Murayama Medical Center, Tokyo, Japan
| | - Kazuhiko Udagawa
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
3
|
Habib YH, Sheta E, Khattab M, Gowayed MA. Hyaluronic acid/diminazene aceturate combination ameliorates osteoarthritic anomalies in a rodent model: a role of the ACE2/Ang1-7/MasR axis. Inflammopharmacology 2023; 31:3263-3279. [PMID: 37725260 PMCID: PMC10692272 DOI: 10.1007/s10787-023-01335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
The implication of the tissue-localized renin-angiotensin system (RAS) in the pathogenesis of osteoarthritis (OA) has been documented in the last decades. A combination of intraarticular (IA) corticosteroid and hyaluronic acid (HYAL) is approved for pain relief in patients with mild to moderate OA. Combining HYAL with an activator of angiotensin-converting enzyme 2, diminazen aceturate (DIZE), was evaluated in this study for its therapeutic potential. Monosodium iodoacetate was used to induce OA. The effects of daily administration of DIZE versus once-per-week IA injection of HYAL and a combination of both drugs for 21 days on OA deformities in rats' knees were observed. Evaluation of motor activities, pain, and inflammatory response was done using rotarod, knee bend, and knee swelling tests. RAS components, inflammatory biomarkers, and oxidative stress mediators were measured in the knee joint. X-ray radiological examination and histopathological investigations were used to assess joint degeneration and regeneration. Levels of both inflammatory and oxidative markers in knee joint homogenate of OA rats rose, and these increments were mostly improved by the three therapies with a more prominent effect of the drug combination, an effect that was also reflected in the behavioral tests. RAS markers have shown better responsiveness to the combination therapy over both drugs individually, showing a pronounced increase in the angiotensin 1-7 amount. Both radiological and histopathology investigations came to confirm the biochemical results, nominating a combination of HYAL and DIZE as a possible therapeutic option for OA.
Collapse
Affiliation(s)
- Yasser H Habib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Canal El-Mahmoudia Str., Smouha Alexandria, Egypt.
| |
Collapse
|
4
|
Zhang J, Mai Q, Di D, Zhou H, Zhang R, Wang Q. Potential roles of gut microbiota in metal mixture and bone mineral density and osteoporosis risk association: an epidemiologic study in Wuhan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117201-117213. [PMID: 37864687 DOI: 10.1007/s11356-023-30388-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
Few studies have focused on the effects of multiple metal mixtures on bone health and the underlying mechanisms related to alterations in the gut microbiota. This study aimed to examine the potential roles of gut microbiota alterations in metal mixtures and their association with osteoporosis traits. Adults aged ≥ 55 years were recruited from two community healthcare centers in Wuhan City during 2016-2019. The plasma concentrations of six metals (zinc, iron, selenium, lead, cadmium, and arsenic) were measured using an inductively coupled plasma mass spectrometer. The k-means clustering method was employed to explore the exposure profiles of metal mixtures for all participants. 16S rRNA gene sequencing was used to profile the gut microbiota of participants. Combining these results with those of our previous study, we identified overlapping taxa and evaluated their potential roles. A total of 806 participants (516 females), with an average age of 67.36 years were included. The participants were grouped into three clusters using k-means clustering: Cluster 1 (n = 458), Cluster 2 (n = 199), and Cluster 3 (n = 149). The high-exposure group for iron, zinc, lead, and cadmium (Cluster 3) showed a negative association with lumbar spine 1-4 bone mineral density (BMD). A total of 201 individuals (121 females) underwent sequencing of the gut microbiota. Both alpha and beta diversities were statistically different among the three groups. Bacteroidaceae, Lachnospiraceae, Bifidobacteriaceae, Bacteroides, and Lachnospiraceae_incertae_sedis were identified as overlapping taxa associated with the metal mixtures and BMD. Interaction analysis revealed that Cluster 3 interacted with Bacteroidaceae/Bacteroides, resulting in a positive effect on LS1-4 BMD (β = 0.358 g/cm2, 95% CI: 0.047 to 0.669, P = 0.025). Our findings indicate associations between multiple metal mixtures and BMD as well as gut microbiota alterations. Exploring the interaction between metal mixtures and the gut microbiota provides new perspectives for the precise prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Jianli Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Mai
- Wuhan Center for Disease Control and Prevention, Wuhan, China
| | - Dongsheng Di
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haolong Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruyi Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Pendyala M, Stephen SJ, Vashishth D, Blaber EA, Chan DD. Loss of hyaluronan synthases impacts bone morphology, quality, and mechanical properties. Bone 2023; 172:116779. [PMID: 37100359 DOI: 10.1016/j.bone.2023.116779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
Hyaluronan, a glycosaminoglycan synthesized by three isoenzymes (Has1, Has2, Has3), is known to play a role in regulating bone turnover, remodeling, and mineralization, which in turn can affect bone quality and strength. The goal of this study is to characterize how the loss of Has1 or Has3 affects the morphology, matrix properties, and overall strength of murine bone. Femora were isolated from Has1-/-,Has3-/-, and wildtype (WT) C57Bl/6 J female mice and were analyzed using microcomputed-tomography, confocal Raman spectroscopy, three-point bending, and nanoindentation. Of the three genotypes tested, Has1-/- bones demonstrated significantly lower cross-sectional area (p = 0.0002), reduced hardness (p = 0.033), and lower mineral-to-matrix ratio (p < 0.0001). Has3-/- bones had significantly higher stiffness (p < 0.0001) and higher mineral-to-matrix ratio (p < 0.0001) but lower strength (p = 0.0014) and bone mineral density (p < 0.0001) than WT. Interestingly, loss of Has3 was also associated with significantly lower accumulation of advanced glycation end-products than WT (p = 0.0478). Taken together, these results demonstrate, for the first time, the impact of the loss of hyaluronan synthase isoforms on cortical bone structure, content, and biomechanics. Loss of Has1 impacted morphology, mineralization, and micron-level hardness, while loss of Has3 reduced bone mineral density and affected organic matrix composition, impacting whole bone mechanics. This is the first study to characterize the effect of loss of hyaluronan synthases on bone quality, suggesting an essential role hyaluronan plays during the development and regulation of bone.
Collapse
Affiliation(s)
- Meghana Pendyala
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America
| | - Samuel J Stephen
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America
| | - Elizabeth A Blaber
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Blue Marble Space Institute of Science at NASA Ames Research Center, PO Box 1, Moffett Field, CA 94035, United States of America
| | - Deva D Chan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Weldon School of Biomedical Engineering, 206 S. Martin Jischke Drive, Purdue University, West Lafayette, IN, United States of America.
| |
Collapse
|
6
|
Hyaluronidase 1 deficiency decreases bone mineral density in mice. Sci Rep 2022; 12:10142. [PMID: 35710820 PMCID: PMC9203814 DOI: 10.1038/s41598-022-14473-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
Mucopolysaccharidosis IX is a lysosomal storage disorder caused by a deficiency in HYAL1, an enzyme that degrades hyaluronic acid at acidic pH. This disease causes juvenile arthritis in humans and osteoarthritis in the Hyal1 knockout mouse model. Our past research revealed that HYAL1 is strikingly upregulated (~ 25x) upon differentiation of bone marrow monocytes into osteoclasts. To investigate whether HYAL1 is involved in the differentiation and/or resorption activity of osteoclasts, and in bone remodeling in general, we analyzed several bone parameters in Hyal1 -/- mice and studied the differentiation and activity of their osteoclasts and osteoblasts when differentiated in vitro. These experiments revealed that, upon aging, HYAL1 deficient mice exhibit reduced femur length and a ~ 15% decrease in bone mineral density compared to wild-type mice. We found elevated osteoclast numbers in the femurs of these mice as well as an increase of the bone resorbing activity of Hyal1 -/- osteoclasts. Moreover, we detected decreased mineralization by Hyal1 -/- osteoblasts. Taken together with the observed accumulation of hyaluronic acid in Hyal1 -/- bones, these results support the premise that the catabolism of hyaluronic acid by osteoclasts and osteoblasts is an intrinsic part of bone remodeling.
Collapse
|
7
|
Zhao X, Hu DA, Wu D, He F, Wang H, Huang L, Shi D, Liu Q, Ni N, Pakvasa M, Zhang Y, Fu K, Qin KH, Li AJ, Hagag O, Wang EJ, Sabharwal M, Wagstaff W, Reid RR, Lee MJ, Wolf JM, El Dafrawy M, Hynes K, Strelzow J, Ho SH, He TC, Athiviraham A. Applications of Biocompatible Scaffold Materials in Stem Cell-Based Cartilage Tissue Engineering. Front Bioeng Biotechnol 2021; 9:603444. [PMID: 33842441 PMCID: PMC8026885 DOI: 10.3389/fbioe.2021.603444] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cartilage, especially articular cartilage, is a unique connective tissue consisting of chondrocytes and cartilage matrix that covers the surface of joints. It plays a critical role in maintaining joint durability and mobility by providing nearly frictionless articulation for mechanical load transmission between joints. Damage to the articular cartilage frequently results from sport-related injuries, systemic diseases, degeneration, trauma, or tumors. Failure to treat impaired cartilage may lead to osteoarthritis, affecting more than 25% of the adult population globally. Articular cartilage has a very low intrinsic self-repair capacity due to the limited proliferative ability of adult chondrocytes, lack of vascularization and innervation, slow matrix turnover, and low supply of progenitor cells. Furthermore, articular chondrocytes are encapsulated in low-nutrient, low-oxygen environment. While cartilage restoration techniques such as osteochondral transplantation, autologous chondrocyte implantation (ACI), and microfracture have been used to repair certain cartilage defects, the clinical outcomes are often mixed and undesirable. Cartilage tissue engineering (CTE) may hold promise to facilitate cartilage repair. Ideally, the prerequisites for successful CTE should include the use of effective chondrogenic factors, an ample supply of chondrogenic progenitors, and the employment of cell-friendly, biocompatible scaffold materials. Significant progress has been made on the above three fronts in past decade, which has been further facilitated by the advent of 3D bio-printing. In this review, we briefly discuss potential sources of chondrogenic progenitors. We then primarily focus on currently available chondrocyte-friendly scaffold materials, along with 3D bioprinting techniques, for their potential roles in effective CTE. It is hoped that this review will serve as a primer to bring cartilage biologists, synthetic chemists, biomechanical engineers, and 3D-bioprinting technologists together to expedite CTE process for eventual clinical applications.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Daniel A. Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Yongtao Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Departments of Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kevin H. Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Alexander J. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Ofir Hagag
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Eric J. Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Maya Sabharwal
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, United States
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Kelly Hynes
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| |
Collapse
|
8
|
Levels of low-molecular-weight hyaluronan in periodontitis-treated patients and its immunostimulatory effects on CD4 + T lymphocytes. Clin Oral Investig 2021; 25:4987-5000. [PMID: 33544199 DOI: 10.1007/s00784-021-03808-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/21/2021] [Indexed: 01/20/2023]
Abstract
OBJECTIVES During periodontitis, chronic inflammation triggers soft tissue breakdown, and hyaluronan is degraded into fragments of low molecular weight (LMW-HA). This investigation aimed to elucidate whether LMW-HA fragments with immunogenic potential on T lymphocytes remain in periodontal tissues after periodontal treatment. MATERIALS AND METHODS GCF samples were obtained from 15 periodontitis-affected patients and the LMW-HA, RANKL, and OPG levels were analyzed before and after 6 months of periodontal treatment by ELISA. Eight healthy individuals were analyzed as controls. Besides, human T lymphocytes were purified, exposed to infected dendritic cells, and pulsed with LMW-HA. Non-treated T lymphocytes were used as control. The expression levels of the transcription factors and cytokines that determine the Th1, Th17, and Th22 lymphocyte differentiation and function were analyzed by RT-qPCR. Similarly, the expression levels of RANKL and CD44 were analyzed. RESULTS In the GCF samples of periodontitis-affected patients, higher levels of LMW-HA were detected when compared with those of healthy individuals (52.1 ± 15.4 vs. 21.4 ± 12.2, p < 0.001), and these increased levels did not decrease after periodontal therapy (52.1 ± 15.4 vs. 45.7 ± 15.9, p = 0.158). Similarly, the RANKL levels and RANKL/OPG ratios did not change after periodontal therapy. Furthermore, in human T lymphocytes, LMW-HA induced higher expression levels of the Th1, Th17, and Th22-related transcription factors and cytokines, as well as CD44 and RANKL, as compared with non-treated cells. CONCLUSIONS In some patients, increased levels of LMW-HA persist in periodontal tissues after conventional periodontal therapy, and these remaining LMW-HA fragments with immunostimulatory potential could induce the polarization of a pathologic Th1/Th17/Th22-pattern of immune response on T lymphocytes. CLINICAL RELEVANCE The persistence of increased levels of LMW-HA in periodontal tissues after periodontal therapy could favor the recurrence of the disease and further breakdown of periodontal supporting tissues.
Collapse
|
9
|
Kobayashi S, Shiota Y, Kawabe T, Phung HT, Maruyama T, Owada Y, So T, Ishii N. TRAF5 promotes plasmacytoid dendritic cell development from bone marrow progenitors. Biochem Biophys Res Commun 2020; 521:353-359. [PMID: 31668809 DOI: 10.1016/j.bbrc.2019.10.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022]
Abstract
The conventional dendritic cells (cDCs) and plasmacytoid DCs (pDCs) originate from the same common dendritic cell precursor cells in the bone marrow. The pDCs produce large amounts of type 1 interferon in response to foreign nucleic acid and crucially contribute to host defense against viral infection. Tumor necrosis factor (TNF) receptor-associated factor 5 (TRAF5) is a pivotal component of various TNF receptor signaling pathways in the immune system. Although the functions of TRAF5 in T and B lymphocytes have been well studied, its roles in pDCs remains to be fully elucidated. In this study, we show that the expression of TRAF5 supports the generation of pDCs in the bone marrow and also critically contributes to the homeostasis of the pDC subset in the periphery in a cell-intrinsic manner. Furthermore, we provide evidence that TRAF5 promotes the commitment of DC precursor cells toward pDC versus cDC subsets, which is regulated by the balance of transcription factors TCF4 and ID2. Together our findings reveal that TRAF5 acts as a positive regulator of pDC differentiation from bone marrow progenitors.
Collapse
Affiliation(s)
- Shuhei Kobayashi
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yuka Shiota
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takeshi Kawabe
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hai The Phung
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takashi Maruyama
- Department of Immunology, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takanori So
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| |
Collapse
|
10
|
Paolella F, Gabusi E, Manferdini C, Schiavinato A, Lisignoli G. Specific concentration of hyaluronan amide derivative induces osteogenic mineralization of human mesenchymal stromal cells: Evidence of RUNX2 and COL1A1 genes modulation. J Biomed Mater Res A 2019; 107:2774-2783. [PMID: 31408271 DOI: 10.1002/jbm.a.36780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/28/2022]
Abstract
Hyaluronic acid (HA) is an ideal material for tissue regeneration. The aim of this study was to investigate whether a hyaluronan amide derivative (HAD) can enhance the mineralization of human mesenchymal stem cells (hMSCs). Osteogenically induced hMSCs cultured with or without HAD at different concentrations (0.5 mg/ml or 1 mg/ml) were analyzed for mineral matrix deposition, metabolic activity, cellular proliferation, and the expression of 14 osteogenic genes. Unmodified HA (HYAL) was used as control. We demonstrated that only cells treated daily until day 28 with 0.5 mg/ml HAD, but not with 1 mg/ml of HAD and HYAL, showed a significant induction of mineralization at day 14 compared to the osteogenic control group. HAD at both concentrations tested, significantly decreased the expression of the proliferating marker MKI67 at day 2. By contrast, increased metabolic activity was induced only by HYAL from day 14. HAD at both concentrations significantly down modulated SNAI2, DLX5, RUNX2, COL1A1, and IBSP genes, while significantly up regulated COL15A1. The induction of mineralization of 0.5 mg/ml of HAD at day 14 was significantly dependent on a specific modulation of RUNX2 and COL1A1. Our data demonstrate that only 0.5 mg/ml of HAD, but not HYAL, modulated hMSCs osteogenic differentiation, suggesting that the physicochemical features and concentration of HA products could differently affect osteogenic maturation.
Collapse
Affiliation(s)
- Francesca Paolella
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Bologna, Italy
| | - Elena Gabusi
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Bologna, Italy
| | - Cristina Manferdini
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Bologna, Italy
| | | | - Gina Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Bologna, Italy
| |
Collapse
|
11
|
Gupta RC, Lall R, Srivastava A, Sinha A. Hyaluronic Acid: Molecular Mechanisms and Therapeutic Trajectory. Front Vet Sci 2019; 6:192. [PMID: 31294035 PMCID: PMC6603175 DOI: 10.3389/fvets.2019.00192] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/30/2019] [Indexed: 01/06/2023] Open
Abstract
Hyaluronic acid (also known as hyaluronan or hyaluronate) is naturally found in many tissues and fluids, but more abundantly in articular cartilage and synovial fluid (SF). Hyaluronic acid (HA) content varies widely in different joints and species. HA is a non-sulfated, naturally occurring non-protein glycosaminoglycan (GAG), with distinct physico-chemical properties, produced by synoviocytes, fibroblasts, and chondrocytes. HA has an important role in the biomechanics of normal SF, where it is partially responsible for lubrication and viscoelasticity of the SF. The concentration of HA and its molecular weight (MW) decline as osteoarthritis (OA) progresses with aging. For that reason, HA has been used for more than four decades in the treatment of OA in dogs, horses and humans. HA produces anti-arthritic effects via multiple mechanisms involving receptors, enzymes and other metabolic pathways. HA is also used in the treatment of ophthalmic, dermal, burns, wound repair, and other health conditions. The MW of HA appears to play a critical role in the formulation of the products used in the treatment of diseases. This review provides a mechanism-based rationale for the use of HA in some disease conditions with special reference to OA.
Collapse
Affiliation(s)
- Ramesh C Gupta
- Toxicology Department, Breathitt Veterinary Center, Murray State University, Hopkinsville, KY, United States
| | - Rajiv Lall
- Vets Plus, Inc., Menomonie, WI, United States
| | | | - Anita Sinha
- Vets Plus, Inc., Menomonie, WI, United States
| |
Collapse
|
12
|
Dorsal Root Ganglion Maintains Stemness of Bone Marrow Mesenchymal Stem Cells by Enhancing Autophagy through the AMPK/mTOR Pathway in a Coculture System. Stem Cells Int 2018; 2018:8478953. [PMID: 30363977 PMCID: PMC6186314 DOI: 10.1155/2018/8478953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/10/2018] [Accepted: 08/14/2018] [Indexed: 12/28/2022] Open
Abstract
Our previous studies found that sensory nerve tracts implanted in tissue-engineered bone (TEB) could result in better osteogenesis. To explore the mechanism of the sensory nerve promoting osteogenesis in TEB in vitro, a transwell coculture experiment was designed between dorsal root ganglion (DRG) cells and bone marrow mesenchymal stem cells (BMSCs). BMSC proliferation was determined by CCK8 assay, and osteo-, chondro-, and adipogenic differentiation were assessed by alizarin red, alcian blue, and oil red staining. We found that the proliferation and multipotent differentiation of BMSCs were all enhanced in the coculture group compared to the BMSCs group. Crystal violet staining showed that the clone-forming ability of BMSCs in the coculture group was also enhanced and mRNA levels of Sox2, Nanog, and Oct4 were significantly upregulated in the coculture group. Moreover, the autophagy level of BMSCs, regulating their stemness, was promoted in the coculture group, mediated by the AMPK/mTOR pathway. In addition, AMPK inhibitor compound C could significantly downregulate the protein expression of LC3 and the mRNA level of stemness genes in the coculture group. Finally, we found that the NK1 receptor antagonist, aprepitant, could partly block this effect, which indicated that substance P played an important role in the effect. Together, we conclude that DRG could maintain the stemness of BMSCs by enhancing autophagy through the AMPK/mTOR pathway in a transwell coculture system, which may help explain the better osteogenesis after implantation of the sensory nerve into TEB.
Collapse
|
13
|
Roato I, Ferracini R. Cancer Stem Cells, Bone and Tumor Microenvironment: Key Players in Bone Metastases. Cancers (Basel) 2018; 10:cancers10020056. [PMID: 29461491 PMCID: PMC5836088 DOI: 10.3390/cancers10020056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/12/2018] [Accepted: 02/17/2018] [Indexed: 12/21/2022] Open
Abstract
Tumor mass is constituted by a heterogeneous group of cells, among which a key role is played by the cancer stem cells (CSCs), possessing high regenerative properties. CSCs directly metastasize to bone, since bone microenvironment represents a fertile environment that protects CSCs against the immune system, and maintains their properties and plasticity. CSCs can migrate from the primary tumor to the bone marrow (BM), due to their capacity to perform the epithelial-to-mesenchymal transition. Once in BM, they can also perform the mesenchymal-to-epithelial transition, allowing them to proliferate and initiate bone lesions. Another factor explaining the osteotropism of CSCs is their ability to recognize chemokine gradients toward BM, through the CXCL12–CXCR4 axis, also known to be involved in tumor metastasis to other organs. Moreover, the expression of CXCR4 is associated with the maintenance of CSCs’ stemness, and CXCL12 expression by osteoblasts attracts CSCs to the BM niches. CSCs localize in the pre-metastatic niches, which are anatomically distinct regions within the tumor microenvironment and govern the metastatic progression. According to the stimuli received in the niches, CSCs can remain dormant for long time or outgrow from dormancy and create bone lesions. This review resumes different aspects of the CSCs’ bone metastastic process and discusses available treatments to target CSCs.
Collapse
Affiliation(s)
- Ilaria Roato
- Center for Research and Medical Studies (CeRMS), A.O.U. Città della Salute e della Scienza, Turin 10126, Italy.
| | - Riccardo Ferracini
- Department of Surgical Sciences (DISC), Orthopaedic Clinic-IRCCS A.O.U. San Martino, Genoa 16132, Italy.
| |
Collapse
|
14
|
Bisicchia S, Tudisco C. Hyaluronic acid vs corticosteroids in symptomatic knee osteoarthritis: a mini-review of the literature. ACTA ACUST UNITED AC 2017; 14:182-185. [PMID: 29263730 DOI: 10.11138/ccmbm/2017.14.1.182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction Although intra-articular injections of hyaluronic acid (HA) are common non-operative measures used in clinical practice in the management of symptomatic osteoarthritis, there is a great controversy on their efficacy and safety compared to corticosteroids (CSs). Efficacy Conflicting results have been reported in clinical trials and meta-analysis due to methodological differences in study design, along with collection, analysis, and interpretation of data. Even if some studies reported small or no differences of HA compared with CSs (or inferred that HA is not more effective than saline as a placebo), in general CSs have shown to be superior in the short term (especially on pain control), while better results have been reported with HA at subsequent evaluations, but with only a moderate effect after 26 weeks. Safety Mild or moderate adverse events have generally been reported after HA injections, the most common being injection site pain. HA is generally considered safe compared to CSs or saline. Furthermore, HA has shown to be safe also after a previous course of injections. Conclusions Conflicting results have been reported on the efficacy and safety of HA. Guidelines are controversial and in most of the cases "uncertain" recommendations are provided due to inconclusive evidence in literature. However, HA does not seem to have significantly higher side effects when compared to saline or CSs injections, and provides better medium-term control of symptoms in patients with mild to moderate knee osteoarthritis.
Collapse
Affiliation(s)
- Salvatore Bisicchia
- Department of Orthopaedic Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Cosimo Tudisco
- Department of Orthopaedic Surgery, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
15
|
Collagen/glycosaminoglycan coatings enhance new bone formation in a critical size bone defect — A pilot study in rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:84-92. [DOI: 10.1016/j.msec.2016.09.071] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/01/2016] [Accepted: 09/29/2016] [Indexed: 11/20/2022]
|
16
|
Santilli V, Paoloni M, Mangone M, Alviti F, Bernetti A. Hyaluronic acid in the management of osteoarthritis: injection therapies innovations. ACTA ACUST UNITED AC 2016; 13:131-134. [PMID: 27920810 DOI: 10.11138/ccmbm/2016.13.2.131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by pain and progressive functional limitation. Viscosupplementation with intra-articular (IA) hyaluronic acid (HA) could be a treatment option in OA, however recommendations made in different international guidelines for the non-surgical management of OA are not always concordant with regard to the role of IA injection therapies. Results from a recent Italian Consensus Conference underline how IA-HA to treat OA represents a widely used therapy in Italy. Specifically high molecular weight HA, cross-linked HA, and mobile reticulum HA are considered very useful to treat the OA joints from a great number of expert in Italy. These kinds of HA could reduce the NSAIDs intake, furthermore high-molecular weight and mobile reticulum HA are considered to be able to delay or avoid a joint prosthetic implant. This mini review highlights the results obtained from the Italian Consensus Conference "Appropriateness of clinical and organizational criteria for intra-articular injection therapies in osteoarthritis" and give further indication about innovation in IA-HA therapies.
Collapse
Affiliation(s)
- Valter Santilli
- Department of Physical Medicine and Rehabilitation, "Sapienza" University of Rome, Rome, Italy
| | - Marco Paoloni
- Department of Physical Medicine and Rehabilitation, "Sapienza" University of Rome, Rome, Italy
| | | | - Federica Alviti
- Department of Physical Medicine and Rehabilitation, "Sapienza" University of Rome, Rome, Italy
| | - Andrea Bernetti
- Department of Physical Medicine and Rehabilitation, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
17
|
Sondag GR, Mbimba TS, Moussa FM, Novak K, Yu B, Jaber FA, Abdelmagid SM, Geldenhuys WJ, Safadi FF. Osteoactivin inhibition of osteoclastogenesis is mediated through CD44-ERK signaling. Exp Mol Med 2016; 48:e257. [PMID: 27585719 PMCID: PMC5050297 DOI: 10.1038/emm.2016.78] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/24/2016] [Accepted: 04/14/2016] [Indexed: 12/17/2022] Open
Abstract
Osteoactivin is a heavily glycosylated protein shown to have a role in bone remodeling. Previous studies from our lab have shown that mutation in Osteoactivin enhances osteoclast differentiation but inhibits their function. To date, a classical receptor and a signaling pathway for Osteoactivin-mediated osteoclast inhibition has not yet been characterized. In this study, we examined the role of Osteoactivin treatment on osteoclastogenesis using bone marrow-derived osteoclast progenitor cells and identify a signaling pathway relating to Osteoactivin function. We reveal that recombinant Osteoactivin treatment inhibited osteoclast differentiation in a dose-dependent manner shown by qPCR, TRAP staining, activity and count. Using several approaches, we show that Osteoactivin binds CD44 in osteoclasts. Furthermore, recombinant Osteoactivin treatment inhibited ERK phosphorylation in a CD44-dependent manner. Finally, we examined the role of Osteoactivin on receptor activator of nuclear factor-κ B ligand (RANKL)-induced osteolysis in vivo. Our data indicate that recombinant Osteoactivin inhibits RANKL-induced osteolysis in vivo and this effect is CD44-dependent. Overall, our data indicate that Osteoactivin is a negative regulator of osteoclastogenesis in vitro and in vivo and that this process is regulated through CD44 and ERK activation.
Collapse
Affiliation(s)
- Gregory R Sondag
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Thomas S Mbimba
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Fouad M Moussa
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Kimberly Novak
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,Department of Pharmaceutical Sciences, Northeast Ohio Medical University (NEOMED), College of Pharmacy, Rootstown, OH, USA
| | - Bing Yu
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Fatima A Jaber
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA.,Department of Biology, King Abdulaziz University, Jeddah, KSA
| | - Samir M Abdelmagid
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), College of Medicine, Rootstown, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA.,Department of Pharmaceutical Sciences, Northeast Ohio Medical University (NEOMED), College of Pharmacy, Rootstown, OH, USA.,Department of Orthopedics, Summa Health Systems, Akron, OH, USA
| |
Collapse
|
18
|
Caution should be used in long-term treatment with oral compounds of hyaluronic acid in patients with a history of cancer. Clin Drug Investig 2016; 35:689-92. [PMID: 26410544 DOI: 10.1007/s40261-015-0339-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intra-articular administration of hyaluronic acid is a valuable therapeutic tool for the management of patients with osteoarthritis. However, in recent years numerous formulations containing hyaluronic acid administrable by oral route have entered the market. Even if there are some data in the literature that have shown their effectiveness, systemic administration may expose a greater risk in certain situations. In fact, although hyaluronic acid is not considered a drug it is certain that it can interact with specific receptors and promote cell proliferation. This interaction may be potentially hazardous in cancer patients for which these oral formulations should be contraindicated.
Collapse
|
19
|
Zhao N, Wang X, Qin L, Zhai M, Yuan J, Chen J, Li D. Effect of hyaluronic acid in bone formation and its applications in dentistry. J Biomed Mater Res A 2016; 104:1560-9. [PMID: 27007721 DOI: 10.1002/jbm.a.35681] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Ningbo Zhao
- State Key Laboratory of Military Stomatology; Department of Oral Implants; School of Stomatology; Fourth Military Medical University; No. 145 Changle West Road Xi'an Shaanxi 710032 People's Republic of China
| | - Xin Wang
- State Key Laboratory of Military Stomatology; Department of Oral Implants; School of Stomatology; Fourth Military Medical University; No. 145 Changle West Road Xi'an Shaanxi 710032 People's Republic of China
| | - Lei Qin
- State Key Laboratory of Military Stomatology; Department of Oral Implants; School of Stomatology; Fourth Military Medical University; No. 145 Changle West Road Xi'an Shaanxi 710032 People's Republic of China
| | - Min Zhai
- State Key Laboratory of Military Stomatology; Department of Oral Implants; School of Stomatology; Fourth Military Medical University; No. 145 Changle West Road Xi'an Shaanxi 710032 People's Republic of China
| | - Jing Yuan
- State Key Laboratory of Military Stomatology; Department of Oral Implants; School of Stomatology; Fourth Military Medical University; No. 145 Changle West Road Xi'an Shaanxi 710032 People's Republic of China
| | - Ji Chen
- State Key Laboratory of Military Stomatology; Department of Oral Implants; School of Stomatology; Fourth Military Medical University; No. 145 Changle West Road Xi'an Shaanxi 710032 People's Republic of China
| | - Dehua Li
- State Key Laboratory of Military Stomatology; Department of Oral Implants; School of Stomatology; Fourth Military Medical University; No. 145 Changle West Road Xi'an Shaanxi 710032 People's Republic of China
| |
Collapse
|
20
|
van Houdt CIA, Cardoso DA, van Oirschot BAJA, Ulrich DJO, Jansen JA, Leeuwenburgh SCG, van den Beucken JJJP. Porous titanium scaffolds with injectable hyaluronic acid-DBM gel for bone substitution in a rat critical-sized calvarial defect model. J Tissue Eng Regen Med 2016; 11:2537-2548. [DOI: 10.1002/term.2151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 11/01/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022]
Affiliation(s)
- C. I. A. van Houdt
- Department of Biomaterials; Radboud University Medical Centre; Nijmegen The Netherlands
| | | | | | - D. J. O. Ulrich
- Department of Plastic Surgery; Radboud University Medical Centre; Nijmegen The Netherlands
| | - J. A. Jansen
- Department of Biomaterials; Radboud University Medical Centre; Nijmegen The Netherlands
| | - S. C. G. Leeuwenburgh
- Department of Biomaterials; Radboud University Medical Centre; Nijmegen The Netherlands
| | | |
Collapse
|
21
|
CD44 deficiency inhibits unloading-induced cortical bone loss through downregulation of osteoclast activity. Sci Rep 2015; 5:16124. [PMID: 26530337 PMCID: PMC4632082 DOI: 10.1038/srep16124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/09/2015] [Indexed: 12/13/2022] Open
Abstract
The CD44 is cellular surface adhesion molecule that is involved in physiological processes such as hematopoiesis, lymphocyte homing and limb development. It plays an important role in a variety of cellular functions including adhesion, migration, invasion and survival. In bone tissue, CD44 is widely expressed in osteoblasts, osteoclasts and osteocytes. However, the mechanisms underlying its role in bone metabolism remain unclear. We found that CD44 expression was upregulated during osteoclastogenesis. CD44 deficiency in vitro significantly inhibited osteoclast activity and function by regulating the NF-κB/NFATc1-mediated pathway. In vivo, CD44 mRNA levels were significantly upregulated in osteoclasts isolated from the hindlimb of tail-suspended mice. CD44 deficiency can reduce osteoclast activity and counteract cortical bone loss in the hindlimb of unloaded mice. These results suggest that therapeutic inhibition of CD44 may protect from unloading induced bone loss by inhibiting osteoclast activity.
Collapse
|
22
|
Osteogenic Potential of Mesenchymal Stromal Cells Contributes to Primary Myelofibrosis. Cancer Res 2015; 75:4753-65. [DOI: 10.1158/0008-5472.can-14-3696] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 08/15/2015] [Indexed: 11/16/2022]
|
23
|
Migliore A, Procopio S. Effectiveness and utility of hyaluronic acid in osteoarthritis. CLINICAL CASES IN MINERAL AND BONE METABOLISM 2015; 12:31-3. [PMID: 26136793 DOI: 10.11138/ccmbm/2015.12.1.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by pain and progressive functional limitation. Viscosupplementation with intra-articular hyaluronic acid is a treatment option in knee OA that is included in the professional guidelines for treatment of this joint disease, but potentially should apply to all synovial joints in order to reduce pain and improve joint lubrication. Exogenous HA can enhance chondrocyte HA synthesis, prevent the degradation of cartilage and promote its regeneration. Moreover it can reduce the production of proinflammatory mediators and matrix metalloproteinases involved in OA pathogenesis. This mini review highlights the evidence of hyaluronic acid in reducing osteoarthritis symptoms and structural damage, as well as its ability to delay prosthetic surgery. Viscosupplementation should be considered as a long-term therapy.
Collapse
|
24
|
Protective Effect of Neuropeptide Substance P on Bone Marrow Mesenchymal Stem Cells against Apoptosis Induced by Serum Deprivation. Stem Cells Int 2015; 2015:270328. [PMID: 26106423 PMCID: PMC4464676 DOI: 10.1155/2015/270328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/26/2014] [Indexed: 11/17/2022] Open
Abstract
Substance P (SP) contributes to bone formation by stimulating the proliferation and differentiation of bone marrow stromal cells (BMSCs); however, the possible involved effect of SP on apoptosis induced by serum deprivation (SD) in BMSCs is unclear. To explore the potential protective effect of SP and its mechanism, we investigated the relationships among SP, apoptosis induced by SD, and Wnt signaling in BMSCs. SP exhibited a protective effect, as indicated by a reduction in the apoptotic rate, nuclear condensation, caspase-3 and caspase-9 activation, and the ratio of Bax/Bcl-2 that was observed after 24 h of SD. This protective effect was blocked by the inhibition of Wnt signaling or antagonism of the NK-1 receptor. Moreover, SP promoted the mRNA and protein expression of Wnt signaling molecules such as β-catenin, p-GSK-3β, c-myc, and cyclin D1 in addition to the nuclear translocation of β-catenin, indicating that active Wnt signaling is involved in SP inhibition of apoptosis. Our results revealed that mediated by the NK-1 receptor, SP exerts an inhibitory effect on serum deprivation induced apoptosis in BMSCs that is related to the activation of canonical Wnt signaling.
Collapse
|
25
|
Abstract
The fate of both endogenous and transplanted stem cells is dependent on the functional status of the regulatory local microenvironment, which is compromised by disease and therapeutic intervention. The glycosaminoglycan hyaluronan (HA) is a critical component of the hematopoietic microenvironment. We summarize recent advances in our understanding of the role of HA in regulating mesenchymal stem cells, osteoblasts, fibroblasts, macrophages, and endothelium in bone marrow (BM) and their crosstalk within the hematopoietic microenvironment. HA not only determines the volume, hydration, and microfluidics of the BM interstitial space, but also, via interactions with specific receptors, regulates multiple cell functions including differentiation, migration, and production of regulatory factors. The effects of HA are dependent on the polymer size and are influenced by the formation of complexes with other molecules. In healthy BM, HA synthases and hyaluronidases form a molecular network that maintains extracellular HA levels within a discrete physiological window, but HA homeostasis is often perturbed in pathological conditions, including hematological malignancies. Recent studies have suggested that HA synthases may have functions beyond HA production and contribute to the intracellular regulatory machinery. We discuss a possible role for HA synthases, intracellular and extracellular HA in the malignant BM microenvironment, and resistance to therapy.
Collapse
|
26
|
TERA TDM, PRADO RFD, DE MARCO AC, SANTAMARIA MP, JARDINI MAN. The RANK/ RANKL/ OPG interaction in the repair of autogenous bone grafts in female rats with estrogen deficiency. Braz Oral Res 2014; 28:S1806-83242014000100261. [DOI: 10.1590/1807-3107bor-2014.vol28.0054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/24/2014] [Indexed: 11/22/2022] Open
|
27
|
Mun SH, Oh D, Lee SK. Macrophage migration inhibitory factor down-regulates the RANKL-RANK signaling pathway by activating Lyn tyrosine kinase in mouse models. Arthritis Rheumatol 2014; 66:2482-93. [PMID: 24891319 PMCID: PMC4146704 DOI: 10.1002/art.38723] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/20/2014] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Macrophage migration inhibitory factor (MIF) is an important modulator of innate and adaptive immunity as well as local inflammatory responses. We previously reported that MIF down-regulated osteoclastogenesis through a mechanism that requires CD74. The aim of the current study was to examine whether MIF modulates osteoclastogenesis through Lyn phosphorylation, and whether down-regulation of RANKL-mediated signaling requires the association of CD74, CD44, and Lyn. METHODS CD74-knockout (CD74-KO), CD44-KO, and Lyn-KO mouse models were used to investigate whether Lyn requires these receptors and coreceptors. The effects of MIF on osteoclastogenesis were assessed using Western blot analysis, small interfering RNA (siRNA)-targeted down-regulation of Lyn, Lyn-KO mice, and real-time imaging of Lyn molecules to surface proteins. RESULTS MIF treatment induced Lyn expression, and MIF down-regulated RANKL-induced activator protein 1 (AP-1) and the Syk/phospholipase Cγ cascade during osteoclastogenesis through activated Lyn tyrosine kinase. The results of immunoprecipitation studies revealed that MIF receptors associated with Lyn in response to MIF treatment. Studies using Lyn-specific siRNA and Lyn-KO mice confirmed our findings. CONCLUSION Our findings indicate that the tyrosine kinase Lyn is activated when MIF binds to its receptor CD74 and its coreceptor CD44 and, in turn, down-regulates the RANKL-mediated signaling cascade by suppressing NF-ATc1 protein expression through down-regulation of AP-1 and calcium signaling components.
Collapse
Affiliation(s)
- Se Hwan Mun
- UCONN Center on Aging, University of Connecticut Health Center, Farmington, CT 06030
| | - Dongmyung Oh
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
| | - Sun-Kyeong Lee
- UCONN Center on Aging, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
28
|
Lei SH, Guo L, Yue HY, Zhao DC, Zhang CJ, Du WJ, Huang LZ, Wang J, Dang YX, Liu JS, Hao JL, Wang YL. Marrow stromal stem cell autologous transplantation in denervated fracture healing: an experimental study in rats. Orthop Surg 2014; 5:280-8. [PMID: 24254452 DOI: 10.1111/os.12071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 07/30/2013] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE To investigate the influence of bone marrow stromal stem cell (BMSCs) transplantation on healing of fractures combined with central nerve injuries in rats. METHODS Forty-eight healthy adult SD male rats were randomly divided into the following three groups (16 rats in each group): group A, simple (left) tibial fracture; group B, tibial fracture combined with T10 spinal cord transection (SCT); group C, tibial fracture combined with T10 SCT and BMSCs transplantation. The tibial fractures were stabilized with modular intramedullary nails and all operated hind limbs were further immobilized in plaster casts to prevent unequal load bearing. BMSCs were labeled with bromodeoxyuridine and implanted into the fractures of C group rats 2 days after creation of the model. The animals in B and C groups were evaluated by postoperative Tarlov scores. The fractured tibiae were evaluated separately radiographically (X-ray and CT) and immunohistochemically 1, 2, 3 and 4 weeks after injury to assess fracture healing. In addition, the wet weights of the left tibias were measured. RESULTS All Tarlov score of the B and C group animals reached the requirements of the experiment. One, 2 and 3 weeks after surgery, the tibial callus widths in B and C group animals were significantly greater than those of group A rats (P < 0.05). At 4 weeks the tibial callus width in group C animals had decreased, but still differed significantly from that in group A rats (P < 0.05). One, 2, 3 and 4 weeks after surgery, the wet weights of B and C group tibias were significantly greater than those of group A (P < 0.05). Hematoxylin-eosin-stained sections showed bony union and increased bone trabecula in B and C groups and areas with particles positive for alkaline phosphatase staining were more abundant in groups B and C, especially in group C. CONCLUSION Neural regulation plays an important role in fracture healing. Treatment with BMSCs has a positive effect on defective callus in rats that have been subjected to SCT.
Collapse
Affiliation(s)
- Shuan-Hu Lei
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Galea GL, Meakin LB, Williams CM, Hulin-Curtis SL, Lanyon LE, Poole AW, Price JS. Protein kinase Cα (PKCα) regulates bone architecture and osteoblast activity. J Biol Chem 2014; 289:25509-22. [PMID: 25070889 PMCID: PMC4162157 DOI: 10.1074/jbc.m114.580365] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bones' strength is achieved and maintained through adaptation to load bearing. The role of the protein kinase PKCα in this process has not been previously reported. However, we observed a phenotype in the long bones of Prkca−/− female but not male mice, in which bone tissue progressively invades the medullary cavity in the mid-diaphysis. This bone deposition progresses with age and is prevented by disuse but unaffected by ovariectomy. Castration of male Prkca−/− but not WT mice results in the formation of small amounts of intramedullary bone. Osteoblast differentiation markers and Wnt target gene expression were up-regulated in osteoblast-like cells derived from cortical bone of female Prkca−/− mice compared with WT. Additionally, although osteoblastic cells derived from WT proliferate following exposure to estradiol or mechanical strain, those from Prkca−/− mice do not. Female Prkca−/− mice develop splenomegaly and reduced marrow GBA1 expression reminiscent of Gaucher disease, in which PKC involvement has been suggested previously. From these data, we infer that in female mice, PKCα normally serves to prevent endosteal bone formation stimulated by load bearing. This phenotype appears to be suppressed by testicular hormones in male Prkca−/− mice. Within osteoblastic cells, PKCα enhances proliferation and suppresses differentiation, and this regulation involves the Wnt pathway. These findings implicate PKCα as a target gene for therapeutic approaches in low bone mass conditions.
Collapse
Affiliation(s)
- Gabriel L Galea
- From the School of Veterinary Sciences, University of Bristol, Bristol BS2 8EJ, United Kingdom and
| | - Lee B Meakin
- From the School of Veterinary Sciences, University of Bristol, Bristol BS2 8EJ, United Kingdom and
| | - Christopher M Williams
- the School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Sarah L Hulin-Curtis
- From the School of Veterinary Sciences, University of Bristol, Bristol BS2 8EJ, United Kingdom and
| | - Lance E Lanyon
- From the School of Veterinary Sciences, University of Bristol, Bristol BS2 8EJ, United Kingdom and
| | - Alastair W Poole
- the School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Joanna S Price
- From the School of Veterinary Sciences, University of Bristol, Bristol BS2 8EJ, United Kingdom and
| |
Collapse
|
30
|
Förster Y, Rentsch C, Schneiders W, Bernhardt R, Simon JC, Worch H, Rammelt S. Surface modification of implants in long bone. BIOMATTER 2014; 2:149-57. [PMID: 23507866 PMCID: PMC3549868 DOI: 10.4161/biom.21563] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Coatings of orthopedic implants are investigated to improve the osteoinductive and osteoconductive properties of the implant surfaces and thus to enhance periimplant bone formation. By applying coatings that mimic the extracellular matrix a favorable environment for osteoblasts, osteoclasts and their progenitor cells is provided to promote early and strong fixation of implants. It is known that the early bone ongrowth increases primary implant fixation and reduces the risk of implant failure. This review presents an overview of coating titanium and hydroxyapatite implants with components of the extracellular matrix like collagen type I, chondroitin sulfate and RGD peptide in different small and large animal models. The influence of these components on cells, the inflammation process, new bone formation and bone/implant contact is summarized.
Collapse
Affiliation(s)
- Yvonne Förster
- Department of Trauma and Reconstructive Surgery, Center for Translational Bone, Joint and Soft Tissue Research, Dresden University Hospital Carl Gustav Carus, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Yeh Y, Yang Y, Yuan K. Importance of CD44 in the proliferation and mineralization of periodontal ligament cells. J Periodontal Res 2014; 49:827-35. [DOI: 10.1111/jre.12170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Y. Yeh
- Institute of Oral Medicine; College of Medicine; National Cheng Kung University; Tainan Taiwan
| | - Y. Yang
- Institute of Oral Medicine; College of Medicine; National Cheng Kung University; Tainan Taiwan
| | - K. Yuan
- Institute of Oral Medicine; College of Medicine; National Cheng Kung University; Tainan Taiwan
- Department of Stomatology; National Cheng Kung University Hospital; Tainan Taiwan
| |
Collapse
|
32
|
Ariyoshi W, Okinaga T, Knudson CB, Knudson W, Nishihara T. High molecular weight hyaluronic acid regulates osteoclast formation by inhibiting receptor activator of NF-κB ligand through Rho kinase. Osteoarthritis Cartilage 2014; 22:111-20. [PMID: 24185105 DOI: 10.1016/j.joca.2013.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/07/2013] [Accepted: 10/22/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the effects of high molecular weight hyaluronic acid (HMW-HA) on osteoclast differentiation by monocytes co-cultured with stromal cells. METHODS Mouse bone marrow stromal cell line ST2 cells were incubated with HMW-HA or 4-methylunbeliferone (4-MU) for various times. In some experiments, cells were pre-treated with the anti-CD44 monoclonal antibody (CD44 mAb) or Rho kinase pathway inhibitors (simvastatin or Y27632), then treated with HMW-HA. The expression of receptor activator of NF-κB ligand (RANKL) was determined using real-time reverse transcription polymerase chain reaction (RT-PCR), western blotting, and immunofluorescence microscopy, while the amount of active RhoA was measured by a pull-down assay. To further clarify the role of HMW-HA in osteoclastogenesis, mouse monocyte RAW 264.7 cells were co-cultured with ST2 cells pre-stimulated with 1,25(OH)2D3. Osteoclast-like cells were detected by staining with tartrate-resistant acid phosphatase (TRAP). RESULTS HMW-HA decreased RANKL mRNA and protein expressions, whereas inhibition of hyaluronic acid (HA) synthesis by 4-MU enhanced RANKL expression. Blockage of HA-CD44 binding by CD44 mAb suppressed HMW-HA-mediated inhibition of RANKL. Pull-down assay findings also revealed that HMW-HA transiently activated RhoA in ST2 cells and pre-treatment with CD44 mAb inhibited the activation of RhoA protein mediated by HMW-HA. Moreover pre-treatment with Rho kinase pathway inhibitors also blocked the inhibition of RANKL by HMW-HA. Co-culture system results showed that HMW-HA down-regulated differentiation into osteoclast-like cells by RAW 264.7 cells induced by 1,25(OH)2D3-stimulated ST2 cells. CONCLUSIONS These results indicated that HA-CD44 interactions down-regulate RANKL expression and osteoclastogenesis via activation of the Rho kinase pathway.
Collapse
Affiliation(s)
- W Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.
| | - T Okinaga
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.
| | - C B Knudson
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - W Knudson
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - T Nishihara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.
| |
Collapse
|
33
|
Abstract
Viscosupplementation is the intra-articular administration of preparations containing hyaluronic acid or hyaluronate intended to restore the normal biological properties of hyaluronic acid normally found in synovial fluid. Infiltration of hyaluronic acid in the arthritic hip is a more recent technique than viscosupplementation of the knee due to the greater technical difficulty of infiltration to the hip, which requires fluoroscopic or ultrasound guidance. The introduction of high-molecular-weight hyaluronic acid in the treatment permits a single administration and has helped diffuse hip infiltration treatment. A single infiltration reduces patient discomfort caused by the procedure and allows treatment of a larger number of patients. Although the literature has unequivocally proven the possibility of reducing pain in patients affected by hip arthritis following infiltration, the molecular weight and density, the number of infiltrations required for long-term results, and the most appropriate indications for infiltration treatment have yet to be clarified. Selecting the patient is the first obstacle to be overcome. Therefore, infiltration should be considered as an option for patients with initial pain symptoms who have not yet been listed for joint prosthesis surgery. The radiographic criteria require at least a partly preserved joint space, and the clinical criteria of persistent hip pain and full joint mobility seem to be sufficiently effective for selection.
Collapse
|
34
|
Mei G, Xia L, Zhou J, Zhang Y, Tuo Y, Fu S, Zou Z, Wang Z, Jin D. Neuropeptide SP activates the WNT signal transduction pathway and enhances the proliferation of bone marrow stromal stem cells. Cell Biol Int 2013; 37:1225-32. [PMID: 23893958 DOI: 10.1002/cbin.10158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/04/2013] [Indexed: 12/24/2022]
Abstract
Substance P (SP) mediates multiple activities in various cell types, such as proliferation, anti-apoptotic response, and inflammation. We have investigated the effects of SP, NK1 antagonist and DKK1 on proliferation of bone marrow stromal stem cells (BMSCs), as well as the underlying mechanism. Isolated BMSCs were exposed to SP (10(-8) M) (group A), SP + NK1 antagonist (1 µM) (group B), SP + DKK1 (0.2 µg/mL) (group C), or the same amount of PBS (group D). Expression of gene and protein of Wnt/β-catenin signalling was detected using quantitative PCR and western blotting. SP (10(-8) M) significantly enhanced the proliferation of BMSCs and the number of viable cells was reduced by treatment with NK1 antagonist (1 µM) or DKK1 (0.2 µg/mL). SP also significantly increased the expression of C-myc mRNA, Lef1, β-catenin protein and C-myc protein, but decreased the expression of Tcf7 and p-β-catenin protein compared to group D. These roles of SP were inhibited by the NK1 antagonist and DKK1. Expression of CyclinD1 and β-catenin mRNAs, however, was not significantly influenced by SP, NK1 antagonist and DKK1. These findings suggest that SP enhances BMSC proliferation via regulation of the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Gang Mei
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Membrane localization of membrane type 1 matrix metalloproteinase by CD44 regulates the activation of pro-matrix metalloproteinase 9 in osteoclasts. BIOMED RESEARCH INTERNATIONAL 2013; 2013:302392. [PMID: 23984338 PMCID: PMC3745902 DOI: 10.1155/2013/302392] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 06/22/2013] [Accepted: 06/22/2013] [Indexed: 12/02/2022]
Abstract
CD44, MT1-MMP, and MMP9 are implicated in the migration of osteoclast and bone resorption. This study was designed to determine the functional relationship between CD44 and MT1-MMP in the activation of pro-MMP9. We used osteoclasts isolated from wild-type and CD44-null mice. Results showed that MT1-MMP is present in multiple forms with a molecular mass ~63, 55, and 45 kDa in the membrane of wild-type osteoclasts. CD44-null osteoclasts demonstrated a 55 kDa active MT1-MMP form in the membrane and conditioned medium. It failed to activate pro-MMP9 because TIMP2 binds and inhibits this MT1-MMP (~55 kDa) in CD44-null osteoclasts. The role of MT1-MMP in the activation of pro-MMP9, CD44 expression, and migration was confirmed by knockdown of MT1-MMP in wild-type osteoclasts. Although knockdown of MMP9 suppressed osteoclast migration, it had no effects on MT1-MMP activity or CD44 expression. These results suggest that CD44 and MT1-MMP are directly or indirectly involved in the regulation of pro-MMP9 activation. Surface expression of CD44, membrane localization of MT1-MMP, and activation of pro-MMP9 are the necessary sequence of events in osteoclast migration.
Collapse
|
36
|
Hiraga T, Ito S, Nakamura H. Cancer stem-like cell marker CD44 promotes bone metastases by enhancing tumorigenicity, cell motility, and hyaluronan production. Cancer Res 2013; 73:4112-22. [PMID: 23633482 DOI: 10.1158/0008-5472.can-12-3801] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CD44, an adhesion molecule that binds to the extracellular matrix, primarily to hyaluronan (HA), has been implicated in cancer cell migration, invasion, and metastasis. CD44 has also recently been recognized as a marker for stem cells of several types of cancer. However, the roles of CD44 in the development of bone metastasis are unclear. Here, we addressed this issue by using bone metastatic cancer cell lines, in which CD44 was stably knocked down. Tumor sphere formation and cell migration and invasion were significantly inhibited by CD44 knockdown. Furthermore, the downregulation of CD44 markedly suppressed tumorigenicity and bone metastases in nude mice. Of note, the number of osteoclasts decreased in the bone metastases. Microarray analysis revealed that the expression of HA synthase 2 was downregulated in CD44-knockdown cells. The localization of HA in the bone metastatic tumors was also markedly reduced. We then examined the roles of CD44-HA interaction in bone metastasis using 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis. 4-MU decreased tumor sphere and osteoclast-like cell formation in vitro. Moreover, 4-MU inhibited bone metastases in vivo with reduced number of osteoclasts. These results collectively suggest that CD44 expression in cancer cells promotes bone metastases by enhancing tumorigenicity, cell migration and invasion, and HA production. Our results also suggest the possible involvement of CD44-expressing cancer stem cells in the development of bone metastases through interaction with HA. CD44-HA interaction could be a potential target for therapeutic intervention for bone metastases.
Collapse
Affiliation(s)
- Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, Nagano, Japan
| | | | | |
Collapse
|
37
|
CD44 Is Involved in Mineralization of Dental Pulp Cells. J Endod 2013; 39:351-6. [DOI: 10.1016/j.joen.2012.11.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 11/23/2022]
|
38
|
Ma J, Granton PV, Holdsworth DW, Turley EA. Oral administration of hyaluronan reduces bone turnover in ovariectomized rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:339-345. [PMID: 23256527 DOI: 10.1021/jf300651d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The effect of oral hyaluronan (HA) on bone loss in ovariectomized (OVX) 3-month-old rats was measured using serum markers of bone turnover and bone mineral density. OVX rats were administered 1 mg/kg HA (OVX + HA) or phosphate-buffered saline (PBS) (OVX + PBS) by oral gavage (5 days/week for 54 days). Additional controls included sham ovariectomy with PBS gavage (Sham + PBS) and no treatment. Oral administration of HA resulted in approximately 50% (p < 0.05) increases in serum HA. Gel filtration analyses showed this was high molecular weight HA (300-500 kDa). Osteopenia was mild due to the young age of the animals. Thus, ovariectomy resulted in a 30% increase in serum collagen N-terminal telopeptides (p < 0.001), a 20% increase in serum nitrate/nitrite levels (p = 0.05), and a 5-6% decrease in femur bone mineral density/content (p < 0.05). HA gavage blunted the development of osteopenia in this model as determined by preventing the 30% increase in serum collagen N-terminal telopeptide levels (p < 0.001) and by reducing bone mineral content loss from 6 to 4%. These results show that oral supplements of HA (gavage solution, 0.12% solution) significantly reduce bone turnover associated with mild osteopenia in rats.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Biomarkers/blood
- Biomarkers/metabolism
- Bone Density
- Bone Density Conservation Agents/administration & dosage
- Bone Density Conservation Agents/blood
- Bone Density Conservation Agents/metabolism
- Bone Density Conservation Agents/therapeutic use
- Bone Diseases, Metabolic/blood
- Bone Diseases, Metabolic/etiology
- Bone Diseases, Metabolic/metabolism
- Bone Diseases, Metabolic/prevention & control
- Bone Remodeling
- Dietary Supplements
- Female
- Humans
- Hyaluronic Acid/administration & dosage
- Hyaluronic Acid/blood
- Hyaluronic Acid/metabolism
- Hyaluronic Acid/therapeutic use
- Osteoporosis, Postmenopausal/blood
- Osteoporosis, Postmenopausal/etiology
- Osteoporosis, Postmenopausal/metabolism
- Osteoporosis, Postmenopausal/prevention & control
- Ovariectomy/adverse effects
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Jenny Ma
- London Regional Cancer Program, London Health Sciences Center, Victoria Hospital, and Department of Biochemistry and Oncology, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
39
|
The Role of HA and Has2 in the Development and Function of the Skeleton. EXTRACELLULAR MATRIX IN DEVELOPMENT 2013. [DOI: 10.1007/978-3-642-35935-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
New insights into adhesion signaling in bone formation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:1-68. [PMID: 23890379 DOI: 10.1016/b978-0-12-407695-2.00001-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mineralized tissues that are protective scaffolds in the most primitive species have evolved and acquired more specific functions in modern animals. These are as diverse as support in locomotion, ion homeostasis, and precise hormonal regulation. Bone formation is tightly controlled by a balance between anabolism, in which osteoblasts are the main players, and catabolism mediated by the osteoclasts. The bone matrix is deposited in a cyclic fashion during homeostasis and integrates several environmental cues. These include diffusible elements that would include estrogen or growth factors and physicochemical parameters such as bone matrix composition, stiffness, and mechanical stress. Therefore, the microenvironment is of paramount importance for controlling this delicate equilibrium. Here, we provide an overview of the most recent data highlighting the role of cell-adhesion molecules during bone formation. Due to the very large scope of the topic, we focus mainly on the role of the integrin receptor family during osteogenesis. Bone phenotypes of some deficient mice as well as diseases of human bones involving cell adhesion during this process are discussed in the context of bone physiology.
Collapse
|
41
|
Shahnazari M, Kurimoto P, Boudignon BM, Orwoll BE, Bikle DD, Halloran BP. Simulated spaceflight produces a rapid and sustained loss of osteoprogenitors and an acute but transitory rise of osteoclast precursors in two genetic strains of mice. Am J Physiol Endocrinol Metab 2012; 303:E1354-62. [PMID: 23047986 PMCID: PMC3774081 DOI: 10.1152/ajpendo.00330.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Loss of skeletal weight bearing or skeletal unloading as occurs during spaceflight inhibits bone formation and stimulates bone resorption. These are associated with a decline in the osteoblast (Ob.S/BS) and an increase in the osteoclast (Oc.S/BS) bone surfaces. To determine the temporal relationship between changes in the bone cells and their marrow precursor pools during sustained unloading, and whether genetic background influences these relationships, we used the hindlimb unloading model to induce bone loss in two strains of mice known to respond to load and having significantly different cancellous bone volumes (C57BL/6 and DBA/2 male mice). Skeletal unloading caused a progressive decline in bone volume that was accompanied by strain-specific changes in Ob.S/BS and Oc.S/BS. These were associated with a sustained reduction in the osteoprogenitor population and a dramatic but transient increase in the osteoclast precursor pool size in both strains. The results reveal that bone adaptation to skeletal unloading involves similar rapid changes in the osteoblast and osteoclast progenitor populations in both strains of mice but striking differences in Oc.S/BS dynamics, BFR, and cancellous bone structure. These strain-specific differences suggest that genetics plays an important role in determining the osteoblast and osteoclast populations on the bone surface and the dynamics of bone loss in response to skeletal unloading.
Collapse
Affiliation(s)
- Mohammad Shahnazari
- Division of Endocrinology, Veterans Affairs Medical Center, and Department of Medicine, University of California, San Francisco, CA 94121, USA
| | | | | | | | | | | |
Collapse
|
42
|
Gupta A, Cao W, Chellaiah MA. Integrin αvβ3 and CD44 pathways in metastatic prostate cancer cells support osteoclastogenesis via a Runx2/Smad 5/receptor activator of NF-κB ligand signaling axis. Mol Cancer 2012; 11:66. [PMID: 22966907 PMCID: PMC3499378 DOI: 10.1186/1476-4598-11-66] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 08/14/2012] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Bone loss and pathological fractures are common skeletal complications associated with androgen deprivation therapy and bone metastases in prostate cancer patients. We have previously demonstrated that prostate cancer cells secrete receptor activator of NF-kB ligand (RANKL), a protein essential for osteoclast differentiation and activation. However, the mechanism(s) by which RANKL is produced remains to be determined. The objective of this study is to gain insight into the molecular mechanisms controlling RANKL expression in metastatic prostate cancer cells. RESULTS We show here that phosphorylation of Smad 5 by integrin αvβ3 and RUNX2 by CD44 signaling, respectively, regulates RANKL expression in human-derived PC3 prostate cancer cells isolated from bone metastasis. We found that RUNX2 intranuclear targeting is mediated by phosphorylation of Smad 5. Indeed, Smad5 knock-down via RNA interference and inhibition of Smad 5 phosphorylation by an αv inhibitor reduced RUNX2 nuclear localization and RANKL expression. Similarly, knockdown of CD44 or RUNX2 attenuated the expression of RANKL. As a result, conditioned media from these cells failed to support osteoclast differentiation in vitro. Immunohistochemistry analysis of tissue microarray sections containing primary prostatic tumor (grade2-4) detected predominant localization of RUNX2 and phosphorylated Smad 5 in the nuclei. Immunoblotting analyses of nuclear lysates from prostate tumor tissue corroborate these observations. CONCLUSIONS Collectively, we show that CD44 signaling regulates phosphorylation of RUNX2. Localization of RUNX2 in the nucleus requires phosphorylation of Smad-5 by integrin αvβ3 signaling. Our results suggest possible integration of two different pathways in the expression of RANKL. These observations imply a novel mechanistic insight into the role of these proteins in bone loss associated with bone metastases in patients with prostate cancer.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, MD, 21201, USA
| | - Wei Cao
- Department of Oral and Maxillofacial Surgery, Ninth People’s hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, MD, 21201, USA
| |
Collapse
|
43
|
Baud'Huin M, Charrier C, Bougras G, Brion R, Lezot F, Padrines M, Heymann D. Proteoglycans and osteolysis. Methods Mol Biol 2012; 836:323-37. [PMID: 22252644 DOI: 10.1007/978-1-61779-498-8_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Osteolysis is a complex mechanism resulting from an exacerbated activity of osteoclasts associated or not with a dysregulation of osteoblast metabolism leading to bone loss. This bone defect is not compensated by bone apposition or by apposition of bone matrix with poor mechanical quality. Osteolytic process is regulated by mechanical constraints, by polypeptides including cytokines and hormones, and by extracellular matrix components such as proteoglycans (PGs) and glycosaminoglycans (GAGs). Several studies revealed that GAGs may influence osteoclastogenesis, but data are very controversial: some studies showed a repressive effect of GAGs on osteoclastic differentiation, whereas others described a stimulatory effect. The controversy also affects osteoblasts which appear sometimes inhibited by polysaccharides and sometimes stimulated by these compounds. Furthermore, long-term treatment with heparin leads to the development of osteoporosis fueling the controversy. After a brief description of the principal osteoclastogenesis assays, the present chapter summarizes the main data published on the effect of PGs/GAGs on bone cells and their functional incidence on osteolysis.
Collapse
|
44
|
WALKER CAMERONG, DANGARIA SMIT, ITO YOSHIHIRO, LUAN XIANGHONG, DIEKWISCH THOMASGH. Osteopontin is required for unloading-induced osteoclast recruitment and modulation of RANKL expression during tooth drift-associated bone remodeling, but not for super-eruption. Bone 2010; 47:1020-9. [PMID: 20828639 PMCID: PMC2970729 DOI: 10.1016/j.bone.2010.08.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 08/25/2010] [Accepted: 08/28/2010] [Indexed: 01/26/2023]
Abstract
Unloading of teeth results in extensive alveolar bone remodeling, causing teeth to move in both vertical ("super-eruption") and horizontal direction ("drift"). In order to decipher the molecular mechanisms of unloading-induced bone remodeling during tooth movement, we focused on the role of osteopontin (OPN) in the un-opposed molar model, comparing wild-type (WT) and OPN-null mice. Our data indicated that OPN was not required for the continuous eruption of un-opposed teeth while OPN was necessary for the drift of teeth. OPN expression and osteoclast counts were greatly increased on alveolar bone surfaces facing the direction of the drift in WT mice, while osteoclast counts were diminished in OPN-/- mice. RANKL expression in the distal periodontal ligament of WT molars increased significantly by day 6 following unloading, while overall levels of RANKL expression were decreased in both WT and OPN-null mice. In vitro treatment of MC3T3 cells, WT BMCs and OPN-/- BMCs with recombinant OPN resulted in significantly increased RANKL expression in all three cell types. The PI3K and MEK/ERK pathway inhibitors Ly294002 and U0126 reduced RANKL expression levels in vitro. Treatment of BMCs and MC3T3 with OPN also resulted in increased ERK phosphorylation and reduced OPG levels. Together, our studies suggest that increased OPN expression during unloading-induced drifting of teeth enhances localized RANKL expression and osteoclast activity on drift-direction alveolar bone surfaces via extracellular matrix signaling pathways.
Collapse
Affiliation(s)
- CAMERON G. WALKER
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - SMIT DANGARIA
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - YOSHIHIRO ITO
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - XIANGHONG LUAN
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Orthodontics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - THOMAS G. H. DIEKWISCH
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Orthodontics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
45
|
Walsh WR, Oliver RA, Gage G, Yu Y, Bell D, Bellemore J, Adkisson HD. Application of resorbable poly(lactide-co-glycolide) with entangled hyaluronic acid as an autograft extender for posterolateral intertransverse lumbar fusion in rabbits. Tissue Eng Part A 2010; 17:213-20. [PMID: 20712417 DOI: 10.1089/ten.tea.2010.0008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Facilitating fusion between bony segments in a reliable and reproducible manner using a synthetic bone graft material has a number of benefits for the surgeon as well as the patient. Although autograft remains the gold standard, associated comorbidities continue to drive the development of new biomaterials for use in spinal fusion. The ability of autograft alone and autograft combined with a radiolucent biomaterial composed of resorbable osteoconductive poly(lactide-co-glycolide) with entangled hyaluronic acid to facilitate fusion was examined in a single-level noninstrumented posterolateral intertransverse lumbar fusion model in New Zealand White rabbits. Progressive bone formation was demonstrated radiographically for the extender group (synthetic biomaterial plus autograft) between 3 and 6 months. Computed tomography revealed a new cortical shell in the fusion mass at 3 and 6 months for both study groups. Tensile testing at 6 months demonstrated that the quality of bone formed between the intertransverse space was equivalent for both study groups. Histologic evaluation of the fusion mass revealed new bone on and adjacent to the transverse processes with the synthetic biomaterial group that extended laterally, supporting the osteoconductive nature of the material. Histological evidence of endochondral bone growth in the intertransverse space was observed for the autograft plus synthetic biomaterial group. Bone remodeling, new marrow spaces, and peripheral cortices were observed for each study group at 3 months that matured by 6 months. These findings support the use of a radiolucent biosynthetic material comprising poly(lactide-co-glycolide) with integrated hyaluronic acid as an autograft extender for lumbar intertransverse fusion.
Collapse
Affiliation(s)
- William R Walsh
- Surgical and Orthopaedic Research Laboratories, University of New South Wales, Prince of Wales Hospital, Randwick, Australia.
| | | | | | | | | | | | | |
Collapse
|
46
|
Wang L, Shi X, Zhao R, Halloran BP, Clark DJ, Jacobs CR, Kingery WS. Calcitonin-gene-related peptide stimulates stromal cell osteogenic differentiation and inhibits RANKL induced NF-kappaB activation, osteoclastogenesis and bone resorption. Bone 2010; 46:1369-79. [PMID: 19962460 PMCID: PMC2854244 DOI: 10.1016/j.bone.2009.11.029] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/23/2009] [Accepted: 11/25/2009] [Indexed: 11/18/2022]
Abstract
Previously we observed that capsaicin treatment in rats inhibited sensory neuropeptide signaling, with a concurrent reduction in trabecular bone formation and bone volume, and an increase in osteoclast numbers and bone resorption. Calcitonin-gene-related peptide (CGRP) is a neuropeptide richly distributed in sensory neurons innervating the skeleton and we postulated that CGRP signaling regulates bone integrity. In this study we examined CGRP effects on stromal and bone cell differentiation and activity in vitro. CGRP receptors were detected by immunocytochemical staining and real time PCR assays in mouse bone marrow stromal cells (BMSCs) and bone marrow macrophages (BMMs). CGRP effects on BMSC proliferation and osteoblastic differentiation were studied using BrdU incorporation, PCR products, alkaline phosphatase (ALP) activity, and mineralization assays. CGRP effects on BMM osteoclastic differentiation and activity were determined by quantifying tartrate-resistant acid phosphatase positive (TRAP(+)) multinucleated cells, pit erosion area, mRNA levels of TRAP and cathepsin K, and nuclear factor-kappaB (NF-kappaB) nuclear localization. BMSCs, osteoblasts, BMMs, and osteoclasts all expressed CGRP receptors. CGRP (10(-10)-10(-8) M) stimulated BMSC proliferation, up-regulated the expression of osteoblastic genes, and increased ALP activity and mineralization in the BMSCs. In BMM cultures CGRP (10(-8) M) inhibited receptor activator of NF-kappaB ligand (RANKL) activation of NF-kappaB. CGRP also down-regulated osteoclastic genes like TRAP and cathepsin K, decreased the numbers of TRAP(+) cells, and inhibited bone resorption activity in RANKL stimulated BMMs. These results suggest that CGRP signaling maintains bone mass both by directly stimulating stromal cell osteoblastic differentiation and by inhibiting RANKL induced NF-kappaB activation, osteoclastogenesis, and bone resorption.
Collapse
Affiliation(s)
- Liping Wang
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Xiaoyou Shi
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Rong Zhao
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Bernard P. Halloran
- Endocrine Research Unit, Veterans Affairs Medical Center San Francisco, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| | - David J. Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California
| | - Christopher R. Jacobs
- Bone and Joint Rehabilitation R & D Center, Veterans Affairs Palo Alto Health care System, Palo Alto, California
- Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California
| | - Wade S. Kingery
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
47
|
Wang L, Zhao R, Shi X, Wei T, Halloran BP, Clark DJ, Jacobs CR, Kingery WS. Substance P stimulates bone marrow stromal cell osteogenic activity, osteoclast differentiation, and resorption activity in vitro. Bone 2009; 45:309-20. [PMID: 19379851 PMCID: PMC2706279 DOI: 10.1016/j.bone.2009.04.203] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 02/26/2009] [Accepted: 04/10/2009] [Indexed: 12/30/2022]
Abstract
INTRODUCTION SP is a neuropeptide distributed in the sensory nerve fibers that innervate the medullar tissues of bone, as well as the periosteum. Previously we demonstrated that inhibition of neuropeptide signaling after capsaicin treatment resulted in a loss of bone mass and we hypothesized that SP contributes to bone integrity by stimulating osteogenesis. MATERIALS AND METHODS Osteoblast precursors (bone marrow stromal cells, BMSCs) and osteoclast precursors (bone marrow macrophages, BMMs) derived from C57BL/6 mice were cultured. Expression of the SP receptor (NK1) was detected by using immunocytochemical staining and PCR. Effects of SP on proliferation and differentiation of BMSCs were studied by measuring BrdU incorporation, gene expression, alkaline phosphatase activity, and osteocalcin and Runx2 protein levels with EIA and western blot assays, respectively. Effects of SP on BMMs were determined using a BrdU assay, counting multinucleated cells staining positive for tartrate-resistant acid phosphatase (TRAP(+)), measuring pit erosion area, and evaluating RANKL protein production and NF-kappaB activity with ELISA and western blot. RESULTS The NK1 receptor was expressed in both BMSCs and BMMs. SP stimulated the proliferation of BMSCs in a concentration-dependent manner. Low concentrations (10(-12) M) of SP stimulated alkaline phosphatase and osteocalcin expression, increased alkaline phosphatase activity, and up-regulated Runx2 protein levels, and higher concentrations of SP (10(-8) M) enhanced mineralization in differentiated BMSCs. SP also stimulated BMSCs to produce RANKL, but at concentrations too low to evoke osteoclastogenesis in co-culture with macrophages in the presence of SP. SP also activated NF-kappaB in BMMs and directly facilitate RANKL-induced macrophage osteoclastogenesis and bone resorption activity. CONCLUSIONS NK1 receptors are expressed by osteoblast and osteoclast precursors and SP stimulates osteoblast and osteoclast differentiation and function in vitro. SP neurotransmitter release from sensory neurons could potentially regulate local bone turnover in vivo.
Collapse
Affiliation(s)
- Liping Wang
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, California
- Corresponding author: Liping Wang, M.D., Physical Medicine and Rehabilitation Service (117), Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave., Palo Alto, CA 94304, Tel: 650-493-5000 ext 64705 Fax: 650-852-3470
| | - Rong Zhao
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Xiaoyou Shi
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Tzuping Wei
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Bernard P. Halloran
- Endocrine Research Unit, Veterans Affairs Medical Center San Francisco, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| | - David J. Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California
| | - Christopher R. Jacobs
- Bone and Joint Rehabilitation R & D Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California
| | - Wade S. Kingery
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
48
|
Maus U, Andereya S, Gravius S, Siebert CH, Ohnsorge JAK, Niedhart C. Lack of effect on bone healing of injectable BMP-2 augmented hyaluronic acid. Arch Orthop Trauma Surg 2008; 128:1461-6. [PMID: 18330583 DOI: 10.1007/s00402-008-0608-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Autologous bone graft is the gold standard for the filling of large osseous defects. Because of its limited supply and complications such as pain, bleeding or infection, the development of alternative bone substitutes has been the subject of several studies. In clinical practice, the most commonly used bone substitutes are calcium phosphates like hydroxyapatite or tricalcium phosphate. With the aim to improve the osseointegration of these materials, growth factors such as bone morphogenetic protein-2 (BMP-2) have been added. Preferably, an injectable bone substitute should be made available. Hyaluronic acid is a component of the extracellular matrix of many tissues, including bone. We examined the bone regenerative effect of commercially available, injectable hyaluronic acid (Hyalart) with and without addition of bone morphogenetic protein-2 (BMP-2). MATERIALS AND METHODS Trepanation defects of 9.4 mm diameter in the intercondylar groove of sheep femora were filled with pure and augmented (200 microg BMP-2) hyaluronic acid. As controls, empty defects and defects treated with autologous bone graft harvested from the contralateral side were used. After 3 months, the defects were analysed by fluorescence microscopy after intravital fluorescence staining, contact microradiography, histology and histomorphometry. RESULTS Treatment of the defects with loaded and unloaded hyaluronic acid resulted in a significant lack of bone formation inside the defects. Untreated defects showed an amount of 5.1% newly formed bone, and defects treated with autologous bone graft revealed a bone content of 20%. The difference between both groups was statistically significant (P < 0.05). Furthermore, there was neither a remarkable effect in the periphery of the defects nor ectopic bone formation. CONCLUSION The application of the used injectable hyaluronic acid (Hyalart) with and without BMP-2 is not advantageous as sole bone substitute for the filling of osseous defects.
Collapse
Affiliation(s)
- Uwe Maus
- Department of Orthopaedic Surgery, University Hospital of the RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Migliore A, Granata M. Intra-articular use of hyaluronic acid in the treatment of osteoarthritis. Clin Interv Aging 2008; 3:365-9. [PMID: 18686758 PMCID: PMC2546480 DOI: 10.2147/cia.s778] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Osteoarthritis is one of the leading causes of disability in the elderly. The changes in the lubricating properties of synovial fluid lead to significant pain and loss of function. More than ten years have passed from the first studies. Up till now many authors have supported intra-articular hyaluronan (HA) therapy as not only a symptom-modifying therapy but also a treatment which may significantly decrease the rate of deterioration of joint structure. In this review we report data relative to knee and hip treatment. The ongoing studies continue to further our understanding of the fundamental mechanisms that likely underlie the therapeutic benefits of this treatment but, despite recent progress, many unresolved issues require further study. Large scale double blind controlled studies must be carried out to confirm these promising data and produce meaningful guidelines.
Collapse
Affiliation(s)
- Alberto Migliore
- UOS of Rheumatology, S. Pietro Fatebenefratelli Hospital, Rome, Italy.
| | | |
Collapse
|
50
|
Trabecular bone deterioration in col9a1+/- mice associated with enlarged osteoclasts adhered to collagen IX-deficient bone. J Bone Miner Res 2008; 23:837-49. [PMID: 18251701 PMCID: PMC2677084 DOI: 10.1359/jbmr.080214] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Short collagen IX, the exclusive isoform expressed by osteoblasts, is synthesized through alternative transcription of the col9a1 gene. The function of short collagen IX in bone was characterized in col9a1-null mutant mice. MATERIALS AND METHODS Trabecular bone morphometry of lumbar bones and tibias was evaluated by muCT and nondecalcified histology. Osteoblastic and osteoclastic activities were evaluated by PCR- and microarray-based gene expression assays and TRACP-5b and C-terminal telopeptide (CTX) assays, as well as in vitro using bone marrow stromal cells and splenocytes. The effect of col9a1(+/-) mutation on osteoclast morphology was evaluated using RAW264.7-derived osteoclastic cells cultured on the mutant or wildtype calvarial bone substrates. RESULTS Col9a1 knockout mutation caused little effects on the skeletal development; however, young adult female col9a1(-/-) and col9a1(+/-) mice exhibited significant loss of trabecular bone. The trabecular bone architecture was progressively deteriorated in both male and female heterozygous col9a1(+/-) mice while aging. The aged mutant mice also exhibited signs of thoracic kyphosis and weight loss, resembling the clinical signs of osteoporosis. The col9a1(+/-) osteoblasts synthesized short col9a1 transcripts at decreased rates. Whereas bone formation activities in vitro and in vivo were not affected, the mutant osteoblast expressed the elevated ratio of RANKL/osteoprotegerin. Increased serum TRACP-5b and CTX levels were found in col9a1(+/-) mice, whose bone surface was associated with osteoclastic cells that were abnormally flattened and enlarged. The mutant and wildtype splenocytes underwent similar osteoclastogenesis in vitro; however, RAW264.7-derived osteoclastic cells, when cultured on the col9a1(+/-) calvaria, widely spread over the bone surface and formed large resorption pits. The surface of col9a1(+/-) calvaria was found to lack the typical nanotopography. CONCLUSIONS The mineralized bone matrix deficient of short collagen IX may become susceptible to osteoclastic bone resorption, possibly through a novel non-cell-autonomous mechanism. The data suggest the involvement of bone collagen IX in the pathogenesis of osteoporosis.
Collapse
|