1
|
Luo Y, Zheng S, Xiao W, Zhang H, Li Y. Pannexins in the musculoskeletal system: new targets for development and disease progression. Bone Res 2024; 12:26. [PMID: 38705887 PMCID: PMC11070431 DOI: 10.1038/s41413-024-00334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
During cell differentiation, growth, and development, cells can respond to extracellular stimuli through communication channels. Pannexin (Panx) family and connexin (Cx) family are two important types of channel-forming proteins. Panx family contains three members (Panx1-3) and is expressed widely in bone, cartilage and muscle. Although there is no sequence homology between Panx family and Cx family, they exhibit similar configurations and functions. Similar to Cxs, the key roles of Panxs in the maintenance of physiological functions of the musculoskeletal system and disease progression were gradually revealed later. Here, we seek to elucidate the structure of Panxs and their roles in regulating processes such as osteogenesis, chondrogenesis, and muscle growth. We also focus on the comparison between Cx and Panx. As a new key target, Panxs expression imbalance and dysfunction in muscle and the therapeutic potentials of Panxs in joint diseases are also discussed.
Collapse
Affiliation(s)
- Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, 410008, China
| | - Shengyuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, 410008, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hang Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
2
|
Islam P, Ice JA, Alake SE, Adedigba P, Hatter B, Robinson K, Clarke SL, Ford Versypt AN, Ritchey J, Lucas EA, Smith BJ. Fructooligosaccharides act on the gut-bone axis to improve bone independent of Tregs and alter osteocytes in young adult C57BL/6 female mice. JBMR Plus 2024; 8:ziae021. [PMID: 38562914 PMCID: PMC10982850 DOI: 10.1093/jbmrpl/ziae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/15/2023] [Accepted: 01/20/2024] [Indexed: 04/04/2024] Open
Abstract
Targeting the gut-bone axis with probiotics and prebiotics is considered as a promising strategy to reduce the risk of osteoporosis. Gut-derived short chain fatty acids (SCFA) mediate the effects of probiotics on bone via Tregs, but it is not known whether prebiotics act through a similar mechanism. We investigated how 2 different prebiotics, tart cherry (TC) and fructooligosaccharide (FOS), affect bone, and whether Tregs are required for this response. Eight-wk-old C57BL/6 female mice were fed with diets supplemented with 10% w/w TC, FOS, or a control diet (Con; AIN-93M) diet, and they received an isotype control or CD25 Ab to suppress Tregs. The FOS diet increased BMC, density, and trabecular bone volume in the vertebra (~40%) and proximal tibia (~30%) compared to the TC and control diets (Con), irrespective of CD25 treatment. Both prebiotics increased (P < .01) fecal SCFAs, but the response was greater with FOS. To determine how FOS affected bone cells, we examined genes involved in osteoblast and osteoclast differentiation and activity as well as genes expressed by osteocytes. The FOS increased the expression of regulators of osteoblast differentiation (bone morphogenetic protein 2 [Bmp2], Wnt family member 10b [Wnt10b] and Osterix [Osx]) and type 1 collagen). Osteoclasts regulators were unaltered. The FOS also increased the expression of genes associated with osteocytes, including (Phex), matrix extracellular phosphoglycoprotein (Mepe), and dentin matrix acidic phosphoprotein 1 (Dmp-1). However, Sost, the gene that encodes for sclerostin was also increased by FOS as the number and density of osteocytes increased. These findings demonstrate that FOS has a greater effect on the bone mass and structure in young adult female mice than TC and that its influence on osteoblasts and osteocytes is not dependent on Tregs.
Collapse
Affiliation(s)
- Proapa Islam
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK 74078, USA
| | - John A Ice
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sanmi E Alake
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK 74078, USA
| | - Pelumi Adedigba
- Indiana Center for Musculoskeletal Health, Indiana School of Medicine, Indianapolis, IN 46202, USA
| | - Bethany Hatter
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kara Robinson
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK 74078, USA
| | - Stephen L Clarke
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ashlee N Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Jerry Ritchey
- Veterinary Pathobiology Department, Oklahoma State University, Stillwater, OK 74078, USA
| | - Edralin A Lucas
- Nutritional Sciences Department, Oklahoma State University, Stillwater, OK 74078, USA
| | - Brenda J Smith
- Indiana Center for Musculoskeletal Health, Indiana School of Medicine, Indianapolis, IN 46202, USA
- Department of Obstetrics and Gynecology, Indiana School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Bellido T. Bisphosphonates for osteoporosis: from bench to clinic. J Clin Invest 2024; 134:e179942. [PMID: 38488010 PMCID: PMC10940084 DOI: 10.1172/jci179942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024] Open
|
4
|
Fujii Y, Okabe I, Hatori A, Sah SK, Kanaujiya J, Fisher M, Norris R, Terasaki M, Reichenberger EJ, Chen IP. Skeletal abnormalities caused by a Connexin43 R239Q mutation in a mouse model for autosomal recessive craniometaphyseal dysplasia. RESEARCH SQUARE 2024:rs.3.rs-3906170. [PMID: 38405920 PMCID: PMC10889043 DOI: 10.21203/rs.3.rs-3906170/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Craniometaphyseal dysplasia (CMD), a rare craniotubular disorder, occurs in an autosomal dominant (AD) or autosomal recessive (AR) form. CMD is characterized by hyperostosis of craniofacial bones and flaring metaphyses of long bones. Many patients with CMD suffer from neurological symptoms. To date, the pathogenesis of CMD is not fully understood. Treatment is limited to decompression surgery. Here, we report a knock in (KI) mouse model for AR CMD carrying a R239Q mutation in CX43. Cx43KI/KI mice replicate many features of AR CMD in craniofacial and long bones. In contrast to Cx43+/+ littermates, Cx43KI/KI mice exhibit periosteal bone deposition and increased osteoclast (OC) numbers in the endosteum of long bones, leading to an expanded bone marrow cavity and increased cortical bone thickness. Although formation of Cx43+/+ and Cx43KI/KI resting OCs are comparable, on bone chips the actively resorbing Cx43KI/KI OCs resorb less bone. Cortical bones of Cx43KI/KI mice have an increase in degenerating osteocytes and empty lacunae. Osteocyte dendrite formation is decreased with reduced expression levels of Fgf23, Sost, Tnf-α, IL-1β, Esr1, Esr2, and a lower Rankl/Opg ratio. Female Cx43KI/KI mice display a more severe phenotype. Sexual dimorphism in bone becomes more evident as mice age. Our data show that the CX43R239Q mutation results in mislocalization of CX43 protein and impairment of gap junction and hemichannel activity. Different from CX43 ablation mouse models, the CX43R239Q mutation leads to the AR CMD-like phenotype in Cx43KI/KI mice not only by loss-of-function but also via a not yet revealed dominant function.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Iichiro Okabe
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Ayano Hatori
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Shyam Kishor Sah
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Jitendra Kanaujiya
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, United States
| | - Melanie Fisher
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, United States
| | - Rachael Norris
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, United States
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, United States
| | - Ernst J. Reichenberger
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States
| | - I-Ping Chen
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States
| |
Collapse
|
5
|
Zhang Y, Chen Q. Novel insights into osteocyte and inter-organ/tissue crosstalk. Front Endocrinol (Lausanne) 2024; 14:1308408. [PMID: 38685911 PMCID: PMC11057460 DOI: 10.3389/fendo.2023.1308408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/14/2023] [Indexed: 05/02/2024] Open
Abstract
Osteocyte, a cell type living within the mineralized bone matrix and connected to each other by means of numerous dendrites, appears to play a major role in body homeostasis. Benefiting from the maturation of osteocyte extraction and culture technique, many cross-sectional studies have been conducted as a subject of intense research in recent years, illustrating the osteocyte-organ/tissue communication not only mechanically but also biochemically. The present review comprehensively evaluates the new research work on the possible crosstalk between osteocyte and closely situated or remote vital organs/tissues. We aim to bring together recent key advances and discuss the mutual effect of osteocyte and brain, kidney, vascular calcification, muscle, liver, adipose tissue, and tumor metastasis and elucidate the therapeutic potential of osteocyte.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingchang Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
6
|
Ma L, Wang W, Xu G, Li H, Liu F, Shao H, Zhang X, Ma Y, Li G, Li H, Gao S, Ling P. Connexin 43 in the function and homeostasis of osteocytes: a narrative review. ANNALS OF JOINT 2023; 9:10. [PMID: 38529291 PMCID: PMC10929443 DOI: 10.21037/aoj-23-65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/29/2023] [Indexed: 03/27/2024]
Abstract
Background and Objective Connexin 43 (Cx43) is the main gap junction (GJ) protein and hemichannel protein in bone tissue. It is involved in the formation of hemichannels and GJs and establishes channels that can communicate directly to exchange substances and signals, affecting the structure and function of osteocytes. CX43 is very important for the normal development of bone tissue and the establishment and balance of bone reconstruction. However, the molecular mechanisms by which CX43 regulates osteoblast function and homeostasis have been less well studied, and this article provides a review of research in this area. Methods We searched the PubMed, EMBASE, Cochrane Library, and Web of Science databases for studies published up to June 2023 using the keywords Connexin 43/Cx43 and Osteocytes. Screening of literatures according to inclusion and exclusion guidelines and summarized the results. Key Content and Findings Osteocytes, osteoblasts, and osteoclasts all express Cx43 and form an overall network through the interaction between GJs. Cx43 is not only involved in the mechanical response of bone tissue but also in the regulation of signal transduction, which could provide new molecular markers and novel targets for the treatment of certain bone diseases. Conclusions Cx43 is expressed in osteoblasts, osteoclasts, and osteoclasts and plays an important role in regulating the function, signal transduction, and mechanotransduction of osteocytes. This review offers a new contribution to the literature by summarizing the relationship between Cx43, a key protein of bone tissue, and osteoblasts.
Collapse
Affiliation(s)
- Liang Ma
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
- Post-doctoral Station of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenzhao Wang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guixuan Xu
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- Department of Joint Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fei Liu
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Huarong Shao
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Xiuhua Zhang
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Yuxia Ma
- Post-doctoral Station of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gang Li
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Li
- Department of Operating Room, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuzhong Gao
- Post-doctoral Station of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peixue Ling
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| |
Collapse
|
7
|
Plotkin LI, Asad I, Kritikos AE, Sanz N. Role of Cx43 on the Bone Cell Generation, Function, and Survival. Bioelectricity 2023; 5:188-195. [PMID: 37746312 PMCID: PMC10517329 DOI: 10.1089/bioe.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
The presence of gap junction intercellular communication structures in bone cells has been known since the early 1970s, further confirmed by Doty and Marotti at the structural level in the 1980-1990s. Work by Civitelli, Donahue, and others showed the expression of Cx43 at the mRNA and protein levels in all bone cell types: osteoclasts (bone resorbing cells), osteoblasts (bone forming cells), and osteocytes (mature osteoblasts embedded in the bone matrix that regulate the function of both osteoclasts and osteoblasts). While Cx45, Cx46, and Cx37 were also shown to be expressed in bone cells, most studies have focused on Cx43, the most abundant member of the connexin (Cx) family of proteins expressed in bone. The role of Cx43 has been shown to be related to the formation of gap junction intercellular channels, to unopposed hemichannels, and to channel independent functions of the molecule. Cx43 participates in the response of bone cells to pharmacological, hormonal, and mechanical stimuli, and it is involved in the skeletal phenotype with old age. Human and murine studies have shown that mutations of Cx43 lead to oculodentodigital dysplasia and craniometaphyseal dysplasia, both conditions associated with abnormalities in the skeleton. However, whereas substantial advances have been made on the skeletal role of Cx43, further research is needed to understand the basis for the effects of mutated Cx43 and potential ways to prevent the effects of these mutations on bone.
Collapse
Affiliation(s)
- Lilian I. Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA
| | - Iqra Asad
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alex E. Kritikos
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Natasha Sanz
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
8
|
Zhang X, Pu X, Pi C, Xie J. The role of fibroblast growth factor 7 in cartilage development and diseases. Life Sci 2023:121804. [PMID: 37245839 DOI: 10.1016/j.lfs.2023.121804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Fibroblast growth factor 7 (FGF7), also known as keratinocyte growth factor (KGF), shows a crucial biological significance in tissue development, wound repair, tumorigenesis, and immune reconstruction. In the skeletal system, FGF7 directs the cellular synaptic extension of individual cells and facilities functional gap junction intercellular communication of a collective of cells. Moreover, it promotes the osteogenic differentiation of stem cells via a cytoplasmic signaling network. For cartilage, reports have indicated the potential role of FGF7 on the regulation of key molecules Cx43 in cartilage and Runx2 in hypertrophic cartilage. However, the molecular mechanism of FGF7 in chondrocyte behaviors and cartilage pathological process remains largely unknown. In this review, we systematically summarize the recent biological function of FGF7 and its regulatory role on chondrocytes and cartilage diseases, especially through the hot focus of two key molecules, Runx2 and Cx43. The current knowledge of FGF7 on the physiological and pathological processes of chondrocytes and cartilage provides us new cues for wound repair of cartilage defect and therapy of cartilage diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaohua Pu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Shah FA. The many facets of micropetrosis - Magnesium whitlockite deposition in bisphosphonate-exposed human alveolar bone with osteolytic metastasis. Micron 2023; 168:103441. [PMID: 36924676 DOI: 10.1016/j.micron.2023.103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
The lacuno-canalicular space of apoptotic osteocytes eventually becomes mineralised in vivo. This condition is known as micropetrosis and is a fundamental characteristic of ageing bone. Increased prevalence of such hypermineralised osteocyte lacunae is viewed as a structural marker of impaired bone function - both mechanical and biological. Within the lacuno-canalicular space, mineralised apoptotic debris typically occurs as micrometre-sized, spherical nodules of magnesium-rich, carbonated apatite. Moreover, characteristically facetted, rhomboidal nodules of magnesium whitlockite [Mg-whitlockite; Ca18Mg2(HPO4)2(PO4)12] have been reported in human alveolar bone exposed to the bisphosphonate alendronate. This work provides supporting evidence for Mg-whitlockite formation in the alveolar bone of a 70-year-old male exposed to the bisphosphonate zoledronic acid to suppress osteolytic changes in skeletal metastasis. Backscattered electron scanning electron microscopy (BSE-SEM) revealed spherical and rhomboidal nodules within the lacuno-canalicular space. A variant of spherical nodules exhibited a fuzzy surface layer comprising radially extending acicular crystallites. The rhomboidal nodules ranged between ∼200 nm to ∼2.4 µm across the widest dimension (652 ± 331 nm). Micro-Raman spectroscopy and energy dispersive X-ray spectroscopy confirmed that rhomboidal nodules are compositionally distinct from spherical nodules, exhibiting higher Mg content and lower Ca/P ratio. Formation of Mg-whitlockite within osteocyte lacunae is multifactorial in nature and suggests altered bone biomineralisation. Nevertheless, the underlying mechanism(s) and sequence of events remain poorly understood and warrant further investigation. The possibility to discriminate between carbonated apatite and Mg-whitlockite nodules within osteocyte lacunae, based on particle morphology, attests to the diagnostic potential of BSE-SEM with or without additional analyses of material composition.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
10
|
Abstract
Gap junctions, comprising connexin proteins, create conduits directly coupling the cytoplasms of adjacent cells. Expressed in essentially all tissues, dynamic gap junction structures enable the exchange of small molecules including ions and second messengers, and are central to maintenance of homeostasis and synchronized excitability. With such diverse and critical roles throughout the body, it is unsurprising that alterations to gap junction and/or connexin expression and function underlie a broad array of age-related pathologies. From neurological dysfunction to cardiac arrhythmia and bone loss, it is hard to identify a human disease state that does not involve reduced, or in some cases inappropriate, intercellular communication to affect organ function. With a complex life cycle encompassing several key regulatory steps, pathological gap junction remodeling during ageing can arise from alterations in gene expression, translation, intracellular trafficking, and posttranslational modification of connexins. Connexin proteins are now known to "moonlight" and perform a variety of non-junctional functions in the cell, independent of gap junctions. Furthermore, connexin "hemichannels" on the cell surface can communicate with the extracellular space without ever coupling to an adjacent cell to form a gap junction channel. This chapter will focus primarily on gap junctions in ageing, but such non-junctional connexin functions will be referred to where appropriate and the full spectrum of connexin biology should be noted as potentially causative/contributing to some findings in connexin knockout animals, for example.
Collapse
Affiliation(s)
- Michael J Zeitz
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA.,FBRI Center for Vascular and Heart Research, Roanoke, VA, USA
| | - James W Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA. .,FBRI Center for Vascular and Heart Research, Roanoke, VA, USA. .,Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, USA. .,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.
| |
Collapse
|
11
|
Hussain M, Khan F, Al Hadidi S. The use of bone-modifying agents in multiple myeloma. Blood Rev 2023; 57:100999. [PMID: 36050125 DOI: 10.1016/j.blre.2022.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/28/2023]
Abstract
Multiple myeloma is a hematological neoplasm characterized by abnormal proliferation of plasma cells in the bone marrow and is usually associated with increased bone pain and skeletal-related events such as pathological fracture and/or spinal cord compression. Myeloma bone disease results in changes in the bone-marrow microenvironment evidenced by increased osteoclastic activity and/or decreased osteoblastic activity, which negatively affect quality of life. Treatment of myeloma bone disease includes bisphosphonates or denosumab (bone-modifying agents). These agents do not induce the formation of new bone or repair existing bone damage, but they can decrease bone pain and the risk of pathological fracture. While these agents improve quality of life, it is not known whether they improve overall survival. This review focuses on different classes of bone-modifying agents, their mechanisms of action, time of initiation, duration of therapy, and potential survival benefits.
Collapse
Affiliation(s)
- Munawwar Hussain
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Fatima Khan
- Department of Hematology Oncology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Samer Al Hadidi
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America.
| |
Collapse
|
12
|
Miles R, McCadden A, Min K. Proinflammatory reaction to a bisphosphonate infusion in a patient with a reverse shoulder replacement and literature review. BMJ Case Rep 2022; 15:e251524. [PMID: 36223972 PMCID: PMC9562306 DOI: 10.1136/bcr-2022-251524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 11/06/2022] Open
Abstract
Bisphosphonates are the first-line pharmacological treatment for osteoporosis due to their efficacy and low rate of self-limited adverse effects. Challenges in adherence to oral treatment has spurred the development of third-generation bisphosphonates that only require single annual infusion due to high potency and binding efficacy. The authors report the case of a woman in her 70s who presented with postoperative shoulder pain after zoledronic acid infusion. Diagnostic work-up revealed stable prosthesis with no signs of fracture, loosening or infection. Administration of oral steroids resulted in resolution of pain and return to baseline function. Acute postoperative joint pain attributed to bisphosphonate infusion has not been previously described in the literature. This case report and literature review suggests consideration of adverse inflammatory reaction due to bisphosphonate infusion in the setting of a patient presenting with joint replacement and acute exacerbation of pain without clear aetiology.
Collapse
Affiliation(s)
- Rebecca Miles
- F Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Austin McCadden
- Tripler Army Medical Center, Tripler Army Medical Center, Hawaii, USA
| | - Kyong Min
- F Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Tripler Army Medical Center, Tripler Army Medical Center, Hawaii, USA
| |
Collapse
|
13
|
Essex AL, Deosthale P, Huot JR, Davis HM, Momeni N, Bonetto A, Plotkin LI. miR21 deletion in osteocytes has direct and indirect effects on skeletal muscle in a sex-dimorphic manner in mice. Biol Sex Differ 2022; 13:56. [PMID: 36183096 PMCID: PMC9526971 DOI: 10.1186/s13293-022-00465-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background Osteocytic microRNA21 (miR21) removal alters cytokine production and bone mass by modulating osteoclast and osteoblast differentiation and activity. Removing osteocytic miR21 increases osteoclast/osteoblast numbers and bone mass in male mice, whereas it decreases osteoclasts/osteoblasts without affecting bone mass in female mice. On the other hand, it leads to sex-independent increases in bone mechanical properties. Because changes in bone remodeling and strength affect skeletal muscle through bone–muscle crosstalk, we investigated whether osteocytic miR21 deletion influences skeletal muscle. Methods miR21fl/fl mice and 8kbDMP1-Cre mice were mated to obtain miR21-deficient mice primarily in the osteocyte (OtmiR21Δ) and littermate controls (miR21fl/fl). Four-month-old male and female mice were analyzed. Body composition was examined by DXA/Piximus and gene expression was assessed by qPCR. Ex vivo cultures of long bones devoid of bone-marrow cells from male and female 4-month-old were maintained for 48 h. Conditioned media were collected and used for the C2C12 assays. Two-way ANOVA analyses were performed to determine the contributions of genotype and sex and their interaction to the effects of miR21 deficiency. Results Lean body mass was increased only in female OtmiR21Δ mice, although miR21 levels in soleus muscle were similar in miR21fl/fl (0.05 ± 0.02) and OtmiR21Δ (0.09 ± 0.04) mice. Female, but not male, OtmiR21Δ mice exhibited increased soleus (42%) and gastrocnemius (21%) muscle weight compared to miR21fl/fl littermates. However, muscle strength and gastrocnemius muscle fiber cross-sectional area were unaltered for either sex. Kinase phosphorylation (phospho/total protein ratio) in soleus muscle, measured as a surrogate for kinase activity by means of multiplex analysis, was also selectively changed depending on the mouse sex. Thus, female OtmiR21Δ mice had higher T185/Y187-ERK1/2 but lower S473-Akt phosphorylation than miR21fl/fl controls, while male OtmiR21Δ mice had higher S473-Akt phosphorylation, suggesting sex-dimorphic shifts in anabolic vs. catabolic signaling. Consistently, levels of FOXO3 and MuRF-1, known to be regulated by Akt, were only increased in male OtmiR21Δ mice. Atrogin-1 mRNA levels were upregulated in female OtmiR21Δ mice, suggesting a potential shift in protein regulation. Sex-specific effects were also found by exposing myotube cultures to conditioned media from 48-h-cultured marrow-flushed bones. Thus 5-day differentiated C2C12 myotubes treated with conditioned media of female OtmiR21Δ mice exhibit 12% higher average diameter compared to cells exposed to miR21fl/fl bone conditioned media. Yet, conditioned media from male bones had no effect on myotube size. Conclusions We present a novel aspect of bone–muscle crosstalk in which osteocyte-derived miR21 influences skeletal muscle size, but not strength, in female but not male mice; whereas, intracellular signaling alterations resulting from loss of miR21 seem to alter protein dynamics in a sex-dimorphic fashion. Supplementary Information The online version contains supplementary material available at 10.1186/s13293-022-00465-9. Osteocytic microRNA21 (miR21) removal in OtmiR21Δ mice alters cytokine production and bone mass by modulating osteoclast and osteoblast differentiation and activity. Only female, but not male, OtmiR21Δ mice exhibit higher lean body mass and soleus and gastrocnemius muscle weight compared to miR21fl/fl littermates. Sex-dependent consequences of osteocytic miR21 deletion on skeletal muscle were also found at protein and gene expression level. We conclude that osteocyte-derived miR21 influences skeletal muscle size, but not strength, in female but not male mice; whereas, intracellular signaling alterations resulting from loss of miR21 seem to alter protein dynamics in a sex-dimorphic fashion.
Collapse
Affiliation(s)
- Alyson L Essex
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, USA
| | - Padmini Deosthale
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Joshua R Huot
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, USA.,Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hannah M Davis
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Ely Lilly and Company, Indianapolis, IN, USA
| | - Nicholas Momeni
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea Bonetto
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA. .,Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, USA. .,Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA. .,Simon Comprehensive Cancer Center, Indianapolis, IN, USA. .,University of Colorado Anschutz Medical Campus and University of Colorado Comprehensive Cancer Center, Aurora, CO, USA.
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA. .,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA. .,Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
14
|
Condon SB, Veitch M. The Experience of Pregnancy Associated Osteoporosis: An International Survey with Implications for Midwifery Care. Midwifery 2022; 115:103468. [DOI: 10.1016/j.midw.2022.103468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022]
|
15
|
Buettmann EG, Goldscheitter GM, Hoppock GA, Friedman MA, Suva LJ, Donahue HJ. Similarities Between Disuse and Age-Induced Bone Loss. J Bone Miner Res 2022; 37:1417-1434. [PMID: 35773785 PMCID: PMC9378610 DOI: 10.1002/jbmr.4643] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/07/2022]
Abstract
Disuse and aging are known risk factors associated with low bone mass and quality deterioration, resulting in increased fracture risk. Indeed, current and emerging evidence implicate a large number of shared skeletal manifestations between disuse and aging scenarios. This review provides a detailed overview of current preclinical models of musculoskeletal disuse and the clinical scenarios they seek to recapitulate. We also explore and summarize the major similarities between bone loss after extreme disuse and advanced aging at multiple length scales, including at the organ/tissue, cellular, and molecular level. Specifically, shared structural and material alterations of bone loss are presented between disuse and aging, including preferential loss of bone at cancellous sites, cortical thinning, and loss of bone strength due to enhanced fragility. At the cellular level bone loss is accompanied, during disuse and aging, by increased bone resorption, decreased formation, and enhanced adipogenesis due to altered gap junction intercellular communication, WNT/β-catenin and RANKL/OPG signaling. Major differences between extreme short-term disuse and aging are discussed, including anatomical specificity, differences in bone turnover rates, periosteal modeling, and the influence of subject sex and genetic variability. The examination also identifies potential shared mechanisms underlying bone loss in aging and disuse that warrant further study such as collagen cross-linking, advanced glycation end products/receptor for advanced glycation end products (AGE-RAGE) signaling, reactive oxygen species (ROS) and nuclear factor κB (NF-κB) signaling, cellular senescence, and altered lacunar-canalicular connectivity (mechanosensation). Understanding the shared structural alterations, changes in bone cell function, and molecular mechanisms common to both extreme disuse and aging are paramount to discovering therapies to combat both age-related and disuse-induced osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Galen M Goldscheitter
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
16
|
González Macías J, Olmos Martínez JM. Aminobisphosphonates: Reconsideration 25 years after their approval for the treatment of osteoporosis. Med Clin (Barc) 2022; 159:336-343. [PMID: 35738929 DOI: 10.1016/j.medcli.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022]
Abstract
Aminobisphosphonates are widely used in the treatment of osteoporosis. They have a high affinity for hydroxyapatite, binding primarily to resorbing surfaces, but also to forming surfaces and to some extent to resting surfaces. They inhibit osteoclasts, thereby decreasing remodelling units. Consequently, they increase bone mass and reduce stress risers. This decreases the risk of fractures. If this decrease is sufficient, they can be temporarily withdrawn (drug holidays), which prevents serious complications (atypical femoral fracture). They probably reduce mortality. Virtually all patients with osteoporosis can benefit from them at some point in the course of their disease (at the beginning of treatment or after the administration of anabolics, selective estrogen receptor modulators or denosumab). If well tolerated orally, alendronate and risedronate are preferable. Otherwise, zoledronate is preferred. Their efficacy vs. cost-safety-convenience ratio makes aminobisphosphonates reference drugs in the field of osteoporosis.
Collapse
Affiliation(s)
- Jesús González Macías
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, Santander, Cantabria, España.
| | - José Manuel Olmos Martínez
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, Santander, Cantabria, España; Servicio de Medicina Interna, Hospital Marqués de Valdecilla, Santander, Cantabria, España
| |
Collapse
|
17
|
Lu J, Hu D, Ma C, Shuai B. Advances in Our Understanding of the Mechanism of Action of Drugs (including Traditional Chinese Medicines) for the Intervention and Treatment of Osteoporosis. Front Pharmacol 2022; 13:938447. [PMID: 35774616 PMCID: PMC9237325 DOI: 10.3389/fphar.2022.938447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis (OP) is known as a silent disease in which the loss of bone mass and bone density does not cause obvious symptoms, resulting in insufficient treatment and preventive measures. The losses of bone mass and bone density become more severe over time and an only small percentage of patients are diagnosed when OP-related fractures occur. The high disability and mortality rates of OP-related fractures cause great psychological and physical damage and impose a heavy economic burden on individuals and society. Therefore, early intervention and treatment must be emphasized to achieve the overall goal of reducing the fracture risk. Anti-OP drugs are currently divided into three classes: antiresorptive agents, anabolic agents, and drugs with other mechanisms. In this review, research progress related to common anti-OP drugs in these three classes as well as targeted therapies is summarized to help researchers and clinicians understand their mechanisms of action and to promote pharmacological research and novel drug development.
Collapse
|
18
|
Shang N, Bhullar KS, Wu J. Tripeptide IRW Protects MC3T3-E1 Cells against Ang II Stress in an AT2R Dependent Manner. Molecules 2022; 27:molecules27123684. [PMID: 35744810 PMCID: PMC9230126 DOI: 10.3390/molecules27123684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple strategies including the use of bioactive peptides and other nutraceuticals are being adopted to maintain bone health. This study provides an improved and deeper understanding of the pharmacological effects that a bioactive peptide IRW (Ile-Arg-Trp) extends on bone health. Our results showed that IRW treatment protects osteoblasts against Ang II induced decline in cell proliferation and restores protein levels of collagen type I alpha 2 chain (COL1A2) and alkaline phosphatase (ALP) levels in MC3T3-E1 cells (p < 0.05). Apart from augmentation of these mineralization factors, the angiotensin II (Ang II) induced apoptotic stress in osteoblasts was mitigated by IRW as well. At the molecular level, IRW abolished the cytochrome-c release via modulation of pro-and anti-apoptotic genes in MC3T3-E1 cells (p < 0.05). Interestingly, IRW also increased cellular levels of cytoprotective local RAAS factors such as MasR, Ang (1−7), ACE2, and AT2R, and lowered the levels of Ang II effector receptor (AT1R). Further, our results indicated a lower content of inflammation and osteoclastogenesis biomarkers such as cyclooxygenase 2 (COX2), nuclear factor kappa B (NF-κB), and receptor activator of nuclear factor kappa-B ligand (RANKL) following IRW treatment in MC3T3-E1 cells (p < 0.05). The use of an antagonist-guided cell study indicated that IRW contributed to the process of cytoprotection and proliferation of osteoblasts via Runt-related transcription factor 2 (RUNX2) in face of Ang II stress in an AT2R dependent manner. The key findings of our study showed that IRW could potentially have a therapeutic role in the treatment and/or prevention of bone disorders.
Collapse
Affiliation(s)
- Nan Shang
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada; (N.S.); (K.S.B.)
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Khushwant S. Bhullar
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada; (N.S.); (K.S.B.)
| | - Jianping Wu
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada; (N.S.); (K.S.B.)
- Correspondence: ; Tel.: +1-780-492-6885; Fax: +1-780-492-8524
| |
Collapse
|
19
|
Hua R, Gu S, Jiang JX. Connexin 43 Hemichannels Regulate Osteoblast to Osteocyte Differentiation. Front Cell Dev Biol 2022; 10:892229. [PMID: 35693933 PMCID: PMC9184820 DOI: 10.3389/fcell.2022.892229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Connexin 43 (Cx43) is the predominant connexin subtype expressed in osteocytes. Osteocytes, accounting for 90%–95% of total bone cells, function as orchestrators coordinating balanced activity between bone-resorbing osteoclasts and bone-forming osteoblasts. In this study, two newly developed osteocytic cell lines, OCY454 and IDG-SW3, were used to determine the role of Cx43 gap junctions and hemichannels (HCs) in the regulation of osteoblast to osteocyte differentiation. We found that the Cx43 level was substantially increased during the differentiation of IDG-SW3 cells and is also much higher than that of OCY454 cells. We knocked down Cx43 expression using the lentiviral CRISPR/Cas9 approach and inhibition of Cx43 HCs using Cx43 (E2) antibody in IDG-SW3 cells. Cx43 knockdown (KD) or Cx43 HC inhibition decreased gene expression for osteoblast and osteocyte markers, including alkaline phosphatase, type I collagen, dentin matrix protein 1, sclerostin, and fibroblast growth factor 23, whereas increasing the osteoclastogenesis indicator and the receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio at early and late differentiation stages. Moreover, mineralization was remarkably attenuated in differentiated Cx43-deficient IDG-SW3 cells compared to ROSA26 control. The conditioned medium collected from fully differentiated IDG-SW3 cells with Cx43 KD promoted osteoclastogenesis of RAW264.7 osteoclast precursors. Our results demonstrated that Cx43 HCs play critical roles in osteoblast to osteocyte differentiation process and regulate osteoclast differentiation via secreted factors.
Collapse
|
20
|
An S, Zheng S, Cai Z, Chen S, Wang C, Li Y, Deng Z. Connexin43 in Musculoskeletal System: New Targets for Development and Disease Progression. Aging Dis 2022; 13:1715-1732. [DOI: 10.14336/ad.2022.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
|
21
|
Larrañaga-Vera A, Marco-Bonilla M, Largo R, Herrero-Beaumont G, Mediero A, Cronstein B. ATP transporters in the joints. Purinergic Signal 2021; 17:591-605. [PMID: 34392490 PMCID: PMC8677878 DOI: 10.1007/s11302-021-09810-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Extracellular adenosine triphosphate (ATP) plays a central role in a wide variety of joint diseases. ATP is generated intracellularly, and the concentration of the extracellular ATP pool is determined by the regulation of its transport out of the cell. A variety of ATP transporters have been described, with connexins and pannexins the most commonly cited. Both form intercellular channels, known as gap junctions, that facilitate the transport of various small molecules between cells and mediate cell-cell communication. Connexins and pannexins also form pores, or hemichannels, that are permeable to certain molecules, including ATP. All joint tissues express one or more connexins and pannexins, and their expression is altered in some pathological conditions, such as osteoarthritis (OA) and rheumatoid arthritis (RA), indicating that they may be involved in the onset and progression of these pathologies. The aging of the global population, along with increases in the prevalence of obesity and metabolic dysfunction, is associated with a rising frequency of joint diseases along with the increased costs and burden of related illness. The modulation of connexins and pannexins represents an attractive therapeutic target in joint disease, but their complex regulation, their combination of gap-junction-dependent and -independent functions, and their interplay between gap junction and hemichannel formation are not yet fully elucidated. In this review, we try to shed light on the regulation of these proteins and their roles in ATP transport to the extracellular space in the context of joint disease, and specifically OA and RA.
Collapse
Affiliation(s)
- Ane Larrañaga-Vera
- Department of Medicine, Division of Translational Medicine, NYU Langone Health, New York, NY, USA
| | - Miguel Marco-Bonilla
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, 28040, Madrid, Spain
| | - Raquel Largo
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, 28040, Madrid, Spain
| | | | - Aránzazu Mediero
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, 28040, Madrid, Spain.
| | - Bruce Cronstein
- Department of Medicine, Division of Translational Medicine, NYU Langone Health, New York, NY, USA
| |
Collapse
|
22
|
Abstract
MicroRNAs, identified in the early 1990s, are believed to regulate approximately 30% of the human genome. The role of microRNA in bone cells was first reported in 2007 in a manuscript showing that microRNA-223 is essential for osteoclast differentiation in vitro, and a few studies reported a role of microRNAs in osteoblasts the same year. The first report of microRNA actions in osteocytes was published in 2010, in which it was demonstrated that the microRNA cluster 23a~27a~24-2 regulates osteocyte differentiation. Since then, few studies have described the role of these 18-25-nucleotide non-coding RNAs on osteocyte biology, reporting osteocytes both as producers and as targets of the actions of microRNAs. We review here the current knowledge on the effects of microRNAs on osteocyte biology.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, USA; Indiana Center for Musculoskeletal Health, USA.
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
23
|
Hua R, Zhang J, Riquelme MA, Jiang JX. Connexin Gap Junctions and Hemichannels Link Oxidative Stress to Skeletal Physiology and Pathology. Curr Osteoporos Rep 2021; 19:66-74. [PMID: 33403446 PMCID: PMC8174533 DOI: 10.1007/s11914-020-00645-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The goal of this review is to provide an overview of the impact and underlying mechanism of oxidative stress on connexin channel function, and their roles in skeletal aging, estrogen deficiency, and glucocorticoid excess associated bone loss. RECENT FINDINGS Connexin hemichannel opening is increased under oxidative stress conditions, which confers a cell protective role against oxidative stress-induced cell death. Oxidative stress acts as a key contributor to aging, estrogen deficiency, and glucocorticoid excess-induced osteoporosis and impairs osteocytic network and connexin gap junction communication. This paper reviews the current knowledge for the role of oxidative stress and connexin channels in the pathogenesis of osteoporosis and physiological and pathological responses of connexin channels to oxidative stress. Oxidative stress decreases osteocyte viability and impairs the balance of anabolic and catabolic responses. Connexin 43 (Cx43) channels play a critical role in bone remodeling, mechanotransduction, and survival of osteocytes. Under oxidative stress conditions, there is a consistent reduction of Cx43 expression, while the opening of Cx43 hemichannels protects osteocytes against cell injury caused by oxidative stress.
Collapse
Affiliation(s)
- Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jingruo Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
24
|
Hildebrand S, Cunningham J. Is there a role for bisphosphonates in vascular calcification in chronic kidney disease? Bone 2021; 142:115751. [PMID: 33188959 DOI: 10.1016/j.bone.2020.115751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 01/15/2023]
Abstract
Theoretically bisphosphonates could accelerate or retard vascular calcification. In subjects with low GFR, the position is further confounded by a combination of uncertain pharmacokinetics (GI absorption is poor and inconsistent at all levels of renal function and the effect of low GFR generally is to increase bioavailability) and a highly variable skeletal substrate with extremes of turnover that increase unpredictably further. Although bisphosphonates reduce bone formation by 70-90% in subjects with normal GFR and reduce the ability of bone to buffer exogenous calcium fluxes, in bisphosphonate treated postmenopausal women accelerated vascular calcification has not been documented. The kidneys assist with this buffering, but the capacity to modulate calcium excretion declines as GFR falls, increasing the risk of hypercalcaemia in the event of high calcium influx. In the ESRD patient, decreased buffering capacity substantially increases the risk of transient hypercalcaemia, especially in the setting of dialysis, and as such may promote vascular calcification which is highly prevalent in the CKD population. Low bone turnover may thus be less of a vascular problem in patients with preserved renal function and a bigger problem when the GFR is low. In patients with stage 4 and 5 CKD, adynamic bone disease associates with the severity and progression of arterial calcification, including coronary artery calcification, and further suppression of bone turnover by a bisphosphonate might exacerbate an already high predisposition to vascular calcification. No convincing signal of harm has emerged from clinical studies thus far. For example 51 individuals with CKD stage 3-4 treated with either alendronate 70 mg per week or placebo for 18 months showed no difference in the rate of vascular calcifications. Conversely an observational study of women with stage 3-4 CKD with pre-existing cardiovascular disease found an increased risk of mortality with a hazard ratio of 1.22 (1.04-1.42) in those given bisphosphonates. Direct suppression of vascular calcification by bisphosphonates is probably confined to etidronate - treatment of soft tissue calcification was a recognized indication for this drug and etidronate markedly reduced progression of vascular calcification in CKD patients. Bisphosphonates are analogues of pyrophosphate, a potent calcification inhibitor in bone and soft tissue. Thus the efficacy of etidronate as treatment for soft tissue calcification brought with it a problematic tendency to cause osteomalacia. In contrast, conventional doses of nitrogen-containing bisphosphonates fail to yield circulating concentrations sufficient to exert direct anti-calcifying effects, at least in patients with good renal function and studies using alendronate and ibandronate have yielded inconsistent vascular outcomes.
Collapse
Affiliation(s)
- S Hildebrand
- Centre for Nephrology, Royal Free Hospital, London, UK.
| | - J Cunningham
- Centre for Nephrology, Royal Free Hospital, London, UK
| |
Collapse
|
25
|
Basudan AM, Shaheen MY, Niazy AA, van den Beucken JJJP, Jansen JA, Alghamdi HS. Histomorphometric Evaluation of Peri-Implant Bone Response to Intravenous Administration of Zoledronate (Zometa ®) in an Osteoporotic Rat Model. MATERIALS (BASEL, SWITZERLAND) 2020; 13:ma13225248. [PMID: 33233722 PMCID: PMC7699926 DOI: 10.3390/ma13225248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
We evaluated the response to peri-implant bone placed in the femoral condyle of osteoporotic rats, following intravenous zoledronate (ZOL) treatment in three settings: pre-implantation (ZOL-Pre), post-implantation (ZOL-Post), and pre- + post-implantation (ZOL-Pre+Post). Twenty-four female Wistar rats were ovariectomized (OVX). After 12 weeks, the rats received titanium implants in the right femoral condyle. ZOL (0.04 mg/kg, weekly) was administered to six rats 4 weeks pre-implantation and was stopped at implant placement. To another six rats, ZOL was given post-implantation and continued for 6 weeks. Additional six rats received ZOL treatment pre- and post-implantation. Control animals received weekly saline intravenous injections. At 6 weeks post-implantation, samples were retrieved for histological evaluation of the percentage of bone area (%BA) and of the percentage of bone-to-implant contact (%BIC). BA% for ZOL-Pre (29.6% ± 9.0%) and ZOL-Post (27.9% ± 5.6%) rats were significantly increased compared to that of the controls (17.3% ± 3.9%, p < 0.05). In contrast, ZOL-Pre+Post rats (20.4% ± 5.0%) showed similar BA% compared to Saline controls (p = 0.731). BIC% revealed a significant increase for ZOL-Post (65.8% ± 16.9%) and ZOL-Pre+Post (68.3% ± 10.0%) rats compared with that of Saline controls (43.3% ± 9.6%, p < 0.05), while ZOL-Pre rats (55.6% ± 19%) showed a BIC% comparable to that of Saline controls (p = 0.408). Our results suggest that receiving intravenous ZOL treatment before or after implant placement enhances peri-implant bone responses in terms of bone area. However, the effect of different ZOL treatment regimens on BIC% was found to be inconclusive.
Collapse
Affiliation(s)
- Amani M. Basudan
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.B.); (M.Y.S.)
| | - Marwa Y. Shaheen
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.B.); (M.Y.S.)
| | - Abdurahman A. Niazy
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia;
| | | | - John A. Jansen
- Department of Dentistry-Biomaterials, Radboudumc, 6500HB Nijmegen, The Netherlands; (J.J.J.P.v.d.B.); (J.A.J.)
| | - Hamdan S. Alghamdi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.B.); (M.Y.S.)
| |
Collapse
|
26
|
Wang Z, Weng Y, Ishihara Y, Odagaki N, Ei Hsu Hlaing E, Izawa T, Okamura H, Kamioka H. Loading history changes the morphology and compressive force-induced expression of receptor activator of nuclear factor kappa B ligand/osteoprotegerin in MLO-Y4 osteocytes. PeerJ 2020; 8:e10244. [PMID: 33240612 PMCID: PMC7659647 DOI: 10.7717/peerj.10244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In this study, we investigated the effect of the mechanical loading history on the expression of receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) in MLO-Y4 osteocyte-like cells. METHODS Three hours after MLO-Y4 osteocytes were seeded, a continuous compressive force (CCF) of 31 dynes/cm2 with or without additional CCF (32 dynes/cm2) was loaded onto the osteocytes. After 36 h, the additional CCF (loading history) was removed for a recovery period of 10 h. The expression of RANKL, OPG, RANKL/OPG ratio, cell numbers, viability and morphology were time-dependently examined at 0, 3, 6 and 10 h. Then, the same additional CCF was applied again for 1 h to all osteocytes with or without the gap junction inhibitor to examine the expression of RANKL, OPG, the RANKL/OPG ratio and other genes that essential to characterize the phenotype of MLO-Y4 cells. Fluorescence recovery after photobleaching technique was also applied to test the differences of gap-junctional intercellular communications (GJIC) among MLO-Y4 cells. RESULTS The expression of RANKL and OPG by MLO-Y4 osteocytes without a loading history was dramatically decreased and increased, respectively, in response to the 1-h loading of additional weight. However, the expression of RANKL, OPG and the RANKL/OPG ratio were maintained at the same level as in the control group in the MLO-Y4 osteocytes with a loading history but without gap junction inhibitor treatment. Treatment of loading history significantly changed the capacity of GJIC and protein expression of connexin 43 (Cx43) but not the mRNA expression of Cx43. No significant difference was observed in the cell number or viability between the MLO-Y4 osteocyte-like cells with and without a loading history or among different time checkpoints during the recovery period. The cell morphology showed significant changes and was correlated with the expression of OPG, Gja1 and Dmp1 during the recovery period. CONCLUSION Our findings indicated that the compressive force-induced changes in the RANKL/OPG expression could be habituated within at least 11 h by 36-h CCF exposure. GJIC and cell morphology may play roles in response to loading history in MLO-Y4 osteocyte-like cells.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yao Weng
- Department of Oral Morphology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshihito Ishihara
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Naoya Odagaki
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ei Ei Hsu Hlaing
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takashi Izawa
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hirohiko Okamura
- Department of Oral Morphology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
27
|
Rogers MJ, Mönkkönen J, Munoz MA. Molecular mechanisms of action of bisphosphonates and new insights into their effects outside the skeleton. Bone 2020; 139:115493. [PMID: 32569873 DOI: 10.1016/j.bone.2020.115493] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/09/2020] [Accepted: 06/11/2020] [Indexed: 12/27/2022]
Abstract
Bisphosphonates (BP) are a class of calcium-binding drug used to prevent bone resorption in skeletal disorders such as osteoporosis and metastatic bone disease. They act by selectively targeting bone-resorbing osteoclasts and can be grouped into two classes depending on their intracellular mechanisms of action. Simple BPs cause osteoclast apoptosis after cytoplasmic conversion into toxic ATP analogues. In contrast, nitrogen-containing BPs potently inhibit FPP synthase, an enzyme of the mevalonate (cholesterol biosynthesis) pathway. This results in production of a toxic metabolite (ApppI) and the loss of long-chain isoprenoid lipids required for protein prenylation, a process necessary for the function of small GTPase proteins essential for the survival and activity of osteoclasts. In this review we provide a state-of-the-art overview of these mechanisms of action and a historical perspective of how they were discovered. Finally, we challenge the long-held dogma that BPs act only in the skeleton and highlight recent studies that reveal insights into hitherto unknown effects on tumour-associated and tissue-resident macrophages.
Collapse
Affiliation(s)
- Michael J Rogers
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, UNSW Sydney, Australia.
| | - Jukka Mönkkönen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Finland.
| | - Marcia A Munoz
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, UNSW Sydney, Australia.
| |
Collapse
|
28
|
Plotkin LI, Buvinic S, Balanta-Melo J. In vitro and in vivo studies using non-traditional bisphosphonates. Bone 2020; 134:115301. [PMID: 32112989 PMCID: PMC7138726 DOI: 10.1016/j.bone.2020.115301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/06/2020] [Accepted: 02/22/2020] [Indexed: 01/26/2023]
Abstract
Non-traditional bisphosphonates, that is, bisphosphonates that do not inhibit osteoclast viability or function, were initially reported in the 1990s by Socrates Papapoulos' group. Originally designed to study the role of the R1 residue of aminobisphosphonates on bisphosphonate affinity for hydroxyapatite, these modified bisphosphonates retained similar affinity for mineralized bone as their parent compounds, but they lacked the potential to inhibit the mevalonate pathway or bone resorption. We found that, similar to classical bisphosphonates, these non-traditional compounds prevented osteoblast and osteocyte apoptosis in vitro through a pathway that requires the expression of the gap junction protein connexin 43, and the activation of the Src/MEK/ERK signaling pathway. Furthermore, one of those compounds named IG9402 (also known as amino-olpadronate or lidadronate), was able to inhibit osteoblast and osteocyte apoptosis, without affecting osteoclast number or bone resorption in vivo in a model of glucocorticoid-induced osteoporosis. IG9402 administration also ameliorated the decrease in bone mass and in bone mechanical properties induced by glucocorticoids. Similarly, IG9402 prevented apoptosis of osteoblastic cells in a model of immobilization due to hindlimb unloading. However, in this case, the bisphosphonate was not able to preserve the bone mass, and only partially prevented the decrease in bone mechanical properties induced by immobilization. The effect of IG9402 administration was also tested in a mouse model of masticatory hypofunction through the induction of masseter muscle atrophy by unilateral injection of botulinum toxin type A (BoNTA). IG9402 partially inhibited the loss of trabecular bone microstructure in the mandibular condyle, but not the decrease in masseter muscle mass induced by BoNTA administration. In summary, these non-traditional bisphosphonates that lack anti-resorptive activity but are able to preserve osteoblast and osteocyte viability could constitute useful tools to study the consequences of preventing apoptosis of osteoblastic cells in animal models. Furthermore, they could be used to treat conditions associated with reduced bone mass and increased bone fragility in which a reduction of bone remodeling is not desirable.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States of America.
| | - Sonja Buvinic
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Center for Exercise, Metabolism and Cancer CEMC2016, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Julián Balanta-Melo
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile; School of Dentistry, Universidad del Valle, Cali, Colombia; Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
29
|
Milovanovic P, Busse B. Phenomenon of osteocyte lacunar mineralization: indicator of former osteocyte death and a novel marker of impaired bone quality? Endocr Connect 2020; 9:R70-R80. [PMID: 32168472 PMCID: PMC7159263 DOI: 10.1530/ec-19-0531] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 11/09/2022]
Abstract
An increasing number of patients worldwide suffer from bone fractures that occur after low intensity trauma. Such fragility fractures are usually associated with advanced age and osteoporosis but also with long-term immobilization, corticosteroid therapy, diabetes mellitus, and other endocrine disorders. It is important to understand the skeletal origins of increased bone fragility in these conditions for preventive and therapeutic strategies to combat one of the most common health problems of the aged population. This review summarizes current knowledge pertaining to the phenomenon of micropetrosis (osteocyte lacunar mineralization). As an indicator of former osteocyte death, micropetrosis is more common in aged bone and osteoporotic bone. Considering that the number of mineralized osteocyte lacunae per bone area can distinguish healthy, untreated osteoporotic and bisphosphonate-treated osteoporotic patients, it could be regarded as a novel structural marker of impaired bone quality. Further research is needed to clarify the mechanism of lacunar mineralization and to explore whether it could be an additional target for preventing or treating bone fragility related to aging and various endocrine diseases.
Collapse
Affiliation(s)
- Petar Milovanovic
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Correspondence should be addressed to B Busse:
| |
Collapse
|
30
|
Davis HM, Deosthale PJ, Pacheco-Costa R, Essex AL, Atkinson EG, Aref MW, Dilley JE, Bellido T, Ivan M, Allen M, Plotkin LI. Osteocytic miR21 deficiency improves bone strength independent of sex despite having sex divergent effects on osteocyte viability and bone turnover. FEBS J 2020; 287:941-963. [PMID: 31532878 PMCID: PMC7396683 DOI: 10.1111/febs.15066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/30/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022]
Abstract
Osteocytes play a critical role in mediating cell-cell communication and regulating bone homeostasis, and osteocyte apoptosis is associated with increased bone resorption. miR21, an oncogenic microRNA, regulates bone metabolism by acting directly on osteoblasts and osteoclasts, but its role in osteocytes is not clear. Here, we show that osteocytic miR21 deletion has sex-divergent effects in bone. In females, miR21 deletion reduces osteocyte viability, but suppresses bone turnover. Conversely, in males, miR21 deletion increases osteocyte viability, but stimulates bone turnover and enhances bone structure. Further, miR21 deletion differentially alters osteocyte cytokine production in the two sexes. Interestingly, despite these changes, miR21 deletion increases bone mechanical properties in both sexes, albeit to a greater extent in males. Collectively, our findings suggest that miR21 exerts both sex-divergent and sex-equivalent roles in osteocytes, regulating osteocyte viability and altering bone metabolism through paracrine actions on osteoblasts and osteoclasts differentially in males vs females, whereas, influencing bone mechanical properties independent of sex.
Collapse
Affiliation(s)
- Hannah M. Davis
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
| | | | | | - Alyson L. Essex
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
| | - Emily G. Atkinson
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
| | - Mohammad W. Aref
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
| | - Julian E. Dilley
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
| | - Teresita Bellido
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
- Division of Endocrinology Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
| | - Mircea Ivan
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Matthew Allen
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
| | - Lilian I. Plotkin
- Department of Anatomy & Cell Biology, Indianapolis, IN, 46202, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, 46202, USA
- Center for Musculoskeletal Health, Indianapolis, IN, 46202, USA
| |
Collapse
|
31
|
Hardy E, Fernandez-Patron C. Destroy to Rebuild: The Connection Between Bone Tissue Remodeling and Matrix Metalloproteinases. Front Physiol 2020; 11:47. [PMID: 32116759 PMCID: PMC7013034 DOI: 10.3389/fphys.2020.00047] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Bone is a dynamic organ that undergoes constant remodeling, an energetically costly process by which old bone is replaced and localized bone defects are repaired to renew the skeleton over time, thereby maintaining skeletal health. This review provides a general overview of bone’s main players (bone lining cells, osteocytes, osteoclasts, reversal cells, and osteoblasts) that participate in bone remodeling. Placing emphasis on the family of extracellular matrix metalloproteinases (MMPs), we describe how: (i) Convergence of multiple protease families (including MMPs and cysteine proteinases) ensures complexity and robustness of the bone remodeling process, (ii) Enzymatic activity of MMPs affects bone physiology at the molecular and cellular levels and (iii) Either overexpression or deficiency/insufficiency of individual MMPs impairs healthy bone remodeling and systemic metabolism. Today, it is generally accepted that proteolytic activity is required for the degradation of bone tissue in osteoarthritis and osteoporosis. However, it is increasingly evident that inactivating mutations in MMP genes can also lead to bone pathology including osteolysis and metabolic abnormalities such as delayed growth. We argue that there remains a need to rethink the role played by proteases in bone physiology and pathology.
Collapse
Affiliation(s)
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Osteocytes are responsible for mechanosensing and mechanotransduction in bone and play a crucial role in bone homeostasis. They are embedded in a calcified collagenous matrix and connected with each other through the lacuno-canalicular network. Due to this specific native environment, it is a challenge to isolate primary osteocytes without losing their specific characteristics in vitro. This review summarizes the commonly used and recently established models to study the function of osteocytes in vitro. RECENT FINDINGS Osteocytes are mostly studied in monolayer culture, but recently, 3D models of osteocyte-like cells and primary osteocytes in vitro have been established as well. These models mimic the native environment of osteocytes and show superior osteocyte morphology and behavior, enabling the development of human disease models. Osteocyte-like cell lines as well as primary osteocytes isolated from bone are widely used to study the role of osteocytes in bone homeostasis. Both cells lines and primary cells are cultured in 2D-monolayer and 3D-models. The use of these models and their advantages and shortcomings are discussed in this review.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Oral Cell Biology, Amsterdam Movement Sciences, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Amsterdam Movement Sciences, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Amsterdam Movement Sciences, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Department of Internal Medicine, Division of Endocrinology and Center for Bone Quality, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
33
|
Connexin43 enhances Wnt and PGE2-dependent activation of β-catenin in osteoblasts. Pflugers Arch 2019; 471:1235-1243. [PMID: 31240382 DOI: 10.1007/s00424-019-02295-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/06/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
Connexin43 is an important modulator of many signaling pathways in bone. β-Catenin, a key regulator of the osteoblast differentiation and function, is among the pathways downstream of connexin43-dependent intercellular communication. There are striking overlaps between the functions of these two proteins in bone cells. However, differential effects of connexin43 on β-catenin activity have been reported. Here, we examined how connexin43 influenced both Wnt-dependent and Wnt-independent activation of β-catenin in osteoblasts in vitro. Our data show that loss of connexin43 in primary osteoblasts or connexin43 overexpression in UMR106 cells regulated active β-catenin and phospho-Akt levels, with loss of connexin43 inhibiting and connexin43 overexpression increasing the levels of active β-catenin and phospho-Akt. Increasing connexin43 expression synergistically enhanced Wnt3a-dependent activation of β-catenin protein and β-catenin transcriptional activity, as well as Wnt-independent activation of β-catenin by prostaglandin E2 (PGE2). Finally, we show that the activation of β-catenin by PGE2 required signaling through the phosphatidylinositol 3-kinase (PI3K)/Akt/glycogen synthase kinase 3 beta (GSK3β) pathway, as the PI3K inhibitor, LY-294002, disrupted the synergy between connexin43 and PGE2. These data show that connexin43 regulates Akt and β-catenin activity and synergistically enhances both Wnt-dependent and Wnt-independent β-catenin signaling in osteoblasts.
Collapse
|
34
|
Positive impact of Platelet-rich plasma and Platelet-rich fibrin on viability, migration and proliferation of osteoblasts and fibroblasts treated with zoledronic acid. Sci Rep 2019; 9:8310. [PMID: 31165745 PMCID: PMC6549154 DOI: 10.1038/s41598-019-43798-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/30/2019] [Indexed: 02/08/2023] Open
Abstract
Bisphosphonates are frequently used for the antiresorptive treatment in bone metastasis diseases or for osteoporosis. A side effect of this therapy is osteonecrosis of the jaw. This inhibits osteoclast function, but osteoblasts and fibroblasts are also negatively affected in terms of impaired proliferation. Additive local treatment with platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) promotes adhesion, proliferation and migration of cells due to high concentrations of growth factors like PDGF, TGF and IGF. The aim of the study was to investigate the effect of PRP or PRF on proliferation, migration and viability of osteoblasts and oral fibroblasts, treated with zoledronic acid (ZA). ZA treated fibroblasts and osteoblasts were exposed to PRP/PRF. Cell proliferation, migration and viability were measured using the real-time cell-analyzer assay (RTCA), the scratch assay and the MTT assay. There was a significant increase in closure of the scratch area by PRP/PRF treated osteoblasts (PRP = 40.6%, PRF = 100.0%, NC = 0.0%) as well as fibroblasts (PRP = 100.0%, PRF = 100.0%, NC = 12.7%) in comparison to the group of negative control (all p ≤ 0.05). Furthermore, the negative effect of ZA on cell migration was generally reduced in both cell lines using PRP/PRF. The viability and proliferation of cells decreased after exposure to ZA, whereas we observed an enhancement of cell viability within 24 hours by application of PRP/PRF in ZA treated cells. The negative effect of ZA on cell proliferation was especially reduced when using PRF. The use of PRF/PRP improves the behavior of ZA-treated cells, but PRF appears to have an advantage in comparison to PRP. This study demonstrates that treatment with PRF/PRP may have positive effects in the therapy of Bisphosphonate-Related Osteonecrosis of the Jaw (BRONJ).
Collapse
|
35
|
Davis HM, Valdez S, Gomez L, Malicky P, White FA, Subler MA, Windle JJ, Bidwell JP, Bruzzaniti A, Plotkin LI. High mobility group box 1 protein regulates osteoclastogenesis through direct actions on osteocytes and osteoclasts in vitro. J Cell Biochem 2019; 120:16741-16749. [PMID: 31106449 DOI: 10.1002/jcb.28932] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/24/2019] [Indexed: 12/30/2022]
Abstract
Old age and Cx43 deletion in osteocytes are associated with increased osteocyte apoptosis and osteoclastogenesis. We previously demonstrated that apoptotic osteocytes release elevated concentrations of the proinflammatory cytokine, high mobility group box 1 protein (HMGB1) and apoptotic osteocyte conditioned media (CM) promotes osteoclast differentiation. Further, prevention of osteocyte apoptosis blocks osteoclast differentiation and attenuates the extracellular release of HMGB1 and RANKL. Moreover, sequestration of HMGB1, in turn, reduces RANKL production/release by MLO-Y4 osteocytic cells silenced for Cx43 (Cx43def ), highlighting the possibility that HMGB1 promotes apoptotic osteocyte-induced osteoclastogenesis. However, the role of HMGB1 signaling in osteocytes has not been well studied. Further, the mechanisms underlying its release and the receptor(s) responsible for its actions is not clear. We now report that a neutralizing HMGB1 antibody reduces osteoclast formation in RANKL/M-CSF treated bone marrow cells. In bone marrow macrophages (BMMs), toll-like receptor 4 (TLR4) inhibition with LPS-RS, but not receptor for advanced glycation end products (RAGE) inhibition with Azeliragon attenuated osteoclast differentiation. Further, inhibition of RAGE but not of TLR4 in osteoclast precursors reduced osteoclast number, suggesting that HGMB1 produced by osteoclasts directly affects differentiation by activating TLR4 in BMMs and RAGE in preosteoclasts. Our findings also suggest that increased osteoclastogenesis induced by apoptotic osteocytes CM is not mediated through HMGB1/RAGE activation and that direct HMGB1 actions in osteocytes stimulate pro-osteoclastogenic signal release from Cx43def osteocytes. Based on these findings, we propose that HMGB1 exerts dual effects on osteoclasts, directly by inducing differentiation through TLR4 and RAGE activation and indirectly by increasing pro-osteoclastogenic cytokine secretion from osteocytes.
Collapse
Affiliation(s)
- Hannah M Davis
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana
| | - Sinai Valdez
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Leland Gomez
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Peter Malicky
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Fletcher A White
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana.,Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana.,Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Joseph P Bidwell
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana
| | - Angela Bruzzaniti
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana.,Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Lilian I Plotkin
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana.,Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| |
Collapse
|
36
|
Affiliation(s)
- Sarah A. Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
37
|
Tellios N, Feng M, Chen N, Liu H, Tellios V, Wang M, Li X, Chang CA, Hutnik C. Mechanical stretch upregulates connexin43 in human trabecular meshwork cells. Clin Exp Ophthalmol 2019; 47:787-794. [PMID: 30816600 DOI: 10.1111/ceo.13492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Primary open angle glaucoma (POAG) patients have hallmark increases in intraocular pressure (IOP) and noted dysfunction of the trabecular meshwork (TM). Connexin43 (Cx43) is a gap junction widely expressed on the TM that is important for intercellular communication. The human gene is known as gap junction alpha-1 (GJA1). Since the role of Cx43 in the TM is not fully understood, we set out to determine the effect of excess mechanical stretch on cultured human trabecular meshwork cells (hTMCs) and to specifically investigate the effect of stretch on Cx43 expression and function. METHODS Primary hTMCs were cultured and subjected to 48 hours of 15% cyclic mechanical stretch at a frequency of 1 Hz. Levels of apoptosis and necrosis secondary to stretch were investigated using colorimetric assays. The effect of stretch on gap junction Cx43 and GJA1 was investigated by RT-PCR, immunoblotting and immunofluorescence. The migration of Lucifer Yellow dye was used to assess intercellular communication. RESULTS Stretch significantly increased the rates of apoptosis and necrosis in hTMCs. The increased rate of injury in stretched hTMCs was further associated with significant upregulation of GJA1 mRNA and Cx43 protein. Upregulation of Cx43 protein was concomitant to increased intercellular communication. CONCLUSIONS We have shown stretch to increase GJA1 gene and Cx43 protein expression, as well as intercellular communication. We have further shown stretch to be injurious to hTMCs. Upregulation of Cx43 in the hTM subsequent to stretch is a novel finding, which may be useful in elucidating the mechanism of TM injury in POAG patients.
Collapse
Affiliation(s)
| | - Mary Feng
- Department of Ophthalmology, Ivey Eye Institute, St. Joseph's Healthcare, London, Ontario, Canada
| | - Nancy Chen
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Hong Liu
- Lawson Health Research Institute, St. Joseph's Healthcare, London, Ontario, Canada
| | - Vasiliki Tellios
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Mary Wang
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Xiangji Li
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Caitlin A Chang
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Cindy Hutnik
- Department of Ophthalmology, Ivey Eye Institute, St. Joseph's Healthcare, London, Ontario, Canada.,Lawson Health Research Institute, St. Joseph's Healthcare, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
38
|
Cremers S, Drake MT, Ebetino FH, Bilezikian JP, Russell RGG. Pharmacology of bisphosphonates. Br J Clin Pharmacol 2019; 85:1052-1062. [PMID: 30650219 DOI: 10.1111/bcp.13867] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/27/2022] Open
Abstract
The biological effects of the bisphosphonates (BPs) as inhibitors of calcification and bone resorption were first described in the late 1960s. In the 50 years that have elapsed since then, the BPs have become the leading drugs for the treatment of skeletal disorders characterized by increased bone resorption, including Paget's disease of bone, bone metastases, multiple myeloma, osteoporosis and several childhood inherited disorders. The discovery and development of the BPs as a major class of drugs for the treatment of bone diseases is a paradigm for the successful journey from "bench to bedside and back again". Several of the leading BPs achieved "blockbuster" status as branded drugs. However, these BPs have now come to the end of their patent life, making them highly affordable. The opportunity for new clinical applications for BPs also exists in other areas of medicine such as ageing, cardiovascular disease and radiation protection. Their use as inexpensive generic medicines is therefore likely to continue for many years to come. Fifty years of research into the pharmacology of bisphosphonates have led to a fairly good understanding about how these drugs work and how they can be used safely in patients with metabolic bone diseases. However, while we seemingly know much about these drugs, a number of key aspects related to BP distribution and action remain incompletely understood. This review summarizes the existing knowledge of the (pre)clinical and translational pharmacology of BPs, and highlights areas in which understanding is lacking.
Collapse
Affiliation(s)
- Serge Cremers
- Division of Laboratory Medicine, Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.,Division of Endocrinology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Matthew T Drake
- Department of Endocrinology and Kogod Center of Aging, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - F Hal Ebetino
- Department of Chemistry, University of Rochester, Rochester, NY, USA.,Mellanby Centre for Bone Research, Medical School, University of Sheffield, UK
| | - John P Bilezikian
- Division of Endocrinology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - R Graham G Russell
- Mellanby Centre for Bone Research, Medical School, University of Sheffield, UK.,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The Oxford University Institute of Musculoskeletal Sciences, The Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, UK
| |
Collapse
|
39
|
Scala R, Maqoud F, Angelelli M, Latorre R, Perrone MG, Scilimati A, Tricarico D. Zoledronic Acid Modulation of TRPV1 Channel Currents in Osteoblast Cell Line and Native Rat and Mouse Bone Marrow-Derived Osteoblasts: Cell Proliferation and Mineralization Effect. Cancers (Basel) 2019; 11:cancers11020206. [PMID: 30754651 PMCID: PMC6406412 DOI: 10.3390/cancers11020206] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/28/2022] Open
Abstract
Bisphosphonates (BPs) reduce bone pain and fractures by balancing the osteoblast/osteoclast ratio. The behavior of ion channels in the presence of BPs is not known. To investigate this, the effect of zoledronic acid BP (ZOL) (3 × 10−8 to 5 × 10−4 M) treatment, on ion channels, cell proliferation, and mineralization, has been investigated on preosteoclast-like cells, RAW264.7, preosteoblast-like cells MC3T3-E1, and rat/mouse native bone marrow-derived osteoblasts. In whole-cell patch clamp on cell line- and bone marrow-derived osteoblasts, ZOL potentiated outward currents. On RAW264.7, ZOL (10−4 M)-evoked current was reduced by the Kv channel blocker tetraethylammonium hydrochloride (TEA), but not by the selective TRPV1-channel antagonist capsazepine. On MC3T3-E1 cells and bone marrow-derived osteoblasts, ZOL-evoked current (5 × 10−8 to 10−4 M) was reduced by capsazepine, whereas the selective TRPV1-channel agonist capsaicin potentiated the control current. In the cell proliferation assay, 72 h incubation of RAW264.7 and MC3T3-E1 cells with ZOL reduced proliferation, with IC50 values of 2.62 × 10−7 M and 2.02 × 10−5 M, respectively. Mineralization of MC3T3-E1 cells and bone marrow-derived osteoblasts was observed in the presence of capsaicin and ZOL (5 × 10−8–10−7 M); ZOL effects were antagonized by capsazepine. In summary, the ZOL-induced activation of TRPV1 channel mediates the mineralization of osteoblasts and counterbalances the antiproliferative effects, increasing the IC50. This mechanism is not operative in osteoclasts lacking the TRPV1 channel.
Collapse
Affiliation(s)
- Rosa Scala
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, I-70125 Bari, Italy.
| | - Fatima Maqoud
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, I-70125 Bari, Italy.
| | - Mariacristina Angelelli
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, I-70125 Bari, Italy.
| | - Ramon Latorre
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2366103, Chile.
| | - Maria Grazia Perrone
- Medicinal Chemistry Section, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, I-70125 Bari, Italy.
| | - Antonio Scilimati
- Medicinal Chemistry Section, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, I-70125 Bari, Italy.
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, I-70125 Bari, Italy.
| |
Collapse
|
40
|
Fourier Transform Infrared Spectroscopy of Bone Tissue: Bone Quality Assessment in Preclinical and Clinical Applications of Osteoporosis and Fragility Fracture. Clin Rev Bone Miner Metab 2019. [DOI: 10.1007/s12018-018-9255-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
George EL, Lin YL, Saunders MM. Bisphosphonate-related osteonecrosis of the jaw: a mechanobiology perspective. Bone Rep 2018; 8:104-109. [PMID: 29955628 PMCID: PMC6020112 DOI: 10.1016/j.bonr.2018.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/04/2018] [Accepted: 03/13/2018] [Indexed: 01/02/2023] Open
Abstract
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a dramatic disintegration of the jaw that affects patients treated with bisphosphonates (BPs) for diseases characterized by bone loss. These diseases are often metastasizing cancers (like multiple myeloma, breast cancer and prostate cancer (Aragon-Ching et al., 2009)) as well as osteoporosis. BRONJ is incompletely understood, although it is believed to arise from a defect in bone remodeling—the intricate process by which sensory osteocytes signal to osteoclasts and osteoblasts to resorb and form bone in response to stimuli. Further, tooth extraction and infection have been overwhelmingly linked to BRONJ (Ikebe, 2013). Because bone cells are highly networked, the importance of multicellular interactions and mechanotransduction during the onset of these risk factors cannot be overstated. As such, this perspective addresses current research on the effects of BPs, mechanical load and inflammation on bone remodeling and on development of BRONJ. Our investigation has led us to conclude that improved in vitro systems capable of adequately recapitulating multicellular communication and incorporating effects of osteocyte mechanosensing on bone resorption and formation are needed to elucidate the mechanism(s) by which BRONJ ensues. Current research on cofactors implicated in BRONJ is reviewed. BPs, load and inflammation work in tandem to contribute to BRONJ. Effects of cofactors on remodeling in the oral cavity are poorly understood. Osteocytes' ability to sense and respond to cofactors is likely central to BRONJ. Research is limited by a lack of multicellular systems integrating mechanosensing.
Collapse
Affiliation(s)
- Estee L George
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325, USA
| | - Yi-Ling Lin
- University of California, Los Angeles School of Dentistry, 10833 Le Conte Ave., Los Angeles, CA 90095, USA
| | - Marnie M Saunders
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325, USA
| |
Collapse
|
42
|
Gago-Fuentes R, Bechberger JF, Varela-Eirin M, Varela-Vazquez A, Acea B, Fonseca E, Naus CC, Mayan MD. The C-terminal domain of connexin43 modulates cartilage structure via chondrocyte phenotypic changes. Oncotarget 2018; 7:73055-73067. [PMID: 27682878 PMCID: PMC5341963 DOI: 10.18632/oncotarget.12197] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/16/2016] [Indexed: 12/13/2022] Open
Abstract
Chondrocytes in cartilage and bone cells population express connexin43 (Cx43) and gap junction intercellular communication (GJIC) is essential to synchronize cells for coordinated electrical, mechanical, metabolic and chemical communication in both tissues. Reduced Cx43 connectivity decreases chondrocyte differentiation and defective Cx43 causes skeletal defects. The carboxy terminal domain (CTD) of Cx43 is located in the cytoplasmic side and is key for protein functions. Here we demonstrated that chondrocytes from the CTD-deficient mice, K258stop/Cx43KO and K258stop/K258stop, have reduced GJIC, increased rates of proliferation and reduced expression of collagen type II and proteoglycans. We observed that CTD-truncated mice were significantly smaller in size. Together these results demonstrated that the deletion of the CTD negatively impacts cartilage structure and normal chondrocyte phenotype. These findings suggest that the proteolytic cleavage of the CTD under pathological conditions, such as under the activation of metalloproteinases during tissue injury or inflammation, may account for the deleterious effects of Cx43 in cartilage and bone disorders such as osteoarthritis.
Collapse
Affiliation(s)
- Raquel Gago-Fuentes
- CellCOM-SB Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), University of A Coruña, Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84 15006 A Coruña, Spain
| | - John F Bechberger
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Marta Varela-Eirin
- CellCOM-SB Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), University of A Coruña, Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84 15006 A Coruña, Spain
| | - Adrian Varela-Vazquez
- CellCOM-SB Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), University of A Coruña, Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84 15006 A Coruña, Spain
| | - Benigno Acea
- CellCOM-SB Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), University of A Coruña, Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84 15006 A Coruña, Spain
| | - Eduardo Fonseca
- CellCOM-SB Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), University of A Coruña, Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84 15006 A Coruña, Spain
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Maria D Mayan
- CellCOM-SB Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), CH-Universitario A Coruña (XXIAC), University of A Coruña, Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84 15006 A Coruña, Spain
| |
Collapse
|
43
|
Davis HM, Aref MW, Aguilar-Perez A, Pacheco-Costa R, Allen K, Valdez S, Herrera C, Atkinson EG, Mohammad A, Lopez D, Harris MA, Harris SE, Allen M, Bellido T, Plotkin LI. Cx43 overexpression in osteocytes prevents osteocyte apoptosis and preserves cortical bone quality in aging mice. JBMR Plus 2018; 2:206-216. [PMID: 29978155 DOI: 10.1002/jbm4.10035] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Young, skeletally mature mice lacking Cx43 in osteocytes exhibit increased osteocyte apoptosis and decreased bone strength, resembling the phenotype of old mice. Further, the expression of Cx43 in bone decreases with age, suggesting a contribution of reduced Cx43 levels to the age-related changes in the skeleton. We report herein that Cx43 overexpression in osteocytes achieved by using the DMP1-8kb promoter (Cx43OT mice) attenuates the skeletal cortical, but not trabecular bone phenotype of aged, 14-month-old mice. The percentage of Cx43-expressing osteocytes was higher in Cx43OT mice, whereas the percentage of Cx43 positive osteoblasts remained similar to wild type (WT) littermate control mice. The percentage of apoptotic osteocytes and osteoblasts was increased in aged WT mice compared to skeletally mature, 6-month-old WT mice, and the percentage of apoptotic osteocytes, but not osteoblasts, was decreased in age-matched Cx43OT mice. Aged WT mice exhibited decreased bone formation and increased bone resorption as quantified by histomorphometric analysis and circulating markers, compared to skeletally mature mice. Further, aged WT mice exhibited the expected decrease in bone biomechanical structural and material properties compared to young mice. Cx43 overexpression prevented the increase in osteoclasts and decrease in bone formation on the endocortical surfaces, and the changes in circulating markers in the aged mice. Moreover, the ability of bone to resist damage was preserved in aged Cx43OT mice both at the structural and material level. All together, these findings suggest that increased Cx43 expression in osteocytes ameliorates age-induced cortical bone changes by preserving osteocyte viability and maintaining bone formation, leading to improved bone strength.
Collapse
Affiliation(s)
- Hannah M Davis
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mohammad W Aref
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexandra Aguilar-Perez
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rafael Pacheco-Costa
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kimberly Allen
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sinai Valdez
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmen Herrera
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emily G Atkinson
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arwa Mohammad
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David Lopez
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marie A Harris
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Stephen E Harris
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Matthew Allen
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Teresita Bellido
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Division of Endocrinology, Dept. Internal Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Lilian I Plotkin
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
44
|
Bigi A, Boanini E. Calcium Phosphates as Delivery Systems for Bisphosphonates. J Funct Biomater 2018; 9:E6. [PMID: 29342839 PMCID: PMC5872092 DOI: 10.3390/jfb9010006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 12/16/2022] Open
Abstract
Bisphosphonates (BPs) are the most utilized drugs for the treatment of osteoporosis, and are usefully employed also for other pathologies characterized by abnormally high bone resorption, including bone metastases. Due to the great affinity of these drugs for calcium ions, calcium phosphates are ideal delivery systems for local administration of BPs to bone, which is aimed to avoid/limit the undesirable side effects of their prolonged systemic use. Direct synthesis in aqueous medium and chemisorptions from solution are the two main routes proposed to synthesize BP functionalized calcium phosphates. The present review overviews the information acquired through the studies on the interaction between bisphosphonate molecules and calcium phosphates. Moreover, particular attention is addressed to some important recent achievements on the applications of BP functionalized calcium phosphates as biomaterials for bone substitution/repair.
Collapse
Affiliation(s)
- Adriana Bigi
- Department of Chemistry "G. Ciamician", University of Bologna, 40126 Bologna, Italy.
| | - Elisa Boanini
- Department of Chemistry "G. Ciamician", University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
45
|
Radwan IA, Korany NS, Ezzat BA. Bisphosphonates Zoledronate and Alendronate for the Management of Postmenopausal Osteoporosis. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/crcm.2018.75030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Abstract
Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell-cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.
Collapse
Affiliation(s)
- Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, Virginia 23284, USA
| | - Roy W Qu
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| | - Damian C Genetos
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
47
|
Cho TH, Kim IS, Lee B, Park SN, Ko JH, Hwang SJ. Early and Marked Enhancement of New Bone Quality by Alendronate-Loaded Collagen Sponge Combined with Bone Morphogenetic Protein-2 at High Dose: A Long-Term Study in Calvarial Defects in a Rat Model. Tissue Eng Part A 2017; 23:1343-1360. [DOI: 10.1089/ten.tea.2016.0557] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tae Hyung Cho
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Clinical Dental Research Institute, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - In Sook Kim
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Beomseok Lee
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Si-Nae Park
- Regenerative Medicine Research Center, Dalim Tissen Co., Ltd., Seoul, Republic of Korea
| | - Jae-Hyung Ko
- Regenerative Medicine Research Center, Dalim Tissen Co., Ltd., Seoul, Republic of Korea
| | - Soon Jung Hwang
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Clinical Dental Research Institute, Seoul National University Dental Hospital, Seoul, Republic of Korea
- Department of Oral and Maxillofacial Surgery, School of Dentistry, BK21 Plus Program, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
48
|
Ye T, Cao P, Qi J, Zhou Q, Rao DS, Qiu S. Protective effect of low-dose risedronate against osteocyte apoptosis and bone loss in ovariectomized rats. PLoS One 2017; 12:e0186012. [PMID: 29045447 PMCID: PMC5646759 DOI: 10.1371/journal.pone.0186012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/22/2017] [Indexed: 01/23/2023] Open
Abstract
Osteocyte apoptosis is the first reaction to estrogen depletion, thereby stimulating osteoclastic bone resorption resulting in bone loss. We investigated the effects of two different risedronate (RIS) doses (high and low) on osteocyte apoptosis, osteoclast activity and bone loss in ovariectomized rats. Forty rats with ovariectomy (OVX) and sham ovariectomy (SHAM) were divided into 4 groups: 1) SHAM rats treated with saline (SHAM); 2) OVX rats treated with saline (OVX); 3) OVX rats treated with low-dose RIS (OVX-LR, 0.08 μg/kg/day); 4) OVX rats treated with high-dose RIS (OVX-HR, 0.8 μg/kg/day). All animals were sacrificed 90 days after surgery for the examinations of osteocyte apoptosis by caspase-3 staining, osteoclast activity by TRAP staining and bone volume by micro-CT scanning in lumbar vertebral cancellous bone. Both low and high dose RIS significantly reduced caspase-3 positive osteocytes, empty lacunae and TRAP positive osteoclasts in OVX rats. Although the difference in caspase-3 positive osteocytes was not significant between the OVX-LR and OVX-HR groups, numerically these cells were significantly more prevalent in OVX-HR (not OVX-LR) group than in SHAM group. TRAP positive osteoclasts were significantly higher in OVX-LR group than in SHAM or OVX-HR group. There was no significant difference in bone volume among the OVX-LR, OVX-HR and SHAM groups, but lower in OVX group alone. However, significant increase in trabecular thickness only occurred in OVX-LR group. We conclude that both low and high dose RIS significantly inhibit osteocyte apoptosis and osteoclast activity in OVX rats, but the low-dose RIS has weaker effect on osteoclast activity. However, low-dose RIS preserves cancellous bone mass and microarchitecture as well as high-dose RIS after estrogen depletion.
Collapse
Affiliation(s)
- Tingjun Ye
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peng Cao
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- * E-mail: (SQ); (PC)
| | - Jin Qi
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Zhou
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - D. Sudhaker Rao
- Bone and Mineral Research Laboratory, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Shijing Qiu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Bone and Mineral Research Laboratory, Henry Ford Hospital, Detroit, Michigan, United States of America
- * E-mail: (SQ); (PC)
| |
Collapse
|
49
|
Shah FA, Lee BEJ, Tedesco J, Larsson Wexell C, Persson C, Thomsen P, Grandfield K, Palmquist A. Micrometer-Sized Magnesium Whitlockite Crystals in Micropetrosis of Bisphosphonate-Exposed Human Alveolar Bone. NANO LETTERS 2017; 17:6210-6216. [PMID: 28892393 DOI: 10.1021/acs.nanolett.7b02888] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Osteocytes are contained within spaces called lacunae and play a central role in bone remodelling. Administered frequently to prevent osteoporotic fractures, antiresorptive agents such as bisphosphonates suppress osteocyte apoptosis and may be localized within osteocyte lacunae. Bisphosphonates also reduce osteoclast viability and thereby hinder the repair of damaged tissue. Osteocyte lacunae contribute to toughening mechanisms. Following osteocyte apoptosis, the lacunar space undergoes mineralization, termed "micropetrosis". Hypermineralized lacunae are believed to increase bone fragility. Using nanoanalytical electron microscopy with complementary spectroscopic and crystallographic experiments, postapoptotic mineralization of osteocyte lacunae in bisphosphonate-exposed human bone was investigated. We report an unprecedented presence of ∼80 nm to ∼3 μm wide, distinctly faceted, magnesium whitlockite [Ca18Mg2(HPO4)2(PO4)12] crystals and consequently altered local nanomechanical properties. These findings have broad implications on the role of therapeutic agents in driving biomineralization and shed new insights into a possible relationship between bisphosphonate exposure, availability of intracellular magnesium, and pathological calcification inside lacunae.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg , SE-405 30 Göteborg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, SE-405 30 Göteborg, Sweden
- Department of Materials Science and Engineering, McMaster University , Hamilton, Ontario L8S 4L8, Canada
| | - Bryan E J Lee
- School of Biomedical Engineering, McMaster University , Hamilton, OntarioL8S 4K1, Canada
| | - James Tedesco
- Department of Materials Science and Engineering, McMaster University , Hamilton, Ontario L8S 4L8, Canada
| | - Cecilia Larsson Wexell
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg , SE-405 30 Göteborg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, SE-405 30 Göteborg, Sweden
- Department of Oral and Maxillofacial Surgery, Södra Älvsborg Hospital , SE-501 82 Borås, Sweden
| | - Cecilia Persson
- Division of Applied Materials Science, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University , SE-752 36 Uppsala, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg , SE-405 30 Göteborg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, SE-405 30 Göteborg, Sweden
| | - Kathryn Grandfield
- School of Biomedical Engineering, McMaster University , Hamilton, OntarioL8S 4K1, Canada
- Department of Materials Science and Engineering, McMaster University , Hamilton, Ontario L8S 4L8, Canada
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg , SE-405 30 Göteborg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, SE-405 30 Göteborg, Sweden
| |
Collapse
|
50
|
Zhang Y, Wang Z, Zhang L, Zhou D, Sun Y, Wang P, Ju S, Chen P, Li J, Fu J. Impact of connexin 43 coupling on survival and migration of multiple myeloma cells. Arch Med Sci 2017; 13:1335-1346. [PMID: 29181063 PMCID: PMC5701698 DOI: 10.5114/aoms.2017.71065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/01/2016] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Gap junctions (GJs) represent the best known intercellular communication (IC) system and are membrane-spanning channels that facilitate intercellular communication by allowing small signaling molecules to pass from cell to cell. In this study, we constructed an amino terminus of human Cx43 (Cx43NT-GFP), verified the overexpression of Cx43-NT in HUVEC cells and explored the impact of gap junctions (GJs) on multiple myeloma (MM). MATERIAL AND METHODS The levels of phosphorylated Cx43(s368) and the change of MAPK pathway associated molecules (ERK1/2, JNK, p38, NFκB) were also investigated in our cell models. Cx43 mRNA and proteins were detected in both MM cell lines and mesenchymal stem cells (MSCs). Dye transfer assays demonstrated that gap junction intercellular communication (GJIC) occurring via Cx43 situated between MM and MSCs or MM and HUVECCx43NT is functional. RESULTS Our results present evidence for a channel-dependent modulator action of connexin 43 on the migratory activity of MM cells toward MSCs or HUVECCx43-N was higher than those of spontaneous migration (p < 0.05) and protection them from apoptosis in the presence of dexamethasone via cytokines secretion. In the meantime, the migration of MM cells involves an augmented response of p38 and JNK signaling pathway of carboxyl tail of the protein. CONCLUSIONS Our data suggest that GJIC between MM and MSCs is one of the essential factors in tumor cell proliferation and drug sensitivity, and is implicated in MM pathogenesis.
Collapse
Affiliation(s)
- Yangmin Zhang
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziyan Wang
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liying Zhang
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongming Zhou
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Sun
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Panjun Wang
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Songguang Ju
- Department of Immunology, Medical College of Soochow University, Suzhou, China
| | - Ping Chen
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Li
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinxiang Fu
- Department of Hematology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|