1
|
Jennings ML. Role of transporters in regulating mammalian intracellular inorganic phosphate. Front Pharmacol 2023; 14:1163442. [PMID: 37063296 PMCID: PMC10097972 DOI: 10.3389/fphar.2023.1163442] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
This review summarizes the current understanding of the role of plasma membrane transporters in regulating intracellular inorganic phosphate ([Pi]In) in mammals. Pi influx is mediated by SLC34 and SLC20 Na+-Pi cotransporters. In non-epithelial cells other than erythrocytes, Pi influx via SLC20 transporters PiT1 and/or PiT2 is balanced by efflux through XPR1 (xenotropic and polytropic retrovirus receptor 1). Two new pathways for mammalian Pi transport regulation have been described recently: 1) in the presence of adequate Pi, cells continuously internalize and degrade PiT1. Pi starvation causes recycling of PiT1 from early endosomes to the plasma membrane and thereby increases the capacity for Pi influx; and 2) binding of inositol pyrophosphate InsP8 to the SPX domain of XPR1 increases Pi efflux. InsP8 is degraded by a phosphatase that is strongly inhibited by Pi. Therefore, an increase in [Pi]In decreases InsP8 degradation, increases InsP8 binding to SPX, and increases Pi efflux, completing a feedback loop for [Pi]In homeostasis. Published data on [Pi]In by magnetic resonance spectroscopy indicate that the steady state [Pi]In of skeletal muscle, heart, and brain is normally in the range of 1–5 mM, but it is not yet known whether PiT1 recycling or XPR1 activation by InsP8 contributes to Pi homeostasis in these organs. Data on [Pi]In in cultured cells are variable and suggest that some cells can regulate [Pi] better than others, following a change in [Pi]Ex. More measurements of [Pi]In, influx, and efflux are needed to determine how closely, and how rapidly, mammalian [Pi]In is regulated during either hyper- or hypophosphatemia.
Collapse
|
2
|
Perry C, Rayat ACME. Lentiviral Vector Bioprocessing. Viruses 2021; 13:268. [PMID: 33572347 PMCID: PMC7916122 DOI: 10.3390/v13020268] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Lentiviral vectors (LVs) are potent tools for the delivery of genes of interest into mammalian cells and are now commonly utilised within the growing field of cell and gene therapy for the treatment of monogenic diseases and adoptive therapies such as chimeric antigen T-cell (CAR-T) therapy. This is a comprehensive review of the individual bioprocess operations employed in LV production. We highlight the role of envelope proteins in vector design as well as their impact on the bioprocessing of lentiviral vectors. An overview of the current state of these operations provides opportunities for bioprocess discovery and improvement with emphasis on the considerations for optimal and scalable processing of LV during development and clinical production. Upstream culture for LV generation is described with comparisons on the different transfection methods and various bioreactors for suspension and adherent producer cell cultivation. The purification of LV is examined, evaluating different sequences of downstream process operations for both small- and large-scale production requirements. For scalable operations, a key focus is the development in chromatographic purification in addition to an in-depth examination of the application of tangential flow filtration. A summary of vector quantification and characterisation assays is also presented. Finally, the assessment of the whole bioprocess for LV production is discussed to benefit from the broader understanding of potential interactions of the different process options. This review is aimed to assist in the achievement of high quality, high concentration lentiviral vectors from robust and scalable processes.
Collapse
Affiliation(s)
- Christopher Perry
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower St, London WC1E 6BT, UK;
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
| | - Andrea C. M. E. Rayat
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower St, London WC1E 6BT, UK;
| |
Collapse
|
3
|
Abstract
Phosphate is an essential nutrient for life and is a critical component of bone formation, a major signaling molecule, and structural component of cell walls. Phosphate is also a component of high-energy compounds (i.e., AMP, ADP, and ATP) and essential for nucleic acid helical structure (i.e., RNA and DNA). Phosphate plays a central role in the process of mineralization, normal serum levels being associated with appropriate bone mineralization, while high and low serum levels are associated with soft tissue calcification. The serum concentration of phosphate and the total body content of phosphate are highly regulated, a process that is accomplished by the coordinated effort of two families of sodium-dependent transporter proteins. The three isoforms of the SLC34 family (SLC34A1-A3) show very restricted tissue expression and regulate intestinal absorption and renal excretion of phosphate. SLC34A2 also regulates the phosphate concentration in multiple lumen fluids including milk, saliva, pancreatic fluid, and surfactant. Both isoforms of the SLC20 family exhibit ubiquitous expression (with some variation as to which one or both are expressed), are regulated by ambient phosphate, and likely serve the phosphate needs of the individual cell. These proteins exhibit similarities to phosphate transporters in nonmammalian organisms. The proteins are nonredundant as mutations in each yield unique clinical presentations. Further research is essential to understand the function, regulation, and coordination of the various phosphate transporters, both the ones described in this review and the phosphate transporters involved in intracellular transport.
Collapse
Affiliation(s)
- Nati Hernando
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Kenneth Gagnon
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Eleanor Lederer
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| |
Collapse
|
4
|
King JB. Proximal tubular nephropathy in two dogs diagnosed with lead toxicity. Aust Vet J 2017; 94:280-4. [PMID: 27461352 DOI: 10.1111/avj.12463] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 09/11/2015] [Accepted: 10/28/2015] [Indexed: 11/28/2022]
Abstract
CASE REPORT Lead toxicity was diagnosed in two dogs presenting with vague clinical symptoms. Complete blood count, biochemical testing and imaging changes showed a metarubricytosis in dog 1, but were largely normal in dog 2. Both dogs had glucosuria and proteinuria on urinalysis consistent with damage to the proximal renal tubules. Both animals returned elevated blood lead levels. A history of ingestion of lead was reported by the owner in one dog and elucidated from the second owner once the animal had recorded elevated blood lead levels. CONCLUSION Lead toxicity is rarely reported in the human literature as a cause of proximal tubular dysfunction. To the author's knowledge this is the first case report specifically examining this in the dog. The clinical awareness that lead is a potential cause of proximal renal tubular dysfunction offers another tool to assist the clinician in the diagnostic process. This is particularly important given that the clinical signs and minimum database findings in animals with lead toxicosis are highly variable. Evidence of proximal tubular dysfunction should trigger the clinician to closely examine the history for a potential source of lead exposure and consider submitting samples to test blood lead levels.
Collapse
Affiliation(s)
- J B King
- Veterinary Specialist Services, Underwood, Queensland, Australia.
| |
Collapse
|
5
|
Abstract
Phosphate is essential for growth and maintenance of the skeleton and for generating high-energy phosphate compounds. Evolutionary adaptation to high dietary phosphorous in humans and other terrestrial vertebrates involves regulated mechanisms assuring the efficient renal elimination of excess phosphate. These mechanisms prominently include PTH, FGF23, and Vitamin D, which directly and indirectly regulate phosphate transport. Disordered phosphate homeostasis is associated with pathologies ranging from kidney stones to kidney failure. Chronic kidney disease results in hyperphosphatemia, an elevated calcium×phosphate product with considerable morbidity and mortality, mostly associated with adverse cardiovascular events. This chapter highlights recent findings and insights regarding the hormonal regulation of renal phosphate transport along with imbalances of phosphate balance due to acquired or inherited diseases states.
Collapse
|
6
|
Haller M, Amatschek S, Wilflingseder J, Kainz A, Bielesz B, Pavik I, Serra A, Mohebbi N, Biber J, Wagner CA, Oberbauer R. Sirolimus induced phosphaturia is not caused by inhibition of renal apical sodium phosphate cotransporters. PLoS One 2012; 7:e39229. [PMID: 22859939 PMCID: PMC3408497 DOI: 10.1371/journal.pone.0039229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/17/2012] [Indexed: 12/01/2022] Open
Abstract
The vast majority of glomerular filtrated phosphate is reabsorbed in the proximal tubule. Posttransplant phosphaturia is common and aggravated by sirolimus immunosuppression. The cause of sirolimus induced phosphaturia however remains elusive. Male Wistar rats received sirolimus or vehicle for 2 or 7 days (1.5mg/kg). The urine phosphate/creatinine ratio was higher and serum phosphate was lower in sirolimus treated rats, fractional excretion of phosphate was elevated and renal tubular phosphate reabsorption was reduced suggesting a renal cause for hypophosphatemia. PTH was lower in sirolimus treated rats. FGF 23 levels were unchanged at day 2 but lower in sirolimus treated rats after 7 days. Brush border membrane vesicle phosphate uptake was not altered in sirolimus treated groups or by direct incubation with sirolimus. mRNA, protein abundance, and subcellular transporter distribution of NaPi-IIa, Pit-2 and NHE3 were not different between groups but NaPi-IIc mRNA expression was lower at day 7. Transcriptome analyses revealed candidate genes that could be involved in the phosphaturic response. Sirolimus caused a selective renal phosphate leakage, which was not mediated by NaPi-IIa or NaPi-IIc regulation or localization. We hypothesize that another mechanism such as a basolateral phosphate transporter may be responsible for the sirolimus induced phosphaturia.
Collapse
Affiliation(s)
- Maria Haller
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Department of Nephrology and Transplantation, KH Elisabethinen Linz, Linz, Austria
| | - Stefan Amatschek
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | | | - Alexander Kainz
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | - Bernd Bielesz
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | - Ivana Pavik
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Andreas Serra
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Nilufar Mohebbi
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Jürg Biber
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Carsten A. Wagner
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Rainer Oberbauer
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
- Department of Nephrology and Transplantation, KH Elisabethinen Linz, Linz, Austria
- Austrian Dialysis and Transplant Registry, Linz, Austria
- * E-mail:
| |
Collapse
|
7
|
Lederer E, Miyamoto KI. Clinical consequences of mutations in sodium phosphate cotransporters. Clin J Am Soc Nephrol 2012; 7:1179-87. [PMID: 22516291 DOI: 10.2215/cjn.09090911] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three families of sodium phosphate cotransporters have been described. Their specific roles in human health and disease have not been defined. Review of the literature reveals that the type II sodium phosphate cotransporters play a significant role in transepithelial transport in a number of tissues including kidney, intestine, salivary gland, mammary gland, and lung. The type I transporters seem to play a major role in renal urate handling and mutations in these proteins have been implicated in susceptibility to gout. The ubiquitously expressed type III transporters play a lesser role in phosphate homeostasis but contribute to cellular phosphate uptake, mineralization, and inflammation. The recognition of species differences in the expression, regulation, and function of these transport proteins suggests an urgent need to find ways to study them in humans.
Collapse
Affiliation(s)
- Eleanor Lederer
- University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | | |
Collapse
|
8
|
Abstract
Acute phosphate nephropathy (APhN) is a clinical pathological entity characterized by acute and subsequent chronic renal failure following exposure to oral sodium phosphate (OSP) bowel purgatives. Renal biopsy findings include acute and chronic tubular injury with prominent tubular and interstitial calcium phosphate deposits. Risk factors for APhN include older age, female gender, hypertension, chronic kidney disease (CKD), and treatment with angiotensin converting enzyme inhibitors, angiotensin receptor blockers, and diuretics. The pathomechanism of APhN involves hypovolemia-induced avid proximal salt and water reabsorption, delivery of a large phosphate load to the distal nephron, and precipitation of calcium phosphate in the distal tubule and collecting duct. To date, 37 cases of biopsy-proven APhN have been reported, and epidemiologic studies have produced inconsistent results regarding the incidence of acute kidney injury (AKI) following the use of OSP purgatives. OSP solution was withdrawn from the market in December of 2008, but OSP tablets, offered by prescription only, remain available. Prevention of APhN is best achieved by avoiding OSP in high-risk patients, aggressive hydration before, during, and after OSP administration, minimizing the dose of OSP, and maintaining a minimum of a 12 h interval between OSP administrations.
Collapse
|
9
|
Virkki LV, Biber J, Murer H, Forster IC. Phosphate transporters: a tale of two solute carrier families. Am J Physiol Renal Physiol 2007; 293:F643-54. [PMID: 17581921 DOI: 10.1152/ajprenal.00228.2007] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Phosphate is an essential component of life and must be actively transported into cells against its electrochemical gradient. In vertebrates, two unrelated families of Na+ -dependent P(i) transporters carry out this task. Remarkably, the two families transport different P(i) species: whereas type II Na+/P(i) cotransporters (SCL34) prefer divalent HPO(4)(2-), type III Na(+)/P(i) cotransporters (SLC20) transport monovalent H2PO(4)(-). The SCL34 family comprises both electrogenic and electroneutral members that are expressed in various epithelia and other polarized cells. Through regulated activity in apical membranes of the gut and kidney, they maintain body P(i) homeostasis, and in salivary and mammary glands, liver, and testes they play a role in modulating the P(i) content of luminal fluids. The two SLC20 family members PiT-1 and PiT-2 are electrogenic and ubiquitously expressed and may serve a housekeeping role for cell P(i) homeostasis; however, also more specific roles are emerging for these transporters in, for example, bone mineralization. In this review, we focus on recent advances in the characterization of the transport kinetics, structure-function relationships, and physiological implications of having two distinct Na+/P(i) cotransporter families.
Collapse
Affiliation(s)
- Leila V Virkki
- Institute of Physiology and Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
10
|
Ravera S, Virkki LV, Murer H, Forster IC. Deciphering PiT transport kinetics and substrate specificity using electrophysiology and flux measurements. Am J Physiol Cell Physiol 2007; 293:C606-20. [PMID: 17494632 DOI: 10.1152/ajpcell.00064.2007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Members of the SLC20 family or type III Na(+) -coupled P(i) cotransporters (PiT-1, PiT-2) are ubiquitously expressed in mammalian tissue and are thought to perform a housekeeping function for intracellular P(i) homeostasis. Previous studies have shown that PiT-1 and PiT-2 mediate electrogenic P(i) cotransport when expressed in Xenopus oocytes, but only limited kinetic characterizations were made. To address this shortcoming, we performed a detailed analysis of SLC20 transport function. Three SLC20 clones (Xenopus PiT-1, human PiT-1, and human PiT-2) were expressed in Xenopus oocytes. Each clone gave robust Na(+)-dependent (32)P(i) uptake, but only Xenopus PiT-1 showed sufficient activity for complete kinetic characterization by using two-electrode voltage clamp and radionuclide uptake. Transport activity was also documented with Li(+) substituted for Na(+). The dependence of the P(i)-induced current on P(i) concentration was Michaelian, and the dependence on Na(+) concentration indicated weak cooperativity. The dependence on external pH was unique: the apparent P(i) affinity constant showed a minimum in the pH range 6.2-6.8 of approximately 0.05 mM and increased to approximately 0.2 mM at pH 5.0 and pH 8.0. Xenopus PiT-1 stoichiometry was determined by dual (22)Na-(32)P(i) uptake and suggested a 2:1 Na(+):P(i) stoichiometry. A correlation of (32)P(i) uptake and net charge movement indicated one charge translocation per P(i). Changes in oocyte surface pH were consistent with transport of monovalent P(i). On the basis of the kinetics of substrate interdependence, we propose an ordered binding scheme of Na(+):H(2)PO(4)(-):Na(+). Significantly, in contrast to type II Na(+)-P(i) cotransporters, the transport inhibitor phosphonoformic acid did not inhibit PiT-1 or PiT-2 activity.
Collapse
Affiliation(s)
- Silvia Ravera
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | | | | | | |
Collapse
|
11
|
Yoshiko Y, Candeliere GA, Maeda N, Aubin JE. Osteoblast autonomous Pi regulation via Pit1 plays a role in bone mineralization. Mol Cell Biol 2007; 27:4465-74. [PMID: 17438129 PMCID: PMC1900051 DOI: 10.1128/mcb.00104-07] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The complex pathogenesis of mineralization defects seen in inherited and/or acquired hypophosphatemic disorders suggests that local inorganic phosphate (P(i)) regulation by osteoblasts may be a rate-limiting step in physiological bone mineralization. To test whether an osteoblast autonomous phosphate regulatory system regulates mineralization, we manipulated well-established in vivo and in vitro models to study mineralization stages separately from cellular proliferation/differentiation stages of osteogenesis. Foscarnet, an inhibitor of NaP(i) transport, blocked mineralization of osteoid formation in osteoblast cultures and local mineralization after injection over the calvariae of newborn rats. Mineralization was also down- and upregulated, respectively, with under- and overexpression of the type III NaP(i) transporter Pit1 in osteoblast cultures. Among molecules expressed in osteoblasts and known to be related to P(i) handling, stanniocalcin 1 was identified as an early response gene after foscarnet treatment; it was also regulated by extracellular P(i), and itself increased Pit1 accumulation in both osteoblast cultures and in vivo. These results provide new insights into the functional role of osteoblast autonomous P(i) handling in normal bone mineralization and the abnormalities seen in skeletal tissue in hypophosphatemic disorders.
Collapse
Affiliation(s)
- Yuji Yoshiko
- Department of Oral Growth and Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | | | | | | |
Collapse
|
12
|
Peerce BE, Peerce B, Clarke RD. Phosphophloretin sensitivity of rabbit renal NaPi-IIa and NaPi-Ia. Am J Physiol Renal Physiol 2004; 286:F955-64. [PMID: 15075191 DOI: 10.1152/ajprenal.00245.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of phosphorylated phloretins on Na+-dependent phosphate uptake into rabbit renal brush-border membrane vesicles (BBMV) was examined. Na+-dependent phosphate uptake into isolated rabbit cortex BBMV was sensitive to 2′-phosphophloretin (2′-PP) and 2′-phospho-4′,4,6′-trimethoxy phloretin (PTMP) in a dose-dependent and pH-dependent manner. PTMP inhibition of Na+-dependent phosphate uptake was maximum at alkali pH, and 2′-PP inhibition of Na+-dependent phosphate uptake was maximum at acidic pH. Increasing Na+concentrations did not increase PTMP inhibition of renal cortex BBMV Na+-dependent phosphate uptake at pH 6. The effect of phosphophloretins on Na+-dependent phosphate uptake was examined in BBMV isolated from purified proximal tubules and distal tubules. 2′-PP and PTMP inhibition of Na+-dependent phosphate uptake into BBMV isolated from purified proximal tubules was similar to the inhibition seen with BBMV from renal cortex. 2′-PP, but not PTMP, inhibited Na+-dependent phosphate uptake into BBMV isolated from purified distal tubules. The pH dependence of inhibition, the absence of PTMP inhibition of Na+-dependent phosphate uptake into distal tubule BBMV, and the inhibition of Na+-dependent phosphate uptake into distal tubule BBMV suggest that NaPi-Ia is 2′-PP sensitive and NaPi-IIa is PTMP sensitive.
Collapse
Affiliation(s)
- Brian E Peerce
- Department of Physiology and Biophysics, Univesity of Texas Medical Branch, Galveston, TX 77555-0641, USA.
| | | | | |
Collapse
|
13
|
Tenenhouse HS, Martel J, Gauthier C, Segawa H, Miyamoto KI. Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c. Am J Physiol Renal Physiol 2003; 285:F1271-8. [PMID: 12952859 DOI: 10.1152/ajprenal.00252.2003] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was undertaken to define the mechanisms governing the regulation of the novel renal brush-border membrane (BBM) Na-phosphate (Pi) cotransporter designated type IIc (Npt2c). To address this issue, the renal expression of Npt2c was compared in two hypophosphatemic mouse models with impaired renal BBM Na-Pi cotransport. In mice homozygous for the disrupted Npt2a gene (Npt2-/-), BBM Npt2c protein abundance, relative to actin, was increased 2.8-fold compared with Npt2+/+ littermates, whereas a corresponding increase in renal Npt2c mRNA abundance, relative to beta-actin, was not evident. In contrast, in X-linked Hyp mice, which harbor a large deletion in the Phex gene, the renal abundance of both Npt2c protein and mRNA was significantly decreased by 80 and 50%, respectively, relative to normal littermates. Pi deprivation elicited a 2.5-fold increase in BBM Npt2c protein abundance in Npt2+/+ mice but failed to elicit a further increase in Npt2c protein in Npt2-/- mice. Pi restriction led to an increase in BBM Npt2c protein abundance in both normal and Hyp mice without correcting its renal expression in the mutants. In summary, we report that BBM Npt2c protein expression is differentially regulated in Npt2-/- mice and Hyp mice and that the Npt2c response to low-Pi challenge differs in both hypophosphatemic mouse strains. We demonstrate that Npt2c protein is maximally upregulated in Npt2-/- mice and suggest that Npt2c likely accounts for residual BBM Na-Pi cotransport in the knockout model. Finally, our data indicate that loss of Phex function abrogates renal Npt2c protein expression.
Collapse
|
14
|
Soumounou Y, Gauthier C, Tenenhouse HS. Murine and human type I Na-phosphate cotransporter genes: structure and promoter activity. Am J Physiol Renal Physiol 2001; 281:F1082-91. [PMID: 11704559 DOI: 10.1152/ajprenal.0092.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Na-phosphate (P(i)) cotransporters in the apical membrane of renal proximal tubular cells play a major role in the maintenance of P(i) homeostasis. Although two such cotransporters, Npt1 and Npt2, have been identified, little is known about the function and regulation of Npt1. We cloned and characterized the murine (Npt1) and human (NPT1) genes, isolated the 5'-flanking region of Npt1, and analyzed its promoter activity. Npt1 is approximately 29 kb with 12 exons, whereas NPT1 is approximately 49 kb with one additional exon. The Npt1 promoter has a TATA-like box but no CAAT box, and the transcription start site was identified by primer extension and 5'-rapid amplification of cDNA ends. Transfection of opossum kidney cells with Npt1 promoter-reporter gene constructs demonstrated significant activity in a 570-bp fragment that was completely inhibited by cotransfection with the transcription factor, hepatocyte nuclear factor (HNF)-3 beta. Deletion of 200 bp from the 3'-end of the 570-bp fragment abrogated its promoter activity. In addition, promoter activity of a 4.5-kb fragment, but not the 570-bp fragment, was stimulated fourfold by cotransfection with HNF-1 alpha. Other well-characterized cis-acting elements were identified in the Npt1 promoter. We suggest that Npt1 expression is transcriptionally regulated and provide a basis for the investigation of Npt1 function by targeted mutagenesis.
Collapse
Affiliation(s)
- Y Soumounou
- McGill University-Montreal Children's Hospital Research Institute, McGill University, Montreal, Quebec, Canada H3Z 2Z3
| | | | | |
Collapse
|
15
|
Wang D, Canaff L, Davidson D, Corluka A, Liu H, Hendy GN, Henderson JE. Alterations in the sensing and transport of phosphate and calcium by differentiating chondrocytes. J Biol Chem 2001; 276:33995-4005. [PMID: 11404353 DOI: 10.1074/jbc.m007757200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During endochondral bone formation and fracture healing, cells committed to chondrogenesis undergo a temporally restricted program of differentiation that is characterized by sequential changes in their phenotype and gene expression. This results in the manufacture, remodeling, and mineralization of a cartilage template on which bone is laid down. Articular chondrocytes undergo a similar but restricted differentiation program that does not proceed to mineralization, except in pathologic conditions such as osteoarthritis. The pathogenesis of disorders of cartilage development and metabolism, including osteochondrodysplasia, fracture non-union, and osteoarthritis remain poorly defined. We used the CFK2 model to examine the potential roles of phosphate and calcium ions in the regulatory pathways that mediate chondrogenesis and cartilage maturation. Differentiation was monitored over a 4-week period using a combination of morphological, biochemical, and molecular markers that have been characterized in vivo and in vitro. CFK2 cells expressed the type III sodium-dependent phosphate transporters Glvr-1 and Ram-1, as well as a calcium-sensing mechanism. Regulated expression and activity of Glvr-1 by extracellular phosphate and parathyroid hormone-related protein was restricted to an early stage of CFK2 differentiation, as evidenced by expression of type II collagen, proteoglycan, and Ihh. On the other hand, regulated expression and activity of a calcium-sensing receptor by extracellular calcium was most evident after 2 weeks of differentiation, concomitant with an increase in type X collagen expression, alkaline phosphatase activity and parathyroid hormone/parathyroid hormone-related protein receptor expression. On the basis of these temporally restricted changes in the sensing and transport of phosphate and calcium, we predict that extracellular phosphate plays a role in the commitment of chondrogenic cells to differentiation, whereas extracellular calcium plays a role at a later stage in their differentiation program.
Collapse
Affiliation(s)
- D Wang
- Department of Medicine, McGill University, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital Montréal, Québec, Canada H3T 1E2
| | | | | | | | | | | | | |
Collapse
|
16
|
Overbaugh J, Miller AD, Eiden MV. Receptors and entry cofactors for retroviruses include single and multiple transmembrane-spanning proteins as well as newly described glycophosphatidylinositol-anchored and secreted proteins. Microbiol Mol Biol Rev 2001; 65:371-89, table of contents. [PMID: 11528001 PMCID: PMC99032 DOI: 10.1128/mmbr.65.3.371-389.2001] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the past few years, many retrovirus receptors, coreceptors, and cofactors have been identified. These molecules are important for some aspects of viral entry, although in some cases it remains to be determined whether they are required for binding or postbinding stages in entry, such as fusion. There are certain common features to the molecules that many retroviruses use to gain entry into the cell. For example, the receptors for most mammalian oncoretroviruses are multiple membrane-spanning transport proteins. However, avian retroviruses use single-pass membrane proteins, and a sheep retrovirus uses a glycosylphosphatidylinositol-anchored molecule as its receptor. For some retroviruses, particularly the lentiviruses, two cell surface molecules are required for efficient entry. More recently, a soluble protein that is required for viral entry has been identified for a feline oncoretrovirus. In this review, we will focus on the various strategies used by mammalian retroviruses to gain entry into the cell. The choice of receptors will also be discussed in light of pressures that drive viral evolution and persistence.
Collapse
Affiliation(s)
- J Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave., Seattle, WA 98109-1024, USA.
| | | | | |
Collapse
|
17
|
Murer H, Hernando N, Forster I, Biber J. Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 2000; 80:1373-409. [PMID: 11015617 DOI: 10.1152/physrev.2000.80.4.1373] [Citation(s) in RCA: 390] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal proximal tubular reabsorption of P(i) is a key element in overall P(i) homeostasis, and it involves a secondary active P(i) transport mechanism. Among the molecularly identified sodium-phosphate (Na/P(i)) cotransport systems a brush-border membrane type IIa Na-P(i) cotransporter is the key player in proximal tubular P(i) reabsorption. Physiological and pathophysiological alterations in renal P(i) reabsorption are related to altered brush-border membrane expression/content of the type IIa Na-P(i) cotransporter. Complex membrane retrieval/insertion mechanisms are involved in modulating transporter content in the brush-border membrane. In a tissue culture model (OK cells) expressing intrinsically the type IIa Na-P(i) cotransporter, the cellular cascades involved in "physiological/pathophysiological" control of P(i) reabsorption have been explored. As this cell model offers a "proximal tubular" environment, it is useful for characterization (in heterologous expression studies) of the cellular/molecular requirements for transport regulation. Finally, the oocyte expression system has permitted a thorough characterization of the transport characteristics and of structure/function relationships. Thus the cloning of the type IIa Na-P(i )cotransporter (in 1993) provided the tools to study renal brush-border membrane Na-P(i) cotransport function/regulation at the cellular/molecular level as well as at the organ level and led to an understanding of cellular mechanisms involved in control of proximal tubular P(i) handling and, thus, of overall P(i) homeostasis.
Collapse
Affiliation(s)
- H Murer
- Institute of Physiology, University of Zürich, Zürich, Switzerland.
| | | | | | | |
Collapse
|
18
|
Zhao N, Tenenhouse HS. Npt2 gene disruption confers resistance to the inhibitory action of parathyroid hormone on renal sodium-phosphate cotransport. Endocrinology 2000; 141:2159-65. [PMID: 10830304 DOI: 10.1210/endo.141.6.7484] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PTH inhibition of renal sodium-phosphate (Na-Pi) cotransport is associated with the endocytic retrieval of the type II Na-Pi cotransporter, Npt2, from the renal brush border membrane into the late endosomal/lysosomal compartment. The aim of the present study was to determine whether mice homozygous for the disrupted Npt2 gene (Npt2-/-) exhibit decreased renal Pi reabsorption in response to PTH. We demonstrate that PTH has no effect on the serum Pi concentration, fractional excretion of Pi, or Na-dependent Pi transport in renal brush border membrane vesicles in Npt2-/- mice. In contrast, PTH elicits a fall in the serum Pi concentration, an increase in urinary Pi excretion, a decrease in brush border membrane Na-Pi cotransport, and a corresponding reduction in the relative abundance of Npt2 protein in wild-type mice (Npt2+/+). Both Npt2-/- and Npt2+/+ mice exhibit a significant rise in the urinary cAMP/creatinine ratio in response to PTH, indicating that generalized resistance to PTH cannot account for the absence of the PTH response in Npt2-/- mice. In addition, we demonstrate that Pi-depleted normal mice respond to PTH with a decrease in renal brush border membrane Na-Pi cotransport and Npt2 protein, indicating that Pi deficiency per se does not account for PTH resistance in Npt2-/- mice. Taken together, our data provide compelling evidence that Npt2 gene expression is crucial for PTH effects on renal Pi handling.
Collapse
Affiliation(s)
- N Zhao
- Department of Pediatrics, McGill University-Montréal Children's Hospital Research Institute, Québec, Canada
| | | |
Collapse
|
19
|
Fernandes I, Béliveau R, Friedlander G, Silve C. NaPO(4) cotransport type III (PiT1) expression in human embryonic kidney cells and regulation by PTH. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:F543-51. [PMID: 10516278 DOI: 10.1152/ajprenal.1999.277.4.f543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to characterize the type(s) of NaPO(4) cotransporter expressed in the human renal cell line HEK-293 and its regulation by parathyroid hormone (PTH) in wild-type cells and in cells transfected by the PTH/PTH-related protein (PTHrP) receptor. The results showed that human embryonic kidney HEK-293 cells expressed NaPO(4) cotransporter type III (PiT1) mRNA and protein. In contrast, type I (NPT1) or II (NPT2) cotransporter mRNA were not expressed. Na(+)-dependent phosphate uptake followed a Michaelis-Menten model (apparent maximal transport rate and affinity constant: 23.32 +/- 0.69 nmol PO(4). mg protein(-1). 10 min(-1) and 0.147 +/- 0.014 mM KH(2)PO(4), respectively), was stimulated by phosphate deprivation (maximal increase 24.5 +/- 0.8%, P < 0.001, after 15 h of phosphate deprivation), and was inhibited by increasing pH (3.6 +/- 0.2-fold decrease at pH 8.5, P < 0.0001). It was inhibited in a time- and concentration-dependent fashion by PTH in HEK-293 cells stably transfected by PTH/PTHrP receptors but not in parental HEK-293 cells. Maximal inhibition of Na(+)-dependent phosphate transport was observed at 30 min after the addition of 72 nM PTH-(1-34) (31.5 +/- 2.4% inhibition, P < 0.01). PTH inhibition of phosphate transport was maintained in phosphate-deprived cells and reversed by both GF109203X (10(-6) M) or staurosporine (5.5 nM), two protein kinase C inhibitors. Na(+)-dependent phosphate uptake was also significantly inhibited by phorbol 12-myristate 13-acetate (20.9 +/- 3.9% inhibition, P < 0.001) but not by dibutyril-cAMP (10(-4) M) or forskolin (50 microM). The physiological role played by type III NaPO(4) cotransport expression in the overall renal regulation of phosphate homeostasis remains to be established.
Collapse
Affiliation(s)
- I Fernandes
- Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine Xavier Bichat, 75018 Paris, France
| | | | | | | |
Collapse
|
20
|
Abstract
This review focuses on recent developments in the molecular characterization of renal sodium-phosphate cotransporters and the mechanisms involved in their regulation. Of the three classes of sodium-phosphate cotransporters expressed in the mammalian kidney, the type II transporter, NPT2/Npt2 reflects the characteristics of apical sodium-dependent phosphate transport, and is a target for regulation. Studies in mice in which the Npt2 gene was disrupted by targeted mutagenesis underscore the importance of Npt2 in the maintenance of phosphate homeostasis. Recent advances in our understanding of phosphate transport mechanisms in intestine and bone are also discussed.
Collapse
Affiliation(s)
- H S Tenenhouse
- Department of Pediatrics, McGill University, Montreal Children's Hospital Research Institute, Quebec, Canada.
| |
Collapse
|
21
|
Tenenhouse HS, Roy S, Martel J, Gauthier C. Differential expression, abundance, and regulation of Na+-phosphate cotransporter genes in murine kidney. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:F527-34. [PMID: 9755124 DOI: 10.1152/ajprenal.1998.275.4.f527] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three classes of high-affinity Na+-Pi cotransporters are expressed in mammalian kidney. These include Npt1 (type I), Npt2 (type II), and the cellular receptors for gibbon ape leukemia virus (Glvr-1) and amphotropic murine retrovirus (Ram-1) (type III). We defined the tissue distribution as well as the relative renal abundance of Npt1, Npt2, Glvr-1, and Ram-1 mRNAs and examined the effects of low-Pi diet, the Hyp mutation, and growth hormone (GH) on their renal expression by ribonuclease protection assay. In normal mouse kidney, Npt1, Npt2, Glvr-1, and Ram-1 accounted for 15 +/- 1.0, 84 +/- 1.0, 0.5 +/- 0.2, and 0.5 +/- 0.3% of total Na+-Pi cotransporter mRNAs, respectively. Evidence was obtained for low-abundance Npt1 mRNA expression in liver and Npt2 mRNA expression in intestine, whereas Glvr-1 and Ram-1 mRNAs were also detected in bone, intestine, heart, and liver. Npt2 mRNA was localized to proximal tubules in the renal outer cortex, whereas Glvr-1 transcripts were detected throughout the kidney by in situ hybridization. The Hyp mutation elicited a significant reduction in renal Npt1 and Npt2 mRNAs (78 +/- 8 and 57 +/- 3% of normal, respectively), whereas neither low-Pi diet nor GH influenced the renal abundance of Npt1 and Npt2 transcripts. Renal Glvr-1 mRNA expression was significantly increased in Hyp mice and GH-treated mice (145 +/- 6 and 165 +/- 5% of control, respectively), whereas the renal abundance of Ram-1 transcript was unaffected by either the Hyp mutation, low-Pi diet, or GH treatment. In summary, we demonstrate that Npt2 is the predominant Na+-Pi cotransporter in mouse kidney, that Npt2 and Glvr-1 have distinct patterns of renal expression, and that the Hyp mutation modulates the renal expression of Npt1, Npt2, and Glvr-1 mRNAs. Our results suggest that increased renal Glvr-1 mRNA may contribute to GH stimulation of renal Na+-Pi cotransport.
Collapse
MESH Headings
- Animals
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Crosses, Genetic
- Female
- Gene Expression Regulation
- In Situ Hybridization
- Kidney/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Organ Specificity
- Phosphate Transport Proteins
- RNA, Messenger/metabolism
- Receptors, Virus/biosynthesis
- Receptors, Virus/genetics
- Sodium-Phosphate Cotransporter Proteins
- Sodium-Phosphate Cotransporter Proteins, Type I
- Sodium-Phosphate Cotransporter Proteins, Type II
- Sodium-Phosphate Cotransporter Proteins, Type III
- Symporters
- Transcription, Genetic
Collapse
Affiliation(s)
- H S Tenenhouse
- Medical Research Council Genetics Group, McGill University-Montreal Children's Hospital Research Institute, Departments of Pediatrics and Biology, McGill University, Montreal, Quebec, Canada H3H 1P3
| | | | | | | |
Collapse
|