1
|
Janoušek J, Pilařová V, Macáková K, Nomura A, Veiga-Matos J, Silva DDD, Remião F, Saso L, Malá-Ládová K, Malý J, Nováková L, Mladěnka P. Vitamin D: sources, physiological role, biokinetics, deficiency, therapeutic use, toxicity, and overview of analytical methods for detection of vitamin D and its metabolites. Crit Rev Clin Lab Sci 2022; 59:517-554. [PMID: 35575431 DOI: 10.1080/10408363.2022.2070595] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vitamin D has a well-known role in the calcium homeostasis associated with the maintenance of healthy bones. It increases the efficiency of the intestinal absorption of dietary calcium, reduces calcium losses in urine, and mobilizes calcium stored in the skeleton. However, vitamin D receptors are present ubiquitously in the human body and indeed, vitamin D has a plethora of non-calcemic functions. In contrast to most vitamins, sufficient vitamin D can be synthesized in human skin. However, its production can be markedly decreased due to factors such as clothing, sunscreens, intentional avoidance of the direct sunlight, or the high latitude of the residence. Indeed, more than one billion people worldwide are vitamin D deficient, and the deficiency is frequently undiagnosed. The chronic deficiency is not only associated with rickets/osteomalacia/osteoporosis but it is also linked to a higher risk of hypertension, type 1 diabetes, multiple sclerosis, or cancer. Supplementation of vitamin D may be hence beneficial, but the intake of vitamin D should be under the supervision of health professionals because overdosing leads to intoxication with severe health consequences. For monitoring vitamin D, several analytical methods are employed, and their advantages and disadvantages are discussed in detail in this review.
Collapse
Affiliation(s)
- Jiří Janoušek
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Veronika Pilařová
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Anderson Nomura
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Jéssica Veiga-Matos
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Diana Dias da Silva
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU CRL, Gandra, Portugal
| | - Fernando Remião
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Kateřina Malá-Ládová
- Department of Social and Clinical Pharmacy, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Josef Malý
- Department of Social and Clinical Pharmacy, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Regulatory domains controlling high intestinal vitamin D receptor gene expression are conserved in mouse and human. J Biol Chem 2022; 298:101616. [PMID: 35065959 PMCID: PMC8891975 DOI: 10.1016/j.jbc.2022.101616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Vitamin D receptor (VDR) levels are highest in the intestine where it mediates 1,25 dihydroxyvitamin D-induced gene expression. However, the mechanisms controlling high intestinal VDR gene expression are unknown. Here, we used Assay for Transposase-Accessible Chromatin using Sequencing (ATAC-Seq) to identify the regulatory sites controlling intestine-specific Vdr gene expression in the small intestine (villi and crypts) and colon of developing, adult, and aged mice. We identified 17 ATAC peaks in a 125 kb region from intron 3 to −55.8 kb from exon 1 of the Vdr gene. Interestingly, many of these peaks were missing/reduced in the developing intestine. Chromatin ImmunoPrecipitation-Sequencing (ChIP-Seq) peaks for intestinal transcription factors (TFs) were present within the ATAC peaks and at HiChIP looping attachments that connected the ATAC/TF ChIP peaks to the transcription start site and CCCTF-binding factor sites at the borders of the Vdr gene regulatory domain. Intestine-specific regulatory sites were identified by comparing ATAC peaks to DNAse-Seq data from other tissues that revealed tissue-specific, evolutionary conserved, and species-specific peaks. Bioinformatics analysis of human DNAse-Seq peaks revealed polymorphisms that disrupt TF-binding sites. Our analysis shows that mouse intestinal Vdr gene regulation requires a complex interaction of multiple distal regulatory regions and is controlled by a combination of intestinal TFs. These intestinal regulatory sites are well conserved in humans suggesting that they may be key components of VDR regulation in both mouse and human intestines.
Collapse
|
3
|
Fleet JC, Reyes-Fernandez P. Intestinal responses to 1,25 dihydroxyvitamin D are not improved by higher intestinal VDR levels resulting from intestine-specific transgenic expression of VDR in mice. J Steroid Biochem Mol Biol 2020; 200:105670. [PMID: 32283207 DOI: 10.1016/j.jsbmb.2020.105670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/28/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022]
Abstract
Intestinal calcium (Ca) absorption depends upon vitamin D signaling through the vitamin D receptor (VDR) in the proximal and distal intestine while lower VDR content causes intestinal resistance to 1,25 dihydroxyvitamin D (1,25(OH)2 D) action. We tested whether intestinal responsiveness to 1,25(OH)2 D is increased in mice with higher than normal VDR levels resulting from transgenic VDR expression in the whole intestine (villin promoter-human VDR transgene, HV2). Wild type (WT) and HV2 mice were treated with 0, 0.15, or 0.3 ng 1,25(OH)2 D/g body weight (BW) (n = 6/dose) for 6 h. 1,25(OH)2 D significantly induced Cyp24a1, Trpv6, and S100 g mRNA in duodenum (Dd) of WT mice but induction was not higher in HV2 mice. We next tested whether higher intestinal VDR could protect mice from the consequences of low dietary Ca intake. WT and HV2 mice were fed diets with 0.125, 0.25, 0.5 (reference), or 1% Ca from weaning to 3 months of age (n = 9/diet/genotype). Dietary Ca restriction caused a dose dependent increase in serum 1,25(OH)2 D, Dd TRPV6, and Dd S100 g mRNA in WT mice and the effect was greater in HV2 mice. While Ca absorption was increased by low Ca intake, there was no difference in Ca absorption between HV2 and WT mice. Similarly, while bone density and microstructure were reduced by low Ca intake in WT mice, high intestinal VDR in HV2 mice did not protect bone in mice fed low Ca diets. Thus, while intestinal VDR and vitamin D signaling are essential for normal Ca metabolism during growth, our data demonstrate that higher than normal intestinal VDR levels do not improve the intestinal response to either 1,25(OH)2 D injection or to elevated 1,25(OH)2 D levels resulting from the physiologic adaptation to low Ca diets.
Collapse
Affiliation(s)
- James C Fleet
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47906-2059, United States.
| | - Perla Reyes-Fernandez
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47906-2059, United States
| |
Collapse
|
4
|
Pahlevan Kakhki M, Nikravesh A, Shirvani Farsani Z, Sahraian MA, Behmanesh M. HOTAIR but not ANRIL long non-coding RNA contributes to the pathogenesis of multiple sclerosis. Immunology 2017; 153:479-487. [PMID: 29030863 DOI: 10.1111/imm.12850] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/26/2017] [Accepted: 10/06/2017] [Indexed: 01/17/2023] Open
Abstract
Studies have revealed that dysregulation in gene expression is one of the main aspects of multiple sclerosis (MS) pathogenesis. Although the molecular pathways underlying the immunomodulatory role of vitamin D (VD) in MS is not completely elucidated, VD has more recently become a topic of interest in immune regulation and is widely administered to patients with MS as an immunomodulatory supplement. Long non-coding RNAs (lncRNAs) are known to play important roles in regulation of gene expression via different mechanisms. Given that VD-related genes are regulated by epigenetic mechanisms, here we aimed to evaluate the role of VD in combination with HOTAIR and ANRIL lncRNAs using in vivo, in vitro and in silico experiments in MS pathogenesis. Our data revealed that HOTAIR but not ANRIL lncRNA is probably involved in the pathogenesis of MS and experimental autoimmune encephalomyelitis through an unclear mechanism and it seems that by affecting the expression, inflammation and VD can influence HOTAIR-related mechanisms, which require further study.
Collapse
Affiliation(s)
- Majid Pahlevan Kakhki
- Faculty of Biological Sciences, Department of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Abbas Nikravesh
- Faculty of Medicine, Department of Medical Biotechnology & Molecular Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zeinab Shirvani Farsani
- Faculty of Biological Sciences and Technology, Department of Cellular and Molecular Biology, Shahid Beheshti G.C., Tehran, Iran
| | - Mohammad Ali Sahraian
- MS Research Centre, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Behmanesh
- Faculty of Biological Sciences, Department of Genetics, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Dhawan P, Veldurthy V, Yehia G, Hsaio C, Porta A, Kim KI, Patel N, Lieben L, Verlinden L, Carmeliet G, Christakos S. Transgenic Expression of the Vitamin D Receptor Restricted to the Ileum, Cecum, and Colon of Vitamin D Receptor Knockout Mice Rescues Vitamin D Receptor-Dependent Rickets. Endocrinology 2017; 158:3792-3804. [PMID: 28938396 PMCID: PMC5695835 DOI: 10.1210/en.2017-00258] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/06/2017] [Indexed: 01/01/2023]
Abstract
Although the intestine plays the major role in 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] action on calcium homeostasis, the mechanisms involved remain incompletely understood. The established model of 1,25(OH)2D3-regulated intestinal calcium absorption postulates a critical role for the duodenum. However, the distal intestine is where 70% to 80% of ingested calcium is absorbed. To test directly the role of 1,25(OH)2D3 and the vitamin D receptor (VDR) in the distal intestine, three independent knockout (KO)/transgenic (TG) lines expressing VDR exclusively in the ileum, cecum, and colon were generated by breeding VDR KO mice with TG mice expressing human VDR (hVDR) under the control of the 9.5-kb caudal type homeobox 2 promoter. Mice from one TG line (KO/TG3) showed low VDR expression in the distal intestine (<50% of the levels observed in KO/TG1, KO/TG2, and wild-type mice). In the KO/TG mice, hVDR was not expressed in the duodenum, jejunum, kidney, or other tissues. Growth arrest, elevated parathyroid hormone level, and hypocalcemia of the VDR KO mice were prevented in mice from KO/TG lines 1 and 2. Microcomputed tomography analysis revealed that the expression of hVDR in the distal intestine of KO/TG1 and KO/TG2 mice rescued the bone defects associated with systemic VDR deficiency, including growth plate abnormalities and altered trabecular and cortical parameters. KO/TG3 mice showed rickets, but less severely than VDR KO mice. These findings show that expression of VDR exclusively in the distal intestine can prevent abnormalities in calcium homeostasis and bone mineralization associated with systemic VDR deficiency.
Collapse
Affiliation(s)
- Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Vaishali Veldurthy
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Ghassan Yehia
- The Genome Editing Core Facility, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Connie Hsaio
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Angela Porta
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Ki-in Kim
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Nishant Patel
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Liesbet Lieben
- Clinical and Experimental Medicine and Endocrinology, KU Leuven, Leuven B-3000, Belgium
| | - Lieve Verlinden
- Clinical and Experimental Medicine and Endocrinology, KU Leuven, Leuven B-3000, Belgium
| | - Geert Carmeliet
- Clinical and Experimental Medicine and Endocrinology, KU Leuven, Leuven B-3000, Belgium
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| |
Collapse
|
6
|
DeSmet ML, Fleet JC. Constitutively active RAS signaling reduces 1,25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression. J Steroid Biochem Mol Biol 2017; 173:194-201. [PMID: 28104492 PMCID: PMC5511787 DOI: 10.1016/j.jsbmb.2017.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/23/2016] [Accepted: 01/11/2017] [Indexed: 01/12/2023]
Abstract
High vitamin D status is associated with reduced colon cancer risk but these studies ignore the diversity in the molecular etiology of colon cancer. RAS activating mutations are common in colon cancer and they activate pro-proliferative signaling pathways. We examined the impact of RAS activating mutations on 1,25 dihydroxyvitamin D (1,25(OH)2D)-mediated gene expression in cultured colon and intestinal cell lines. Transient transfection of Caco-2 cells with a constitutively active mutant K-RAS (G12 V) significantly reduced 1,25(OH)2D-induced activity of both a human 25-hydroxyvitamin D, 24 hydroxyase (CYP24A1) promoter-luciferase and an artificial 3X vitamin D response element (VDRE) promoter-luciferase reporter gene. Young Adult Mouse Colon (YAMC) and Rat Intestinal Epithelial (RIE) cell lines with stable expression of mutant H-RAS had suppressed 1,25(OH)2D-mediated induction of CYP24A1 mRNA. The RAS effects were associated with lower Vitamin D receptor (VDR) mRNA and protein levels in YAMC and RIE cells and they could be partially reversed by VDR overexpression. RAS-mediated suppression of VDR levels was not due to either reduced VDR mRNA stability or increased VDR gene methylation. However, chromatin accessibility to the VDR gene at the proximal promoter (-300bp), an enhancer region at -6kb, and an enhancer region located in exon 3 was significantly reduced in RAS transformed YAMC cells (YAMC-RAS). These data show that constitutively active RAS signaling suppresses 1,25(OH)2D-mediated gene transcription in colon epithelial cells by reducing VDR gene transcription but the mechanism for this suppression is not yet known. These data suggest that cancers with RAS-activating mutations may be less responsive to vitamin D mediated treatment or chemoprevention.
Collapse
Affiliation(s)
- Marsha L DeSmet
- Purdue University Interdisciplinary Life Science Ph.D. Program, West Lafayette, IN, United States; Department of Nutrition Science, Purdue University, West Lafayette, IN, United States.
| | - James C Fleet
- Purdue University Interdisciplinary Life Science Ph.D. Program, West Lafayette, IN, United States; Purdue University Center for Cancer Research, West Lafayette, IN, United States; Department of Nutrition Science, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
7
|
Fleet JC. The role of vitamin D in the endocrinology controlling calcium homeostasis. Mol Cell Endocrinol 2017; 453:36-45. [PMID: 28400273 PMCID: PMC5529228 DOI: 10.1016/j.mce.2017.04.008] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/07/2017] [Accepted: 04/08/2017] [Indexed: 12/14/2022]
Abstract
Vitamin D and its' metabolites are a crucial part of the endocrine system that controls whole body calcium homeostasis. The goal of this hormonal control is to regulate serum calcium levels so that they are maintained within a very narrow range. To achieve this goal, regulatory events occur in coordination at multiple tissues, e.g. the intestine, kidney, bone, and parathyroid gland. Production of the vitamin D endocrine hormone, 1,25 dihydroxyvitamin D (1,25(OH)2 D) is regulated by habitual dietary calcium intake and physiologic states like growth, aging, and the menopause. The molecular actions of 1,25(OH)2 D on calcium regulating target tissues are mediated predominantly by transcription controlled by the vitamin D receptor. A primary role for 1,25(OH)2 D during growth is to increase intestinal calcium absorption so that sufficient calcium is available for bone mineralization. However, vitamin D also has specific actions on kidney and bone.
Collapse
Affiliation(s)
- James C Fleet
- Department of Nutrition Science, Room G1B Stone Hall, Purdue University, West Lafayette, IN 47907-2059, United States.
| |
Collapse
|
8
|
Shirvani-Farsani Z, Kakhki MP, Gargari BN, Doosti R, Moghadasi AN, Azimi AR, Behmanesh M. The expression of VDR mRNA but not NF-κB surprisingly decreased after vitamin D treatment in multiple sclerosis patients. Neurosci Lett 2017; 653:258-263. [PMID: 28576565 DOI: 10.1016/j.neulet.2017.05.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/09/2017] [Accepted: 05/23/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE The aim of this study was to investigate the expression levels of vitamin D receptor (VDR) and NF-κB mRNAs in vitamin D (VD) supplemented multiple sclerosis (MS) patients. METHODS RRMS patients received 50,000 IU vitamin D3/week as an intra-muscular injection for 2 months. Blood samples were obtained from 30 MS patients before and after VD supplementation and 32 healthy individuals, and then VDR and NF-κB mRNA levels were measured by real time PCR method and analyzed with independent and paired t-tests. Moreover, some correlations were performed between the expression levels of selected genes and some clinical features of MS and control groups. RESULTS Surprisingly, the expression level of VDR mRNA significantly decreased after 2 months supplementation with VD in our selected patients and in contrast, the level of serum 25(OH) D increased after supplementation. Although, we didn't find any significant difference in the expression level of NF-κB gene before and after treatment with VD, its expression significantly decreased in untreated MS cases compared with healthy controls. CONCLUSION In conclusion, we found some new evidences from the molecular mechanism of vitamin D effectiveness in MS treatment. Also, we need more functional studies to find the effect of VD on the expression level of VDR mRNA.
Collapse
Affiliation(s)
- Zeinab Shirvani-Farsani
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran
| | - Majid Pahlevan Kakhki
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahar Naghavi Gargari
- Department of Basic Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozita Doosti
- MS Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | | | - Amir Reza Azimi
- MS Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Reyes-Fernandez PC, Fleet JC. Compensatory Changes in Calcium Metabolism Accompany the Loss of Vitamin D Receptor (VDR) From the Distal Intestine and Kidney of Mice. J Bone Miner Res 2016; 31. [PMID: 26211511 PMCID: PMC4846362 DOI: 10.1002/jbmr.2600] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,25 Dihydroxyvitamin D3 (1,25(OH)2 D) increases intestinal Ca absorption when dietary Ca intake is low by inducing gene expression through the vitamin D receptor (VDR). 1,25(OH)2 D-regulated Ca absorption has been studied extensively in the small intestine, but VDR is also present in the large intestine. Our goal was to determine the impact of large intestinal VDR deletion on Ca and bone metabolism. We used transgenic mice expressing Cre-recombinase driven by the 9.5-kb human caudal type homeobox 2 (CDX2) promoter to delete floxed VDR alleles from the caudal region of the mouse (CDX2-KO). Weanling CDX2-KO mice and control littermates were fed low (0.25%) or normal (0.5%) Ca diets for 7 weeks. Serum and urinary Ca, vitamin D metabolites, bone parameters, and gene expression were analyzed. Loss of the VDR in CDX2-KO was confirmed in colon and kidney. Unexpectedly, CDX2-KO had lower serum PTH (-65% of controls, p < 0.001) but normal serum 1,25(OH)2 D and Ca levels. Despite elevated urinary Ca loss (eightfold higher in CDX2-KO) and reduced colonic target genes TRPV6 (-90%) and CaBPD9k (-80%) mRNA levels, CDX2-KO mice had only modestly lower femoral bone density. Interestingly, duodenal TRPV6 and CaBPD9k mRNA expression was fourfold and threefold higher, respectively, and there was a trend toward increased duodenal Ca absorption (+19%, p = 0.076) in the CDX2-KO mice. The major finding of this study is that large intestine VDR significantly contributes to whole-body Ca metabolism but that duodenal compensation may prevent the consequences of VDR deletion from large intestine and kidney in growing mice.
Collapse
Affiliation(s)
| | - James C Fleet
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
10
|
Replogle RA, Li Q, Wang L, Zhang M, Fleet JC. Gene-by-diet interactions influence calcium absorption and bone density in mice. J Bone Miner Res 2014; 29:657-65. [PMID: 23955923 PMCID: PMC10591522 DOI: 10.1002/jbmr.2065] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 07/10/2013] [Accepted: 07/29/2013] [Indexed: 12/14/2022]
Abstract
Dietary calcium (Ca) intake is needed to attain peak bone mineral density (BMD). Habitual low Ca intake increases intestinal Ca absorption efficiency to protect bone mass, but the mechanism controlling, and the impact of genetics on, this adaptive response is not clear. We fed 11 genetically diverse inbred mouse lines a normal (0.5%) or low (0.25%) Ca diet from 4 to 12 weeks of age (n = 8 per diet per line) and studied the independent and interacting effects of diet and genetics on Ca and bone metabolism. Significant genetic variation was observed in all bone, renal, and intestinal phenotypes measured including Ca absorption. Also, adaptation of Ca absorption and bone parameters to low dietary Ca was significantly different among the lines. Ca absorption was positively correlated to femur BMD (r = 0.17, p = 0.02), and distal femur bone volume/tissue volume (BV/TV) (r = 0.34, p < 0.0001). Although Ca absorption was correlated to 1,25 dihydroxyvitamin D (1,25(OH)2 D) (r = 0.35, p < 0.0001), the adaptation of Ca absorption to low Ca intake did not correlate to diet-induced adaptation of 1,25(OH)2 D across the 11 lines. Several intestinal proteins have been proposed to mediate Ca absorption: claudins 2 and 12, voltage gated Ca channel v1.3 (Cav1.3), plasma membrane Ca ATPase 1b (PMCA1b), transient receptor potential vanilloid member 6 (TRPV6), and calbindin D9k (CaBPD9k). Only the mRNA levels for TRPV6, CaBPD9k, and PMCA1b were related to Ca absorption (r = 0.42, 0.43, and 0.21, respectively). However, a significant amount of the variation in Ca absorption is not explained by the current model and suggests that novel mechanisms remain to be determined. These observations lay the groundwork for discovery-focused initiatives to identify novel genetic factors controlling gene-by-diet interactions affecting Ca/bone metabolism.
Collapse
Affiliation(s)
- Rebecca A Replogle
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | | | | | | | | |
Collapse
|
11
|
Jiang Y, Fleet JC. Phorbol esters enhance 1α,25-dihydroxyvitamin D3-regulated 25-hydroxyvitamin D-24-hydroxylase (CYP24A1) gene expression through ERK-mediated phosphorylation of specific protein 3 (Sp3) in Caco-2 cells. Mol Cell Endocrinol 2012; 361:31-9. [PMID: 22871965 PMCID: PMC3414851 DOI: 10.1016/j.mce.2012.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/15/2012] [Accepted: 03/14/2012] [Indexed: 01/20/2023]
Abstract
Phorbol 12-myristate 13-acetate (PMA) increased 1,25(OH)(2)D(3)-induced human 25 hydroxyvitamin d-24 hydroxylase (hCYP24A1) gene expression and vitamin D receptor (VDR) binding to the hCYP24A1 promoter. It did not alter transient receptor potential cation channel, subfamily V, member 6 (TRPV6) expression, VDR binding to the TRPV6 promoter, or VDR binding to a crude chromatin preparation. PMA activated Extracellular signal-Regulated Kinases (ERK) 1/2 and p38 mitogen activated protein kinases (MAPK) and inhibiting these kinases reduced 1,25(OH)(2)D(3)-induced and PMA-enhanced hCYP24A1 promoter activity. Mithramycin A inhibits Specific Protein (Sp) family member binding to DNA and reduced 1,25(OH)(2)D(3)-induced and PMA-enhanced hCYP24A1 promoter activity. Sp1 or Sp3 siRNA knockdown reduced 1,25(OH)(2)D(3)-regulated hCYP24A1 promoter activity but only Sp3 siRNA reduced PMA-enhanced hCYP24A1 promoter activity. PMA increased MAPK-dependent Sp3 phosphorylation, Sp3-VDR interactions, and Sp3 binding to the hCYP24A1 promoter. These data suggest that MAPK signaling contributes to 1,25(OH)(2)D(3)-induced and PMA-enhanced CYP24A1 gene transcription by modulating Sp3 function.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907-2059, United States.
| | | |
Collapse
|
12
|
Jiang Y, Fleet JC. Effect of phorbol 12-myristate 13-acetate activated signaling pathways on 1α, 25 dihydroxyvitamin D3 regulated human 25-hydroxyvitamin D3 24-hydroxylase gene expression in differentiated Caco-2 cells. J Cell Biochem 2012; 113:1599-607. [PMID: 22174178 DOI: 10.1002/jcb.24028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phorbol-12-myristate-13-acetate (PMA), a protein kinase C(PKC) activator, can modulate 1α, 25 dihydroxyvitamin D(3) (1,25(OH)(2)D(3))-induced expression of the 24-hydroxylase (CYP24A1) gene but this has not been studied in differentiated enterocytes, a primary 1,25(OH)(2) D(3) target cell. We found that in differentiated Caco-2 cells, an established model of the mature absorptive epithelial cell, PMA significantly enhanced 1,25(OH)(2)D(3)-induced human CYP24A1 (hCYP24A1) mRNA accumulation and hCYP24A1 promoter-luciferase reporter gene activation by 150%. Reporter gene studies further identified the region between -298 and +74 bp in the hCYP24A1 promoter as critical for the PMA enhancing effect and chromatin immunoprecipitation (ChIP) analysis showed that PMA enhanced 1,25(OH)(2)D(3)-induced binding of vitamin D receptor to this region. PMA can activate PKC, ERK1/2, and p38 MAP kinases and inhibition of these signaling pathways reduced both 1,25(OH)(2)D(3)-induced hCYP24A1 gene transcription and the enhancing effect of PMA. The PMA enhancing effect on 1,25(OH)(2)D(3) action was evident in a minimal promoter with three osteocalcin VDREs and was reduced after mutation of a putative vitamin D stimulatory site in the hCYP24A1 promoter. In contrast, mutation of a Ets binding site (EBS) in the hCYP24A1 promoter had no impact on 1,25(OH)(2)D(3) action or the PMA enhancing effect. These data suggest that in the differentiated enterocyte PMA-induced activation of several signaling pathways contribute to 1,25(OH)(2)D(3)-induced hCYP24A1 gene expression through multiple regulatory motifs within the proximal hCYP24A1 promoter.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana 47907-2059, USA
| | | |
Collapse
|
13
|
Zheng XE, Wang Z, Liao MZ, Lin YS, Shuhart MC, Schuetz EG, Thummel KE. Human PXR-mediated induction of intestinal CYP3A4 attenuates 1α,25-dihydroxyvitamin D₃ function in human colon adenocarcinoma LS180 cells. Biochem Pharmacol 2012; 84:391-401. [PMID: 22562045 DOI: 10.1016/j.bcp.2012.04.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 12/12/2022]
Abstract
Oxidative catabolism of 1α,25-dihydroxyvitamin D(3) [1α,25(OH)(2)D(3)] is mediated by either CYP24A1 or CYP3A4. In this paper, we tested whether induction of CYP3A4 in the LS180 intestinal cell model enhances clearance of 1α,25(OH)(2)D(3) and blunts its hormonal effect on expression of the apical membrane calcium transport protein, TRPV6. Treatment with the hPXR agonist rifampin significantly increased CYP3A4 mRNA content and catalytic activity, but had no effect on CYP24A1 or TRPV6 mRNA content. Pre-treating cells with rifampin for 48h, prior to a 24h 1α,25(OH)(2)D(3) treatment phase, was associated with a subsequent 48% increase in the elimination of 1α,25(OH)(2)D(3) and a 35% reduction of peak TRPV6 mRNA. Introduction of the CYP3A4 inhibitor, 6',7'-dihydroxybergamottin, an active inhibitor in grapefruit juice, reversed the effects of rifampin on 1α,25(OH)(2)D(3) clearance and TRPV6 expression. Over-expression of hPXR in LS180 cells greatly enhanced the CYP3A4 responsiveness to rifampin pretreatment, and elicited a greater relative suppression of TRPV6 expression and an increase in 1α,25(OH)(2)D(3) disappearance rate, compared to vector expressed cells, following hormone administration. Together, these results suggest that induction of CYP3A4 in the intestinal epithelium by hPXR agonists can result in a greater metabolic clearance of 1α,25(OH)(2)D(3) and reduced effects of the hormone on the intestinal calcium absorption, which may contribute to an increased risk of drug-induced osteomalacia/osteoporosis in patients receiving chronic therapy with potent hPXR agonists. Moreover, ingestion of grapefruit juice in the at-risk patients could potentially prevent this adverse drug effect.
Collapse
Affiliation(s)
- Xi Emily Zheng
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, United States
| | | | | | | | | | | | | |
Collapse
|
14
|
Fleet JC, Schoch RD. Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. Crit Rev Clin Lab Sci 2011; 47:181-95. [PMID: 21182397 DOI: 10.3109/10408363.2010.536429] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Optimal intestinal calcium (Ca) absorption is necessary for the protection of bone and the prevention of osteoporosis. Ca absorption can be represented as the sum of a saturable pathway and a non-saturable pathway that is primarily dependent upon luminal Ca concentration. While models have been proposed to describe these transport components, significant gaps still exist in our understanding of these processes. Habitual low intake of Ca up-regulates the saturable transport pathway, a process mediated by increased renal production of 1,25 dihydroxyvitamin D (1,25(OH)(2)D). Consistent with this, low vitamin D status as well as deletion/mutation of the vitamin D receptor (VDR) or 25 hydroxyvitamin D-1α hydroxylase (CYP27B1) genes limit Ca absorption by reducing the saturable pathway. There is some evidence that non-saturable Ca absorption in the ileum is also regulated by vitamin D status, but the mechanism is unclear. Treatment with a number of hormones can regulate Ca absorption in vivo (e.g. parathyroid hormone (PTH), thyroid hormone, growth hormone (GH)/insulin-like growth factor I (IGF-1), estrogen, testosterone). However, some of these actions are indirect (i.e. mediated through the regulation of vitamin D metabolism or signaling), whereas only a few (e.g. estrogen, IGF-1) have been shown to persist in the absence of vitamin D signaling.
Collapse
Affiliation(s)
- James C Fleet
- Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana, USA
| | | |
Collapse
|
15
|
Yin Y, Ni J, Chen M, Guo Y, Yeh S. RRR-alpha-vitamin E succinate potentiates the antitumor effect of calcitriol in prostate cancer without overt side effects. Clin Cancer Res 2009; 15:190-200. [PMID: 19118046 DOI: 10.1158/1078-0432.ccr-08-0910] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine the antitumor efficacy of using calcitriol combined with RRR-alpha-vitamin E succinate (VES) on prostate cancer. EXPERIMENTAL DESIGN The effects of VES or VES in combination with calcitriol on the calcitriol target genes were evaluated by Western blot and real-time PCR. The antiproliferation effect of the combination in prostate cancer cells was evaluated by the combination index method. The role of the vitamin D(3) receptor (VDR) in the enhanced antitumor effects of the combination was confirmed by small interfering RNA knockdown strategy. Xenograft-bearing mice were used to reaffirm the antitumor efficacy of this combination. Pathohistology analyses and expressions of VDR and its target genes were analyzed in untreated and treated tumors. RESULTS VES selectively increased VDR protein in different prostate cancer cells. Low doses of calcitriol combined with VES were significantly superior to the additive effect of individual treatments against prostate cancer cell proliferation. The expression of VDR target genes involved in antiproliferation were further sensitized in the presence of VES. Knockdown of VDR expression abolished the combination benefits in LNCaP and PC3 cells. Consistently, in prostate cancer xenograft models, VES enhanced the therapeutic efficacy of a tolerated dose of calcitriol yet without overt evidence of systemic toxicity and hypercalcemia. This notable in vivo effect was also accompanied by up-regulation of VDR target genes. CONCLUSIONS Low-dose calcitriol combined with vitamin E analogue could be a solution to the calcemic side effect. The demonstration of superior antitumor activity of low-dose calcitriol plus VES provides the preclinical basis for developing a useful therapeutic strategy for prostate cancer.
Collapse
Affiliation(s)
- Yi Yin
- Department of Urology and Pathology, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | | | |
Collapse
|
16
|
Cui M, Klopot A, Jiang Y, Fleet JC. The effect of differentiation on 1,25 dihydroxyvitamin D-mediated gene expression in the enterocyte-like cell line, Caco-2. J Cell Physiol 2008; 218:113-21. [PMID: 18726998 DOI: 10.1002/jcp.21574] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We examined 1,25 dihydroxyvitamin D (1,25(OH)(2)D(3))-induced expression of 25-hydroxyvitamin D(3) 24-hydroxylase (CYP24) and apical calcium channel (TRPV6) mRNA levels in 2-, 9-, and 15-day cultures Caco-2 cells that model proliferating, post-proliferative, and differentiated enterocytes. 1,25(OH)(2)D(3)-induced (10 nM, 8 h) CYP24 and TRPV6 mRNA levels were significantly greater in differentiated and post-proliferative than proliferating Caco-2 cells (>16X and >3X, respectively). Neither CYP24 mRNA half-life nor induction of a -298 bp rat CYP24 promoter-luciferase reporter construct (10 nM 1,25(OH)(2)D(3), 24 h) were different between proliferating and post-proliferating Caco-2 cells. We next tested whether the blunted response of natural genes to 1,25(OH)(2)D(3) in proliferating Caco-2 cells is due to altered chromatin remodeling. VDR and coactivator protein levels do not increase with differentiation but the level of the co-repressor Alien falls by 50% with differentiation. Over-expression of Alien reduced 1,25(OH)(2)D(3)-induced activity of a minimal VDRE containing promoter-luciferase construct by more than 60% in differentiated Caco-2 cells while siRNA knockdown of Alien in proliferating Caco-2 cells increased 1,25(OH)(2)D(3)-induced CYP24 mRNA level by 40%. These observations suggest that Alien is a regulator of VDR-mediated gene transcription in Caco-2 cells. In addition, we found that 1,25(OH)(2)D(3)-induced association of VDR with chromatin and with the CYP24 promoter was lower in proliferating cells. This suggests that decreased recruitment of VDR to vitamin D response elements also contributes to the blunted transcriptional responsiveness to 1,25(OH)(2)D(3) in proliferating Caco-2 cells.
Collapse
Affiliation(s)
- Min Cui
- Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana, USA
| | | | | | | |
Collapse
|
17
|
Song Y, Fleet JC. Intestinal resistance to 1,25 dihydroxyvitamin D in mice heterozygous for the vitamin D receptor knockout allele. Endocrinology 2007; 148:1396-402. [PMID: 17110426 PMCID: PMC2617756 DOI: 10.1210/en.2006-1109] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We tested the hypothesis that low vitamin D receptor (VDR) level causes intestinal vitamin D resistance and intestinal calcium (Ca) malabsorption. To do so, we examined vitamin D regulated duodenal Ca absorption and gene expression [transient receptor potential channel, vallinoid subfamily member 6 (TRPV6), 24-hydroxylase, calbindin D(9k) (CaBP) mRNA, and CaBP protein] in wild-type mice and mice with reduced tissue VDR levels [i.e. heterozygotes for the VDR gene knockout (HT)]. Induction of 24-hydroxylase mRNA levels by 1,25 dihydroxyvitamin D(3) [1,25(OH)(2) D(3)] injection was significantly reduced in the duodenum and kidney of HT mice in both time-course and dose-response experiments. TRPV6 and CaBP mRNA levels in duodenum were significantly induced after 1,25(OH)(2) D(3) injection, but there was no difference in response between wild-type and HT mice. Feeding a low-calcium diet for 1 wk increased plasma PTH, renal 1alpha-hydroxylase (CYP27B1) mRNA level, and plasma 1,25(OH)(2) D(3), and this response was greater in HT mice (by 88, 55, and 37% higher, respectively). In contrast, duodenal TRPV6 and CaBP mRNA were not higher in HT mice fed the low-calcium diet. However, the response of duodenal Ca absorption and CaBP protein to increasing 1,25(OH)(2) D(3) levels was blunted by 40% in HT mice. Our data show that low VDR levels lead to resistance of intestinal Ca absorption to 1,25(OH)(2) D(3), and this resistance may be due to a role for the VDR (and VDR level) in the translation of CaBP.
Collapse
Affiliation(s)
- Yurong Song
- Interdepartmental Nutrition Program and Department of Foods and Nutrition, Purdue University, 700 West State Street, West Lafayette, IN 47906-2059, USA
| | | |
Collapse
|
18
|
Michaëlsson K, Wolk A, Jacobsson A, Kindmark A, Grundberg E, Stiger F, Mallmin H, Ljunghall S, Melhus H. The positive effect of dietary vitamin D intake on bone mineral density in men is modulated by the polyadenosine repeat polymorphism of the vitamin D receptor. Bone 2006; 39:1343-51. [PMID: 16860619 DOI: 10.1016/j.bone.2006.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 04/10/2006] [Accepted: 06/08/2006] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Few studies have considered the dietary influence of vitamin D intake on bone mineral density (BMD). Numerous studies have examined the association between VDR polymorphism and BMD, but no previous study has examined the joint influence of dietary vitamin D intake and VDR polymorphism on BMD. METHODS We therefore conducted a study in 230 men aged 41-76 years of age. BMD was measured with DXA. A second bone scan was performed on average 2.7 years after the first investigation. Dietary habits were assessed by 14 dietary 24-h recall interviews. The polyadenosine (A) VDR genotypes were determined. RESULTS Dietary vitamin D intake was associated with BMD at all sites, also after multivariate adjustment. Those in the highest quintile of intake had 9% higher femoral neck BMD (p = 0.004), 6% higher BMD at the lumbar spine (p = 0.06) and 5% higher total body BMD (p = 0.003) compared to men in the lowest quintile of dietary vitamin D intake. However, the positive association between vitamin D intake and BMD was especially apparent among those with the L/L polyadenosine (A) VDR genotype explaining between 10 and 15% of the variability in BMD depending on site (p < 0.004). There was furthermore a trend, in the lumbar spine, of less reduction in BMD with increasing vitamin D intake (p = 0.07) but not at the other sites. Calcium intake conferred no association with BMD. CONCLUSIONS Our results indicate that the extent of positive association between dietary vitamin D intake and BMD in men is dependent on VDR polymorphism, a novel conceivable important gene-environmental interaction.
Collapse
Affiliation(s)
- Karl Michaëlsson
- Department of Surgical Sciences, Section of Orthopaedics, University Hospital, S-751 85 Uppsala, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cotter AA, Cashman KD. Effect of 17beta-oestradiol on transepithelial calcium transport in human intestinal-like Caco-2 cells and its interactions with 1,25-dihydroxycholecalciferol and 9-cis retinoic acid. Eur J Nutr 2006; 45:234-41. [PMID: 16491319 DOI: 10.1007/s00394-006-0590-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 12/12/2005] [Indexed: 12/21/2022]
Abstract
BACKGROUND Oestrogen therapy helps prevent bone loss in postmenopausal women and corrects a decline in Ca absorption efficiency at the onset of menopause. However, the mechanism by which 17beta-oestradiol (17beta-E2) stimulates Ca absorption is unclear. Oestrogen may exert its effect indirectly via increasing 1,25-dihydroxycholeciferol (1,25 (OH)2D3) or its receptor, or act more directly on the intestines via the oestrogen receptor (OR). Since oestrogen also increases retinol levels, this may influence Ca absorption. AIM To investigate the effect of 17beta-E2 alone and in combination with 1,25 (OH)2D3 on intestinal Ca uptake and absorption in Caco-2 cells cultured under deplete- and replete-9-cis retinoic acid (9-cis RA) conditions. METHODS Twenty-one day-old Caco-2 cell monolayers (n 9 wells per treatment) were exposed to 9-cis RA-deplete and -replete media containing dimethyl sulfoxide (control), 10 nM-1,25 (OH)2D3, 10 nM-17beta-E2, or 10 nM-1,25 (OH)2D3 plus 10 nM-17beta-E2, for 48 h. RESULTS 1,25 (OH)2D3 stimulated Ca uptake, total Ca transport, calbindin D(9K) and CaT1 mRNA levels, while 17beta-E2 and 9-cis RA had no effect on Ca absorption or uptake. Nor did they augment the stimulatory effect of 1,25 (OH)2D3. CONCLUSION These in vitro findings suggest that oestrogen does not have a direct effect on intestinal Ca absorption.
Collapse
Affiliation(s)
- A A Cotter
- Dept. of Food and Nutritional Sciences, University College, Cork, Ireland
| | | |
Collapse
|
20
|
Taparia S, Fleet JC, Peng JB, Wang XD, Wood RJ. 1,25-Dihydroxyvitamin D and 25-hydroxyvitamin D--mediated regulation of TRPV6 (a putative epithelial calcium channel) mRNA expression in Caco-2 cells. Eur J Nutr 2005; 45:196-204. [PMID: 16362534 DOI: 10.1007/s00394-005-0586-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 11/07/2005] [Indexed: 01/16/2023]
Abstract
BACKGROUND TRPV6 is a member of the vanilloid subfamily of transient receptor potential (TRP) proteins and likely functions as an epithelial calcium channel in calcium-transporting organs, such as the intestine, kidney, and placenta. TRPV6 mRNA expression is strongly regulated by 1,25-dihydroxyvitamin D (1,25VD), the active hormonal form of vitamin D, in intestine and in Caco-2 cells, a human colon cancer cell line. AIM OF THE STUDY The aim of the present study was to characterise the mode of regulation of the 1,25VD-mediated TRPV6 mRNA expression and to test the effect of the precursor of 1,25VD namely 25 hydroxyvitamin D (25 VD) on TRPV6 mRNA expression in Caco-2 cells. METHODS Caco-2 cells were treated in a 2 x 2 format with 1,25VD and the transcriptional inhibitor actinomycin D (AD, 4 microg/ml), and also with translational inhibitor cycloheximide (CHX, 10 microg/ml) after 14 days in culture and TRPV6 mRNA levels were determined using reverse transcription-real time PCR.TRPV6 mRNA half life studies were performed by inhibiting transcription followed by sampling at various time points for TRPV6 mRNA. Varying concentrations of 25 VD were used to test their effect on TRPV6 mRNA in the presence of 5% FBS and also in the absence of serum (but containing insulin-transferrin-selenium mixture) for 24 h. RESULTS Treatment with 10(-7) M 1,25VD for 8 h resulted in a 60-fold increase in TRPV6 mRNA and this increase could be completely blocked with AD. Treatment with CHX to inhibit de novo protein synthesis did not prevent the initiation of 1,25VD-induced TRPV6 expression, although it did reduce the extent of TRPV6 mRNA accumulation. We found that TRPV6 mRNA half-life was 8 h in Caco-2 cells and was not altered by 1,25VD treatment. Finally, we observed that treatment with 10(-6) M of the pro-hormone 25 VD for 24 h resulted in a significant increase in TRPV6 expression in Caco-2 cells, which is consistent with the presence of 1alpha-hydroxylase (CYP27B1) expression in Caco-2 cells and a possible autocrine vitamin D signaling pathway in colon cells. CONCLUSIONS 1,25 dihydroxyvitamin D regulates TRPV6 expression by a process that requires new mRNA and protein synthesis and the point of regulation lies likely at the transcriptional level especially since vitamin D did not increase the half life of TRPV6 mRNA. In addition, the prohormone form of 1,25 dihydroxyvitamin D, i. e. the 25 hydroxyvitamin D, induced TRPV6 mRNA expression in Caco-2 cells.
Collapse
Affiliation(s)
- Shveta Taparia
- Mineral Bioavailability Laboratory, Jean Mayer USDA Human Nutrition, Research Center on Aging, Tufts University, 711 Washington Street, Boston (MA) 02111, USA
| | | | | | | | | |
Collapse
|
21
|
Belkacemi L, Züegel U, Steinmeyer A, Dion JP, Lafond J. Calbindin-D28k (CaBP28k) identification and regulation by 1,25-dihydroxyvitamin D3 in human choriocarcinoma cell line JEG-3. Mol Cell Endocrinol 2005; 236:31-41. [PMID: 15922086 DOI: 10.1016/j.mce.2005.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 03/03/2005] [Accepted: 03/10/2005] [Indexed: 11/25/2022]
Abstract
Calbindin-D28k (CaBP28k) is a cytosolic calcium (Ca2+)-binding protein expressed in tissues such as intestine, kidneys and placenta. This protein is thought to be involved in Ca2+ homeostasis. While it is well known that CaBP28k is influenced by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] in the intestine and kidneys, nothing is known regarding the regulation of this protein in trophoblasts of human placenta. We used JEG-3 syncytiotrophoblast-like carcinoma cell line to study the regulation of CaBP28k in correlation with 1,25(OH)2D3 receptor (VDR) following 1,25(OH)2D3 treatments. Our data demonstrated for the first time that both CaBP28k mRNA and protein were highly induced by the addition of 1,25(OH)2D3 in dose-dependent manner. Moreover, the increase and subsequent decrease in the expression of CaBP28k and VDR mRNAs indicates the transient nature of the changes in gene expression in response to 1,25(OH)2D3. This is in contrast with the temporal pattern of increasing protein for CaBP28k and VDR. We also showed that new RNA and protein syntheses are required for 1,25(OH)2D3-induced upregulation of CaBP28k. Furthermore, a 25-carboxylic ester analogue of 1,25(OH)2D3, ZK159222, used as an antagonist of 1,25(OH)2D3 signaling confirmed that indeed 1,25(OH)2D3 was implicated in the induction of CaBP28k. These novel findings are a contribution to the processes that drive CaBP28k expression regulation in human placenta.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Laboratoire de Physiologie Materno-foetale, Département des Sciences Biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Qué., Canada H3C 3P8
| | | | | | | | | |
Collapse
|
22
|
Abstract
Ca(2+) is an essential ion in all organisms, where it plays a crucial role in processes ranging from the formation and maintenance of the skeleton to the temporal and spatial regulation of neuronal function. The Ca(2+) balance is maintained by the concerted action of three organ systems, including the gastrointestinal tract, bone, and kidney. An adult ingests on average 1 g Ca(2+) daily from which 0.35 g is absorbed in the small intestine by a mechanism that is controlled primarily by the calciotropic hormones. To maintain the Ca(2+) balance, the kidney must excrete the same amount of Ca(2+) that the small intestine absorbs. This is accomplished by a combination of filtration of Ca(2+) across the glomeruli and subsequent reabsorption of the filtered Ca(2+) along the renal tubules. Bone turnover is a continuous process involving both resorption of existing bone and deposition of new bone. The above-mentioned Ca(2+) fluxes are stimulated by the synergistic actions of active vitamin D (1,25-dihydroxyvitamin D(3)) and parathyroid hormone. Until recently, the mechanism by which Ca(2+) enter the absorptive epithelia was unknown. A major breakthrough in completing the molecular details of these pathways was the identification of the epithelial Ca(2+) channel family consisting of two members: TRPV5 and TRPV6. Functional analysis indicated that these Ca(2+) channels constitute the rate-limiting step in Ca(2+)-transporting epithelia. They form the prime target for hormonal control of the active Ca(2+) flux from the intestinal lumen or urine space to the blood compartment. This review describes the characteristics of epithelial Ca(2+) transport in general and highlights in particular the distinctive features and the physiological relevance of the new epithelial Ca(2+) channels accumulating in a comprehensive model for epithelial Ca(2+) absorption.
Collapse
Affiliation(s)
- Joost G J Hoenderop
- Department of Physiology, Nijmegen Center for Moecular Life Sciences, University Medical Center Nijmegen, The Netherlands
| | | | | |
Collapse
|
23
|
Rao A, Coan A, Welsh JE, Barclay WW, Koumenis C, Cramer SD. Vitamin D receptor and p21/WAF1 are targets of genistein and 1,25-dihydroxyvitamin D3 in human prostate cancer cells. Cancer Res 2004; 64:2143-7. [PMID: 15026355 DOI: 10.1158/0008-5472.can-03-3480] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated mechanisms by which genistein and 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] act synergistically to inhibit the growth of the human prostate cancer cell line LNCaP. We demonstrate that 1,25(OH)(2)D(3) and genistein cooperate to up-regulate the vitamin D receptor protein by increasing the stability of the vitamin D receptor. Genistein and 1,25(OH)(2)D(3) also cooperate to up-regulate the levels of p21/WAF1 (p21). Small interfering RNA-mediated knockdown of p21 expression showed that p21 is essential for significant growth inhibition of LNCaP cells in response to either compound or their combination. We conclude that one mechanism of synergism between genistein and 1,25(OH)(2)D(3) is through genistein modulation of vitamin D signaling.
Collapse
Affiliation(s)
- Anuradha Rao
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
24
|
Cotter AA, Jewell C, Cashman KD. The effect of oestrogen and dietary phyto-oestrogens on transepithelial calcium transport in human intestinal-like Caco-2 cells. Br J Nutr 2003; 89:755-65. [PMID: 12828792 DOI: 10.1079/bjn2003848] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recently, dietary phyto-oestrogens (PO) have been suggested as possible alternatives to oestrogen therapy (hormone replacement therapy) as a means of preventing bone loss associated with ovarian hormone deficiency. While PO, which exhibit oestrogen-like activity, act directly on bone cells, their protective effect on bone may be partly due to their ability to enhance Ca absorption. Therefore, the aim of the present study was to investigate the effect of 17beta-oestradiol and two commonly consumed soyabean PO (genistein and daidzein) on Ca absorption in the human Caco-2 intestinal-like cell model. Caco-2 cells were seeded onto permeable filter supports and allowed to differentiate into monolayers. On day 21, the Caco-2 monolayers (n 8-18 per treatment), grown in oestrogen-replete or -deplete media, were then exposed to 10 nm-17beta-oestradiol, 1 nm-1,25-dihydroxycholecalciferol, or 50 micro m-genistein or -daidzein for 24 h. After exposure, transepithelial and transcellular transport of 45Ca and fluorescein transport (a marker of paracellular diffusion) were measured. As expected, 1,25-dihydroxycholecalciferol stimulated Ca absorption in Caco-2 cells, by up-regulating transcellular transport, whereas 17beta-oestradiol had no effect on Ca absorption. Unexpectedly, both PO decreased Ca absorption (by about 17-19 % compared with control, P<0.05), by reducing transcellular Ca transport in Caco-2 cells grown in oestrogen-replete media. This inhibitory effect disappeared when monolayers were grown in oestrogen-deplete media. In conclusion, PO at high luminal concentrations either had no effect or reduced Ca absorption in Caco-2 cells, dependent on oestrogen status. The effect of lower concentrations of these compounds needs to be investigated.
Collapse
Affiliation(s)
- Alice A Cotter
- Department of food and Nutritional Sciences, University College, Cork, Ireland
| | | | | |
Collapse
|
25
|
Szulc P, Meunier PJ. Synergistic effect of vitamin D and calcium in preventing proximal femoral fractures in older patients. Joint Bone Spine 2003; 70:157-60. [PMID: 12814757 DOI: 10.1016/s1297-319x(03)00033-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Fleet JC, Eksir F, Hance KW, Wood RJ. Vitamin D-inducible calcium transport and gene expression in three Caco-2 cell lines. Am J Physiol Gastrointest Liver Physiol 2002; 283:G618-25. [PMID: 12181175 DOI: 10.1152/ajpgi.00269.2001] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The parental cell line (P) of Caco-2 cells and two clones, BBe and TC7, were studied at 11 days postconfluence to test the facilitated diffusion model of vitamin D-mediated intestinal calcium absorption (CaTx). Nuclear vitamin D receptor (nVDR) and calbindin D(9k) (CaBP) were measured by Western blot; 1,25-hydroxyvitamin D(3) 24-hydroxylase (CYP24), CaBP, plasma membrane Ca-ATPase (PMCA), and Ca transport channel (CaT1) mRNA levels were examined by RT-PCR; and net apical-to-basolateral CaTx was examined after treating cells with vehicle or 10 nM calcitriol for 8 (mRNA levels) or 48 h (protein, CaBP mRNA, CaTx). nVDR level was lowest in BBe (38% P value) and directly related to CYP24 induction (TC7 = P, which were 1.56 times greater than BBe). nVDR was inversely related to the vitamin D-induced levels of CaT1 mRNA, CaBP mRNA, PMCA mRNA, and net CaTx, with the highest induction seen in BBe. Basal CaBP mRNA (86 times greater than P) and protein levels were highest in TC7 cells and were not associated with higher net CaTx, suggesting CaBP may not be rate limiting for CaTx in these cells.
Collapse
Affiliation(s)
- James C Fleet
- Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana 47906, USA.
| | | | | | | |
Collapse
|
27
|
Cao LP, Bolt MJG, Wei M, Sitrin MD, Chun Li Y. Regulation of calbindin-D9k expression by 1,25-dihydroxyvitamin D(3) and parathyroid hormone in mouse primary renal tubular cells. Arch Biochem Biophys 2002; 400:118-24. [PMID: 11913978 DOI: 10.1006/abbi.2002.2775] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calbindin (CaBP)-D9k is a major vitamin D target gene involved in calcium homeostasis. However, studies on the molecular mechanisms of CaBP-D9k gene regulation have been hampered by the lack of an appropriate cell culture system. In the present study, we used mouse primary renal tubular cell (PRTC) cultures to investigate the regulation of CaBP-D9k expression by 1,25(OH)(2)D(3). Both CaBP-D9k mRNA and protein were highly induced by 1,25(OH)(2)D(3) in a time- and dose-dependent manner in PRTCs, and new RNA and protein synthesis was required for the induction. Transfection of VDR(-/-) cells derived from VDR null mice with human VDR restored the induction of CaBP-D9k expression by 1,25(OH)(2)D(3), confirming the requirement of VDR for CaBP-D9k expression. Treatment of the PRTCs with 1,25(OH)(2)D(3) also increased VDR protein abundance, suggesting that enhanced VDR transactivation is involved in the CaBP-D9k up-regulation. Moreover, PTH had a synergistic effect on the 1,25(OH)(2)D(3) induction of CaBP-D9k. These data demonstrate that CaBP-D9k is highly regulated by 1,25(OH)(2)D(3) and PTH in mouse PRTCs, which provides a suitable in vitro system for further investigating the molecular mechanisms involved in CaBP-D9k gene regulation.
Collapse
Affiliation(s)
- Li-Ping Cao
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
28
|
Thummel KE, Brimer C, Yasuda K, Thottassery J, Senn T, Lin Y, Ishizuka H, Kharasch E, Schuetz J, Schuetz E. Transcriptional control of intestinal cytochrome P-4503A by 1alpha,25-dihydroxy vitamin D3. Mol Pharmacol 2001; 60:1399-406. [PMID: 11723248 DOI: 10.1124/mol.60.6.1399] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It was previously shown that CYP3A4 is induced in the human intestinal Caco-2 cell model by treatment with 1alpha,25-dihydroxy vitamin D3 (1,25-D3). We demonstrate the vitamin D analog, 19-nor-1alpha,25-dihydroxy vitamin D2, is also an effective inducer of CYP3A4 in Caco-2 cells, but with half the potency of 1,25-D3. We report that treatment of LS180 cells, a human intestinal cell line, with 1 to 10 nM 1,25-D3 dose dependently increased CYP3A4 protein and CYP3A4 mRNA expression. CYP3A4- and CYP3A23-promoter-Luciferase reporter constructs transiently transfected into LS180 cells were transcriptionally activated in a dose-dependent manner by 1,25-D3, whereas mutation of the nuclear hormone receptor binding motif (ER6) in the CYP3A4 promoter abrogated 1,25-D3 activation of CYP3A4. Although the CYP3A4 ER6 promoter element has been shown to bind the pregnane X receptor (PXR), this receptor does not mediate 1,25-D3 induction of CYP3A4 because a) PXR is not expressed in Caco-2 cells; b) PXR mRNA expression is not induced by 1,25-D3 treatment of LS180 cells; and c) the ligand binding domain of human PXR was not activated by 1,25-D3. 1,25-D3 uses the vitamin D receptor to induce CYP3A4 because a) the vitamin D receptor (VDR)-retinoid X receptor (RXR) heterodimer binds specifically to the CYP3A4 ER6; b) selective mutation of the CYP3A4 ER6 disrupted the binding of VDR-RXR; and c) reporter constructs containing only three copies of the CYP3A4 ER6 linked to a TK-CAT reporter were activated by 1,25-D3 only in cells cotransfected with a human VDR expression plasmid. These data support the hypothesis that 1,25-D3 and VDR induce expression of intestinal CYP3A by binding of the activated VDR-RXR heterodimer to the CYP3A PXR response element and promoting gene transcription.
Collapse
Affiliation(s)
- K E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wood RJ, Tchack L, Taparia S. 1,25-Dihydroxyvitamin D3 increases the expression of the CaT1 epithelial calcium channel in the Caco-2 human intestinal cell line. BMC PHYSIOLOGY 2001; 1:11. [PMID: 11545681 PMCID: PMC55338 DOI: 10.1186/1472-6793-1-11] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2001] [Accepted: 08/17/2001] [Indexed: 11/30/2022]
Abstract
BACKGROUND The active hormonal form of vitamin D (1,25-dihydroxyvitamin D) is the primary regulator of intestinal calcium absorption efficiency. In vitamin D deficiency, intestinal calcium absorption is low leading to an increased risk of developing negative calcium balance and bone loss. 1,25-dihydroxyvitamin D has been shown to stimulate calcium absorption in experimental animals and in human subjects. However, the molecular details of calcium transport across the enterocyte are not fully defined. Recently, two novel epithelial calcium channels (CaT1/ECaC2 and ECaC1/CaT2) have been cloned and suggested to be important in regulating intestinal calcium absorption. However, to date neither gene has been shown to be regulated by vitamin D status. We have previously shown that 1,25-dihydroxyvitamin stimulates transcellular calcium transport in Caco-2 cells, a human intestinal cell line. RESULTS In the current study, we have demonstrated that Caco-2 cells express low but detectable levels of CaT1 mRNA in the absence of 1,25-dihydroxyvitamin D treatment. CaT1 mRNA expression is rapidly up regulated (4-fold increase at 4 h and 10-fold at 24 h) by treatment with 1,25-dihydroxyvitamin D (10(-7) moles/L). Moreover, the increase in CaT1 mRNA expression preceded by several hours the vitamin D induction of calbindin D9K, a putative cytosolic calcium transport protein. CONCLUSION These observations are the first to demonstrate regulation of CaT1 expression by vitamin D and are consistent with a new model of intestinal calcium absorption wherein vitamin D-mediated changes in brush border membrane CaT1 levels could be the primary gatekeeper regulating homeostatic modulation of intestinal calcium absorption efficiency.
Collapse
Affiliation(s)
- Richard J Wood
- Mineral Bioavailability Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Laurie Tchack
- Mineral Bioavailability Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Shveta Taparia
- Mineral Bioavailability Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| |
Collapse
|