1
|
Ayaz H, Baker WB, Blaney G, Boas DA, Bortfeld H, Brady K, Brake J, Brigadoi S, Buckley EM, Carp SA, Cooper RJ, Cowdrick KR, Culver JP, Dan I, Dehghani H, Devor A, Durduran T, Eggebrecht AT, Emberson LL, Fang Q, Fantini S, Franceschini MA, Fischer JB, Gervain J, Hirsch J, Hong KS, Horstmeyer R, Kainerstorfer JM, Ko TS, Licht DJ, Liebert A, Luke R, Lynch JM, Mesquida J, Mesquita RC, Naseer N, Novi SL, Orihuela-Espina F, O’Sullivan TD, Peterka DS, Pifferi A, Pollonini L, Sassaroli A, Sato JR, Scholkmann F, Spinelli L, Srinivasan VJ, St. Lawrence K, Tachtsidis I, Tong Y, Torricelli A, Urner T, Wabnitz H, Wolf M, Wolf U, Xu S, Yang C, Yodh AG, Yücel MA, Zhou W. Optical imaging and spectroscopy for the study of the human brain: status report. NEUROPHOTONICS 2022; 9:S24001. [PMID: 36052058 PMCID: PMC9424749 DOI: 10.1117/1.nph.9.s2.s24001] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Hasan Ayaz
- Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, Pennsylvania, United States
- Drexel University, College of Arts and Sciences, Department of Psychological and Brain Sciences, Philadelphia, Pennsylvania, United States
| | - Wesley B. Baker
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Giles Blaney
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - David A. Boas
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Heather Bortfeld
- University of California, Merced, Departments of Psychological Sciences and Cognitive and Information Sciences, Merced, California, United States
| | - Kenneth Brady
- Lurie Children’s Hospital, Northwestern University Feinberg School of Medicine, Department of Anesthesiology, Chicago, Illinois, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - Sabrina Brigadoi
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
| | - Erin M. Buckley
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Robert J. Cooper
- University College London, Department of Medical Physics and Bioengineering, DOT-HUB, London, United Kingdom
| | - Kyle R. Cowdrick
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Joseph P. Culver
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Ippeita Dan
- Chuo University, Faculty of Science and Engineering, Tokyo, Japan
| | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Birmingham, United Kingdom
| | - Anna Devor
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Turgut Durduran
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Adam T. Eggebrecht
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
| | - Lauren L. Emberson
- University of British Columbia, Department of Psychology, Vancouver, British Columbia, Canada
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Jonas B. Fischer
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Judit Gervain
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Joy Hirsch
- Yale School of Medicine, Department of Psychiatry, Neuroscience, and Comparative Medicine, New Haven, Connecticut, United States
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Keum-Shik Hong
- Pusan National University, School of Mechanical Engineering, Busan, Republic of Korea
- Qingdao University, School of Automation, Institute for Future, Qingdao, China
| | - Roarke Horstmeyer
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
- Duke University, Department of Physics, Durham, North Carolina, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Tiffany S. Ko
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Daniel J. Licht
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
| | - Adam Liebert
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Robert Luke
- Macquarie University, Department of Linguistics, Sydney, New South Wales, Australia
- Macquarie University Hearing, Australia Hearing Hub, Sydney, New South Wales, Australia
| | - Jennifer M. Lynch
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Jaume Mesquida
- Parc Taulí Hospital Universitari, Critical Care Department, Sabadell, Spain
| | - Rickson C. Mesquita
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil
| | - Noman Naseer
- Air University, Department of Mechatronics and Biomedical Engineering, Islamabad, Pakistan
| | - Sergio L. Novi
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Western University, Department of Physiology and Pharmacology, London, Ontario, Canada
| | | | - Thomas D. O’Sullivan
- University of Notre Dame, Department of Electrical Engineering, Notre Dame, Indiana, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behaviour Institute, New York, United States
| | | | - Luca Pollonini
- University of Houston, Department of Engineering Technology, Houston, Texas, United States
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - João Ricardo Sato
- Federal University of ABC, Center of Mathematics, Computing and Cognition, São Bernardo do Campo, São Paulo, Brazil
| | - Felix Scholkmann
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Lorenzo Spinelli
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Vivek J. Srinivasan
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- NYU Langone Health, Department of Ophthalmology, New York, New York, United States
- NYU Langone Health, Department of Radiology, New York, New York, United States
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Yunjie Tong
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, Indiana, United States
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Milan, Italy
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Tara Urner
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Martin Wolf
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Ursula Wolf
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| | - Shiqi Xu
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Changhuei Yang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Meryem A. Yücel
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Wenjun Zhou
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- China Jiliang University, College of Optical and Electronic Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Ioussoufovitch S, Cohen DJF, Milej D, Diop M. Compressed sensing time-resolved spectrometer for quantification of light absorbers in turbid media. BIOMEDICAL OPTICS EXPRESS 2021; 12:6442-6460. [PMID: 34745748 PMCID: PMC8547999 DOI: 10.1364/boe.433427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Time-resolved (TR) spectroscopy is well-suited to address the challenges of quantifying light absorbers in highly scattering media such as living tissue; however, current TR spectrometers are either based on expensive array detectors or rely on wavelength scanning. Here, we introduce a TR spectrometer architecture based on compressed sensing (CS) and time-correlated single-photon counting. Using both CS and basis scanning, we demonstrate that-in homogeneous and two-layer tissue-mimicking phantoms made of Intralipid and Indocyanine Green-the CS method agrees with or outperforms uncompressed approaches. Further, we illustrate the superior depth sensitivity of TR spectroscopy and highlight the potential of the device to quantify absorption changes in deeper (>1 cm) tissue layers.
Collapse
Affiliation(s)
- Seva Ioussoufovitch
- Western University, Faculty of Engineering, School of Biomedical Engineering, Collaborative Training Program in Musculoskeletal Health Research, Bone & Joint Institute, 1151 Richmond St., London, N6A 5C1, Canada
| | - David Jonathan Fulop Cohen
- Western University, Schulich School of Medicine & Dentistry, Department of Medical Biophysics, 1151 Richmond St., London, N6A 5C1, Canada
| | - Daniel Milej
- Western University, Schulich School of Medicine & Dentistry, Department of Medical Biophysics, 1151 Richmond St., London, N6A 5C1, Canada
- Lawson Health Research Institute, Imaging Program, 268 Grosvenor St., London, N6A 4V2, Canada
| | - Mamadou Diop
- Western University, Faculty of Engineering, School of Biomedical Engineering, Collaborative Training Program in Musculoskeletal Health Research, Bone & Joint Institute, 1151 Richmond St., London, N6A 5C1, Canada
- Western University, Schulich School of Medicine & Dentistry, Department of Medical Biophysics, 1151 Richmond St., London, N6A 5C1, Canada
- Lawson Health Research Institute, Imaging Program, 268 Grosvenor St., London, N6A 4V2, Canada
| |
Collapse
|
3
|
Samaei S, Colombo L, Borycki D, Pagliazzi M, Durduran T, Sawosz P, Wojtkiewicz S, Contini D, Torricelli A, Pifferi A, Liebert A. Performance assessment of laser sources for time-domain diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:5351-5367. [PMID: 34692187 PMCID: PMC8515963 DOI: 10.1364/boe.432363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 05/02/2023]
Abstract
Time-domain diffuse correlation spectroscopy (TD-DCS) is an emerging optical technique that enables noninvasive measurement of microvascular blood flow with photon path-length resolution. In TD-DCS, a picosecond pulsed laser with a long coherence length, adequate illumination power, and narrow instrument response function (IRF) is required, and satisfying all these features is challenging. To this purpose, in this study we characterized the performance of three different laser sources for TD-DCS. First, the sources were evaluated based on their emission spectrum and IRF. Then, we compared the signal-to-noise ratio and the sensitivity to velocity changes of scattering particles in a series of phantom measurements. We also compared the results for in vivo measurements, performing an arterial occlusion protocol on the forearm of three adult subjects. Overall, each laser has the potential to be successfully used both for laboratory and clinical applications. However, we found that the effects caused by the IRF are more significant than the effect of a limited temporal coherence.
Collapse
Affiliation(s)
- Saeed Samaei
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Lorenzo Colombo
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Dawid Borycki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230 Warsaw, Poland
| | - Marco Pagliazzi
- ICFO—Institut de Ciències Fotòniques, Mediterranean Technology Park, Avinguda Carl Friedrich Gauss 3, 08860 Castelldefels, Barcelona, Spain
| | - Turgut Durduran
- ICFO—Institut de Ciències Fotòniques, Mediterranean Technology Park, Avinguda Carl Friedrich Gauss 3, 08860 Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain
| | - Piotr Sawosz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Stanislaw Wojtkiewicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| |
Collapse
|
4
|
|
5
|
The Use of Supercontinuum Laser Sources in Biomedical Diffuse Optics: Unlocking the Power of Multispectral Imaging. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Optical techniques based on diffuse optics have been around for decades now and are making their way into the day-to-day medical applications. Even though the physics foundations of these techniques have been known for many years, practical implementation of these technique were hindered by technological limitations, mainly from the light sources and/or detection electronics. In the past 20 years, the developments of supercontinuum laser (SCL) enabled to unlock some of these limitations, enabling the development of system and methodologies relevant for medical use, notably in terms of spectral monitoring. In this review, we focus on the use of SCL in biomedical diffuse optics, from instrumentation and methods developments to their use for medical applications. A total of 95 publications were identified, from 1993 to 2021. We discuss the advantages of the SCL to cover a large spectral bandwidth with a high spectral power and fast switching against the disadvantages of cost, bulkiness, and long warm up times. Finally, we summarize the utility of using such light sources in the development and application of diffuse optics in biomedical sciences and clinical applications.
Collapse
|
6
|
Radford J, Lyons A, Tonolini F, Faccio D. Role of late photons in diffuse optical imaging. OPTICS EXPRESS 2020; 28:29486-29495. [PMID: 33114848 DOI: 10.1364/oe.402503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
The ability to image through turbid media, such as organic tissues, is a highly attractive prospect for biological and medical imaging. This is challenging, however, due to the highly scattering properties of tissues which scramble the image information. The earliest photons that arrive at the detector are often associated with ballistic transmission, whilst the later photons are associated with complex paths due to multiple independent scattering events and are therefore typically considered to be detrimental to the final image formation process. In this work, we report on the importance of these highly diffuse, "late" photons for computational time-of-flight diffuse optical imaging. In thick scattering materials, >80 transport mean free paths, we provide evidence that including late photons in the inverse retrieval enhances the image reconstruction quality. We also show that the late photons alone have sufficient information to retrieve images of a similar quality to early photon gated data. This result emphasises the importance in the strongly diffusive regime of fully time-resolved imaging techniques.
Collapse
|
7
|
Zhang P, Liu J, Hui H, An Y, Wang K, Yang X, Tian J. Linear scheme for the direct reconstruction of noncontact time-domain fluorescence molecular lifetime tomography. APPLIED OPTICS 2020; 59:7961-7967. [PMID: 32976471 DOI: 10.1364/ao.398967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Direct reconstruction of the noncontact time-domain fluorescence molecular lifetime tomography (TD-FMLT) with current nonlinear algorithms has suffered from complexity and heavy computation loads of the physical model for a large imaging area in TD-FMLT. In this work, we discretize the system matrix along time points and apply a linearized reconstruction algorithm using the fused least absolute shrinkage and selection operator method. The reconstructed yield map and object geometry are used as a priori information to mitigate the ill conditions. This approach is implemented on a fully noncontact TD-FMLT system equipped with a femtosecond pulse laser and a high-speed, time-gated camera. We validate the methodology using both numerical simulations and inhomogeneous phantom experiments. The results exhibit good localization accuracy for fluorescent targets and an efficient computation capability for the reconstruction of fluorescence lifetime in noncontact TD-FMLT. We envision that the proposed linear scheme for the direct reconstruction method in noncontact TD-FMLT has a significant potential for in vivo preclinical studies.
Collapse
|
8
|
Wabnitz H, Contini D, Spinelli L, Torricelli A, Liebert A. Depth-selective data analysis for time-domain fNIRS: moments vs. time windows. BIOMEDICAL OPTICS EXPRESS 2020; 11:4224-4243. [PMID: 32923038 PMCID: PMC7449728 DOI: 10.1364/boe.396585] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 05/10/2023]
Abstract
Time-domain measurements facilitate the elimination of the influence of extracerebral, systemic effects, a key problem in functional near-infrared spectroscopy (fNIRS) of the adult human brain. The analysis of measured time-of-flight distributions of photons often relies on moments or time windows. However, a systematic and quantitative characterization of the performance of these measurands is still lacking. Based on perturbation simulations for small localized absorption changes, we compared spatial sensitivity profiles and depth selectivity for moments (integral, mean time of flight and variance), photon counts in time windows and their ratios for different time windows. The influence of the instrument response function (IRF) was investigated for all measurands and for various source-detector separations. Variance exhibits the highest depth selectivity among the moments. Ratios of photon counts in different late time windows can achieve even higher selectivity. An advantage of moments is their robustness against the shape of the IRF and instrumental drifts.
Collapse
Affiliation(s)
- Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
9
|
Optimal Spectral Combination of a Hyperspectral Camera for Intraoperative Hemodynamic and Metabolic Brain Mapping. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Intraoperative optical imaging is a localization technique for the functional areas of the human brain cortex during neurosurgical procedures. These areas are assessed by monitoring the oxygenated (HbO2) and deoxygenated hemoglobin (Hb) concentration changes occurring in the brain. Sometimes, the functional status of the brain is assessed using metabolic biomarkers: the oxidative state of cytochrome-c-oxidase (oxCCO). A setup composed of a white light source and a hyperspectral or a standard RGB camera could be used to identify the functional areas. The choice of the best spectral configuration is still based on an empirical approach. We propose in this study a method to define the optimal spectral combinations of a commercial hyperspectral camera for the computation of hemodynamic and metabolic brain maps. The method is based on a Monte Carlo framework that simulates the acquisition of the intrinsic optical signal following a neuronal activation. The results indicate that the optimal spectral combination of a hyperspectral camera aims to accurately quantify the HbO2 (0.5% error), Hb (4.4% error), and oxCCO (15% error) responses in the brain following neuronal activation. We also show that RGB imaging is a low cost and accurate solution to compute Hb maps (4% error), but not accurate to compute HbO2 (48% error) or oxCCO (1036% error) maps.
Collapse
|
10
|
Ando T, Nakamura T, Fujii T, Shiono T, Nakamura T, Suzuki M, Anzue-Satoi N, Narumi K, Watanabe H, Korenaga T, Okada E, Inoue Y. Non-contact acquisition of brain function using a time-extracted compact camera. Sci Rep 2019; 9:17854. [PMID: 31780759 PMCID: PMC6882904 DOI: 10.1038/s41598-019-54458-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/12/2019] [Indexed: 11/09/2022] Open
Abstract
A revolution in functional brain imaging techniques is in progress in the field of neurosciences. Optical imaging techniques, such as high-density diffuse optical tomography (HD-DOT), in which source-detector pairs of probes are placed on subjects' heads, provide better portability than conventional functional magnetic resonance imaging (fMRI) equipment. However, these techniques remain costly and can only acquire images at up to a few measurements per square centimetre, even when multiple detector probes are employed. In this study, we demonstrate functional brain imaging using a compact and affordable setup that employs nanosecond-order pulsed ordinary laser diodes and a time-extracted image sensor with superimposition capture of scattered components. Our technique can simply and easily attain a high density of measurement points without requiring probes to be attached, and can directly capture two-dimensional functional brain images. We have demonstrated brain activity imaging using a phantom that mimics the optical properties of an adult human head, and with a human subject, have measured cognitive brain activation while the subject is solving simple arithmetical tasks.
Collapse
Affiliation(s)
- Takamasa Ando
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan.
| | - Tatsuya Nakamura
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Toshiya Fujii
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Teruhiro Shiono
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Tasuku Nakamura
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Masato Suzuki
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Naomi Anzue-Satoi
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Kenji Narumi
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Hisashi Watanabe
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Tsuguhiro Korenaga
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Eiji Okada
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Yasunori Inoue
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| |
Collapse
|
11
|
Caredda C, Mahieu-Williame L, Sablong R, Sdika M, Alston L, Guyotat J, Montcel B. Intraoperative quantitative functional brain mapping using an RGB camera. NEUROPHOTONICS 2019; 6:045015. [PMID: 31890745 PMCID: PMC6929684 DOI: 10.1117/1.nph.6.4.045015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Intraoperative optical imaging is a localization technique for the functional areas of the human brain cortex during neurosurgical procedures. However, it still lacks robustness to be used as a clinical standard. In particular, new biomarkers of brain functionality with improved sensitivity and specificity are needed. We present a method for the computation of hemodynamics-based functional brain maps using an RGB camera and a white light source. We measure the quantitative oxy and deoxyhemoglobin concentration changes in the human brain cortex with the modified Beer-Lambert law and Monte Carlo simulations. A functional model has been implemented to evaluate the functional brain areas following neuronal activation by physiological stimuli. The results show a good correlation between the computed quantitative functional maps and the brain areas localized by electrical brain stimulation (EBS). We demonstrate that an RGB camera combined with a quantitative modeling of brain hemodynamics biomarkers can evaluate in a robust way the functional areas during neurosurgery and serve as a tool of choice to complement EBS.
Collapse
Affiliation(s)
- Charly Caredda
- Université de Lyon, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet Saint Étienne, Centre National de la Recherche Scientifique, INSERM, CREATIS UMR 5220, Lyon, France
| | - Laurent Mahieu-Williame
- Université de Lyon, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet Saint Étienne, Centre National de la Recherche Scientifique, INSERM, CREATIS UMR 5220, Lyon, France
| | - Raphaël Sablong
- Université de Lyon, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet Saint Étienne, Centre National de la Recherche Scientifique, INSERM, CREATIS UMR 5220, Lyon, France
| | - Michaël Sdika
- Université de Lyon, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet Saint Étienne, Centre National de la Recherche Scientifique, INSERM, CREATIS UMR 5220, Lyon, France
| | - Laure Alston
- Université de Lyon, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet Saint Étienne, Centre National de la Recherche Scientifique, INSERM, CREATIS UMR 5220, Lyon, France
| | - Jacques Guyotat
- Hospices Civils de Lyon, Service de Neurochirurgie D, Lyon, France
| | - Bruno Montcel
- Université de Lyon, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet Saint Étienne, Centre National de la Recherche Scientifique, INSERM, CREATIS UMR 5220, Lyon, France
| |
Collapse
|
12
|
Clinical Brain Monitoring with Time Domain NIRS: A Review and Future Perspectives. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081612] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Near-infrared spectroscopy (NIRS) is an optical technique that can measure brain tissue oxygenation and haemodynamics in real-time and at the patient bedside allowing medical doctors to access important physiological information. However, despite this, the use of NIRS in a clinical environment is hindered due to limitations, such as poor reproducibility, lack of depth sensitivity and poor brain-specificity. Time domain NIRS (or TD-NIRS) can resolve these issues and offer detailed information of the optical properties of the tissue, allowing better physiological information to be retrieved. This is achieved at the cost of increased instrument complexity, operation complexity and price. In this review, we focus on brain monitoring clinical applications of TD-NIRS. A total of 52 publications were identified, spanning the fields of neonatal imaging, stroke assessment, traumatic brain injury (TBI) assessment, brain death assessment, psychiatry, peroperative care, neuronal disorders assessment and communication with patient with locked-in syndrome. In all the publications, the advantages of the TD-NIRS measurement to (1) extract absolute values of haemoglobin concentration and tissue oxygen saturation, (2) assess the reduced scattering coefficient, and (3) separate between extra-cerebral and cerebral tissues, are highlighted; and emphasize the utility of TD-NIRS in a clinical context. In the last sections of this review, we explore the recent developments of TD-NIRS, in terms of instrumentation and methodologies that might impact and broaden its use in the hospital.
Collapse
|
13
|
Abstract
This article reviews the past and current statuses of time-domain near-infrared spectroscopy (TD-NIRS) and imaging. Although time-domain technology is not yet widely employed due to its drawbacks of being cumbersome, bulky, and very expensive compared to commercial continuous wave (CW) and frequency-domain (FD) fNIRS systems, TD-NIRS has great advantages over CW and FD systems because time-resolved data measured by TD systems contain the richest information about optical properties inside measured objects. This article focuses on reviewing the theoretical background, advanced theories and methods, instruments, and studies on clinical applications for TD-NIRS including some clinical studies which used TD-NIRS systems. Major events in the development of TD-NIRS and imaging are identified and summarized in chronological tables and figures. Finally, prospects for TD-NIRS in the near future are briefly described.
Collapse
|