1
|
Abeid BA, Fabiilli ML, Aliabouzar M, Estrada JB. Experimental & numerical investigations of ultra-high-speed dynamics of optically induced droplet cavitation in soft materials. J Mech Behav Biomed Mater 2024; 160:106776. [PMID: 39488187 DOI: 10.1016/j.jmbbm.2024.106776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024]
Abstract
Perfluorocarbon (PFC) droplets represent a novel class of phase-shift contrast agent with promise in applications in biomedical and bioengineering fields. PFC droplets undergo a fast liquid-gas transition upon exposure to acoustic or optical triggering, offering a potential adaptable and versatile tool as contrast agent in diagnostic imaging and localized drug delivery vehicles in therapeutics systems. In this paper, we utilize advanced imaging techniques to investigate ultra-high-speed inertial dynamics and rectified quasi-static (low-speed) diffusion evolution of optically induced PFC droplet vaporization within three different hydrogels, each of different concentrations, examining effects such as droplet size and PFC core on bubble dynamics and material viscoelastic properties. Gelatin hydrogels reveal concentration-dependent impacts on bubble expansion and material elasticity. Embedding PFC droplets in gelatin increases internal pressure, resulting in higher equilibrium radius and continuous bubble growth during quasi-static evolution. Similar trends are observed in fibrin and polyacrylamide matrices, with differences in bubble behavior attributed to matrix properties and droplet presence. Interestingly, droplet size exhibits minimal impact on bubble expansion during inertial dynamics but influences quasi-static evolution, with larger droplets leading to continuous growth beyond 60 s. Furthermore, the core composition of PFC droplets significantly affects bubble behavior, with higher boiling point droplets exhibiting higher maximum expansion and faster quasi-static dissolution rates. Overall, the study sheds light on the intricate interplay between droplet characteristics, matrix properties, and multi-timescale bubble dynamics, offering valuable insights into their behavior within biomimetic hydrogels.
Collapse
Affiliation(s)
- Bachir A Abeid
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Mitra Aliabouzar
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan B Estrada
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Carlier B, Heymans SV, Nooijens S, Collado-Lara G, Toumia Y, Delombaerde L, Paradossi G, D’hooge J, Van Den Abeele K, Sterpin E, Himmelreich U. A Preliminary Investigation of Radiation-Sensitive Ultrasound Contrast Agents for Photon Dosimetry. Pharmaceuticals (Basel) 2024; 17:629. [PMID: 38794199 PMCID: PMC11125270 DOI: 10.3390/ph17050629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Radiotherapy treatment plans have become highly conformal, posing additional constraints on the accuracy of treatment delivery. Here, we explore the use of radiation-sensitive ultrasound contrast agents (superheated phase-change nanodroplets) as dosimetric radiation sensors. In a series of experiments, we irradiated perfluorobutane nanodroplets dispersed in gel phantoms at various temperatures and assessed the radiation-induced nanodroplet vaporization events using offline or online ultrasound imaging. At 25 °C and 37 °C, the nanodroplet response was only present at higher photon energies (≥10 MV) and limited to <2 vaporization events per cm2 per Gy. A strong response (~2000 vaporizations per cm2 per Gy) was observed at 65 °C, suggesting radiation-induced nucleation of the droplet core at a sufficiently high degree of superheat. These results emphasize the need for alternative nanodroplet formulations, with a more volatile perfluorocarbon core, to enable in vivo photon dosimetry. The current nanodroplet formulation carries potential as an innovative gel dosimeter if an appropriate gel matrix can be found to ensure reproducibility. Eventually, the proposed technology might unlock unprecedented temporal and spatial resolution in image-based dosimetry, thanks to the combination of high-frame-rate ultrasound imaging and the detection of individual vaporization events, thereby addressing some of the burning challenges of new radiotherapy innovations.
Collapse
Affiliation(s)
- Bram Carlier
- Department of Oncology, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (B.C.); (L.D.); (E.S.)
- Department of Imaging and Pathology, KU Leuven-University of Leuven, 3000 Leuven, Belgium
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Sophie V. Heymans
- Department of Physics, KU Leuven Campus Kortrijk—KULAK, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium; (S.V.H.); (K.V.D.A.)
- Department of Cardiovascular Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (S.N.); (J.D.)
| | - Sjoerd Nooijens
- Department of Cardiovascular Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (S.N.); (J.D.)
| | - Gonzalo Collado-Lara
- Department of Cardiology, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Yosra Toumia
- National Institute for Nuclear Physics, INFN Sezione di Roma Tor Vergata, 00133 Rome, Italy;
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Laurence Delombaerde
- Department of Oncology, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (B.C.); (L.D.); (E.S.)
- Department of Radiotherapy, UH Leuven, 3000 Leuven, Belgium
| | - Gaio Paradossi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Jan D’hooge
- Department of Cardiovascular Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (S.N.); (J.D.)
| | - Koen Van Den Abeele
- Department of Physics, KU Leuven Campus Kortrijk—KULAK, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium; (S.V.H.); (K.V.D.A.)
| | - Edmond Sterpin
- Department of Oncology, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (B.C.); (L.D.); (E.S.)
- Particle Therapy Interuniversity Center Leuven—PARTICLE, 3000 Leuven, Belgium
| | - Uwe Himmelreich
- Department of Imaging and Pathology, KU Leuven-University of Leuven, 3000 Leuven, Belgium
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Mendes MIP, Coelho CDF, Schaberle FA, Moreno MJ, Calvete MJF, Arnaut LG. Nanodroplet vaporization with pulsed-laser excitation repeatedly amplifies photoacoustic signals at low vaporization thresholds. RSC Adv 2023; 13:35040-35049. [PMID: 38046627 PMCID: PMC10690495 DOI: 10.1039/d3ra05639b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023] Open
Abstract
Nanodroplets' explosive vaporization triggered by absorption of laser pulses produces very large volume changes. These volume changes are two orders of magnitude higher than those of thermoelastic expansion generated by equivalent laser pulses, and should generate correspondingly higher photoacoustic waves (PAW). The generation of intense PAWs is desirable in photoacoustic tomography (PAT) to increase sensitivity. The biocompatibility and simplicity of nanodroplets obtained by sonication of perfluoropentane (PFP) in an aqueous solution of bovine serum albumin (BSA) containing a dye make them particularly appealing for use as contrast agents in clinical applications of PAT. Their usefulness depends on stability and reproducible vaporization of nanodroplets (liquid PFP inside) to microbubbles (gaseous PFP inside), and reversible condensation to nanodroplets. This work incorporates porphyrins with fluorinated chains and BSA labelled with fluorescent probes in PFP nanodroplets to investigate the structure and properties of such nanodroplets. Droplets prepared with average diameters in the 400-1000 nm range vaporize when exposed to nanosecond laser pulses with fluences above 3 mJ cm-2 and resist coalescence. The fluorinated chains are likely responsible for the low vaporization threshold, ∼2.5 mJ cm-2, which was obtained from the laser fluence dependence of the photoacoustic wave amplitudes. Only ca. 10% of the droplets incorporate fluorinated porphyrins. Nevertheless, PAWs generated with nanodroplets are ten times higher than those generated by aqueous BSA solutions containing an equivalent amount of porphyrin. Remarkably, successive laser pulses result in similar amplification, indicating that the microbubbles revert back to nanodroplets at a rate faster than the laser repetition rate (10 Hz). PFP nanodroplets are promising contrast agents for PAT and their performance increases with properly designed dyes.
Collapse
Affiliation(s)
- Maria Inês P Mendes
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
- LaserLeap Technologies Rua Coronel Júlio Veiga Simão, Edifício B, CTCV, S/N 3025-307 Coimbra Portugal
| | - Carlos D F Coelho
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
| | - Fábio A Schaberle
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
| | - Maria João Moreno
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
| | - Mário J F Calvete
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
| | - Luis G Arnaut
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
| |
Collapse
|
4
|
Zhao AX, Zhu YI, Chung E, Lee J, Morais S, Yoon H, Emelianov S. Factors Influencing the Repeated Transient Optical Droplet Vaporization Threshold and Lifetimes of Phase Change, Perfluorocarbon Nanodroplets. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2238. [PMID: 37570555 PMCID: PMC10421047 DOI: 10.3390/nano13152238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Perfluorocarbon nanodroplets (PFCnDs) are sub-micrometer emulsions composed of a surfactant-encased perfluorocarbon (PFC) liquid and can be formulated to transiently vaporize through optical stimulation. However, the factors governing repeated optical droplet vaporization (ODV) have not been investigated. In this study, we employ high-frame-rate ultrasound (US) to characterize the ODV thresholds of various formulations and imaging parameters and identify those that exhibit low vaporization thresholds and repeatable vaporization. We observe a phenomenon termed "preconditioning", where initial laser pulses generate reduced US contrast that appears linked with an increase in nanodroplet size. Variation in laser pulse repetition frequency is found not to change the vaporization threshold, suggesting that "preconditioning" is not related to residual heat. Surfactants (bovine serum albumin, lipids, and zonyl) impact the vaporization threshold and imaging lifetime, with lipid shells demonstrating the best performance with relatively low thresholds (21.6 ± 3.7 mJ/cm2) and long lifetimes (t1/2 = 104 ± 21.5 pulses at 75 mJ/cm2). Physiological stiffness does not affect the ODV threshold and may enhance nanodroplet stability. Furthermore, PFC critical temperatures are found to correlate with vaporization thresholds. These observations enhance our understanding of ODV behavior and pave the way for improved nanodroplet performance in biomedical applications.
Collapse
Affiliation(s)
- Andrew X. Zhao
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA 30332, USA;
| | - Yiying I. Zhu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA (E.C.); (J.L.); (S.M.)
| | - Euisuk Chung
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA (E.C.); (J.L.); (S.M.)
| | - Jeehyun Lee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA (E.C.); (J.L.); (S.M.)
| | - Samuel Morais
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA (E.C.); (J.L.); (S.M.)
| | - Heechul Yoon
- School of Electronics and Electrical Engineering, Dankook University, Yongin-si 16890, Republic of Korea;
| | - Stanislav Emelianov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA 30332, USA;
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA (E.C.); (J.L.); (S.M.)
| |
Collapse
|
5
|
Edwards IA, De Carlo F, Sitta J, Varner W, Howard CM, Claudio PP. Enhancing Targeted Therapy in Breast Cancer by Ultrasound-Responsive Nanocarriers. Int J Mol Sci 2023; 24:ijms24065474. [PMID: 36982548 PMCID: PMC10053544 DOI: 10.3390/ijms24065474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Currently, the response to cancer treatments is highly variable, and severe side effects and toxicity are experienced by patients receiving high doses of chemotherapy, such as those diagnosed with triple-negative breast cancer. The main goal of researchers and clinicians is to develop new effective treatments that will be able to specifically target and kill tumor cells by employing the minimum doses of drugs exerting a therapeutic effect. Despite the development of new formulations that overall can increase the drugs’ pharmacokinetics, and that are specifically designed to bind overexpressed molecules on cancer cells and achieve active targeting of the tumor, the desired clinical outcome has not been reached yet. In this review, we will discuss the current classification and standard of care for breast cancer, the application of nanomedicine, and ultrasound-responsive biocompatible carriers (micro/nanobubbles, liposomes, micelles, polymeric nanoparticles, and nanodroplets/nanoemulsions) employed in preclinical studies to target and enhance the delivery of drugs and genes to breast cancer.
Collapse
Affiliation(s)
- Isaiah A. Edwards
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Flavia De Carlo
- Department of Pharmacology and Toxicology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juliana Sitta
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - William Varner
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Candace M. Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Pier Paolo Claudio
- Department of Pharmacology and Toxicology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Correspondence:
| |
Collapse
|
6
|
Zhang Q, Yang Y, Xue H, Zhang H, Yuan Z, Shen Y, Guo X, Fan Z, Wu X, Zhang D, Tu J. Intensified and controllable vaporization of phase-changeable nanodroplets induced by simultaneous exposure of laser and ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 94:106312. [PMID: 36731283 PMCID: PMC9926226 DOI: 10.1016/j.ultsonch.2023.106312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Phase-changeable contrast agents have been proposed as a next-generation ultrasound contrast agent over conventional microbubbles given its stability, longer circulation time and ability to extravasate. Safe vaporization of nanodroplets (NDs) plays an essential role in the practical translation of ND applications in industry and medical therapy. In particular, the exposure parameters for initializing phase change as well as the site of phase change are concerned to be controlled. Compared to the traditional optical vaporization or acoustic droplet vaporization, this study exhibited the potential of using simultaneous, single burst laser and ultrasound incidence as a means of activating phase change of NDs to generate cavitation nuclei with reduced fluence and sound pressure. A theoretical model considering the laser heating, vapor cavity nucleation and growth was established, where qualitative agreement with experiment findings were found in terms of the trend of combined exposure parameters in order to achieve the same level of vaporization outcome. The results indicate that using single burst laser pulse and 10-cycle ultrasound might be sufficient to lower the exposure levels under FDA limit for laser skin exposure and ultrasound imaging. The combination of laser and ultrasound also provides temporal and spatial control of ND vaporization and cavitation nucleation without altering the sound field, which is beneficial for further safe and effective applications of phase-changeable NDs in medical, environmental, food processing and other industrial areas.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Yanye Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Honghui Xue
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China; Wuxi Vocational Institute of Commerce, Wuxi 214153, Jiangsu, China
| | - Haijun Zhang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China; National United Engineering Laboratory for Biomedical Material Modification, Branden Industrial Park, Dezhou 251100, Shandong, China
| | - Ziyan Yuan
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Yuchen Shen
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Zheng Fan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaoge Wu
- Environment Science and Engineering College, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
7
|
Collado-Lara G, Heymans SV, Rovituso M, Sterpin E, D'hooge J, Vos HJ, Abeele KVD, de Jong N. Analytic prediction of droplet vaporization events to estimate the precision of ultrasound-based proton range verification. Med Phys 2023. [PMID: 36856326 DOI: 10.1002/mp.16327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND The safety and efficacy of proton therapy is currently hampered by range uncertainties. The combination of ultrasound imaging with injectable radiation-sensitive superheated nanodroplets was recently proposed for in vivo range verification. The proton range can be estimated from the distribution of nanodroplet vaporization events, which is stochastically related to the stopping distribution of protons, as nanodroplets are vaporized by protons reaching their maximal LET at the end of their range. PURPOSE Here, we aim to estimate the range estimation precision of this technique. As for any stochastic measurement, the precision will increase with the sample size, that is, the number of detected vaporizations. Thus, we first develop and validate a model to predict the number of vaporizations, which is then applied to estimate the range verification precision for a set of conditions (droplet size, droplet concentration, and proton beam parameters). METHODS Starting from the thermal spike theory, we derived a model that predicts the expected number of droplet vaporizations in an irradiated sample as a function of the droplet size, concentration, and number of protons. The model was validated by irradiating phantoms consisting of size-sorted perfluorobutane droplets dispersed in an aqueous matrix. The number of protons was counted with an ionization chamber, and the droplet vaporizations were recorded and counted individually using high frame rate ultrasound imaging. After validation, the range estimate precision was determined for different conditions using a Monte Carlo algorithm. RESULTS A good agreement between theory and experiments was observed for the number of vaporizations, especially for large (5.8 ± 2.2 µm) and medium (3.5 ± 1.1 µm) sized droplets. The number of events was lower than expected in phantoms with small droplets (2.0 ± 0.7 µm), but still within the same order of magnitude. The inter-phantom variability was considerably larger (up to 30x) than predicted by the model. The validated model was then combined with Monte Carlo simulations, which predicted a theoretical range retrieval precision improving with the square-root of the number of vaporizations, and degrading at high beam energies due to range straggling. For single pencil beams with energies between 70 and 240 MeV, a range verification precision below 1% of the range required perfluorocarbon concentrations in the order of 0.3-2.4 µM. CONCLUSION We proposed and experimentally validated a model to provide a quick estimate of the number of vaporizations for a given set of conditions (droplet size, droplet concentration, and proton beam parameters). From this model, promising range verification performances were predicted for realistic perfluorocarbon concentrations. These findings are an incentive to move towards preclinical studies, which are critical to assess the achievable droplet distribution in and around the tumor, and hence the in vivo range verification precision.
Collapse
Affiliation(s)
- Gonzalo Collado-Lara
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Sophie V Heymans
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Physics, KU Leuven Campus Kulak, Kortrijk, Belgium.,Department of Cardiovascular Sciences, Leuven KU, Leuven, Belgium
| | | | - Edmond Sterpin
- Department of Oncology, Leuven KU, Leuven, Belgium.,Center of Molecular Imaging, Radiotherapy and Oncology, IREC Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Jan D'hooge
- Department of Cardiovascular Sciences, Leuven KU, Leuven, Belgium
| | - Hendrik J Vos
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Nico de Jong
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Silwal A, Upadhyay A, Shakya G, Inzunza-Ibarra M, Murray T, Ding X, Borden MA. Photoacoustic Vaporization of Endoskeletal Droplets Loaded with Zinc Naphthalocyanine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:168-176. [PMID: 36524827 DOI: 10.1021/acs.langmuir.2c02320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Vaporizable endoskeletal droplets are solid hydrocarbons in liquid fluorocarbon droplets in which melting of the hydrocarbon phase leads to the vaporization of the fluorocarbon phase. In prior work, vaporization of the endoskeletal droplets was achieved thermally by heating the surrounding aqueous medium. In this work, we introduce a near-infrared (NIR) optically absorbing naphthalocyanine dye (zinc 2,11,20,29-tetra-tert-butyl-2,3-naphthalocynanine) into the solid hydrocarbon (eicosane, n-C20H42) core of liquid fluorocarbon (C5F12) drops suspended in an aqueous medium. Droplets with a uniform diameter of 11.7 ± 0.7 μm were formed using a flow-focusing microfluidic device. The solid hydrocarbon formed a crumpled spherical structure within the liquid fluorocarbon droplet. The photoactivation behavior of these dye-containing endoskeletal droplets was investigated using NIR laser irradiation. When exposed to a pulsed laser of 720 nm wavelength, the dye-containing droplets vaporized at an average laser fluence of 65 mJ/cm2, whereas blank droplets without the dye did not vaporize at any fluence up to 100 mJ/cm2. Furthermore, dye-loaded droplets with a smaller, polydisperse size distribution were prepared using a simple shaking method and studied in a flow phantom for their photoacoustic signal and ultrasound contrast imaging. These results demonstrate that dye-containing endoskeletal droplets can be made to vaporize by externally applied optical energy. Such droplets may be useful for a variety of photoacoustic applications for sensing, imaging, and therapy.
Collapse
Affiliation(s)
- Anish Silwal
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado80309, United States
| | - Awaneesh Upadhyay
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado80309, United States
| | - Gazendra Shakya
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado80309, United States
| | - Marco Inzunza-Ibarra
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado80309, United States
| | - Todd Murray
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado80309, United States
- Biomaterial Engineering Program, University of Colorado, Boulder, Colorado80309, United States
| | - Xiaoyun Ding
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado80309, United States
- Biomaterial Engineering Program, University of Colorado, Boulder, Colorado80309, United States
| | - Mark A Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado80309, United States
- Biomaterial Engineering Program, University of Colorado, Boulder, Colorado80309, United States
| |
Collapse
|
9
|
Improved hybrid-shelled perfluorocarbon microdroplets as ultrasound- and laser-activated phase-change platform. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Liu WW, Ko HC, Li PC. Sonoporation based on repeated vaporization of gold nanodroplets. Med Phys 2022; 49:2761-2773. [PMID: 35172015 PMCID: PMC9450513 DOI: 10.1002/mp.15544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 11/09/2022] Open
Abstract
Background Gold nanodroplets (AuNDs) have been proposed as agents for photothermal therapy and photoacoustic imaging. Previously, we demonstrated that the sonoporation can be more effectively achieved with synchronized optical and acoustic droplet vaporization. By applying a laser pulse at the rarefactional phase of the ultrasound (US) pulse, the vaporization threshold can be reached at a considerably lower laser average power. However, a large loading quantity of the AuNDs may increase the risk of air embolism. The destruction of phase‐shifted AuNDs at the inertial cavitation stage leads to a reduced drug delivery performance. And it also causes instability of echogenicity during therapeutic monitoring. Purpose In this study, we propose to further improve the sonoporation effectiveness with repeated vaporization. In other words, the AuNDs repeatedly undergo vaporization and recondensation so that sonoporation effects are accumulated over time at lower energy requirements. Previously, repeated vaporization has been demonstrated as an imaging contrast agent. In this study, we aim to adopt this repeated vaporization scheme for sonoporation. Methods Perfluoropentane NDs with a shell made of human serum albumin were used as the US contrast agents. Laser pulses at 808 nm and US pulses of 1 MHz were delivered for triggering vaporization and inertial cavitation of NDs. We detected the vaporization and cavitation effects under different activation firings, US peak negative pressures (PNPs), and laser fluences using 5‐ and 10‐MHz focused US receivers. Numbers of calcein‐AM and propidium iodide signals uptake by BNL hepatocarcinoma cancer cells were used to evaluate the sonoporation and cell death rate of the cells. Results We demonstrate that sonoporation can be realized based on repeatable vaporization instead of the commonly adopted inertial cavitation effects. In addition, it is found that the laser fluence and the acoustic pressure can be reduced. As an example, we demonstrate that the acoustic and optical energy for achieving a similar level of sonoporation rate can be as low as 0.44 MPa for the US PNP and 4.01 mJ/cm2 for the laser fluence, which are lower than those with our previous approach (0.53 MPa and 4.95 mJ/cm2, respectively). Conclusion We demonstrated the feasibility of vaporization‐based sonoporation at a lower optical and acoustic energy. It is an advantageous method that can enhance drug delivery efficiency, therapeutic safety and potentially deliver an upgraded gene therapy strategy for improved theragnosis.
Collapse
Affiliation(s)
- Wei-Wen Liu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106, Taiwan
| | - Hung-Chih Ko
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106, Taiwan
| | - Pai-Chi Li
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106, Taiwan.,Department of Electrical Engineering, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
11
|
Ji Y, Zheng J, Geng Z, Tan T, Hu J, Zhang L, Zhang Y. Controllable formation of bulk perfluorohexane nanodroplets by solvent exchange. SOFT MATTER 2022; 18:425-433. [PMID: 34905593 DOI: 10.1039/d1sm01457a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Perfluorocarbon (PFC) nanodroplets have rapidly developed into useful ultrasound imaging agents in modern medicine due to their non-toxic and stable chemical properties that facilitate disease diagnosis and targeted therapy. In addition, with the good capacity for carrying breathing gases and the anti-infection ability, they are employed as blood substitutes and are the most ideal liquid respirators. However, it is still a challenge to prepare stable PFC nanodroplets of uniform size and high concentration for their efficient use. Herein, we developed a simple and highly reproducible method, i.e., propanol-water exchange, to prepare highly homogeneous and stable perfluorohexane (PFH) bulk nanodroplets. Interestingly, the size distribution and concentration of formed nanodroplets could be regulated by controlling the volume fraction of PFH and percentage of propanol in the propanol-water mixture. We demonstrated good reproducibility in the formation of bulk nanodroplets with PFH volume fractions of 1/2000-1/200 and propanol percentage of 5-40%, with uniform particle size distribution and high droplet concentration. Also, the prepared nanodroplets were very stable and could survive for several hours. We constructed a ternary phase diagram to describe the relationship between the PFH volume ratio, propanol concentration, and the size distribution and concentration of the formed PFH nanodroplets. This study provides a very useful method to prepare uniform size, high concentration and stable PFC nanodroplets for their medical applications.
Collapse
Affiliation(s)
- Yuwen Ji
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zheng
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanli Geng
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201204, China
| | - Tingyuan Tan
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Hu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Lijuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Yi Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| |
Collapse
|
12
|
Collado-Lara G, Heymans SV, Rovituso M, Carlier B, Toumia Y, Verweij M, Paradossi G, Sterpin E, Vos HJ, D'hooge J, de Jong N, Van Den Abeele K, Daeichin V. Spatiotemporal Distribution of Nanodroplet Vaporization in a Proton Beam Using Real-Time Ultrasound Imaging for Range Verification. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:149-156. [PMID: 34629191 DOI: 10.1016/j.ultrasmedbio.2021.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The potential of proton therapy to improve the conformity of the delivered dose to the tumor volume is currently limited by range uncertainties. Injectable superheated nanodroplets have recently been proposed for ultrasound-based in vivo range verification, as these vaporize into echogenic microbubbles on proton irradiation. In previous studies, offline ultrasound images of phantoms with dispersed nanodroplets were acquired after irradiation, relating the induced vaporization profiles to the proton range. However, the aforementioned method did not enable the counting of individual vaporization events, and offline imaging cannot provide real-time feedback. In this study, we overcame these limitations using high-frame-rate ultrasound imaging with a linear array during proton irradiation of phantoms with dispersed perfluorobutane nanodroplets at 37°C and 50°C. Differential image analysis of subsequent frames allowed us to count individual vaporization events and to localize them with a resolution beyond the ultrasound diffraction limit, enabling spatial and temporal quantification of the interaction between ionizing radiation and nanodroplets. Vaporization maps were found to accurately correlate with the stopping distribution of protons (at 50°C) or secondary particles (at both temperatures). Furthermore, a linear relationship between the vaporization count and the number of incoming protons was observed. These results indicate the potential of real-time high-frame-rate contrast-enhanced ultrasound imaging for proton range verification and dosimetry.
Collapse
Affiliation(s)
- Gonzalo Collado-Lara
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| | - Sophie V Heymans
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Physics, KU Leuven Campus Kulak, Kortrijk, Belgium; Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | - Bram Carlier
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Yosra Toumia
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| | - Martin Verweij
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Medical Imaging, TU Delft, Delft, The Netherlands
| | - Gaio Paradossi
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| | | | - Hendrik J Vos
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Medical Imaging, TU Delft, Delft, The Netherlands
| | - Jan D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Nico de Jong
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Medical Imaging, TU Delft, Delft, The Netherlands
| | | | - Verya Daeichin
- Department of Medical Imaging, TU Delft, Delft, The Netherlands
| |
Collapse
|
13
|
Ultrasound and Photoacoustic Imaging of Laser-Activated Phase-Change Perfluorocarbon Nanodroplets. PHOTONICS 2021. [DOI: 10.3390/photonics8100405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Laser-activated perfluorocarbon nanodroplets (PFCnDs) are emerging phase-change contrast agents that showed promising potential in ultrasound and photoacoustic (US/PA) imaging. Unlike monophase gaseous microbubbles, PFCnDs shift their state from liquid to gas via optical activation and can provide high US/PA contrast on demand. Depending on the choice of perfluorocarbon core, the vaporization and condensation dynamics of the PFCnDs are controllable. Therefore, these configurable properties of activation and deactivation of PFCnDs are employed to enable various imaging approaches, including contrast-enhanced imaging and super-resolution imaging. In addition, synchronous application of both acoustic and optical pulses showed a promising outcome vaporizing PFCnDs with lower activation thresholds. Furthermore, due to their sub-micrometer size, PFCnDs can be used for molecular imaging of extravascular tissue. PFCnDs can also be an effective therapeutic tool. As PFCnDs can carry therapeutic drugs or other particles, they can be used for drug delivery, as well as photothermal and photodynamic therapies. Blood barrier opening for neurological applications was recently demonstrated with optically-triggered PFCnDs. This paper specifically focuses on the activation and deactivation properties of laser-activated PFCnDs and associated US/PA imaging approaches, and briefly discusses their theranostic potential and future directions.
Collapse
|
14
|
Krafft MP, Riess JG. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv Colloid Interface Sci 2021; 294:102407. [PMID: 34120037 DOI: 10.1016/j.cis.2021.102407] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
After the protocol-related indecisive clinical trial of Oxygent, a perfluorooctylbromide/phospholipid nanoemulsion, in cardiac surgery, that often unduly assigned the observed untoward effects to the product, the development of perfluorocarbon (PFC)-based O2 nanoemulsions ("blood substitutes") has come to a low. Yet, significant further demonstrations of PFC O2-delivery efficacy have continuously been reported, such as relief of hypoxia after myocardial infarction or stroke; protection of vital organs during surgery; potentiation of O2-dependent cancer therapies, including radio-, photodynamic-, chemo- and immunotherapies; regeneration of damaged nerve, bone or cartilage; preservation of organ grafts destined for transplantation; and control of gas supply in tissue engineering and biotechnological productions. PFC colloids capable of augmenting O2 delivery include primarily injectable PFC nanoemulsions, microbubbles and phase-shift nanoemulsions. Careful selection of PFC and other colloid components is critical. The basics of O2 delivery by PFC nanoemulsions will be briefly reminded. Improved knowledge of O2 delivery mechanisms has been acquired. Advanced, size-adjustable O2-delivering nanoemulsions have been designed that have extended room-temperature shelf-stability. Alternate O2 delivery options are being investigated that rely on injectable PFC-stabilized microbubbles or phase-shift PFC nanoemulsions. The latter combine prolonged circulation in the vasculature, capacity for penetrating tumor tissues, and acute responsiveness to ultrasound and other external stimuli. Progress in microbubble and phase-shift emulsion engineering, control of phase-shift activation (vaporization), understanding and control of bubble/ultrasound/tissue interactions is discussed. Control of the phase-shift event and of microbubble size require utmost attention. Further PFC-based colloidal systems, including polymeric micelles, PFC-loaded organic or inorganic nanoparticles and scaffolds, have been devised that also carry substantial amounts of O2. Local, on-demand O2 delivery can be triggered by external stimuli, including focused ultrasound irradiation or tumor microenvironment. PFC colloid functionalization and targeting can help adjust their properties for specific indications, augment their efficacy, improve safety profiles, and expand the range of their indications. Many new medical and biotechnological applications involving fluorinated colloids are being assessed, including in the clinic. Further uses of PFC-based colloidal nanotherapeutics will be briefly mentioned that concern contrast diagnostic imaging, including molecular imaging and immune cell tracking; controlled delivery of therapeutic energy, as for noninvasive surgical ablation and sonothrombolysis; and delivery of drugs and genes, including across the blood-brain barrier. Even when the fluorinated colloids investigated are designed for other purposes than O2 supply, they will inevitably also carry and deliver a certain amount of O2, and may thus be considered for O2 delivery or co-delivery applications. Conversely, O2-carrying PFC nanoemulsions possess by nature a unique aptitude for 19F MR imaging, and hence, cell tracking, while PFC-stabilized microbubbles are ideal resonators for ultrasound contrast imaging and can undergo precise manipulation and on-demand destruction by ultrasound waves, thereby opening multiple theranostic opportunities.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 23 rue du Loess, 67034 Strasbourg, France.
| | - Jean G Riess
- Harangoutte Institute, 68160 Ste Croix-aux-Mines, France
| |
Collapse
|
15
|
Heymans SV, Carlier B, Toumia Y, Nooijens S, Ingram M, Giammanco A, d'Agostino E, Crijns W, Bertrand A, Paradossi G, Himmelreich U, D'hooge J, Sterpin E, Van Den Abeele K. Modulating ultrasound contrast generation from injectable nanodroplets for proton range verification by varying the degree of superheat. Med Phys 2021; 48:1983-1995. [PMID: 33587754 DOI: 10.1002/mp.14778] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/21/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Despite the physical benefits of protons over conventional photon radiation in cancer treatment, range uncertainties impede the ability to harness the full potential of proton therapy. While monitoring the proton range in vivo could reduce the currently adopted safety margins, a routinely applicable range verification technique is still lacking. Recently, phase-change nanodroplets were proposed for proton range verification, demonstrating a reproducible relationship between the proton range and generated ultrasound contrast after radiation-induced vaporization at 25°C. In this study, previous findings are extended with proton irradiations at different temperatures, including the physiological temperature of 37°C, for a novel nanodroplet formulation. Moreover, the potential to modulate the linear energy transfer (LET) threshold for vaporization by varying the degree of superheat is investigated, where the aim is to demonstrate vaporization of nanodroplets directly by primary protons. METHODS Perfluorobutane nanodroplets with a shell made of polyvinyl alcohol (PVA-PFB) or 10,12-pentacosadyinoic acid (PCDA-PFB) were dispersed in polyacrylamide hydrogels and irradiated with 62 MeV passively scattered protons at temperatures of 37°C and 50°C. Nanodroplet transition into echogenic microbubbles was assessed using ultrasound imaging (gray value and attenuation analysis) and optical images. The proton range was measured independently and compared to the generated contrast. RESULTS Nanodroplet design proved crucial to ensure thermal stability, as PVA-shelled nanodroplets dramatically outperformed their PCDA-shelled counterpart. At body temperature, a uniform radiation response proximal to the Bragg peak is attributed to nuclear reaction products interacting with PVA-PFB nanodroplets, with the 50% drop in ultrasound contrast being 0.17 mm ± 0.20 mm (mean ± standard deviation) in front of the proton range. Also at 50°C, highly reproducible ultrasound contrast profiles were obtained with shifts of -0.74 mm ± 0.09 mm (gray value analysis), -0.86 mm ± 0.04 mm (attenuation analysis) and -0.64 mm ± 0.29 mm (optical analysis). Moreover, a strong contrast enhancement was observed near the Bragg peak, suggesting that nanodroplets were sensitive to primary protons. CONCLUSIONS By varying the degree of superheat of the nanodroplets' core, one can modulate the intensity of the generated ultrasound contrast. Moreover, a submillimeter reproducible relationship between the ultrasound contrast and the proton range was obtained, either indirectly via the visualization of secondary reaction products or directly through the detection of primary protons, depending on the degree of superheat. The potential of PVA-PFB nanodroplets for in vivo proton range verification was confirmed by observing a reproducible radiation response at physiological temperature, and further studies aim to assess the nanodroplets' performance in a physiological environment. Ultimately, cost-effective online or offline ultrasound imaging of radiation-induced nanodroplet vaporization could facilitate the reduction of safety margins in treatment planning and enable adaptive proton therapy.
Collapse
Affiliation(s)
- Sophie V Heymans
- Department of Physics, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - Bram Carlier
- Department of Oncology, KU Leuven, Leuven, Belgium.,Molecular Small Animal Imaging Center, KU Leuven, Leuven, Belgium
| | - Yosra Toumia
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| | - Sjoerd Nooijens
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Marcus Ingram
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | | | | | | | - Gaio Paradossi
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| | - Uwe Himmelreich
- Molecular Small Animal Imaging Center, KU Leuven, Leuven, Belgium.,Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Jan D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
16
|
Lajoinie G, Segers T, Versluis M. High-Frequency Acoustic Droplet Vaporization is Initiated by Resonance. PHYSICAL REVIEW LETTERS 2021; 126:034501. [PMID: 33543968 DOI: 10.1103/physrevlett.126.034501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/02/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Vaporization of low-boiling point droplets has numerous applications in combustion, process engineering, and in recent years, in clinical medicine. However, the physical mechanisms governing the phase conversion are only partly explained. Here, we show that an acoustic resonance can arise from the large speed of sound mismatch between a perfluorocarbon microdroplet and its surroundings. The fundamental resonance mode obeys a unique relationship kR∼0.65 between droplet size and driving frequency that leads to a threefold pressure amplification inside the droplet. Classical nucleation theory shows that this pressure amplification increases the nucleation rate by several orders of magnitude. These findings are confirmed by high-speed imaging performed at a timescale of 10 ns. The optical recordings demonstrate that droplets exposed to intense acoustic waves generated by interdigital transducers nucleate only if they match the theoretical resonance size.
Collapse
Affiliation(s)
- Guillaume Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, Technical Medical (TechMed) Center, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Tim Segers
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, Technical Medical (TechMed) Center, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Michel Versluis
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, Technical Medical (TechMed) Center, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| |
Collapse
|
17
|
MAGE-Targeted Gold Nanoparticles for Ultrasound Imaging-Guided Phototherapy in Melanoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6863231. [PMID: 33015175 PMCID: PMC7519981 DOI: 10.1155/2020/6863231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/22/2020] [Accepted: 09/03/2020] [Indexed: 11/18/2022]
Abstract
Gold nanorods exhibit a wide variety of applications such as tumor molecular imaging and photothermal therapy (PTT) due to their tunable optical properties. Several studies have demonstrated that the combination of other therapeutic strategies may improve PTT efficiency. A method called optical droplet vaporization (ODV) was considered as another noninvasive imaging and therapy strategy. Via the ODV method, superheated perfluorocarbon droplets can be vaporized to a gas phase for enhancing ultrasound imaging; meanwhile, this violent process can cause damage to cells and tissue. In addition, active targeting through the functionalization with targeting ligands can effectively increase nanoprobe accumulation in the tumor area, improving the sensitivity and specificity of imaging and therapy. Our study prepared a nanoparticle loaded with gold nanorods and perfluorinated hexane and conjugated to a monoclonal antibody (MAGE-1 antibody) to melanoma-associated antigens (MAGE) targeting melanoma, investigated the synergistic effect of PTT/ODV therapy, and monitored the therapeutic effect using ultrasound. The prepared MAGE-Au-PFH-NPs achieved complete eradication of tumors. Meanwhile, the MAGE-Au-PFH-NPs also possess significant ultrasound imaging signal enhancement, which shows the potential for imaging-guided tumor therapy in the future.
Collapse
|
18
|
DeRuiter RM, Markley EN, Rojas JD, Pinton GF, Dayton PA. Transient acoustic vaporization signatures unique to low boiling point phase change contrast agents enable super-resolution ultrasound imaging without spatiotemporal filtering. AIP ADVANCES 2020; 10:105124. [PMID: 33094029 PMCID: PMC7575328 DOI: 10.1063/5.0029207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 05/18/2023]
Abstract
The unique activation signal of phase-change contrast agents (PCCAs or droplets) can be separated from the tissue signal and localized to generate super-resolution (SR) ultrasound (US) images. Lipid-shelled, perfluorocarbon PCCAs can be stochastically vaporized (activated) by a plane wave US transmission thereby enabling them to be used as separable targets for ultrasound localization microscopy. The unique signature of droplet vaporization imaging and the transient inherent nature of this signature increases signal contrast and therefore localization confidence, while the poor resolution of the low-frequency vaporization signal is overcome by the super-resolution result. Furthermore, our proposed PCCA SR technique does not require the use of user-dependent and flow-dependent spatio-temporal filtering via singular-value decomposition. Rather, matched filters selected by Fourier-domain analysis are able to identify and localize PCCA activations. Droplet SR was demonstrated in a crossed-microtube water phantom by localizing the activation signals of octafluoropropane nanodroplets (OFP, C3F8, -37 °C boiling point) to resolve 100 µm diameter fluorinated ethylene propylene tubes, which are ordinarily 35% smaller than the native diffraction-limited resolution of the imaging system utilized.
Collapse
Affiliation(s)
| | | | | | | | - P. A. Dayton
- Author to whom correspondence should be addressed:
| |
Collapse
|
19
|
Melich R, Bussat P, Morici L, Vivien A, Gaud E, Bettinger T, Cherkaoui S. Microfluidic preparation of various perfluorocarbon nanodroplets: Characterization and determination of acoustic droplet vaporization (ADV) threshold. Int J Pharm 2020; 587:119651. [DOI: 10.1016/j.ijpharm.2020.119651] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022]
|
20
|
Stride E, Segers T, Lajoinie G, Cherkaoui S, Bettinger T, Versluis M, Borden M. Microbubble Agents: New Directions. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1326-1343. [PMID: 32169397 DOI: 10.1016/j.ultrasmedbio.2020.01.027] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/09/2020] [Accepted: 01/26/2020] [Indexed: 05/24/2023]
Abstract
Microbubble ultrasound contrast agents have now been in use for several decades and their safety and efficacy in a wide range of diagnostic applications have been well established. Recent progress in imaging technology is facilitating exciting developments in techniques such as molecular, 3-D and super resolution imaging and new agents are now being developed to meet their specific requirements. In parallel, there have been significant advances in the therapeutic applications of microbubbles, with recent clinical trials demonstrating drug delivery across the blood-brain barrier and into solid tumours. New agents are similarly being tailored toward these applications, including nanoscale microbubble precursors offering superior circulation times and tissue penetration. The development of novel agents does, however, present several challenges, particularly regarding the regulatory framework. This article reviews the developments in agents for diagnostic, therapeutic and "theranostic" applications; novel manufacturing techniques; and the opportunities and challenges for their commercial and clinical translation.
Collapse
Affiliation(s)
- Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
| | - Tim Segers
- Physics of Fluids Group, Technical Medical (TechMed) Centre, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | - Guillaume Lajoinie
- Physics of Fluids Group, Technical Medical (TechMed) Centre, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | - Samir Cherkaoui
- Bracco Suisse SA - Business Unit Imaging, Global R&D, Plan-les-Ouates, Switzerland
| | - Thierry Bettinger
- Bracco Suisse SA - Business Unit Imaging, Global R&D, Plan-les-Ouates, Switzerland
| | - Michel Versluis
- Physics of Fluids Group, Technical Medical (TechMed) Centre, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | - Mark Borden
- Mechanical Engineering Department, University of Colorado, Boulder, CO, USA
| |
Collapse
|
21
|
Carlier B, Heymans SV, Nooijens S, Toumia Y, Ingram M, Paradossi G, D’Agostino E, Himmelreich U, D’hooge J, Van Den Abeele K, Sterpin E. Proton range verification with ultrasound imaging using injectable radiation sensitive nanodroplets: a feasibility study. ACTA ACUST UNITED AC 2020; 65:065013. [DOI: 10.1088/1361-6560/ab7506] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Wang W, Jing T, Xia X, Tang L, Huang Z, Liu F, Wang Z, Ran H, Li M, Xia J. Melanin-loaded biocompatible photosensitive nanoparticles for controlled drug release in combined photothermal-chemotherapy guided by photoacoustic/ultrasound dual-modality imaging. Biomater Sci 2019; 7:4060-4074. [PMID: 31475710 DOI: 10.1039/c9bm01052a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Combined photothermal-chemotherapy guided by multimodal imaging is a promising strategy for cancer diagnosis and treatment. Multifunctional nanoparticles, such as those comprising organic and inorganic compounds, have been extensively investigated for combined photothermal-chemotherapy; however, their application is still limited by their potential long-term toxicity and lack of contrast properties. To solve these problems, in this study, a new type of multifunctional nanoparticle for combined photothermal-chemotherapy guided by dual-modality imaging was prepared with endogenous melanin by multistep emulsification to enhance tumor ablation. The nanoparticles were coated with poly(lactide-co-glycolic acid) (PLGA) and loaded with paclitaxel (PTX), encapsulated melanin and perfluoropentane (PFP). The materials in the nanoparticles were endogenous, ensuring high stability, biocompatibility, and biosafety. Nanoparticles irradiated with a laser, which induced their phase transformation into microbubbles, exhibited high photothermal conversion efficiency, thereby achieving photoacoustic (PA)/ultrasound (US) dual-modality imaging to determine tumor location, boundary, and size and to monitor drug distribution. Furthermore, optical droplet vaporization (ODV) of the nanoparticles could trigger the release of PTX; thus, these nanoparticles are a useful drug carrier. In vivo and in vitro experiments revealed that a strong synergistic antitumor effect was achieved by combining the photothermal properties of the nanoparticles with a chemotherapy drug. Importantly, the cavitation, thermoelastic expansion, and sonoporation caused by the phase transformation of the nanoparticles could directly damage the tumors. These processes also promoted the release, penetration and absorption of the drug, further enhancing the effect of combined photothermal-chemotherapy on tumor suppression. Therefore, the multifunctional nanoparticles prepared in this study provide a new strategy of using endogenous materials for controlled near-infrared (NIR)-responsive drug release and combined photothermal-chemotherapy guided by multimodal imaging.
Collapse
Affiliation(s)
- Wenyuan Wang
- Department of Ultrasound, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China.
| | - Ting Jing
- Department of Radiology, Hospital (t.c.m) Affiliated to Southwest Medical University, Luzhou 646000, PR China
| | - Xiaorong Xia
- Department of Ultrasound, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China.
| | - Linmei Tang
- Department of Ultrasound, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China.
| | - Zhiqiang Huang
- Department of Ultrasound, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China.
| | - Fengqiu Liu
- Institute of Ultrasound Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, PR China
| | - Zhigang Wang
- Institute of Ultrasound Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, PR China
| | - Haitao Ran
- Institute of Ultrasound Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, PR China
| | - Mingxing Li
- Department of Ultrasound, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China.
| | - Jizhu Xia
- Department of Ultrasound, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China.
| |
Collapse
|
23
|
Near-infrared absorbing nanoemulsions as nonlinear ultrasound contrast agents for cancer theranostics. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.125] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Synchronized Optical and Acoustic Droplet Vaporization for Effective Sonoporation. Pharmaceutics 2019; 11:pharmaceutics11060279. [PMID: 31197090 PMCID: PMC6631315 DOI: 10.3390/pharmaceutics11060279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 01/05/2023] Open
Abstract
Inertial cavitation-based sonoporation has been utilized to enhance treatment delivery efficacy. In our previous study, we demonstrated that tumor therapeutic efficacy can be enhanced through vaporization-assisted sonoporation with gold nanodroplets (AuNDs). Specifically, the AuNDs were vaporized both acoustically (i.e., acoustic droplet vaporization, ADV) and optically (i.e., optical droplet vaporization, ODV). A continuous wave (CW) laser was used for ODV in combination with an ultrasound pulse for ADV. Although effective for vaporization, the use of a CW laser is not energy efficient and may create unwanted heating and concomitant tissue damage. In this study, we propose the use of a pulsed wave (PW) laser to replace the CW laser. In addition, the PW laser was applied at the rarefaction phase of the ultrasound pulse so that the synergistic effects of ADV and ODV can be expected. Therefore, a significantly lower laser average power can be expected to achieve the vaporization threshold. Compared to the CW laser power at 2 W/cm2 from the previous approach, the PW laser power was reduced to only 0.2404 W/cm2. Furthermore, we also demonstrate in vitro that the sonoporation rate was increased when the PW laser was applied at the rarefaction phase. Specifically, the vaporization signal, the inertial cavitation signal, and the sonoporation rate all displayed a 1-µs period, which corresponded to the period of the 1-MHz acoustic wave used for ADV, as a function of the relative laser delay. The increased sonoporation rate indicates that this technique has the potential to enhance sonoporation-directed drug delivery and tumor therapy with a lower laser power while keeping the cell death rate at the minimum. Photoacoustic imaging can also be performed at the same time since a PW laser is used for the ODV.
Collapse
|
25
|
Rojas JD, Borden MA, Dayton PA. Effect of Hydrostatic Pressure, Boundary Constraints and Viscosity on the Vaporization Threshold of Low-Boiling-Point Phase-Change Contrast Agents. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:968-979. [PMID: 30658858 DOI: 10.1016/j.ultrasmedbio.2018.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/04/2018] [Accepted: 11/11/2018] [Indexed: 05/09/2023]
Abstract
The vaporization of low-boiling-point phase-change contrast agents (PCCAs) using ultrasound has been explored in vitro and in vivo. However, it has been reported that the pressure required for activation is higher in vivo, even after attenuation is accounted for. In this study, the effect of boundary constraints, hydrostatic pressure and viscosity on PCCA vaporization pressure threshold are evaluated to explore possible mechanisms for variations in in vivo vaporization behavior. Vaporization was measured in microtubes of varying inner diameter and a pressurized chamber under different hydrostatic pressures using a range of ultrasound pressures. Furthermore, the activation threshold was evaluated in the kidneys of rats. The results confirm that the vaporization threshold is higher in vivo and reveal an increasing activation threshold inversely proportional to constraining tube size and inversely proportional to surrounding viscosity in constrained environments. Counterintuitively, increased hydrostatic pressure had no significant effect experimentally on the PCCA vaporization threshold, although it was confirmed that this result was supported by homogeneous nucleation theory for liquid perfluorocarbon vaporization. These factors suggest that constraints caused by the surrounding tissue and capillary walls, as well as increased viscosity in vivo, contribute to the increased vaporization threshold compared with in vitro experiments, although more work is required to confirm all relevant factors.
Collapse
Affiliation(s)
- Juan D Rojas
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Mark A Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA.
| |
Collapse
|
26
|
Li DS, Schneewind S, Bruce M, Khaing Z, O’Donnell M, Pozzo L. Spontaneous Nucleation of Stable Perfluorocarbon Emulsions for Ultrasound Contrast Agents. NANO LETTERS 2019; 19:173-181. [PMID: 30543289 PMCID: PMC7970446 DOI: 10.1021/acs.nanolett.8b03585] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phase-change contrast agents are rapidly developing as an alternative to microbubbles for ultrasound imaging and therapy. These agents are synthesized and delivered as liquid droplets and vaporized locally to produce image contrast. They can be used like conventional microbubbles but with the added benefit of reduced size and improved stability. Droplet-based agents can be synthesized with diameters on the order of 100 nm, making them an ideal candidate for extravascular imaging or therapy. However, their synthesis requires low boiling point perfluorocarbons (PFCs) to achieve activation (i.e., vaporization) thresholds within FDA approved limits. Minimizing spontaneous vaporization while producing liquid droplets using conventional methods with low boiling point PFCs can be challenging. In this study, a new method to produce PFC nanodroplets using spontaneous nucleation is demonstrated using PFCs with boiling points ranging from -37 to 56 °C. Sometimes referred to as the ouzo method, the process relies on saturating a cosolvent with the PFC before adding a poor solvent to reduce solvent quality, forcing droplets to spontaneously nucleate. This approach can produce droplets ranging from under 100 nm to over 1 μm in diameter. Ternary plots showing solvent and PFC concentrations leading to droplet nucleation are presented. Additionally, acoustic activation thresholds and size distributions with varying PFC and solvent conditions are measured and discussed. Finally, ultrasound contrast imaging is demonstrated using ouzo droplets in an animal model.
Collapse
Affiliation(s)
- David S. Li
- Department of Chemical Engineering, University of
Washington, Seattle, WA
- Department of Bioengineering, University of Washington,
Seattle, WA
| | - Sarah Schneewind
- Department of Chemical Engineering, University of
Washington, Seattle, WA
| | - Matthew Bruce
- Center for Industrial and Medical Ultrasound, Applied
Physics Lab, University of Washington, Seattle, WA
| | - Zin Khaing
- Department of Neurological Surgery, University of
Washington, Seattle, WA
| | | | - Lilo Pozzo
- Department of Chemical Engineering, University of
Washington, Seattle, WA
| |
Collapse
|
27
|
Biological active matter aggregates: Inspiration for smart colloidal materials. Adv Colloid Interface Sci 2019; 263:38-51. [PMID: 30504078 DOI: 10.1016/j.cis.2018.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/02/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
Aggregations of social organisms exhibit a remarkable range of properties and functionalities. Multiple examples, such as fire ants or slime mold, show how a population of individuals is able to overcome an existential threat by gathering into a solid-like aggregate with emergent functionality. Surprisingly, these aggregates are driven by simple rules, and their mechanisms show great parallelism among species. At the same time, great effort has been made by the scientific community to develop active colloidal materials, such as microbubbles or Janus particles, which exhibit similar behaviors. However, a direct connection between these two realms is still not evident, and it would greatly benefit future studies. In this review, we first discuss the current understanding of living aggregates, point out the mechanisms in their formation and explore the vast range of emergent properties. Second, we review the current knowledge in aggregated colloidal systems, the methods used to achieve the aggregations and their potential functionalities. Based on this knowledge, we finally identify a set of over-arching principles commonly found in biological aggregations, and further suggest potential future directions for the creation of bio-inspired colloid aggregations.
Collapse
|
28
|
Yu J, Pin S, Lin X, Su M, Bai M, Kim K. Photostable, hydrophilic, and near infrared quaterrylene-based dyes for photoacoustic imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:1012-1019. [PMID: 30274031 PMCID: PMC6172961 DOI: 10.1016/j.msec.2018.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 05/14/2018] [Accepted: 09/04/2018] [Indexed: 01/22/2023]
Abstract
Novel near-infrared contrast agents based on the quaterrylene structure were strategically developed and tested for high photo-stability. Both a dendrimeric quaterrylene molecule, QR-G2-COOH, and a small molecule cationic quaterrylene dye, QR-4PyC4, remain optically stable and continue to generate a competitive photoacoustic response when irradiated by short near-infrared laser pulses for a relatively long time in an in-vitro cell study, unlike indocyanine green that rapidly decreases photoacoustic signal amplitude. The small molecule dye, QR-4PyC4 exhibits not only significantly higher cellular uptake rate than QR-G2-COOH and indocyanine green, but also low toxicity at a concentration of up to 10 μM. The dendrimeric dye, QR-G2-COOH that has surface functional groups available for conjugation with targeting and therapeutic agents shows the highest photoacoustic amplitude with high optical stability. Therefore, QR-4PyC4 can be a promising universal, sensitive and reliable photoacoustic contrast agent and QR-G2-COOH has great potential as a nano-platform with stable photoacoustic imaging capability.
Collapse
Affiliation(s)
- Jaesok Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine & Heart and Vascular Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Shao Pin
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Xiangwei Lin
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine & Heart and Vascular Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA
| | - Meng Su
- Vanderbilt University Institute of Imaging Sciences, Nashville, TN 37232, USA
| | - Mingfeng Bai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA.
| | - Kang Kim
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine & Heart and Vascular Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and UPMC, Pittsburgh, PA 15219, USA.
| |
Collapse
|
29
|
Aliabouzar M, Kumar KN, Sarkar K. Acoustic vaporization threshold of lipid-coated perfluoropentane droplets. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:2001. [PMID: 29716255 PMCID: PMC5895468 DOI: 10.1121/1.5027817] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Phase shift droplets vaporizable by acoustic stimulation offer the advantages of producing microbubbles as contrast agents in situ as well as higher stability and the possibility of achieving smaller sizes. Here, the acoustic droplet vaporization (ADV) threshold of a suspension of droplets with a perfluoropentane (PFP) core (diameter 400-3000 nm) is acoustically measured as a function of the excitation frequency in a tubeless setup at room temperature. The changes in scattered responses-fundamental, sub-, and second harmonic-are investigated, a quantitative criterion is used to determine the ADV phenomenon, and findings are discussed. The average threshold obtained using three different scattered components increases with frequency-1.05 ± 0.28 MPa at 2.25 MHz, 1.89 ± 0.57 MPa at 5 MHz, and 2.34 ± 0.014 MPa at 10 MHz. The scattered response from vaporized droplets was also found to qualitatively match with that from an independently prepared lipid-coated microbubble suspension in magnitude as well as trends above the determined ADV threshold value.
Collapse
Affiliation(s)
- Mitra Aliabouzar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Krishna N Kumar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
30
|
Zhang Z, Taylor M, Collins C, Haworth S, Shi Z, Yuan Z, He X, Cao Z, Park YC. Light-Activatable Theranostic Agents for Image-Monitored Controlled Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1534-1543. [PMID: 29276883 DOI: 10.1021/acsami.7b15325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel drug delivery vehicle using nanodroplets activated by light irradiation for drug release in a controlled manner has been developed. The drug encapsulated in the nanodroplets was released upon phase transition from a liquid droplet to microbubbles (vaporization) by plasmonic photothermal heat from gold nanorods adsorbed on the surface of the nanodroplets. The nanodroplets were stable against aggregation and dissolution at 4 °C over 3 months to date. The phase transition was quantitatively analyzed by ultrasound imaging to examine the amount of drug release noninvasively. In vitro studies showed that cell death occurred only when light irradiation was performed on the drug-encapsulated nanodroplets. Ex vivo studies demonstrated a potential application of the nanodroplets for treating posterior eye diseases. Thus, it has been demonstrated that our gold-nanorod-coated light-activatable nanodroplets can be a candidate for a controlled release and a dosage-monitored drug delivery system.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Biomedical, Chemical & Environmental Engineering and ‡College of Pharmacy, University of Cincinnati , Cincinnati 45221, Ohio, United States
| | - Madison Taylor
- Department of Biomedical, Chemical & Environmental Engineering and ‡College of Pharmacy, University of Cincinnati , Cincinnati 45221, Ohio, United States
| | - Courtney Collins
- Department of Biomedical, Chemical & Environmental Engineering and ‡College of Pharmacy, University of Cincinnati , Cincinnati 45221, Ohio, United States
| | - Sara Haworth
- Department of Biomedical, Chemical & Environmental Engineering and ‡College of Pharmacy, University of Cincinnati , Cincinnati 45221, Ohio, United States
| | - ZhanQuan Shi
- Department of Biomedical, Chemical & Environmental Engineering and ‡College of Pharmacy, University of Cincinnati , Cincinnati 45221, Ohio, United States
| | - Zheng Yuan
- Department of Biomedical, Chemical & Environmental Engineering and ‡College of Pharmacy, University of Cincinnati , Cincinnati 45221, Ohio, United States
| | - Xingyu He
- Department of Biomedical, Chemical & Environmental Engineering and ‡College of Pharmacy, University of Cincinnati , Cincinnati 45221, Ohio, United States
| | - Zishu Cao
- Department of Biomedical, Chemical & Environmental Engineering and ‡College of Pharmacy, University of Cincinnati , Cincinnati 45221, Ohio, United States
| | - Yoonjee C Park
- Department of Biomedical, Chemical & Environmental Engineering and ‡College of Pharmacy, University of Cincinnati , Cincinnati 45221, Ohio, United States
| |
Collapse
|
31
|
Zullino S, Argenziano M, Stura I, Guiot C, Cavalli R. From Micro- to Nano-Multifunctional Theranostic Platform: Effective Ultrasound Imaging Is Not Just a Matter of Scale. Mol Imaging 2018; 17:1536012118778216. [PMID: 30213222 PMCID: PMC6144578 DOI: 10.1177/1536012118778216] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/20/2018] [Accepted: 04/08/2018] [Indexed: 12/20/2022] Open
Abstract
Ultrasound Contrast Agents (UCAs) consisting of gas-filled-coated Microbubbles (MBs) with diameters between 1 and 10 µm have been used for a number of decades in diagnostic imaging. In recent years, submicron contrast agents have proven to be a viable alternative to MBs for ultrasound (US)-based applications for their capability to extravasate and accumulate in the tumor tissue via the enhanced permeability and retention effect. After a short overview of the more recent approaches to ultrasound-mediated imaging and therapeutics at the nanoscale, phase-change contrast agents (PCCAs), which can be phase-transitioned into highly echogenic MBs by means of US, are here presented. The phenomenon of acoustic droplet vaporization (ADV) to produce bubbles is widely investigated for both imaging and therapeutic applications to develop promising theranostic platforms.
Collapse
Affiliation(s)
- Sara Zullino
- Department of Neuroscience, University of Turin, Turin, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Ilaria Stura
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| | - Caterina Guiot
- Department of Neuroscience, University of Turin, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
32
|
Li DS, Yoon SJ, Pelivanov I, Frenz M, O’Donnell M, Pozzo LD. Polypyrrole-Coated Perfluorocarbon Nanoemulsions as a Sono-Photoacoustic Contrast Agent. NANO LETTERS 2017; 17:6184-6194. [PMID: 28926276 PMCID: PMC5636685 DOI: 10.1021/acs.nanolett.7b02845] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A new contrast agent for combined photoacoustic and ultrasound imaging is presented. It has a liquid perfluorocarbon (PFC) core of about 250 nm diameter coated by a 30 nm thin polypyrrole (PPy) doped polymer shell emulsion that represents a broadband absorber covering the visible and near-infrared ranges (peak optical extinction at 1050 nm). When exposed to a sufficiently high intensity optical or acoustic pulse, the droplets vaporize to form microbubbles providing a strong increase in imaging sensitivity and specificity. The threshold for contrast agent activation can further drastically be reduced by up to 2 orders of magnitude if simultaneously exposing them with optical and acoustic pulses. The selection of PFC core liquids with low boiling points (i.e., perfluorohexane (56 °C), perfluoropentane (29 °C), and perfluorobutane (-2 °C)) facilitates activation and reduces the activation threshold of PPy-coated emulsion contrast agents to levels well within clinical safety limits (as low as 0.2 MPa at 1 mJ/cm2). Finally, the potential use of these nanoemulsions as a contrast agent is demonstrated in a series of phantom imaging studies.
Collapse
Affiliation(s)
- David S. Li
- Department of Chemical Engineering, University of Washington, Seattle, Washington, 98195, USA
| | - Soon Joon Yoon
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195, USA
| | - Ivan Pelivanov
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195, USA
- International Laser Center, Moscow State University, Moscow, 119992, Russia
| | - Martin Frenz
- Institute of Applied Physics, University of Bern, Bern, CH-3012, Switzerland
| | - Matthew O’Donnell
- International Laser Center, Moscow State University, Moscow, 119992, Russia
| | - Lilo D. Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, Washington, 98195, USA
| |
Collapse
|
33
|
Deng L, Cai X, Sheng D, Yang Y, Strohm EM, Wang Z, Ran H, Wang D, Zheng Y, Li P, Shang T, Ling Y, Wang F, Sun Y. A Laser-Activated Biocompatible Theranostic Nanoagent for Targeted Multimodal Imaging and Photothermal Therapy. Am J Cancer Res 2017; 7:4410-4423. [PMID: 29158836 PMCID: PMC5695140 DOI: 10.7150/thno.21283] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/16/2017] [Indexed: 12/13/2022] Open
Abstract
Multifunctional nanoparticles have been reported for cancer detection and treatment currently. However, the accurate diagnosis and efficient treatment for tumors are still not satisfied. Here we report on the development of targeted phase change multimodal polymeric nanoparticles for the imaging and treatment of HER2-positive breast cancer. Methods: We evaluated the multimodal imaging capabilities of the prepared nanoparticles in vitro using agar-based phantoms. The targeting performance and cytotoxicity of the nanoparticles were examined in cell culture using SKBR3 (over-expressing HER2) and MDA-MB-231 (HER2 negative) cells. We then tested the magnetic resonance (MR)/ photoacoustic (PA)/ ultrasound (US)/ near-infrared fluorescence (NIRF) multimodal imaging properties and photothermal effect of the nanoparticles in vivo using a SKBR3 breast xenograft model in nude mice. Tissue histopathology and immunofluorescence were also conducted. Results: Both in vitro and in vivo systematical studies validated that the hybrid nanoparticles can be used as a superb MR/US/PA/NIRF contrast agent to simultaneously diagnose and guide tumor photothermal therapy (PTT). When irradiated by a near infrared laser, the liquid PFP vaporizes to a gas, rapidly expelling the contents and damaging surrounding tissues. The resulting micro-sized bubbles provide treatment validation through ultrasound imaging. Localization of DIR and SPIO in the tumor region facilitate photothermal therapy for targeted tumor destruction. The mice treated with HER2 targeted nanoparticles had a nearly complete response to treatment, while the controls showed continued tumor growth. Conclusion: This novel theranostic agent may provide better diagnostic imaging and therapeutic potential than current methods for treating HER2-positive breast cancer.
Collapse
|
34
|
Lin S, Shah A, Hernández-Gil J, Stanziola A, Harriss BI, Matsunaga TO, Long N, Bamber J, Tang MX. Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging. PHOTOACOUSTICS 2017; 6:26-36. [PMID: 28507898 PMCID: PMC5423321 DOI: 10.1016/j.pacs.2017.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/10/2017] [Accepted: 04/08/2017] [Indexed: 05/20/2023]
Abstract
We demonstrate a versatile phase-change sub-micron contrast agent providing three modes of contrast enhancement: 1) photoacoustic imaging contrast, 2) ultrasound contrast with optical activation, and 3) ultrasound contrast with acoustic activation. This agent, which we name 'Cy-droplet', has the following novel features. It comprises a highly volatile perfluorocarbon for easy versatile activation, and a near-infrared optically absorbing dye chosen to absorb light at a wavelength with good tissue penetration. It is manufactured via a 'microbubble condensation' method. The phase-transition of Cy-droplets can be optically triggered by pulsed-laser illumination, inducing photoacoustic signal and forming stable gas bubbles that are visible with echo-ultrasound in situ. Alternatively, Cy-droplets can be converted to microbubble contrast agents upon acoustic activation with clinical ultrasound. Potentially all modes offer extravascular contrast enhancement because of the sub-micron initial size. Such versatility of acoustic and optical 'triggerability' can potentially improve multi-modality imaging, molecularly targeted imaging and controlled drug release.
Collapse
Affiliation(s)
- Shengtao Lin
- Department of Bioengineering, Imperial College London, London, UK
| | - Anant Shah
- Joint Department of Physics and CRUK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, England, UK
| | | | | | | | | | - Nicholas Long
- Department of Chemistry, Imperial College London, London, UK
| | - Jeffrey Bamber
- Joint Department of Physics and CRUK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, England, UK
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
35
|
Lajoinie G, Lee JY, Owen J, Kruizinga P, de Jong N, van Soest G, Stride E, Versluis M. Laser-driven resonance of dye-doped oil-coated microbubbles: Experimental study. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:4832. [PMID: 28679262 DOI: 10.1121/1.4985560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Photoacoustic (PA) imaging offers several attractive features as a biomedical imaging modality, including excellent spatial resolution and functional information such as tissue oxygenation. A key limitation, however, is the contrast to noise ratio that can be obtained from tissue depths greater than 1-2 mm. Microbubbles coated with an optically absorbing shell have been proposed as a possible contrast agent for PA imaging, offering greater signal amplification and improved biocompatibility compared to metallic nanoparticles. A theoretical description of the dynamics of a coated microbubble subject to laser irradiation has been developed previously. The aim of this study was to test the predictions of the model. Two different types of oil-coated microbubbles were fabricated and then exposed to both pulsed and continuous wave (CW) laser irradiation. Their response was characterized using ultra high-speed imaging. Although there was considerable variability across the population, good agreement was found between the experimental results and theoretical predictions in terms of the frequency and amplitude of microbubble oscillation following pulsed excitation. Under CW irradiation, highly nonlinear behavior was observed which may be of considerable interest for developing different PA imaging techniques with greatly improved contrast enhancement.
Collapse
Affiliation(s)
- Guillaume Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Jeong-Yu Lee
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Joshua Owen
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Pieter Kruizinga
- Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| | - Nico de Jong
- Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| | - Gijs van Soest
- Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| | - Eleanor Stride
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Michel Versluis
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
36
|
Lajoinie G, Linnartz E, Kruizinga P, de Jong N, Stride E, van Soest G, Versluis M. Laser-driven resonance of dye-doped oil-coated microbubbles: A theoretical and numerical study. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:2727. [PMID: 28464648 DOI: 10.1121/1.4979257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microbubbles are used to enhance the contrast in ultrasound imaging. When coated with an optically absorbing material, these bubbles can also provide contrast in photoacoustic imaging. This multimodal aspect is of pronounced interest to the field of medical imaging. The aim of this paper is to provide a theoretical framework to describe the physical phenomena underlying the photoacoustic response. This article presents a model for a spherical gas microbubble suspended in an aqueous environment and coated with an oil layer containing an optically absorbing dye. The model includes heat transfer between the gas core and the surrounding liquids. This framework is suitable for the investigation of both continuous wave and pulsed laser excitation. This work utilizes a combination of finite difference simulations and numerical integration to determine the dependancy on the physical properties, including composition and thickness of the oil layer on the microbubble response. A normalization scheme for a linearized version of the model was derived to facilitate comparison with experimental measurements. The results show that viscosity and thickness of the oil layer determine whether or not microbubble resonance can be excited. This work also examines the use of non-sinusoidal excitation to promote harmonic imaging techniques to further improve the imaging sensitivity.
Collapse
Affiliation(s)
- Guillaume Lajoinie
- Physics of Fluids Group, MIRA Institute for Biomedical Technology and Technical Medicine and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Erik Linnartz
- Physics of Fluids Group, MIRA Institute for Biomedical Technology and Technical Medicine and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Pieter Kruizinga
- Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
| | - Nico de Jong
- Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus, Oxford OX3 7DQ, United Kingdom
| | - Gijs van Soest
- Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
| | - Michel Versluis
- Physics of Fluids Group, MIRA Institute for Biomedical Technology and Technical Medicine and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| |
Collapse
|
37
|
Sheeran PS, Matsuura N, Borden MA, Williams R, Matsunaga TO, Burns PN, Dayton PA. Methods of Generating Submicrometer Phase-Shift Perfluorocarbon Droplets for Applications in Medical Ultrasonography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:252-263. [PMID: 27775902 PMCID: PMC5706463 DOI: 10.1109/tuffc.2016.2619685] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Continued advances in the field of ultrasound and ultrasound contrast agents have created new approaches to imaging and medical intervention. Phase-shift perfluorocarbon droplets, which can be vaporized by ultrasound energy to transition from the liquid to the vapor state, are one of the most highly researched alternatives to clinical ultrasound contrast agents (i.e., microbubbles). In this paper, part of a special issue on methods in biomedical ultrasonics, we survey current techniques to prepare ultrasound-activated nanoscale phase-shift perfluorocarbon droplets, including sonication, extrusion, homogenization, microfluidics, and microbubble condensation. We provide example protocols and discuss advantages and limitations of each approach. Finally, we discuss best practice in characterization of this class of contrast agents with respect to size distribution and ultrasound activation.
Collapse
|
38
|
Rojas JD, Dayton PA. Optimizing Acoustic Activation of Phase Change Contrast Agents With the Activation Pressure Matching Method: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:264-272. [PMID: 27740481 PMCID: PMC5270505 DOI: 10.1109/tuffc.2016.2616304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Submicrometer phase-change contrast agents (PCCAs) consist of a liquid perfluorocarbon (PFC) core that can be vaporized by ultrasound (acoustic droplet vaporization) to generate contrast with excellent spatial and temporal control. When these agents, commonly referred to as nanodroplets, are formulated with cores of low boiling-point PFCs such as decafluorobutane and octafluoropropane, they can be activated with low-mechanical-index (MI) imaging pulses for diagnostic applications. Since the utilization of minimum MI is often desirable to avoid unnecessary biological effects, enabling consistent activation of these agents in an acoustic field is a challenge because the energy that must be delivered to achieve the vaporization threshold increases with depth due to attenuation. A novel vaporization approach called activation pressure matching (APM) has been developed to deliver the same pressure throughout a field of view in order to produce uniform nanodroplet vaporization and to limit the amount of energy that is delivered. In this paper, we discuss the application of this method with a Verasonics V1 Research Ultrasound System to modulate the output pressure from an ATL L11-5 transducer. Vaporization-pulse spacing optimization can be used in addition to matching the activation pressure through depth, and we demonstrate the feasibility of this approach both in vivo and in vitro. The use of optimized vaporization parameters increases the amount of time a single bolus of nanodroplets can generate useful contrast and provides consistent image enhancement in vivo. Therefore, APM is a useful technique for maximizing the efficacy of PCCA while minimizing delivered acoustic energy.
Collapse
|
39
|
Mountford PA, Borden MA. On the thermodynamics and kinetics of superheated fluorocarbon phase-change agents. Adv Colloid Interface Sci 2016; 237:15-27. [PMID: 27574721 DOI: 10.1016/j.cis.2016.08.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 08/08/2016] [Accepted: 08/12/2016] [Indexed: 11/24/2022]
Abstract
Superheated nanodrops are a new class of submicron-diameter liquid emulsion particles comprising perfluoropropane (C3F8), perfluorobutane (C4F10) and perfluoropentane (C5F12) that are being developed for ultrasound imaging and therapy. They can be formed by condensation of precursor lipid-coated, gas-filled microbubbles. Application of ultrasound or laser energy triggers the phase transformation back to a vapor bubble, and this process can be exploited for certain biomedical applications. The nanodrops are remarkably metastable in the liquid state under physiological conditions, even though they are highly superheated. In prior work, it was suggested that a high Laplace pressure in the lipid-coated nanodrop is responsible for its stability in the superheated state. Recent work by our group, however, points to the energy barrier for homogeneous nucleation as a more likely explanation. The purpose of this article is to review and discuss this mechanism in greater detail. We start with a brief description of basic fluorocarbon intermolecular forces. We then use the van der Waals equation of state to construct equilibrium phase diagrams and saturation curves. The effect of droplet Laplace pressure is superimposed onto these curves and compared to experimental data, where a poor correlation is observed. It is also shown that nanodrops with Laplace pressure are unstable to dissolution. The mechanism of homogeneous nucleation is then offered as an alternative explanation for the metastability of superheated nanodrops, with calculations that show good agreement with experimental data.
Collapse
|
40
|
Fernandes DA, Fernandes DD, Li Y, Wang Y, Zhang Z, Rousseau D, Gradinaru CC, Kolios MC. Synthesis of Stable Multifunctional Perfluorocarbon Nanoemulsions for Cancer Therapy and Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10870-10880. [PMID: 27564412 DOI: 10.1021/acs.langmuir.6b01867] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanotechnology provides a promising platform for drug-delivery in medicine. Nanostructured materials can be designed with desired superparamagnetic or fluorescent properties in conjunction with biochemically functionalized moieties (i.e., antibodies, peptides, and small molecules) to actively bind to target sites. These multifunctional properties make them suitable agents for multimodal imaging, diagnosis, and therapy. Perfluorohexane nanoemulsions (PFH-NEs) are novel drug-delivery vehicles and contrast agents for ultrasound and photoacoustic imaging of cancer in vivo, offering higher spatial resolution and deeper penetration of tissue when compared to conventional optical techniques. Compared to other theranostic agents, our PFH-NEs are one of the smallest of their kind (<100 nm), exhibit minimal aggregation, long-term stability at physiological conditions, and provide a noninvasive cancer imaging and therapy alternative for patients. Here, we show, using high-resolution imaging and correlative techniques, that our PFH-NEs, when in tandem with silica-coated gold nanoparticles (scAuNPs), can be used as a drug-loaded therapeutic via endocytosis and as a multimodal imaging agent for photoacoustic, ultrasound, and fluorescence imaging of tumor growth.
Collapse
Affiliation(s)
| | - Dennis D Fernandes
- Department of Physics, University of Toronto , 60 St George Streeet, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Yuchong Li
- Department of Physics, University of Toronto , 60 St George Streeet, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | | | - Zhenfu Zhang
- Department of Physics, University of Toronto , 60 St George Streeet, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | | | - Claudiu C Gradinaru
- Department of Physics, University of Toronto , 60 St George Streeet, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | | |
Collapse
|
41
|
Mountford PA, Smith WS, Borden MA. Fluorocarbon nanodrops as acoustic temperature probes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10656-10663. [PMID: 26359919 DOI: 10.1021/acs.langmuir.5b02308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This work investigated the use of superheated fluorocarbon nanodrops for ultrasound thermal imaging and the use of mixed fluorocarbons for tuning thermal and acoustic thresholds for vaporization. Droplets were fabricated by condensing phospholipid-coated microbubbles containing C3F8 and C4F10 mixed at various molar ratios. Vaporization temperatures first were measured in a closed system by optical transmission following either isothermal pressure release or isobaric heating. The vaporization temperature was found to depend linearly on the percentage of C4F10 in the droplet core, indicating excellent tunability under these fluorocarbon-saturated conditions. Vaporization temperatures were then measured in an open system using contrast-enhanced ultrasound imaging, where it was found that the mixed droplets behaved like pure C4F10 drops. Additionally, the critical mechanical index for vaporization was measured at the limits of therapeutic hyperthermia (37 and 60 °C), and again the mixed droplets were found to behave like pure C4F10 drops. These results suggested that C3F8 preferentially dissolves out of the droplet core in open systems, as shown by a simple mass transfer model of multicomponent droplet dissolution. Finally, proof-of-concept was shown that pure C4F10 nanodrops can be used as an acoustic temperature probe. Overall, these results not only demonstrate the potential of superheated fluorocarbon emulsions for sonothermetry but also point to the limits of tunability for fluorocarbon mixtures owing to preferential release of the more soluble species to the atmosphere.
Collapse
Affiliation(s)
- Paul A Mountford
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - William S Smith
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Mark A Borden
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
42
|
Mountford PA, Thomas AN, Borden MA. Thermal activation of superheated lipid-coated perfluorocarbon drops. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4627-34. [PMID: 25853278 DOI: 10.1021/acs.langmuir.5b00399] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This study explored the thermal conditions necessary for the vaporization of superheated perfluorocarbon nanodrops. Droplets C3F8 and C4F10 coated with a homologous series of saturated diacylphosphatidylcholines were formed by condensation of 4 μm diameter microbubbles. These drops were stable at room temperature and atmospheric pressure, but they vaporized back into microbubbles at higher temperatures. The vaporization transition was measured as a function of temperature by laser light extinction. We found that C3F8 and C4F10 drops experienced 90% vaporization at 40 and 75 °C, respectively, near the theoretical superheat limits (80-90% of the critical temperature). We therefore conclude that the metastabilty of these phase-change agents arises not from the droplet Laplace pressure altering the boiling point, as previously reported, but from the metastability of the pure superheated fluid to homogeneous nucleation. The rate of C4F10 drop vaporization was quantified at temperatures ranging from 55 to 75 °C, and an apparent activation energy barrier was calculated from an Arrhenius plot. Interestingly, the activation energy increased linearly with acyl chain length from C14 to C20, indicating that lipid interchain cohesion plays an important role in suppressing the vaporization rate. The vaporized drops (microbubbles) were found to be unstable to dissolution at high temperatures, particularly for C14 and C16. However, proper choice of the fluorocarbon and lipid species provided a nanoemulsion that could undergo at least ten reversible condensation/vaporization cycles. The vaporization properties presented in this study may facilitate the engineering of tunable phase-shift particles for diagnostic imaging, targeted drug delivery, tissue ablation, and other applications.
Collapse
Affiliation(s)
- Paul A Mountford
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Alec N Thomas
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Mark A Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
43
|
Arnal B, Wei CW, Perez C, Nguyen TM, Lombardo M, Pelivanov I, Pozzo LD, O’Donnell M. Sono-photoacoustic imaging of gold nanoemulsions: Part II. Real time imaging. PHOTOACOUSTICS 2015; 3:11-9. [PMID: 25893170 PMCID: PMC4398795 DOI: 10.1016/j.pacs.2015.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/31/2014] [Accepted: 01/11/2015] [Indexed: 05/05/2023]
Abstract
Photoacoustic (PA) imaging using exogenous agents can be limited by degraded specificity due to strong background signals. This paper introduces a technique called sono-photoacoustics (SPA) applied to perfluorohexane nanodroplets coated with gold nanospheres. Pulsed laser and ultrasound (US) excitations are applied simultaneously to the contrast agent to induce a phase-transition ultimately creating a transient microbubble. The US field present during the phase transition combined with the large thermal expansion of the bubble leads to 20-30 dB signal enhancement. Aqueous solutions and phantoms with very low concentrations of this agent were probed using pulsed laser radiation at diagnostic exposures and a conventional US array used both for excitation and imaging. Contrast specificity of the agent was demonstrated with a coherent differential scheme to suppress US and linear PA background signals. SPA shows great potential for molecular imaging with ultrasensitive detection of targeted gold coated nanoemulsions and cavitation-assisted theranostic approaches.
Collapse
Affiliation(s)
- Bastien Arnal
- University of Washington, Department of Bioengineering, 616 NE Northlake Place, Seattle, WA 98105, United States
- Corresponding author. Tel.: +1 2062218330.
| | - Chen-Wei Wei
- University of Washington, Department of Bioengineering, 616 NE Northlake Place, Seattle, WA 98105, United States
| | - Camilo Perez
- University of Washington, Department of Bioengineering, 616 NE Northlake Place, Seattle, WA 98105, United States
- University of Washington, Applied Physics Laboratory, Center for Industrial and Medical Ultrasound, 1013 NE 40th Street, Seattle, WA 98105-6698, United States
| | - Thu-Mai Nguyen
- University of Washington, Department of Bioengineering, 616 NE Northlake Place, Seattle, WA 98105, United States
| | - Michael Lombardo
- University of Washington, Department of Chemical Engineering, Box 351750, Seattle, WA 98195-1750, United States
| | - Ivan Pelivanov
- University of Washington, Department of Bioengineering, 616 NE Northlake Place, Seattle, WA 98105, United States
- International Laser Center, Moscow State University, Moscow, Russian Federation
| | - Lilo D. Pozzo
- University of Washington, Department of Chemical Engineering, Box 351750, Seattle, WA 98195-1750, United States
| | - Matthew O’Donnell
- University of Washington, Department of Bioengineering, 616 NE Northlake Place, Seattle, WA 98105, United States
| |
Collapse
|