1
|
Song C, He W, Song P, Feng J, Huang Y, Xu J, An L, Qin J, Gao K, Twa MD, Lan G. Chirp excitation for natural frequency optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2024; 15:5856-5871. [PMID: 39421777 PMCID: PMC11482180 DOI: 10.1364/boe.536685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024]
Abstract
Optical coherence elastography (OCE) has recently been used to characterize the natural frequencies of delicate tissues (e.g., the in vivo human cornea) with sub-micron tissue oscillation magnitudes. Here, we investigate broadband spectrum sample stimulation using a contact-based piezoelectric transducer (PZT) chirp excitation and compare its performance with a non-contact, air-pulse excitation for OCE measurements on 1.0-7.5% agar phantoms and an ex vivo porcine cornea under intraocular pressures (IOPs) of 5-40 mmHg. The 3-ms duration air-pulse generated a ∼0-840 Hz excitation spectrum, effectively quantifying the first-order natural frequencies in softer samples (e.g., 1.0%-4.0% agar: 239-782 Hz, 198 Hz/%; porcine cornea: 68-414 Hz, 18 Hz/mmHg, IOP: 5-25 mmHg), but displayed limitations in measuring natural frequencies for stiffer samples (e.g., 4.5%-7.5% agar, porcine cornea: IOP ≥ 30 mmHg) or higher order natural frequency components. In contrast, the chirp excitation produced a much wider spectrum (e.g., 0-5000 Hz), enabling the quantification of both first-order natural frequencies (1.0%-7.5% agar: 253-1429 Hz, 181 Hz/%; porcine cornea: 76-1240 Hz, 32 Hz/mmHg, IOP: 5-40 mmHg) and higher order natural frequencies. A modified Bland-Altman analysis (mean versus relative difference in natural frequency) showed a bias of 20.4%, attributed to the additional mass and frequency introduced by the contact nature of the PZT probe. These findings, especially the advantages and limitations of both excitation methods, can be utilized to validate the potential application of natural frequency OCE, paving the way for the ongoing development of biomechanical characterization methods utilizing sub-micron tissue oscillation features.
Collapse
Affiliation(s)
- Chengjin Song
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Weichao He
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Pengfei Song
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Jinping Feng
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Yanping Huang
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jingjiang Xu
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Lin An
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jia Qin
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Kai Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong 510060, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Gongpu Lan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| |
Collapse
|
2
|
Song C, He W, Feng J, Twa MD, Huang Y, Xu J, Qin J, An L, Wei X, Lan G. Dual-channel air-pulse optical coherence elastography for frequency-response analysis. BIOMEDICAL OPTICS EXPRESS 2024; 15:3301-3316. [PMID: 38855682 PMCID: PMC11161337 DOI: 10.1364/boe.520551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 06/11/2024]
Abstract
Microliter air-pulse optical coherence elastography (OCE) has recently been proposed for the characterization of soft-tissue biomechanics using transient, sub-nanometer to micrometer-scale natural frequency oscillations. However, previous studies have not been able to provide real-time air-pulse monitoring during OCE natural frequency measurement, which could lead to inaccurate measurement results due to the unknown excitation spectrum. To address this issue, we introduce a dual-channel air-pulse OCE method, with one channel stimulating the sample and the other being simultaneously measured with a pressure sensor. This allows for more accurate natural frequency characterization using the frequency response function, as proven by a comprehensive comparison under different conditions with a diverse range of excitation spectra (from broad to narrow, clean to noisy) as well as a diverse set of sample response spectra. We also demonstrate the capability of the frequency-response analysis in distinguishing samples with different stiffness levels: the dominant natural frequencies increased with agar concentrations (181-359 Hz, concentrations: 1-2%, and maximum displacements: 0.12-0.47 µm) and intraocular pressures (IOPs) for the silicone cornea (333-412 Hz, IOP: 5-40 mmHg, and maximum displacements: 0.41-0.52 µm) under a 200 Pa stimulation pressure. These frequencies remained consistent across different air-pulse durations (3 ms to 35 ms). The dual-channel OCE approach that uses transient, low-pressure stimulation and high-resolution imaging holds the potential to advance our understanding of sample frequency responses, especially when investigating delicate tissues such as the human cornea in vivo.
Collapse
Affiliation(s)
- Chengjin Song
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Weichao He
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Jinping Feng
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Yanping Huang
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jingjiang Xu
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jia Qin
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Lin An
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Xunbin Wei
- Cancer Hospital and Institute, Key Laboratory of Carcinogenesis and Translational Research, Peking University, Beijing 100142, China
- Biomedical Engineering Department, Peking University, Beijing 100081, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
- International Cancer Institute, Peking University, Beijing 100191, China
| | - Gongpu Lan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| |
Collapse
|
3
|
Wisniowiecki AM, Applegate BE. Electronic frequency shifting enables long, variable working distance optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:6579-6591. [PMID: 38420318 PMCID: PMC10898551 DOI: 10.1364/boe.504034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 03/02/2024]
Abstract
Increased imaging range is of growing interest in many applications of optical coherence tomography to reduce constraints on sample location, size, and topography. The design of optical coherence tomography systems with sufficient imaging range (e.g., 10s of centimeters) is a significant challenge due to the direct link between imaging range and acquisition bandwidth. We have developed a novel and flexible method to extend the imaging range in optical coherence tomography using electronic frequency shifting, enabling imaging in dynamic environments. In our approach, a laser with a quasi-linear sweep is used to limit the interferometric bandwidth, enabling decoupling of imaging range and acquisition bandwidth, while a tunable lens allows dynamic refocusing in the sample arm. Electronic frequency shifting then removes the need for high frequency digitization. This strategy is demonstrated to achieve high contrast morphological imaging over a > 21 cm working distance range, while maintaining high resolution and phase sensitivity. The system design is flexible to the application while requiring only a simple phase correction in post-processing. By implementing this approach in an auto-focusing paradigm, the proposed method demonstrates strong potential for the translation of optical coherence tomography into emerging applications requiring variable and centimeter-scale imaging ranges.
Collapse
Affiliation(s)
- Anna M. Wisniowiecki
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, College Station, TX 77843, USA
- Caruso Department of Otolaryngology–Head & Neck Surgery, University of Southern California, 1450 San Pablo St, Los Angeles, CA 90033, USA
| | - Brian E. Applegate
- Caruso Department of Otolaryngology–Head & Neck Surgery, University of Southern California, 1450 San Pablo St, Los Angeles, CA 90033, USA
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA
| |
Collapse
|
4
|
Lan G, Twa MD, Song C, Feng J, Huang Y, Xu J, Qin J, An L, Wei X. In vivo corneal elastography: A topical review of challenges and opportunities. Comput Struct Biotechnol J 2023; 21:2664-2687. [PMID: 37181662 PMCID: PMC10173410 DOI: 10.1016/j.csbj.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Clinical measurement of corneal biomechanics can aid in the early diagnosis, progression tracking, and treatment evaluation of ocular diseases. Over the past two decades, interdisciplinary collaborations between investigators in optical engineering, analytical biomechanical modeling, and clinical research has expanded our knowledge of corneal biomechanics. These advances have led to innovations in testing methods (ex vivo, and recently, in vivo) across multiple spatial and strain scales. However, in vivo measurement of corneal biomechanics remains a long-standing challenge and is currently an active area of research. Here, we review the existing and emerging approaches for in vivo corneal biomechanics evaluation, which include corneal applanation methods, such as ocular response analyzer (ORA) and corneal visualization Scheimpflug technology (Corvis ST), Brillouin microscopy, and elastography methods, and the emerging field of optical coherence elastography (OCE). We describe the fundamental concepts, analytical methods, and current clinical status for each of these methods. Finally, we discuss open questions for the current state of in vivo biomechanics assessment techniques and requirements for wider use that will further broaden our understanding of corneal biomechanics for the detection and management of ocular diseases, and improve the safety and efficacy of future clinical practice.
Collapse
Affiliation(s)
- Gongpu Lan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX 77204, United States
| | - Chengjin Song
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - JinPing Feng
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Yanping Huang
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jingjiang Xu
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jia Qin
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Lin An
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Xunbin Wei
- Biomedical Engineering Department, Peking University, Beijing 100081, China
- International Cancer Institute, Peking University, Beijing 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
5
|
Leartprapun N, Adie SG. Recent advances in optical elastography and emerging opportunities in the basic sciences and translational medicine [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:208-248. [PMID: 36698669 PMCID: PMC9842001 DOI: 10.1364/boe.468932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 05/28/2023]
Abstract
Optical elastography offers a rich body of imaging capabilities that can serve as a bridge between organ-level medical elastography and single-molecule biophysics. We review the methodologies and recent developments in optical coherence elastography, Brillouin microscopy, optical microrheology, and photoacoustic elastography. With an outlook toward maximizing the basic science and translational clinical impact of optical elastography technologies, we discuss potential ways that these techniques can integrate not only with each other, but also with supporting technologies and capabilities in other biomedical fields. By embracing cross-modality and cross-disciplinary interactions with these parallel fields, optical elastography can greatly increase its potential to drive new discoveries in the biomedical sciences as well as the development of novel biomechanics-based clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
- Present affiliation: Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
6
|
Singh A, Pati F, John R. Quantifying viscosity and elasticity using holographic imaging by Rayleigh wave dispersion. OPTICS LETTERS 2022; 47:2214-2217. [PMID: 35486763 DOI: 10.1364/ol.451464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Viscoelasticity is an important diagnostic parameter to investigate physiological dysfunctions in biological tissues. This Letter reports the quantification of viscoelastic parameters by Rayleigh wave tracing on the surface of tissue-mimicking phantoms using holographic imaging. The Rayleigh wave is induced by an electromechanical actuator on the surface of oil-in-gelatin phantoms and a biological tissue sample followed by holographic imaging and reconstruction of the wave. The frequency-dependent velocity dispersion is fitted to a Voigt model for the quantification of viscous and elastic moduli. The viscoelastic parameters calculated by the proposed method are validated by comparing the results from a conventional mechanical rheometer.
Collapse
|
7
|
Lan G, Shi Q, Wang Y, Ma G, Cai J, Feng J, Huang Y, Gu B, An L, Xu J, Qin J, Twa MD. Spatial Assessment of Heterogeneous Tissue Natural Frequency Using Micro-Force Optical Coherence Elastography. Front Bioeng Biotechnol 2022; 10:851094. [PMID: 35360399 PMCID: PMC8962667 DOI: 10.3389/fbioe.2022.851094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
Analysis of corneal tissue natural frequency was recently proposed as a biomarker for corneal biomechanics and has been performed using high-resolution optical coherence tomography (OCT)-based elastography (OCE). However, it remains unknown whether natural frequency analysis can resolve local variations in tissue structure. We measured heterogeneous samples to evaluate the correspondence between natural frequency distributions and regional structural variations. Sub-micrometer sample oscillations were induced point-wise by microliter air pulses (60–85 Pa, 3 ms) and detected correspondingly at each point using a 1,300 nm spectral domain common path OCT system with 0.44 nm phase detection sensitivity. The resulting oscillation frequency features were analyzed via fast Fourier transform and natural frequency was characterized using a single degree of freedom (SDOF) model. Oscillation features at each measurement point showed a complex frequency response with multiple frequency components that corresponded with global structural features; while the variation of frequency magnitude at each location reflected the local sample features. Silicone blocks (255.1 ± 11.0 Hz and 249.0 ± 4.6 Hz) embedded in an agar base (355.6 ± 0.8 Hz and 361.3 ± 5.5 Hz) were clearly distinguishable by natural frequency. In a beef shank sample, central fat and connective tissues had lower natural frequencies (91.7 ± 58.2 Hz) than muscle tissue (left side: 252.6 ± 52.3 Hz; right side: 161.5 ± 35.8 Hz). As a first step, we have shown the possibility of natural frequency OCE methods to characterize global and local features of heterogeneous samples. This method can provide additional information on corneal properties, complementary to current clinical biomechanical assessments, and could become a useful tool for clinical detection of ocular disease and evaluation of medical or surgical treatment outcomes.
Collapse
Affiliation(s)
- Gongpu Lan
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, China
- *Correspondence: Gongpu Lan, ; Michael D. Twa,
| | - Qun Shi
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Yicheng Wang
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Guoqin Ma
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Jing Cai
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, China
| | - Jinping Feng
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, China
| | - Yanping Huang
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, China
| | - Boyu Gu
- School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin, China
| | - Lin An
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
| | - Jingjiang Xu
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, China
| | - Jia Qin
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX, United States
- *Correspondence: Gongpu Lan, ; Michael D. Twa,
| |
Collapse
|
8
|
Han X, Zhang Y, Zhu Y, Zhao Y, Yang H, Liu G, Ai S, Wang Y, Xie C, Shi J, Zhang T, Huang G, He X. Quantification of biomechanical properties of human corneal scar using acoustic radiation force optical coherence elastography. Exp Biol Med (Maywood) 2021; 247:462-469. [PMID: 34861122 PMCID: PMC8943333 DOI: 10.1177/15353702211061881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biomechanical properties of corneal scar are strongly correlated with many corneal diseases and some types of corneal surgery, however, there is no elasticity information available about corneal scar to date. Here, we proposed an acoustic radiation force optical coherence elastography system to evaluate corneal scar elasticity. Elasticity quantification was first conducted on ex vivo rabbit corneas, and the results validate the efficacy of our system. Then, experiments were performed on an ex vivo human scarred cornea, where the structural features, the elastic wave propagations, and the corresponding Young's modulus of both the scarred region and the normal region were achieved and based on this, 2D spatial distribution of Young's modulus of the scarred cornea was depicted. Up to our knowledge, we realized the first elasticity quantification of corneal scar, which may provide a potent tool to promote clinical research on the disorders and surgery of the cornea.
Collapse
Affiliation(s)
- Xiao Han
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Yubao Zhang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Yirui Zhu
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Yanzhi Zhao
- The Third Affiliated Hospital of Nanchang University, Nanchang 330008, P. R. China
| | - Hongwei Yang
- The Third Affiliated Hospital of Nanchang University, Nanchang 330008, P. R. China
| | - Guo Liu
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Sizhu Ai
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Yidi Wang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Chengfeng Xie
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Jiulin Shi
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Tianyu Zhang
- Key Laboratory of Geophysical Exploration Equipment, Ministry of Education, College of Instrumentation & Electrical Engineering, 12510Jilin University, Changchun 130012, P. R. China
| | - Guofu Huang
- The Third Affiliated Hospital of Nanchang University, Nanchang 330008, P. R. China
| | - Xingdao He
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China
| |
Collapse
|
9
|
Lan G, Aglyamov S, Larin KV, Twa MD. In vivo human corneal natural frequency quantification using dynamic optical coherence elastography: Repeatability and reproducibility. J Biomech 2021; 121:110427. [PMID: 33873114 DOI: 10.1016/j.jbiomech.2021.110427] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Reliable and quantitative assessment of corneal biomechanics is important for the detection and treatment of corneal disease. The present study evaluates the repeatability and reproducibility of a novel optical coherence tomography (OCT)-based elastography (OCE) method for in vivo quantification of corneal natural frequency in 20 normal human eyes. Sub-micron corneal oscillations were induced by repeated low-force (13 Pa) microliter air pulses at the corneal apex and were observed by common-path phase-sensitive OCT imaging adjacent to a measurement region of 1-6.25 mm2. Corneal natural frequencies were quantified using a single degree of freedom model based on the corneal oscillations. Corneal natural frequencies ranged from 234 to 277 Hz (coefficient of variation: 3.2%; n = 286 for a 2.5 × 2.5 mm2 area; time: 28.6 s). The same natural frequencies can be acquired using a smaller sampling size (n = 9 for 1 mm2) and a shorter time (0.9 s). Spatial distribution and local changes in natural frequencies can be distinguished using denser sampling (e.g., 26 × 41 points for 2.5 × 5 mm2). This novel optical method demonstrates highly repeatable and reliable in vivo measurements of human corneal natural frequencies. While further studies are required to fully characterize anatomical and structural dependencies, this method may be complementary to the current OCE methods used to estimate Young's modulus from strain- or shear-wave-based measurements for the quantitative determination of corneal biomechanics.
Collapse
Affiliation(s)
- Gongpu Lan
- Foshan University, School of Physics and Optoelectronic Engineering, Foshan, Guangdong 528000, China
| | - Salavat Aglyamov
- University of Houston, Mechanical Engineering, Houston, TX 77204, United States
| | - Kirill V Larin
- University of Houston, Biomedical Engineering, Houston, TX 77204, United States
| | - Michael D Twa
- University of Houston, College of Optometry, Houston, TX 77204, United States.
| |
Collapse
|
10
|
Huang PC, Chaney EJ, Aksamitiene E, Barkalifa R, Spillman DR, Bogan BJ, Boppart SA. Biomechanical sensing of in vivo magnetic nanoparticle hyperthermia-treated melanoma using magnetomotive optical coherence elastography. Theranostics 2021; 11:5620-5633. [PMID: 33897871 PMCID: PMC8058715 DOI: 10.7150/thno.55333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Rationale: Magnetic nanoparticle hyperthermia (MH) therapy is capable of thermally damaging tumor cells, yet a biomechanically-sensitive monitoring method for the applied thermal dosage has not been established. Biomechanical changes to tissue are known indicators for tumor diagnosis due to its association with the structural organization and composition of tissues at the cellular and molecular level. Here, by exploiting the theranostic functionality of magnetic nanoparticles (MNPs), we aim to explore the potential of using stiffness-based metrics that reveal the intrinsic biophysical changes of in vivo melanoma tumors after MH therapy. Methods: A total of 14 melanoma-bearing mice were intratumorally injected with dextran-coated MNPs, enabling MH treatment upon the application of an alternating magnetic field (AMF) at 64.7 kHz. The presence of the MNP heating sources was detected by magnetomotive optical coherence tomography (MM-OCT). For the first time, the elasticity alterations of the hyperthermia-treated, MNP-laden, in vivo tumors were also measured with magnetomotive optical coherence elastography (MM-OCE), based on the mechanical resonant frequency detected. To investigate the correlation between stiffness changes and the intrinsic biological changes, histopathology was performed on the excised tumor after the in vivo measurements. Results: Distinct shifts in mechanical resonant frequency were observed only in the MH-treated group, suggesting a heat-induced stiffness change in the melanoma tumor. Moreover, tumor cellularity, protein conformation, and temperature rise all play a role in tumor stiffness changes after MH treatment. With low cellularity, tumor softens after MH even with low temperature elevation. In contrast, with high cellularity, tumor softening occurs only with a low temperature rise, which is potentially due to protein unfolding, whereas tumor stiffening was seen with a higher temperature rise, likely due to protein denaturation. Conclusions: This study exploits the theranostic functionality of MNPs and investigates the MH-induced stiffness change on in vivo melanoma-bearing mice with MM-OCT and MM-OCE for the first time. It was discovered that the elasticity alteration of the melanoma tumor after MH treatment depends on both thermal dosage and the morphological features of the tumor. In summary, changes in tissue-level elasticity can potentially be a physically and physiologically meaningful metric and integrative therapeutic marker for MH treatment, while MM-OCE can be a suitable dosimetry technique.
Collapse
Affiliation(s)
- Pin-Chieh Huang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, USA
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
| | - Edita Aksamitiene
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
| | - Ronit Barkalifa
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
| | - Darold R. Spillman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
| | - Bethany J. Bogan
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
11
|
Huang PC, Iyer RR, Liu YZ, Boppart SA. Single-shot two-dimensional spectroscopic magnetomotive optical coherence elastography with graphics processing unit acceleration. OPTICS LETTERS 2020; 45:4124-4127. [PMID: 32735239 PMCID: PMC7539266 DOI: 10.1364/ol.397900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/23/2020] [Indexed: 05/03/2023]
Abstract
Biomechanical contrast within tissues can be assessed based on the resonant frequency probed by spectroscopic magnetomotive optical coherence elastography (MM-OCE). However, to date, in vivo MM-OCE imaging has not been achieved, mainly due to the constraints on imaging speed. Previously, spatially-resolved spectroscopic contrast was achieved in a "multiple-excitation, multiple-acquisition" manner, where seconds of coil cooling time set between consecutive imaging frames lead to total acquisition times of tens of minutes. Here, we demonstrate an improved data acquisition speed by providing a single chirped force excitation prior to magnetomotion imaging with a BM-scan configuration. In addition, elastogram reconstruction was accelerated by exploiting the parallel computing capability of a graphics processing unit (GPU). The accelerated MM-OCE platform achieved data acquisition in 2.9 s and post-processing in 0.6 s for a 2048-frame BM-mode stack. In addition, the elasticity sensing functionality was validated on tissue-mimicking phantoms with high spatial resolution. For the first time, to the best of our knowledge, MM-OCE images were acquired from the skin of a living mouse, demonstrating its feasibility for in vivo imaging.
Collapse
Affiliation(s)
- Pin-Chieh Huang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Rishyashring R. Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yuan-Zhi Liu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
12
|
Zhang D, Li C, Huang Z. Relaxation time constant based optical coherence elastography. JOURNAL OF BIOPHOTONICS 2020; 13:e201960233. [PMID: 32166913 DOI: 10.1002/jbio.201960233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/19/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
This study aimed at visualizing relative relaxation time constant (RTC) in soft tissue by using optical coherence elastography (OCE). We proposed a forced vibration model as a theoretical base to express RTC using axial gradient of periodic vibration phase captured by phase sensitive optical coherence tomography (PhS-OCT). Validation of the model had been accomplished by experiments with isotropic and double-layered phantoms. A fresh chicken breast sample treated with focused ultrasound was prepared to test performance of the RTC-OCE in real tissue. All results were cross-validated with indentation test and traditional strain-based elastography. This study first utilized RTC mapping in 2D and 3D that covers the information of both elasticity and viscosity. The generated RTC mapping revealed the same mechanical difference internal sample which is correlated with conventional strain mapping. RTC mapping is potentially to be served as new biomarker for disease diagnosis in the future.
Collapse
Affiliation(s)
- Duo Zhang
- School of Science and Engineering, University of Dundee, Dundee, Scotland, UK
| | - Chunhui Li
- School of Science and Engineering, University of Dundee, Dundee, Scotland, UK
| | - Zhihong Huang
- School of Science and Engineering, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
13
|
Lan G, Larin KV, Aglyamov S, Twa MD. Characterization of natural frequencies from nanoscale tissue oscillations using dynamic optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2020; 11:3301-3318. [PMID: 32637256 PMCID: PMC7316029 DOI: 10.1364/boe.391324] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 05/09/2023]
Abstract
We demonstrate the use of OCT-based elastography for soft-tissue characterization using natural frequency oscillations. Sub-micrometer to sub-nanometer oscillations were induced in tissue phantoms and human cornea in vivo by perpendicular air-pulse stimulation and observed by common-path OCT imaging (sensitivity: 0.24 nm). Natural frequency and damping ratio were acquired in temporal and frequency domains using a single degree of freedom method. The dominant natural frequency was constant for different stimulation pressures (4-32 Pa) and measured distances (0.3-5.3 mm), and decreased as the sample thickness increased. The dominant natural frequencies of 0.75-2% agar phantoms were 127-774 Hz (mean coefficient of variation [CV]: 0.9%), and correlated with the square root of Young's moduli (16.5-117.8 kPa, mean CV: 5.8%). These preliminary studies show repeatable in vivo corneal natural frequency measurements (259 Hz, CV: 1.9%). This novel OCE approach can distinguish tissues and materials with different mechanical properties using the small-amplitude tissue oscillation features, and is suitable for characterizing delicate tissues in vivo such as the eye.
Collapse
Affiliation(s)
- Gongpu Lan
- Foshan University, School of Physics and Optoelectronic Engineering, Foshan, Guangdong, 528000, China
- University of Alabama at Birmingham, School of Optometry, Birmingham, AL 35290, USA
- University of Houston, College of Optometry, Houston, TX 77204, USA
| | - Kirill V. Larin
- University of Houston, Biomedical Engineering, Houston, TX 77204, USA
| | - Salavat Aglyamov
- University of Houston, Mechanical Engineering, Houston, TX 77204, USA
| | - Michael D. Twa
- University of Alabama at Birmingham, School of Optometry, Birmingham, AL 35290, USA
- University of Houston, College of Optometry, Houston, TX 77204, USA
| |
Collapse
|
14
|
Leartprapun N, Iyer RR, Mackey CD, Adie SG. Spatial localization of mechanical excitation affects spatial resolution, contrast, and contrast-to-noise ratio in acoustic radiation force optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2019; 10:5877-5904. [PMID: 31799053 PMCID: PMC6865116 DOI: 10.1364/boe.10.005877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/30/2019] [Accepted: 10/06/2019] [Indexed: 05/05/2023]
Abstract
The notion that a spatially confined mechanical excitation would produce an elastogram with high spatial resolution has motivated the development of various elastography techniques with localized mechanical excitation. However, a quantitative investigation of the effects of spatial localization of mechanical excitation on the spatial resolution of elastograms is still lacking in optical coherence elastography (OCE). Here, we experimentally investigated the effect of spatial localization of acoustic radiation force (ARF) excitation on spatial resolution, contrast, and contrast-to-noise ratio (CNR) of dynamic uniaxial strain elastograms in dynamic ARF-OCE, based on a framework for analyzing the factors that influence the quality of the elastogram at different stages of the elastography workflow. Our results show that localized ARF excitation with a smaller acoustic focal spot size produced a strain elastogram with superior spatial resolution, contrast, and CNR. Our results also suggest that the spatial extent spanned by the displacement response in the sample may connect between the spatial localization of the mechanical excitation and the resulting elastogram quality. The elastography framework and experimental approach presented here may provide a basis for the quantitative analysis of elastogram quality in OCE that can be adapted and applied to different OCE systems and applications.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Cornell University, Meinig School of Biomedical Engineering, Weill Hall, Ithaca, New York 14853, USA
| | - Rishyashring R. Iyer
- Cornell University, Meinig School of Biomedical Engineering, Weill Hall, Ithaca, New York 14853, USA
- Present address: University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, USA
| | - Colin D. Mackey
- Cornell University, Meinig School of Biomedical Engineering, Weill Hall, Ithaca, New York 14853, USA
| | - Steven G. Adie
- Cornell University, Meinig School of Biomedical Engineering, Weill Hall, Ithaca, New York 14853, USA
| |
Collapse
|
15
|
B A, Rao S, Pandya HJ. Engineering approaches for characterizing soft tissue mechanical properties: A review. Clin Biomech (Bristol, Avon) 2019; 69:127-140. [PMID: 31344655 DOI: 10.1016/j.clinbiomech.2019.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/14/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
From cancer diagnosis to detailed characterization of arterial wall biomechanics, the elastic property of tissues is widely studied as an early sign of disease onset. The fibrous structural features of tissues are a direct measure of its health and functionality. Alterations in the structural features of tissues are often manifested as local stiffening and are early signs for diagnosing a disease. These elastic properties are measured ex vivo in conventional mechanical testing regimes, however, the heterogeneous microstructure of tissues can be accurately resolved over relatively smaller length scales with enhanced spatial resolution using techniques such as micro-indentation, microelectromechanical (MEMS) based cantilever sensors and optical catheters which also facilitate in vivo assessment of mechanical properties. In this review, we describe several probing strategies (qualitative and quantitative) based on the spatial scale of mechanical assessment and also discuss the potential use of machine learning techniques to compute the mechanical properties of soft tissues. This work details state of the art advancement in probing strategies, associated challenges toward quantitative characterization of tissue biomechanics both from an engineering and clinical standpoint.
Collapse
Affiliation(s)
- Alekya B
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 12, India
| | - Sanjay Rao
- Department of Pediatric Surgery, Mazumdar Shaw Multispecialty Hospital, Narayana Health, Bangalore 99, India
| | - Hardik J Pandya
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 12, India.
| |
Collapse
|
16
|
Lin Y, Leartprapun N, Adie SG. Spectroscopic photonic force optical coherence elastography. OPTICS LETTERS 2019; 44:4897-4900. [PMID: 31568470 PMCID: PMC6980340 DOI: 10.1364/ol.44.004897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/17/2019] [Indexed: 06/01/2023]
Abstract
We demonstrate spectroscopic photonic force optical coherence elastography (PF-OCE). Oscillations of microparticles embedded in viscoelastic hydrogels were induced by harmonically modulated optical radiation pressure and measured by phase-sensitive spectral-domain optical coherence tomography. PF-OCE can detect microparticle displacements with pico- to nano-meter sensitivity and millimeter-scale volumetric coverage. With spectroscopic PF-OCE, we quantified viscoelasticity over a broad frequency range from 1 Hz to 7 kHz, revealing rich microstructural dynamics of polymer networks across multiple microrheological regimes. Reconstructed frequency-dependent loss moduli of polyacrylamide hydrogels were observed to follow a general power scaling law G''∼ω0.75, consistent with that of semiflexible polymer networks. Spectroscopic PF-OCE provides an all-optical approach to microrheological studies with high sensitivity and high spatiotemporal resolution, and could be especially beneficial for time-lapse and volumetric mechanical characterization of viscoelastic materials.
Collapse
Affiliation(s)
- Yuechuan Lin
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
17
|
Boys AJ, Kunitake JA, Henak CR, Cohen I, Estroff LA, Bonassar LJ. Understanding the Stiff-to-Compliant Transition of the Meniscal Attachments by Spatial Correlation of Composition, Structure, and Mechanics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26559-26570. [PMID: 31267742 PMCID: PMC6680087 DOI: 10.1021/acsami.9b03595] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Recently, the scientific community has shown considerable interest in engineering tissues with organized compositional and structural gradients to mimic hard-to-soft tissue interfaces. This effort is hindered by an incomplete understanding of the construction of native tissue interfaces. In this work, we combined Raman microscopy and confocal elastography to map compositional, structural, and mechanical features across the stiff-to-compliant interface of the attachments of the meniscus in the knee. This study provides new insight into the methods by which biology mediates multiple orders of magnitude changes in stiffness over tens of microns. We identified how the nano- to mesoscale architecture mediates complex microscale transitional regions across the interface: two regions defined by chemical composition, five distinguished by structural features, and three mechanically distinct regions. We identified three major components that lead to a robust interface between a soft tissue and bone: mobile collagen fiber units, a continuous interfacial region, and a local stiffness gradient. This tissue architecture allows for large displacements of collagen fibers in the attachments, enabling meniscal movement without localizing strains to the soft tissue-to-bone interface. The interplay of these regions reveals a method relying on hierarchical structuring across multiple length scales to minimize stress concentrators between highly dissimilar materials. These insights inspire new design strategies for synthetic soft tissue-to-bone attachments and biomimetic material interfaces.
Collapse
Affiliation(s)
- Alexander J. Boys
- Department of Materials Science & Engineering, Cornell University, Ithaca, NY 14853
| | | | - Corinne R. Henak
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY 14853
| | - Lara A. Estroff
- Department of Materials Science & Engineering, Cornell University, Ithaca, NY 14853
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853
| | - Lawrence J. Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY 14853
- Corresponding Author:
| |
Collapse
|
18
|
Pelivanov I, Gao L, Pitre J, Kirby MA, Song S, Li D, Shen TT, Wang RK, O’Donnell M. Does group velocity always reflect elastic modulus in shear wave elastography? JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31342691 PMCID: PMC6650747 DOI: 10.1117/1.jbo.24.7.076003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/08/2019] [Indexed: 05/04/2023]
Abstract
Dynamic elastography is an attractive method to evaluate tissue biomechanical properties. Recently, it was extended from US- and MR-based modalities to optical ones, such as optical coherence tomography for three-dimensional (3-D) imaging of propagating mechanical waves in subsurface regions of soft tissues, such as the eye. The measured group velocity is often used to convert wave speed maps into 3-D images of the elastic modulus distribution based on the assumption of bulk shear waves. However, the specific geometry of OCE measurements in bounded materials such as the cornea and skin calls into question elasticity reconstruction assuming a simple relationship between group velocity and shear modulus. We show that in layered media the bulk shear wave assumption results in highly underestimated shear modulus reconstructions and significant structural artifacts in modulus images. We urge the OCE community to be careful in using the group velocity to evaluate tissue elasticity and to focus on developing robust reconstruction methods to accurately reconstruct images of the shear elastic modulus in bounded media.
Collapse
Affiliation(s)
- Ivan Pelivanov
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- Address all correspondence to Ivan Pelivanov, E-mail:
| | - Liang Gao
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - John Pitre
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Mitchell A. Kirby
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Shaozhen Song
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - David Li
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Washington, Department of Chemical Engineering, Seattle, Washington, United States
| | - Tueng T. Shen
- University of Washington, Department of Ophthalmology, Seattle, Washington, United States
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Matthew O’Donnell
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| |
Collapse
|
19
|
Huang PC, Chaney EJ, Iyer RR, Spillman DR, Odintsov B, Sobh NA, Boppart SA. Interstitial magnetic thermotherapy dosimetry based on shear wave magnetomotive optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2019; 10:539-551. [PMID: 30800498 PMCID: PMC6377902 DOI: 10.1364/boe.10.000539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 05/08/2023]
Abstract
While magnetic thermoseeds are often utilized in interstitial magnetic thermotherapy (iMT) to enable localized tumor ablation, we propose to extend their use as the perturbative source in magnetomotive optical coherence elastography (MM-OCE) so that the heat-induced elasticity alterations can be 'theranostically' probed. MM-OCE measurements were found to agree with indentation results. Tissue stiffening was visualized on iMT-treated porcine liver and canine soft tissue sarcoma specimens, where histology confirmed thermal damages. Additionally, the elasticity was found to increase exponentially and linearly with the conventional thermal dosage metrics and the deposited thermal energy, respectively. Collectively, a physiologically-meaningful, MM-OCE-based iMT dosimetry is feasible.
Collapse
Affiliation(s)
- Pin-Chieh Huang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W Green St, Urbana, IL 61801, USA
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA
| | - Rishyashring R. Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N Wright St, Urbana, IL 61801, USA
| | - Darold R. Spillman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA
| | - Boris Odintsov
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA
| | - Nahil A. Sobh
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W Green St, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N Wright St, Urbana, IL 61801, USA
- Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, 807 S Wright St, Champaign, Illinois 61820, USA
| |
Collapse
|
20
|
Leitgeb RA, Baumann B. Multimodal Optical Medical Imaging Concepts Based on Optical Coherence Tomography. FRONTIERS IN PHYSICS 2018; 6. [PMID: 0 DOI: 10.3389/fphy.2018.00114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
21
|
Shih CC, Qian X, Ma T, Han Z, Huang CC, Zhou Q, Shung KK. Quantitative Assessment of Thin-Layer Tissue Viscoelastic Properties Using Ultrasonic Micro-Elastography With Lamb Wave Model. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1887-1898. [PMID: 29993652 DOI: 10.1109/tmi.2018.2820157] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Characterizing the viscoelastic properties of thin-layer tissues with micro-level thickness has long remained challenging. Recently, several micro-elastography techniques have been developed to improve the spatial resolution. However, most of these techniques have not considered the medium boundary conditions when evaluating the viscoelastic properties of thin-layer tissues such as arteries and corneas; this might lead to estimation bias or errors. This paper aims to integrate the Lamb wave model with our previously developed ultrasonic micro-elastography imaging system for obtaining accurate viscoelastic properties in thin-layer tissues. A 4.5-MHz ring transducer was used to generate an acoustic radiation force for inducing tissue displacements to produce guided wave, and the wave propagation was detected using a confocally aligned 40-MHz needle transducer. The phase velocity and attenuation were obtained from k-space by both the impulse and the harmonic methods. The measured phase velocity was fit using the Lamb wave model with the Kelvin-Voigt model. Phantom experiments were conducted using 7% and 12% gelatin and 1.5% agar phantoms with different thicknesses (2, 3, and 4 mm). Biological experiments were performed on porcine cornea and rabbit carotid artery ex vivo. Thin-layer phantoms with different thicknesses were confirmed to have the same elasticity; this was consistent with the estimates of bulk phantoms from mechanical tests and the shear wave rheological model. The trend of the measured attenuations was also confirmed with the viscosity results obtained using the Lamb wave model. Through the impulse and harmonic methods, the shear viscoelasticity values were estimated to be 8.2 kPa for $0.9~\text {Pa}{\cdot} \text {s}$ and 9.6 kPa for $0.8~\text {Pa}{\cdot} \text {s}$ in the cornea and 27.9 kPa for $0.1~\text {Pa}\cdot \text {s}$ and 26.5 kPa for $0.1~\text {Pa}\cdot \text {s}$ in the artery.
Collapse
|
22
|
Liu X, Zaki FR, Wu H, Wang C, Wang Y. Temporally and spatially adaptive Doppler analysis for robust handheld optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2018; 9:3335-3353. [PMID: 29984101 PMCID: PMC6033568 DOI: 10.1364/boe.9.003335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 05/21/2023]
Abstract
Optical coherence elastography (OCE), a functional extension of optical coherence tomography (OCT), can be used to characterize the mechanical properties of biological tissue. A handheld fiber-optic OCE instrument will allow the clinician to conveniently interrogate the localized mechanical properties of in vivo tissue, leading to better informed clinical decision making. During handheld OCE characterization, the handheld probe is used to compress the sample and the displacement of the sample is quantified by analyzing the OCT signals acquired. However, the motion within the sample inevitably varies in time due to varying hand motion. Moreover, the motion speed depends on spatial location due to the sample deformation. Hence, there is a need for a robust motion tracking method for manual OCE measurement. In this study, we investigate a temporally and spatially adaptive Doppler analysis method. The method described here strategically chooses the time interval (δt) between signals involved in Doppler analysis to track the motion speed v(z,t) that varies temporally and spatially in a deformed sample volume under manual compression. Enabled by temporally and spatially adaptive Doppler analysis, we report the first demonstration of real-time manual OCE characterization of in vivo tissue to the best of our knowledge.
Collapse
|
23
|
Photonic force optical coherence elastography for three-dimensional mechanical microscopy. Nat Commun 2018; 9:2079. [PMID: 29802258 PMCID: PMC5970204 DOI: 10.1038/s41467-018-04357-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/10/2018] [Indexed: 11/08/2022] Open
Abstract
Optical tweezers are an invaluable tool for non-contact trapping and micro-manipulation, but their ability to facilitate high-throughput volumetric microrheology of biological samples for mechanobiology research is limited by the precise alignment associated with the excitation and detection of individual bead oscillations. In contrast, radiation pressure from a low-numerical aperture optical beam can apply transversely localized force over an extended depth range. Here we present photonic force optical coherence elastography (PF-OCE), leveraging phase-sensitive interferometric detection to track sub-nanometer oscillations of beads, embedded in viscoelastic hydrogels, induced by modulated radiation pressure. Since the displacements caused by ultra-low radiation-pressure force are typically obscured by absorption-mediated thermal effects, mechanical responses of the beads were isolated after independent measurement and decoupling of the photothermal response of the hydrogels. Volumetric imaging of bead mechanical responses in hydrogels with different agarose concentrations by PF-OCE was consistent with bulk mechanical characterization of the hydrogels by shear rheometry.
Collapse
|
24
|
Wang S, Singh M, Tran TT, Leach J, Aglyamov SR, Larina IV, Martin JF, Larin KV. Biomechanical assessment of myocardial infarction using optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2018; 9:728-742. [PMID: 29552408 PMCID: PMC5854074 DOI: 10.1364/boe.9.000728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 05/18/2023]
Abstract
Myocardial infarction (MI) leads to cardiomyocyte loss, impaired cardiac function, and heart failure. Molecular genetic analyses of myocardium in mouse models of ischemic heart disease have provided great insight into the mechanisms of heart regeneration, which is promising for novel therapies after MI. Although biomechanical factors are considered an important aspect in cardiomyocyte proliferation, there are limited methods for mechanical assessment of the heart in the mouse MI model. This prevents further understanding the role of tissue biomechanics in cardiac regeneration. Here we report optical coherence elastography (OCE) of the mouse heart after MI. Surgical ligation of the left anterior descending coronary artery was performed to induce an infarction in the heart. Two OCE methods with assessment of the direction-dependent elastic wave propagation and the spatially resolved displacement damping provide complementary analyses of the left ventricle. In comparison with sham, the infarcted heart features a fibrotic scar region with reduced elastic wave velocity, decreased natural frequency, and less mechanical anisotropy at the tissue level at the sixth week post-MI, suggesting lower and more isotropic stiffness. Our results indicate that OCE can be utilized for nondestructive biomechanical characterization of MI in the mouse model, which could serve as a useful tool in the study of heart repair.
Collapse
Affiliation(s)
- Shang Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
- Equal contribution
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
- Equal contribution
| | - Thuy Tien Tran
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - John Leach
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - James F. Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
- The Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas 77030, USA
| | - Kirill V. Larin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia
| |
Collapse
|
25
|
Kirby MA, Pelivanov I, Song S, Ambrozinski Ł, Yoon SJ, Gao L, Li D, Shen TT, Wang RK, O’Donnell M. Optical coherence elastography in ophthalmology. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-28. [PMID: 29275544 PMCID: PMC5745712 DOI: 10.1117/1.jbo.22.12.121720] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/14/2017] [Indexed: 05/03/2023]
Abstract
Optical coherence elastography (OCE) can provide clinically valuable information based on local measurements of tissue stiffness. Improved light sources and scanning methods in optical coherence tomography (OCT) have led to rapid growth in systems for high-resolution, quantitative elastography using imaged displacements and strains within soft tissue to infer local mechanical properties. We describe in some detail the physical processes underlying tissue mechanical response based on static and dynamic displacement methods. Namely, the assumptions commonly used to interpret displacement and strain measurements in terms of tissue elasticity for static OCE and propagating wave modes in dynamic OCE are discussed with the ultimate focus on OCT system design for ophthalmic applications. Practical OCT motion-tracking methods used to map tissue elasticity are also presented to fully describe technical developments in OCE, particularly noting those focused on the anterior segment of the eye. Clinical issues and future directions are discussed in the hope that OCE techniques will rapidly move forward to translational studies and clinical applications.
Collapse
Affiliation(s)
- Mitchell A. Kirby
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Ivan Pelivanov
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Shaozhen Song
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Łukasz Ambrozinski
- Akademia Górniczo-Hutnicza University of Science and Technology, Krakow, Poland
| | - Soon Joon Yoon
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Liang Gao
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - David Li
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Washington, Department of Chemical Engineering, Seattle, Washington, United States
| | - Tueng T. Shen
- University of Washington, Department of Ophthalmology, Seattle, Washington, United States
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Washington, Department of Ophthalmology, Seattle, Washington, United States
| | - Matthew O’Donnell
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- Address all correspondence to: Matthew O’Donnell, E-mail:
| |
Collapse
|
26
|
Liu CH, Schill A, Raghunathan R, Wu C, Singh M, Han Z, Nair A, Larin KV. Ultra-fast line-field low coherence holographic elastography using spatial phase shifting. BIOMEDICAL OPTICS EXPRESS 2017; 8:993-1004. [PMID: 28270998 PMCID: PMC5330560 DOI: 10.1364/boe.8.000993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 05/02/2023]
Abstract
Optical coherence elastography (OCE) is an emerging technique for quantifying tissue biomechanical properties. Generally, OCE relies on point-by-point scanning. However, long acquisition times make point-by-point scanning unfeasible for clinical use. Here we demonstrate a noncontact single shot line-field low coherence holography system utilizing an automatic Hilbert transform analysis based on a spatial phase shifting technique. Spatio-temporal maps of elastic wave propagation were acquired with only one air-pulse excitation and used to quantify wave velocity and sample mechanical properties at a line rate of 200 kHz. Results obtained on phantoms were correlated with data from mechanical testing. Finally, the stiffness of porcine cornea at different intraocular pressures was also quantified in situ.
Collapse
Affiliation(s)
- Chih-Hao Liu
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
| | - Alexander Schill
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
| | - Raksha Raghunathan
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
| | - Chen Wu
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
| | - Zhaolong Han
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
| | - Achuth Nair
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, Texas 77204, USA
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russia
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77584, USA
| |
Collapse
|
27
|
Larin KV, Sampson DD. Optical coherence elastography - OCT at work in tissue biomechanics [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:1172-1202. [PMID: 28271011 PMCID: PMC5330567 DOI: 10.1364/boe.8.001172] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 05/18/2023]
Abstract
Optical coherence elastography (OCE), as the use of OCT to perform elastography has come to be known, began in 1998, around ten years after the rest of the field of elastography - the use of imaging to deduce mechanical properties of tissues. After a slow start, the maturation of OCT technology in the early to mid 2000s has underpinned a recent acceleration in the field. With more than 20 papers published in 2015, and more than 25 in 2016, OCE is growing fast, but still small compared to the companion fields of cell mechanics research methods, and medical elastography. In this review, we describe the early developments in OCE, and the factors that led to the current acceleration. Much of our attention is on the key recent advances, with a strong emphasis on future prospects, which are exceptionally bright.
Collapse
Affiliation(s)
- Kirill V Larin
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd., Houston, Texas 77204-5060, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA;
| | - David D Sampson
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia;
| |
Collapse
|
28
|
Shah RG, Pierce MC, Silver FH. Morphomechanics of dermis-A method for non-destructive testing of collagenous tissues. Skin Res Technol 2016; 23:399-406. [DOI: 10.1111/srt.12349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 11/29/2022]
Affiliation(s)
- R. G. Shah
- Department of Biomedical Engineering; Rutgers; The State University of New Jersey; Piscataway NJ USA
| | - M. C. Pierce
- Department of Biomedical Engineering; Rutgers; The State University of New Jersey; Piscataway NJ USA
| | - F. H. Silver
- Department of Pathology and Laboratory Medicine; Robert Wood Johnson Medical School; Rutgers; The State University of New Jersey; Piscataway NJ USA
| |
Collapse
|
29
|
Shah R, Pierce MC, Silver FH. A method for nondestructive mechanical testing of tissues and implants. J Biomed Mater Res A 2016; 105:15-22. [PMID: 27507193 DOI: 10.1002/jbm.a.35859] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 11/10/2022]
Abstract
Numerous tests have been used to elucidate mechanical properties of tissues and implants including tensile, compressive, shear, hydrostatic compression, and three-point bending in one or more axial directions. The development of a nondestructive test that could be applied to tissues and materials in vivo would promote the analysis of tissue pathology as well as the design of implant materials. The purpose of this article is to present the results of preliminary studies demonstrating nondestructive in vitro testing of a tissue model, decellularized human dermis, and a model implant, silicone rubber, using a combination of optical coherence tomography (OCT), and vibrational analysis. The results presented suggest that nondestructive vibrational testing of tissues and materials can be used to determine the modulus of polymeric materials and the results are similar to those found using tensile stress-strain measurements. The advantage of this method is that the modulus can be obtained from vibrational methods without having to approximate the tangent to the stress-strain curve, which is difficult for nonlinear materials that have a rapidly changing slope. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 15-22, 2017.
Collapse
Affiliation(s)
- Ruchit Shah
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Mark C Pierce
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Frederick H Silver
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
30
|
Huang PC, Pande P, Ahmad A, Marjanovic M, Spillman DR, Odintsov B, Boppart SA. Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:6802816. [PMID: 28163565 PMCID: PMC5289667 DOI: 10.1109/jstqe.2015.2505147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Magnetic nanoparticles (MNPs) have been used in many diagnostic and therapeutic biomedical applications over the past few decades to enhance imaging contrast, steer drugs to targets, and treat tumors via hyperthermia. Optical coherence tomography (OCT) is an optical biomedical imaging modality that relies on the detection of backscattered light to generate high-resolution cross-sectional images of biological tissue. MNPs have been utilized as imaging contrast and perturbative mechanical agents in OCT in techniques called magnetomotive OCT (MM-OCT) and magnetomotive elastography (MM-OCE), respectively. MNPs have also been independently used for magnetic hyperthermia treatments, enabling therapeutic functions such as killing tumor cells. It is well known that the localized tissue heating during hyperthermia treatments result in a change in the biomechanical properties of the tissue. Therefore, we propose a novel dosimetric technique for hyperthermia treatment based on the viscoelasticity change detected by MM-OCE, further enabling the theranostic function of MNPs. In this paper, we first review the basic principles and applications of MM-OCT, MM-OCE, and magnetic hyperthermia, and present new preliminary results supporting the concept of MM-OCE-based hyperthermia dosimetry.
Collapse
Affiliation(s)
- Pin-Chieh Huang
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, and the Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ( )
| | - Paritosh Pande
- Biophotonics Imaging Laboratory and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ( )
| | - Adeel Ahmad
- Biophotonics Imaging Laboratory and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ( )
| | - Marina Marjanovic
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, and the Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ( )
| | - Darold R Spillman
- Biophotonics Imaging Laboratory and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ( )
| | - Boris Odintsov
- Biophotonics Imaging Laboratory and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ( )
| | - Stephen A Boppart
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, and the Departments of Electrical and Computer Engineering, Bioengineering, and Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA (phone: 217-333-8598; fax: 217-333-5833; )
| |
Collapse
|
31
|
Application of Elastography for the Noninvasive Assessment of Biomechanics in Engineered Biomaterials and Tissues. Ann Biomed Eng 2016; 44:705-24. [PMID: 26790865 DOI: 10.1007/s10439-015-1542-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/18/2015] [Indexed: 12/11/2022]
Abstract
The elastic properties of engineered biomaterials and tissues impact their post-implantation repair potential and structural integrity, and are critical to help regulate cell fate and gene expression. The measurement of properties (e.g., stiffness or shear modulus) can be attained using elastography, which exploits noninvasive imaging modalities to provide functional information of a material indicative of the regeneration state. In this review, we outline the current leading elastography methodologies available to characterize the properties of biomaterials and tissues suitable for repair and mechanobiology research. We describe methods utilizing magnetic resonance, ultrasound, and optical coherent elastography, highlighting their potential for longitudinal monitoring of implanted materials in vivo, in addition to spatiotemporal limits of each method for probing changes in cell-laden constructs. Micro-elastography methods now allow acquisitions at length scales approaching 5-100 μm in two and three dimensions. Many of the methods introduced in this review are therefore capable of longitudinal monitoring in biomaterials and tissues approaching the cellular scale. However, critical factors such as anisotropy, heterogeneity and viscoelasity-inherent in many soft tissues-are often not fully described and therefore require further advancements and future developments.
Collapse
|
32
|
Düwel D, Otte C, Schulz K, Saathoff T, Schlaefer A. Towards contactless optical coherence elastography with acoustic tissue excitation. CURRENT DIRECTIONS IN BIOMEDICAL ENGINEERING 2015. [DOI: 10.1515/cdbme-2015-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Elastography presents an interesting approach to complement image data with mechanical tissue properties. Typically, the tissue is excited by direct contact to a probe. We study contactless elastography based on optical coherence tomography (OCT) and dynamic acoustic tissue excitation with airborne sound. We illustrate the principle and an implementation using sound waves of 135 Hz to excite the tissue. The displacement is measured and results of several tests indicate the feasibility to obtain a qualitative measure of the mechanical tissue properties. The approach is interesting for optical palpation, e.g., to enhance navigation and tissue characterization in minimally invasive and robot-assisted surgery.
Collapse
Affiliation(s)
- Dino Düwel
- Institute of Medical Technology, Hamburg University of Technology
| | - Christoph Otte
- Institute of Medical Technology, Hamburg University of Technology
| | - Kevin Schulz
- Institute of Medical Technology, Hamburg University of Technology
| | - Thore Saathoff
- Institute of Medical Technology, Hamburg University of Technology
| | | |
Collapse
|
33
|
Akca BI, Chang EW, Kling S, Ramier A, Scarcelli G, Marcos S, Yun SH. Observation of sound-induced corneal vibrational modes by optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2015; 6:3313-9. [PMID: 26417503 PMCID: PMC4574659 DOI: 10.1364/boe.6.003313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 05/04/2023]
Abstract
The mechanical stability of the cornea is critical for maintaining its normal shape and refractive function. Here, we report an observation of the mechanical resonance modes of the cornea excited by sound waves and detected by using phase-sensitive optical coherence tomography. The cornea in bovine eye globes exhibited three resonance modes in a frequency range of 50-400 Hz. The vibration amplitude of the fundamental mode at 80-120 Hz was ~8 µm at a sound pressure level of 100 dB (2 Pa). Vibrography allows the visualization of the radially symmetric profiles of the resonance modes. A dynamic finite-element analysis supports our observation.
Collapse
Affiliation(s)
- B. Imran Akca
- Wellman Center for Photomedicine and Harvard Medical School, Massachusetts General Hospital, 40 Blossom St., Boston, MA, 02140, USA
| | - Ernest W. Chang
- Wellman Center for Photomedicine and Harvard Medical School, Massachusetts General Hospital, 40 Blossom St., Boston, MA, 02140, USA
| | - Sabine Kling
- Instituto de Óptica, Consejo Superior de Investigaciónes Cientificas, Madrid, Spain
| | - Antoine Ramier
- Wellman Center for Photomedicine and Harvard Medical School, Massachusetts General Hospital, 40 Blossom St., Boston, MA, 02140, USA
- The Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Giuliano Scarcelli
- Wellman Center for Photomedicine and Harvard Medical School, Massachusetts General Hospital, 40 Blossom St., Boston, MA, 02140, USA
- Department of Bioengineering, 2217 Jeong H. Kim Engineering Building, University of Maryland, College Park, MD, 20742, USA
| | - Susana Marcos
- Instituto de Óptica, Consejo Superior de Investigaciónes Cientificas, Madrid, Spain
| | - Seok H. Yun
- Wellman Center for Photomedicine and Harvard Medical School, Massachusetts General Hospital, 40 Blossom St., Boston, MA, 02140, USA
| |
Collapse
|
34
|
Ahmad A, Huang PC, Sobh NA, Pande P, Kim J, Boppart SA. Mechanical contrast in spectroscopic magnetomotive optical coherence elastography. Phys Med Biol 2015; 60:6655-68. [PMID: 26271056 DOI: 10.1088/0031-9155/60/17/6655] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The viscoelastic properties of tissues are altered during pathogenesis of numerous diseases and can therefore be a useful indicator of disease status and progression. Several elastography studies have utilized the mechanical frequency response and the resonance frequencies of tissue samples to characterize their mechanical properties. However, using the resonance frequency as a source of mechanical contrast in heterogeneous samples is complicated because it not only depends on the viscoelastic properties but also on the geometry and boundary conditions. In an elastography technique called magnetomotive optical coherence elastography (MM-OCE), the controlled movement of magnetic nanoparticles (MNPs) within the sample is used to obtain the mechanical properties. Previous demonstrations of MM-OCE have typically used point measurements in elastically homogeneous samples assuming a uniform concentration of MNPs. In this study, we evaluate the feasibility of generating MM-OCE elastograms in heterogeneous samples based on a spectroscopic approach which involves measuring the magnetomotive response at different excitation frequencies. Biological tissues and tissue-mimicking phantoms with two elastically distinct regions placed in side-by-side and bilayer configurations were used for the experiments, and finite element method simulations were used to validate the experimental results.
Collapse
Affiliation(s)
- Adeel Ahmad
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana IL 61801, USA. Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 North Wright Street, Urbana IL 61801, USA
| | | | | | | | | | | |
Collapse
|
35
|
In vivo quantification of cochlin in glaucomatous DBA/2J mice using optical coherence tomography. Sci Rep 2015; 5:11092. [PMID: 26047051 PMCID: PMC4457137 DOI: 10.1038/srep11092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/28/2015] [Indexed: 11/24/2022] Open
Abstract
The expression of cochlin in the trabecular meshwork (TM) precedes the clinical
glaucoma symptoms in DBA/2J mice. The ability to quantify cochlin in the local
tissue (TM) offers potential diagnostic and prognostic values. We present two
(spectroscopic and magnetomotive) optical coherence tomography (OCT) approaches for
in vivo cochlin quantification in a periodic manner. The cochlin-antibody
OCT signal remains stable for up to 24 hours as seen at
3.5 hours after injection allowing for repeated quantification in the
living mouse eyes.
Collapse
|
36
|
Kim J, Brown W, Maher JR, Levinson H, Wax A. Functional optical coherence tomography: principles and progress. Phys Med Biol 2015; 60:R211-37. [PMID: 25951836 PMCID: PMC4448140 DOI: 10.1088/0031-9155/60/10/r211] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the past decade, several functional extensions of optical coherence tomography (OCT) have emerged, and this review highlights key advances in instrumentation, theoretical analysis, signal processing and clinical application of these extensions. We review five principal extensions: Doppler OCT (DOCT), polarization-sensitive OCT (PS-OCT), optical coherence elastography (OCE), spectroscopic OCT (SOCT), and molecular imaging OCT. The former three have been further developed with studies in both ex vivo and in vivo human tissues. This review emphasizes the newer techniques of SOCT and molecular imaging OCT, which show excellent potential for clinical application but have yet to be well reviewed in the literature. SOCT elucidates tissue characteristics, such as oxygenation and carcinogenesis, by detecting wavelength-dependent absorption and scattering of light in tissues. While SOCT measures endogenous biochemical distributions, molecular imaging OCT detects exogenous molecular contrast agents. These newer advances in functional OCT broaden the potential clinical application of OCT by providing novel ways to understand tissue activity that cannot be accomplished by other current imaging methodologies.
Collapse
Affiliation(s)
- Jina Kim
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
37
|
Wang S, Larin KV. Optical coherence elastography for tissue characterization: a review. JOURNAL OF BIOPHOTONICS 2015; 8:279-302. [PMID: 25412100 PMCID: PMC4410708 DOI: 10.1002/jbio.201400108] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/24/2014] [Accepted: 10/24/2014] [Indexed: 05/05/2023]
Abstract
Optical coherence elastography (OCE) represents the frontier of optical elasticity imaging techniques and focuses on the micro-scale assessment of tissue biomechanics in 3D that is hard to achieve with traditional elastographic methods. Benefit from the advancement of optical coherence tomography, and driven by the increasing requirements in nondestructive biomechanical characterization, this emerging technique recently has experienced a rapid development. In this paper, we start with the description of the mechanical contrast that has been employed by OCE and review the state-of-the-art techniques based on the reported applications and discuss the current technical challenges, emphasizing the unique role of OCE in tissue mechanical characterization. The position of OCE among other elastography techniques.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd., Houston, Texas, 77204-5060, USA; Department of Molecular Physiology and Biophysics, Baylor College of medicine, one Baylor Plaza, Houston, Texas, 77030, USA
| | | |
Collapse
|
38
|
Wang S, Larin KV. Optical coherence elastography for tissue characterization: a review. JOURNAL OF BIOPHOTONICS 2015. [PMID: 25412100 DOI: 10.1002/jbio.v8.4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Optical coherence elastography (OCE) represents the frontier of optical elasticity imaging techniques and focuses on the micro-scale assessment of tissue biomechanics in 3D that is hard to achieve with traditional elastographic methods. Benefit from the advancement of optical coherence tomography, and driven by the increasing requirements in nondestructive biomechanical characterization, this emerging technique recently has experienced a rapid development. In this paper, we start with the description of the mechanical contrast that has been employed by OCE and review the state-of-the-art techniques based on the reported applications and discuss the current technical challenges, emphasizing the unique role of OCE in tissue mechanical characterization. The position of OCE among other elastography techniques.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd., Houston, Texas, 77204-5060, USA; Department of Molecular Physiology and Biophysics, Baylor College of medicine, one Baylor Plaza, Houston, Texas, 77030, USA
| | | |
Collapse
|
39
|
Abstract
It is now clearly established that Thin-Capped Fibroatheromas (TCFAs) lead to most Acute Coronary Syndromes (ACSs). The ability to selectively intervene on TCFAs predisposed to rupture and ACSs would dramatically alter the practice of cardiology. While the ability of OCT to identify thin walled plaques at micron scale resolutions has represented a major advance, it is a misconception that it can reliably identify TCFAs. One major reason is that the 'diffuse border' criteria currently used to determine 'lipid plaque' is almost undoubtedly from high scattering in the intima and not because of core composition (necrotic core). A second reason is that, rather than looking at lipid collections, studies need to be focused on identifying necrotic cores with OCT. Necrotic cores are characteristic of TCFAs and not lipid collections. Numerous other OCT approaches are available which can potentially accurately assess TCFAs, but these have not been aggressively pursed which we believe likely stems in part from the misconceptions over the efficacy of 'diffuse borders'.
Collapse
Affiliation(s)
- Mark E Brezinski
- Center for Optics and Modern Physics, Brigham and Women's Hospital, Boston, M.A, USA.,Harvard Medical School, Boston, M.A, USA.,Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, M.A, USA
| | - Kishore J Harjai
- Richard and Marion Pearsall Heart Hospital, Geisinger Clinic, Wilkes-Barre, PA, USA
| |
Collapse
|
40
|
Ahmad A, Kim J, Shemonski ND, Marjanovic M, Boppart SA. Volumetric full-range magnetomotive optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:126001. [PMID: 25472770 PMCID: PMC4255196 DOI: 10.1117/1.jbo.19.12.126001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 10/16/2014] [Indexed: 05/20/2023]
Abstract
Magnetomotive optical coherence tomography (MM-OCT) can be utilized to spatially localize the presence of magnetic particles within tissues or organs. These magnetic particle-containing regions are detected by using the capability of OCT to measure small-scale displacements induced by the activation of an external electromagnet coil typically driven by a harmonic excitation signal. The constraints imposed by the scanning schemes employed and tissue viscoelastic properties limit the speed at which conventional MM-OCT data can be acquired. Realizing that electromagnet coils can be designed to exert MM force on relatively large tissue volumes (comparable or larger than typical OCT imaging fields of view), we show that an order-of-magnitude improvement in three-dimensional (3-D) MM-OCT imaging speed can be achieved by rapid acquisition of a volumetric scan during the activation of the coil. Furthermore, we show volumetric (3-D) MM-OCT imaging over a large imaging depth range by combining this volumetric scan scheme with full-range OCT. Results with tissue equivalent phantoms and a biological tissue are shown to demonstrate this technique.
Collapse
Affiliation(s)
- Adeel Ahmad
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois 61801, United States
| | - Jongsik Kim
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, United States
| | - Nathan D. Shemonski
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois 61801, United States
| | - Marina Marjanovic
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, United States
| | - Stephen A. Boppart
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois 61801, United States
- University of Illinois at Urbana–Champaign, Department of Bioengineering, Urbana, Illinois 61801, United States
- University of Illinois at Urbana–Champaign, Department of Internal Medicine, Urbana, Illinois 61801, United States
- Address all correspondence to: Stephen A. Boppart, E-mail:
| |
Collapse
|
41
|
Brezinski ME. Practical Challenges of Current Video Rate OCT Elastography: Accounting for Dynamic and Static Tissue Properties. JOURNAL OF LASERS, OPTICS & PHOTONICS 2014; 1:112. [PMID: 29286052 PMCID: PMC5743221 DOI: 10.4172/2469-410x.1000112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Optical coherence tomography (OCT) elastography (OCTE) has the potential to be an important diagnostic tool for pathologies including coronary artery disease, osteoarthritis, malignancies, and even dental caries. Many groups have performed OCTE, including our own, using a wide range of approaches. However, we will demonstrate current OCTE approaches are not scalable to real-time, in vivo imaging. As will be discussed, among the most important reasons is current designs focus on the system and not the target. Specifically, tissue dynamic responses are not accounted, with examples being the tissue strain response time, preload variability, and conditioning variability. Tissue dynamic responses, and to a lesser degree static tissue properties, prevent accurate video rate modulus assessments for current embodiments. Accounting for them is the focus of this paper. A top-down approach will be presented to overcome these challenges to real time in vivo tissue characterization. Discussed first is an example clinical scenario where OTCE would be of substantial relevance, the prevention of acute myocardial infarction or heart attacks. Then the principles behind OCTE are examined. Next, constrains on in vivo application of current OCTE are evaluated, focusing on dynamic tissue responses. An example is the tissue strain response, where it takes about 20 msec after a stress is applied to reach plateau. This response delay is not an issue at slow acquisition rates, as most current OCTE approaches are preformed, but it is for video rate OCTE. Since at video rate each frame is only 30 msec, for essentially all current approaches this means the strain for a given stress is changing constantly during the B-scan. Therefore the modulus can't be accurately assessed. This serious issue is an even greater problem for pulsed techniques as it means the strain/modulus for a given stress (at a location) is unpredictably changing over a B-scan. The paper concludes by introducing a novel video rate approach to overcome these challenges.
Collapse
Affiliation(s)
- Mark E Brezinski
- Center for Optics and Modern Physics, Brigham and Women’s Hospital, 75 Francis Street, Boston, M.A. 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, M.A. 02115, USA
- Department of Electrical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, M.A. 02139, USA
| |
Collapse
|
42
|
Wang S, Larin KV. Noncontact depth-resolved micro-scale optical coherence elastography of the cornea. BIOMEDICAL OPTICS EXPRESS 2014; 5:3807-21. [PMID: 25426312 PMCID: PMC4242019 DOI: 10.1364/boe.5.003807] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/25/2014] [Accepted: 09/27/2014] [Indexed: 05/18/2023]
Abstract
High-resolution elastographic assessment of the cornea can greatly assist clinical diagnosis and treatment of various ocular diseases. Here, we report on the first noncontact depth-resolved micro-scale optical coherence elastography of the cornea achieved using shear wave imaging optical coherence tomography (SWI-OCT) combined with the spectral analysis of the corneal Lamb wave propagation. This imaging method relies on a focused air-puff device to load the cornea with highly-localized low-pressure short-duration air stream and applies phase-resolved OCT detection to capture the low-amplitude deformation with nano-scale sensitivity. The SWI-OCT system is used here to image the corneal Lamb wave propagation with the frame rate the same as the OCT A-line acquisition speed. Based on the spectral analysis of the corneal temporal deformation profiles, the phase velocity of the Lamb wave is obtained at different depths for the major frequency components, which shows the depthwise distribution of the corneal stiffness related to its structural features. Our pilot experiments on ex vivo rabbit eyes demonstrate the feasibility of this method in depth-resolved micro-scale elastography of the cornea. The assessment of the Lamb wave dispersion is also presented, suggesting the potential for the quantitative measurement of corneal viscoelasticity.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd., Houston, Texas 77204-5060,
USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,
USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd., Houston, Texas 77204-5060,
USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,
USA
| |
Collapse
|
43
|
Chin L, Curatolo A, Kennedy BF, Doyle BJ, Munro PRT, McLaughlin RA, Sampson DD. Analysis of image formation in optical coherence elastography using a multiphysics approach. BIOMEDICAL OPTICS EXPRESS 2014; 5:2913-30. [PMID: 25401007 PMCID: PMC4230875 DOI: 10.1364/boe.5.002913] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 05/18/2023]
Abstract
IMAGE FORMATION IN OPTICAL COHERENCE ELASTOGRAPHY (OCE) RESULTS FROM A COMBINATION OF TWO PROCESSES: the mechanical deformation imparted to the sample and the detection of the resulting displacement using optical coherence tomography (OCT). We present a multiphysics model of these processes, validated by simulating strain elastograms acquired using phase-sensitive compression OCE, and demonstrating close correspondence with experimental results. Using the model, we present evidence that the approximation commonly used to infer sample displacement in phase-sensitive OCE is invalidated for smaller deformations than has been previously considered, significantly affecting the measurement precision, as quantified by the displacement sensitivity and the elastogram signal-to-noise ratio. We show how the precision of OCE is affected not only by OCT shot-noise, as is usually considered, but additionally by phase decorrelation due to the sample deformation. This multiphysics model provides a general framework that could be used to compare and contrast different OCE techniques.
Collapse
Affiliation(s)
- Lixin Chin
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Australia
- These authors contributed equally to this work
| | - Andrea Curatolo
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Australia
- These authors contributed equally to this work
| | - Brendan F. Kennedy
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Australia
| | - Barry J. Doyle
- Vascular Engineering, Intelligent Systems for Medicine Laboratory, School of Mechanical & Chemical Engineering, The University of Western Australia, Crawley, Australia
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Peter R. T. Munro
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Australia
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, Crawley, Australia
| | - Robert A. McLaughlin
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Australia
| | - David D. Sampson
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Australia
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, Crawley, Australia
| |
Collapse
|
44
|
Wang S, Lopez AL, Morikawa Y, Tao G, Li J, Larina IV, Martin JF, Larin KV. Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2014; 5:1980-92. [PMID: 25071943 PMCID: PMC4102343 DOI: 10.1364/boe.5.001980] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 05/12/2023]
Abstract
We report on a quantitative optical elastographic method based on shear wave imaging optical coherence tomography (SWI-OCT) for biomechanical characterization of cardiac muscle through noncontact elasticity measurement. The SWI-OCT system employs a focused air-puff device for localized loading of the cardiac muscle and utilizes phase-sensitive OCT to monitor the induced tissue deformation. Phase information from the optical interferometry is used to reconstruct 2-D depth-resolved shear wave propagation inside the muscle tissue. Cross-correlation of the displacement profiles at various spatial locations in the propagation direction is applied to measure the group velocity of the shear waves, based on which the Young's modulus of tissue is quantified. The quantitative feature and measurement accuracy of this method is demonstrated from the experiments on tissue-mimicking phantoms with the verification using uniaxial compression test. The experiments are performed on ex vivo cardiac muscle tissue from mice with normal and genetically altered myocardium. Our results indicate this optical elastographic technique is useful as a noncontact tool to assist the cardiac muscle studies.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd., Houston, Texas 77204-5060, USA
| | - Andrew L. Lopez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Texas, USA
| | - Yuka Morikawa
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Texas, USA
| | - Ge Tao
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Texas, USA
| | - Jiasong Li
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd., Houston, Texas 77204-5060, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Texas, USA
| | - James F. Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Texas, USA
- Texas Heart Institute, Houston, Texas 77030, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd., Houston, Texas 77204-5060, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Texas, USA
| |
Collapse
|
45
|
Ford MR, Sinha Roy A, Rollins AM, Dupps WJ. Serial biomechanical comparison of edematous, normal, and collagen crosslinked human donor corneas using optical coherence elastography. J Cataract Refract Surg 2014; 40:1041-7. [PMID: 24767794 PMCID: PMC4035481 DOI: 10.1016/j.jcrs.2014.03.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/15/2014] [Accepted: 03/16/2014] [Indexed: 01/01/2023]
Abstract
PURPOSE To noninvasively evaluate the effects of corneal hydration and collagen crosslinking (CXL) on the mechanical behavior of the cornea. SETTING Cleveland Clinic Cole Eye Institute, Cleveland, Ohio, USA. DESIGN Experimental study. METHODS An optical coherence elastography (OCE) technique was used to measure the displacement behavior of 5 pairs of debrided human donor globes in 3 serial states as follows: edematous, normal thickness, and after riboflavin-ultraviolet-A-mediated CXL. During micromotor-controlled axial displacements with a curved goniolens at physiologic intraocular pressure (IOP), serial optical coherence tomography scans were obtained to allow high-resolution intrastromal speckle tracking and displacement measurements over the central 4.0 mm of the cornea. RESULTS With no imposed increase in IOP, the mean lateral to imposed axial displacement ratios were 0.035 μm/μm ± 0.037 (SD) in edematous corneas, 0.021 ± 0.02 μm/μm in normal thickness corneas, and 0.014 ± 0.009 μm/μm in post-CXL corneas. The differences were statistically significant (P<.05, analysis of variance) and indicated a 40% increase in lateral stromal resistance with deturgescence and a further 33% mean increase in relative stiffness with CXL. CONCLUSIONS Serial perturbations of the corneal hydration state and CXL had significant effects on corneal biomechanical behavior. With an axially applied stress from a nonapplanating contact lens, displacements along the direction of the collagen lamellae were 2 orders of magnitude lower than axial deformations. These experiments show the ability of OCE to quantify clinically relevant mechanical property differences under physiologic conditions. FINANCIAL DISCLOSURES Proprietary or commercial disclosures are listed after the references.
Collapse
Affiliation(s)
- Matthew R Ford
- From the Department of Biomedical Engineering (Ford, Rollins), Case Western Reserve University, the Cleveland Clinic Cole Eye Institute (Ford, Sinha Roy, Dupps), and the Department of Biomedical Engineering (Dupps), Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Abhijit Sinha Roy
- From the Department of Biomedical Engineering (Ford, Rollins), Case Western Reserve University, the Cleveland Clinic Cole Eye Institute (Ford, Sinha Roy, Dupps), and the Department of Biomedical Engineering (Dupps), Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Andrew M Rollins
- From the Department of Biomedical Engineering (Ford, Rollins), Case Western Reserve University, the Cleveland Clinic Cole Eye Institute (Ford, Sinha Roy, Dupps), and the Department of Biomedical Engineering (Dupps), Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - William J Dupps
- From the Department of Biomedical Engineering (Ford, Rollins), Case Western Reserve University, the Cleveland Clinic Cole Eye Institute (Ford, Sinha Roy, Dupps), and the Department of Biomedical Engineering (Dupps), Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA.
| |
Collapse
|
46
|
Qi W, Li R, Ma T, Kirk Shung K, Zhou Q, Chen Z. Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer. APPLIED PHYSICS LETTERS 2014; 104:123702. [PMID: 24737920 PMCID: PMC3971820 DOI: 10.1063/1.4869562] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/13/2014] [Indexed: 05/17/2023]
Abstract
We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.
Collapse
Affiliation(s)
- Wenjuan Qi
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612, USA ; Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697, USA
| | - Rui Li
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612, USA
| | - Teng Ma
- Department of Biomedical Engineering, NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, California 90089, USA
| | - K Kirk Shung
- Department of Biomedical Engineering, NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, California 90089, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, California 90089, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612, USA ; Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697, USA ; Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
47
|
Makita S, Jaillon F, Jahan I, Yasuno Y. Noise statistics of phase-resolved optical coherence tomography imaging: single-and dual-beam-scan Doppler optical coherence tomography. OPTICS EXPRESS 2014; 22:4830-48. [PMID: 24663800 DOI: 10.1364/oe.22.004830] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Noise statistics of phase-resolved optical coherence tomography (OCT) imaging are complicated and involve noises of OCT, correlation of signals, and speckles. In this paper, the statistical properties of phase shift between two OCT signals that contain additive random noises and speckle noises are presented. Experimental results obtained with a scattering tissue phantom are in good agreement with theoretical predictions. The performances of the dual-beam method and conventional single-beam method are compared. As expected, phase shift noise in the case of the dual-beam-scan method is less than that for the single-beam method when the transversal sampling step is large.
Collapse
|
48
|
Kennedy BF, Malheiro FG, Chin L, Sampson DD. Three-dimensional optical coherence elastography by phase-sensitive comparison of C-scans. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:076006. [PMID: 25003754 DOI: 10.1117/1.jbo.19.7.076006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/09/2014] [Indexed: 05/02/2023]
Abstract
We present an acquisition method for optical coherence elastography (OCE) that enables acquisition of three-dimensional elastograms in 5 s, an order of magnitude faster than previously reported. In this method, based on compression elastography, the mechanical load applied to the sample is altered between acquisitions of consecutive optical coherence tomography volume scans (C-scans). The voxel-by-voxel phase difference between the volumes is used to determine the axial displacement and determining the gradient of the axial displacement versus depth gives the local axial strain. We demonstrate sub-100-microstrain sensitivity and high contrast in elastograms, acquired in 5 s, of structured phantoms and freshly excised rat muscle tissue that are comparable in strain sensitivity and dynamic range to our previously reported B-scan-based method. The much higher acquisition speed may expedite the translation of OCE to clinical and in vivo applications.
Collapse
Affiliation(s)
- Brendan F Kennedy
- The University of Western Australia, School of Electrical, Electronic and Computer Engineering, Optical+Biomedical Engineering Laboratory, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Francisco Gomes Malheiro
- The University of Western Australia, School of Electrical, Electronic and Computer Engineering, Optical+Biomedical Engineering Laboratory, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Lixin Chin
- The University of Western Australia, School of Electrical, Electronic and Computer Engineering, Optical+Biomedical Engineering Laboratory, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - David D Sampson
- The University of Western Australia, School of Electrical, Electronic and Computer Engineering, Optical+Biomedical Engineering Laboratory, 35 Stirling Highway, Crawley, Western Australia 6009, AustraliabThe University of Western Australia, Centre for Micr
| |
Collapse
|
49
|
Nguyen TM, Song S, Arnal B, Wong EY, Huang Z, Wang RK, O’Donnell M. Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:16013. [PMID: 24441876 PMCID: PMC3894424 DOI: 10.1117/1.jbo.19.1.016013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/09/2013] [Indexed: 05/04/2023]
Abstract
Assessing the biomechanical properties of soft tissue provides clinically valuable information to supplement conventional structural imaging. In the previous studies, we introduced a dynamic elastography technique based on phase-sensitive optical coherence tomography (PhS-OCT) to characterize submillimetric structures such as skin layers or ocular tissues. Here, we propose to implement a pulse compression technique for shear wave elastography. We performed shear wave pulse compression in tissue-mimicking phantoms. Using a mechanical actuator to generate broadband frequency-modulated vibrations (1 to 5 kHz), induced displacements were detected at an equivalent frame rate of 47 kHz using a PhS-OCT. The recorded signal was digitally compressed to a broadband pulse. Stiffness maps were then reconstructed from spatially localized estimates of the local shear wave speed. We demonstrate that a simple pulse compression scheme can increase shear wave detection signal-to-noise ratio (>12 dB gain) and reduce artifacts in reconstructing stiffness maps of heterogeneous media.
Collapse
Affiliation(s)
- Thu-Mai Nguyen
- University of Washington, Department of Bioengineering, 3720 15th Avenue NE, Seattle, Washington 98195
- Address all correspondence to: Thu-Mai Nguyen, E-mail:
| | - Shaozhen Song
- University of Washington, Department of Bioengineering, 3720 15th Avenue NE, Seattle, Washington 98195
- University of Dundee, School of Engineering, Physics and Mathematics, Scotland, United Kingdom
| | - Bastien Arnal
- University of Washington, Department of Bioengineering, 3720 15th Avenue NE, Seattle, Washington 98195
| | - Emily Y. Wong
- University of Washington, Department of Bioengineering, 3720 15th Avenue NE, Seattle, Washington 98195
| | - Zhihong Huang
- University of Dundee, School of Engineering, Physics and Mathematics, Scotland, United Kingdom
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, 3720 15th Avenue NE, Seattle, Washington 98195
- University of Washington, Department of Ophthalmology, 325 9th Avenue, Seattle, Washington 98104
| | - Matthew O’Donnell
- University of Washington, Department of Bioengineering, 3720 15th Avenue NE, Seattle, Washington 98195
| |
Collapse
|
50
|
Crecea V, Ahmad A, Boppart SA. Magnetomotive optical coherence elastography for microrheology of biological tissues. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:121504. [PMID: 24145763 PMCID: PMC3800432 DOI: 10.1117/1.jbo.18.12.121504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/11/2013] [Accepted: 09/23/2013] [Indexed: 05/18/2023]
Abstract
Optical coherence elastography (OCE) is an established paradigm for measuring biomechanical properties of tissues and cells noninvasively, in real time, and with high resolution. We present a different development of a spectral domain OCE technique that enables simultaneous measurements of multiple biomechanical parameters of biological tissues. Our approach extends the capabilities of magnetomotive OCE (MM-OCE), which utilizes iron oxide magnetic nanoparticles (MNPs) distributed and embedded in the specimens as transducers for inducing motion. Step-wise application of an external magnetic field results in displacements in the tissue specimens that are deduced from sensitive phase measurements made with the MM-OCE system. We analyzed freshly excised rabbit lung and muscle tissues. We observe that while they present some similarities, rabbit lung and muscle tissue displacements display characteristic differentiating features. Both tissue types undergo a fast initial displacement followed by a rapidly damped oscillation and the onset of creep. However, the damping is faster in muscle compared to lung tissue, while the creep is steeper in muscle. This approach has the potential to become a novel way of performing real-time measurements of biomechanical properties of tissues and to enable the development of different diagnostic and monitoring tools in biology and medicine.
Collapse
Affiliation(s)
- Vasilica Crecea
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
- University of Illinois at Urbana-Champaign, Department of Physics, Urbana, Illinois 61801
| | - Adeel Ahmad
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
- University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois 61801
| | - Stephen A. Boppart
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
- University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois 61801
- University of Illinois at Urbana-Champaign, Departments of Bioengineering and Internal Medicine, Urbana, Illinois 61801
| |
Collapse
|