1
|
Wernert F, Moparthi SB, Pelletier F, Lainé J, Simons E, Moulay G, Rueda F, Jullien N, Benkhelifa-Ziyyat S, Papandréou MJ, Leterrier C, Vassilopoulos S. The actin-spectrin submembrane scaffold restricts endocytosis along proximal axons. Science 2024; 385:eado2032. [PMID: 39172837 DOI: 10.1126/science.ado2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/24/2024] [Indexed: 08/24/2024]
Abstract
Clathrin-mediated endocytosis has characteristic features in neuronal dendrites and presynapses, but how membrane proteins are internalized along the axon shaft remains unclear. We focused on clathrin-coated structures and endocytosis along the axon initial segment (AIS) and their relationship to the periodic actin-spectrin scaffold that lines the axonal plasma membrane. A combination of super-resolution microscopy and platinum-replica electron microscopy on cultured neurons revealed that AIS clathrin-coated pits form within "clearings", circular areas devoid of actin-spectrin mesh. Actin-spectrin scaffold disorganization increased clathrin-coated pit formation. Cargo uptake and live-cell imaging showed that AIS clathrin-coated pits are particularly stable. Neuronal plasticity-inducing stimulation triggered internalization of the clathrin-coated pits through polymerization of branched actin around them. Thus, spectrin and actin regulate clathrin-coated pit formation and scission to control endocytosis at the AIS.
Collapse
Affiliation(s)
- Florian Wernert
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Satish Babu Moparthi
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Paris, France
| | - Florence Pelletier
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Jeanne Lainé
- Sorbonne Université, Department of Physiology, Faculty of Medicine Pitié-Salpêtrière, Paris, France
| | - Eline Simons
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Gilles Moulay
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Paris, France
| | - Fanny Rueda
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Nicolas Jullien
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Sofia Benkhelifa-Ziyyat
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Paris, France
| | | | | | - Stéphane Vassilopoulos
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Paris, France
| |
Collapse
|
2
|
Behrens L, Walter RM, Cai W, Ewers H, van Bommel B, Zemella A. Fast In Vitro Synthesis and Direct Labeling of Nanobodies for Prototyping in Microscopy Applications. ACS OMEGA 2024; 9:35374-35383. [PMID: 39184460 PMCID: PMC11339826 DOI: 10.1021/acsomega.4c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
Small antigen binders, such as nanobodies, have become widely used in biomedical research and pharmaceutical development. However, the pipeline for the generation of functional conjugated probes and drugs from identified binders remains a major time-consuming bottleneck. Here, we developed a method for fast nanobody production and conjugation based on an in vitro synthesis platform. Our system allows for small batch synthesis of nanobodies with the inclusion of a noncanonical amino acid (NCAA). This NCAA can then be used for direct conjugation of molecules to the synthesized nanobody using click-chemistry, reducing the time from binder-encoding DNA to a conjugated probe tremendously. In this study, we conjugated a fluorescent dye to an anti-Green fluorescent protein (GFP) nanobody and attained a fully functional probe suitable for advanced super-resolution microscopy within a short time frame of 2 days. Our work illustrates that an in vitro synthesis platform in combination with click-chemistry can be successfully employed to produce conjugated small antigen binding probes. The fast production and conjugation, combined with the possibility for parallelization as well as precise analysis by microscopy, forms an excellent platform for nanobody prototyping. The here-illustrated method can be used for quick selection and benchmarking of obtained nanobody sequences/clones, e. g., from a phage-display, for use as conjugated small-molecule carriers. This procedure can accelerate the bioengineering of nanobodies for research and pharmaceutical applications.
Collapse
Affiliation(s)
- Lukas Behrens
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Thielallee 63, 14195 Berlin, Germany
- Branch
Bioanalytics and Bioprocesses, Fraunhofer
Institute for Cell Therapy and Immunology, Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Ruben Magnus Walter
- Branch
Bioanalytics and Bioprocesses, Fraunhofer
Institute for Cell Therapy and Immunology, Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute
of Biotechnology, Technische Universität
Berlin, Straße des
17. Juni 135, 10623 Berlin, Germany
| | - Weining Cai
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Helge Ewers
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Bas van Bommel
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Anne Zemella
- Branch
Bioanalytics and Bioprocesses, Fraunhofer
Institute for Cell Therapy and Immunology, Am Mühlenberg 13, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Liu J, Li Y, Chen T, Zhang F, Xu F. Machine Learning for Single-Molecule Localization Microscopy: From Data Analysis to Quantification. Anal Chem 2024; 96:11103-11114. [PMID: 38946062 DOI: 10.1021/acs.analchem.3c05857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Single-molecule localization microscopy (SMLM) is a versatile tool for realizing nanoscale imaging with visible light and providing unprecedented opportunities to observe bioprocesses. The integration of machine learning with SMLM enhances data analysis by improving efficiency and accuracy. This tutorial aims to provide a comprehensive overview of the data analysis process and theoretical aspects of SMLM, while also highlighting the typical applications of machine learning in this field. By leveraging advanced analytical techniques, SMLM is becoming a powerful quantitative analysis tool for biological research.
Collapse
Affiliation(s)
- Jianli Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yumian Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Tailong Chen
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Fa Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Fan Xu
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Coppini A, Falconieri A, Mualem O, Nasrin SR, Roudon M, Saper G, Hess H, Kakugo A, Raffa V, Shefi O. Can repetitive mechanical motion cause structural damage to axons? Front Mol Neurosci 2024; 17:1371738. [PMID: 38912175 PMCID: PMC11191579 DOI: 10.3389/fnmol.2024.1371738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Biological structures have evolved to very efficiently generate, transmit, and withstand mechanical forces. These biological examples have inspired mechanical engineers for centuries and led to the development of critical insights and concepts. However, progress in mechanical engineering also raises new questions about biological structures. The past decades have seen the increasing study of failure of engineered structures due to repetitive loading, and its origin in processes such as materials fatigue. Repetitive loading is also experienced by some neurons, for example in the peripheral nervous system. This perspective, after briefly introducing the engineering concept of mechanical fatigue, aims to discuss the potential effects based on our knowledge of cellular responses to mechanical stresses. A particular focus of our discussion are the effects of mechanical stress on axons and their cytoskeletal structures. Furthermore, we highlight the difficulty of imaging these structures and the promise of new microscopy techniques. The identification of repair mechanisms and paradigms underlying long-term stability is an exciting and emerging topic in biology as well as a potential source of inspiration for engineers.
Collapse
Affiliation(s)
| | | | - Oz Mualem
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Syeda Rubaiya Nasrin
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | - Marine Roudon
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Akira Kakugo
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | | | - Orit Shefi
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
5
|
Ma H, Chen M, Nguyen P, Liu Y. Toward drift-free high-throughput nanoscopy through adaptive intersection maximization. SCIENCE ADVANCES 2024; 10:eadm7765. [PMID: 38781327 PMCID: PMC11114195 DOI: 10.1126/sciadv.adm7765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Single-molecule localization microscopy (SMLM) often suffers from suboptimal resolution due to imperfect drift correction. Existing marker-free drift correction algorithms often struggle to reliably track high-frequency drift and lack the computational efficiency to manage large, high-throughput localization datasets. We present an adaptive intersection maximization-based method (AIM) that leverages the entire dataset's information content to minimize drift correction errors, particularly addressing high-frequency drift, thereby enhancing the resolution of existing SMLM systems. We demonstrate that AIM can robustly and efficiently achieve an angstrom-level tracking precision for high-throughput SMLM datasets under various imaging conditions, resulting in an optimal resolution in simulated and biological experimental datasets. We offer AIM as one simple, model-free software for instant resolution enhancement with standard CPU devices.
Collapse
Affiliation(s)
- Hongqiang Ma
- Department of Medicine, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Maomao Chen
- Department of Medicine, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Phuong Nguyen
- Department of Medicine, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yang Liu
- Department of Medicine, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Hauser F, Naderer C, Priglinger E, Peterbauer A, Fischer MB, Redl H, Jacak J. Single molecule studies of dynamic platelet interactions with endothelial cells. Front Bioeng Biotechnol 2024; 12:1372807. [PMID: 38638321 PMCID: PMC11025363 DOI: 10.3389/fbioe.2024.1372807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/08/2024] [Indexed: 04/20/2024] Open
Abstract
A biotechnological platform consisting of two-color 3D super-resolution readout and a microfluidic system was developed to investigate platelet interaction with a layer of perfused endothelial cells under flow conditions. Platelet activation has been confirmed via CD62P clustering on the membrane and mitochondrial morphology of ECs at the single cell level were examined using 3D two-color single-molecule localization microscopy and classified applying machine learning. To compare binding of activated platelets to intact or stressed ECs, a femtosecond laser was used to induced damage to single ECs within the perfused endothelial layer. We observed that activated platelets bound to the perfused ECs layer preferentially in the proximity to single stressed ECs. Platelets activated under flow were ∼6 times larger compared to activated ones under static conditions. The CD62P expression indicated more CD62P proteins on membrane of dynamically activated platelets, with a tendency to higher densities at the platelet/EC interface. Platelets activated under static conditions showed a less pronounced CD62P top/bottom asymmetry. The clustering of CD62P in the platelet membrane differs depending on the activation conditions. Our results confirm that nanoscopic analysis using two-color 3D super-resolution technology can be used to assess platelet interaction with a stressed endothelium under dynamic conditions.
Collapse
Affiliation(s)
- Fabian Hauser
- Department of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Linz, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christoph Naderer
- Department of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Linz, Austria
| | - Eleni Priglinger
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Orthopaedics and Traumatology, Johannes Kepler University Linz, Linz, Austria
| | - Anja Peterbauer
- Red Cross Blood Transfusion Service for Upper Austria, Linz, Austria
| | - Michael B. Fischer
- Department for Biomedical Research, Center of Experimental Medicine, Danube University Krems, Krems, Austria
- Clinic for Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Heinz Redl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, Vienna, Austria
| | - Jaroslaw Jacak
- Department of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Linz, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, Vienna, Austria
| |
Collapse
|
7
|
Blake TCA, Fox HM, Urbančič V, Ravishankar R, Wolowczyk A, Allgeyer ES, Mason J, Danuser G, Gallop JL. Filopodial protrusion driven by density-dependent Ena-TOCA-1 interactions. J Cell Sci 2024; 137:jcs261057. [PMID: 38323924 PMCID: PMC11006392 DOI: 10.1242/jcs.261057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
Filopodia are narrow actin-rich protrusions with important roles in neuronal development where membrane-binding adaptor proteins, such as I-BAR- and F-BAR-domain-containing proteins, have emerged as upstream regulators that link membrane interactions to actin regulators such as formins and proteins of the Ena/VASP family. Both the adaptors and their binding partners are part of diverse and redundant protein networks that can functionally compensate for each other. To explore the significance of the F-BAR domain-containing neuronal membrane adaptor TOCA-1 (also known as FNBP1L) in filopodia we performed a quantitative analysis of TOCA-1 and filopodial dynamics in Xenopus retinal ganglion cells, where Ena/VASP proteins have a native role in filopodial extension. Increasing the density of TOCA-1 enhances Ena/VASP protein binding in vitro, and an accumulation of TOCA-1, as well as its coincidence with Ena, correlates with filopodial protrusion in vivo. Two-colour single-molecule localisation microscopy of TOCA-1 and Ena supports their nanoscale association. TOCA-1 clusters promote filopodial protrusion and this depends on a functional TOCA-1 SH3 domain and activation of Cdc42, which we perturbed using the small-molecule inhibitor CASIN. We propose that TOCA-1 clusters act independently of membrane curvature to recruit and promote Ena activity for filopodial protrusion.
Collapse
Affiliation(s)
- Thomas C. A. Blake
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Helen M. Fox
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Vasja Urbančič
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Roshan Ravishankar
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam Wolowczyk
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Edward S. Allgeyer
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Julia Mason
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer L. Gallop
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
8
|
Glück IM, Mathias GP, Strauss S, Rat V, Gialdini I, Ebert TS, Stafford C, Agam G, Manley S, Hornung V, Jungmann R, Sieben C, Lamb DC. Nanoscale organization of the endogenous ASC speck. iScience 2023; 26:108382. [PMID: 38047065 PMCID: PMC10690566 DOI: 10.1016/j.isci.2023.108382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 06/15/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
The NLRP3 inflammasome is a central component of the innate immune system. Its activation leads to formation of the ASC speck, a supramolecular assembly of the inflammasome adaptor protein ASC. Different models, based on ASC overexpression, have been proposed for the structure of the ASC speck. Using dual-color 3D super-resolution imaging (dSTORM and DNA-PAINT), we visualized the ASC speck structure following NLRP3 inflammasome activation using endogenous ASC expression. A complete structure was only obtainable by labeling with both anti-ASC antibodies and nanobodies. The complex varies in diameter between ∼800 and 1000 nm, and is composed of a dense core with emerging filaments. Dual-color confocal fluorescence microscopy indicated that the ASC speck does not colocalize with the microtubule-organizing center at late time points after Nigericin stimulation. From super-resolution images of whole cells, the ASC specks were sorted into a pseudo-time sequence indicating that they become denser but not larger during formation.
Collapse
Affiliation(s)
- Ivo M. Glück
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Grusha Primal Mathias
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Sebastian Strauss
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Virgile Rat
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Irene Gialdini
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Thomas Sebastian Ebert
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Che Stafford
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ganesh Agam
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Suliana Manley
- Laboratory of Experimental Biophysics, École Polytechnique Fédérale de Lausanne, BSP 427 (Cubotron UNIL), Rte de la Sorge, CH-1015 Lausanne, Switzerland
| | - Veit Hornung
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christian Sieben
- Laboratory of Experimental Biophysics, École Polytechnique Fédérale de Lausanne, BSP 427 (Cubotron UNIL), Rte de la Sorge, CH-1015 Lausanne, Switzerland
| | - Don C. Lamb
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| |
Collapse
|
9
|
Olah SS, Kareemo DJ, Buchta WC, Sinnen BL, Miller CN, Actor-Engel HS, Gookin SE, Winborn CS, Kleinjan MS, Crosby KC, Aoto J, Smith KR, Kennedy MJ. Acute reorganization of postsynaptic GABA A receptors reveals the functional impact of molecular nanoarchitecture at inhibitory synapses. Cell Rep 2023; 42:113331. [PMID: 37910506 PMCID: PMC10782565 DOI: 10.1016/j.celrep.2023.113331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/01/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
Neurotransmitter receptors partition into nanometer-scale subdomains within the postsynaptic membrane that are precisely aligned with presynaptic neurotransmitter release sites. While spatial coordination between pre- and postsynaptic elements is observed at both excitatory and inhibitory synapses, the functional significance of this molecular architecture has been challenging to evaluate experimentally. Here we utilized an optogenetic clustering approach to acutely alter the nanoscale organization of the postsynaptic inhibitory scaffold gephyrin while monitoring synaptic function. Gephyrin clustering rapidly enlarged postsynaptic area, laterally displacing GABAA receptors from their normally precise apposition with presynaptic active zones. Receptor displacement was accompanied by decreased synaptic GABAA receptor currents even though presynaptic release probability and the overall abundance and function of synaptic GABAA receptors remained unperturbed. Thus, acutely repositioning neurotransmitter receptors within the postsynaptic membrane profoundly influences synaptic efficacy, establishing the functional importance of precision pre-/postsynaptic molecular coordination at inhibitory synapses.
Collapse
Affiliation(s)
- Samantha S Olah
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dean J Kareemo
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - William C Buchta
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Brooke L Sinnen
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Carley N Miller
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Hannah S Actor-Engel
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sara E Gookin
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Christina S Winborn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mason S Kleinjan
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kevin C Crosby
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jason Aoto
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
10
|
Wei Y, Zhao M, He T, Chen N, Rao L, Chen L, Zhang Y, Yang Y, Yuan Q. Quantitatively Lighting up the Spatial Organization of CD47/SIRPα Immune Checkpoints on the Cellular Membrane with Single-Molecule Localization Microscopy. ACS NANO 2023; 17:21626-21638. [PMID: 37878521 DOI: 10.1021/acsnano.3c06709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Immunotherapy including immune checkpoint inhibition has reinvigorated the current cancer treatment field. The development of efficient cancer immunotherapies depends on a thorough understanding of the status of immune checkpoints and how they interact. However, the distribution and spatial organization changes of immune checkpoints during their interactions at the single-molecule level remain difficult to directly visualize due to the lack of in situ imaging techniques with appropriate spatial and stoichiometric resolution. Herein, we report the direct visualization and quantification of the spatial distribution and organization of CD47 on the bladder tumor cell membrane and SIRPα on the macrophage membrane by using a single-molecule localization imaging technique called quantitative direct stochastic optical reconstruction microscopy (QdSTORM). Results showed that a portion of CD47 and SIRPα was present on cell membranes as heterogeneous clusters of varying sizes and densities prior to activation. Quantitative analyses of the reconstructed super-resolution images and theoretical simulation revealed that CD47 and SIRPα were reorganized into larger clusters upon binding to each other. Furthermore, we found that blocking the immune checkpoint interaction with small-molecule inhibitors or antibodies significantly impacted the spatial clustering behavior of CD47 on bladder tumor cells, demonstrating the promise of our QdSTORM strategy in elucidating the molecular mechanisms underlying immunotherapy. This work offers a promising strategy to advance our understanding of immune checkpoint state and interactions while also contributing to the fields including signal regulation and cancer therapy.
Collapse
Affiliation(s)
- Yurong Wei
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Min Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Tianpei He
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Na Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Li Rao
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Long Chen
- Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macau 999078, P. R. China
| | - Yun Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350025, P. R. China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
11
|
Acher O, de Abreu MB, Grigoriev A, de Bettignies P, Vilotta M, Nguyên TL. Identifying and fixing in-plane positioning and stability issues on a microscope using machine-readable patterned position scales. Sci Rep 2023; 13:19521. [PMID: 37945927 PMCID: PMC10636118 DOI: 10.1038/s41598-023-46950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Investigations of the in-plane positioning capabilities of microscopes using machine-readable encoded patterned scales are presented. The scales have patterns that contain absolute position information, and adequate software accurately determines the in-plane position from the scale images captured by the microscope camera. This makes in-plane positioning experiments simple and fast. The scales and software used in this study are commercially available. We investigated different microscopy systems and found that positioning performance is a system issue that is not determined solely by stage performance. In some cases, our experiments revealed software or hardware glitches that limited the positioning performance, which we easily fixed. We have also shown that it is possible to investigate vibrations using this approach and quantify their impact on image blurring. This is, for example, useful for experimentally determining the settling time after a stage movement.
Collapse
Affiliation(s)
- Olivier Acher
- HORIBA France SAS, 14 Bd Thomas Gobert, 91120, Palaiseau, France.
| | | | | | | | - Maxime Vilotta
- HORIBA France SAS, 455 Avenue Eugène Avinée, 59120, Palaiseau, France
| | | |
Collapse
|
12
|
Hsu CC, Rückel M, Bonn D, Brouwer AM. Super-resolution Fluorescence Imaging of Recycled Polymer Blends via Hydrogen Bond-Assisted Adsorption of a Nile Red Derivative. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14652-14659. [PMID: 37788122 PMCID: PMC10586370 DOI: 10.1021/acs.langmuir.3c01976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/19/2023] [Indexed: 10/05/2023]
Abstract
A key challenge in the recycling of multilayer plastic films of polyethylene and polyamide, as typically used for food packaging, is to assess and control the phase separation of the two types of polymers in the recycled material, the specifics of which determine the mechanical strength of the recycled material. However, visualizing the polyamide-in-polyethylene domains with conventional fluorescence methods or electron microscopy is challenging. We present a new approach that combines the point accumulation in nanoscale topography (PAINT) super-resolution method with a newly synthesized Nile Red probe (diOHNR) as the fluorescent label. The molecule was modified to undergo a hydrogen bond-assisted interaction with the polyamide phase in the blend due to its two additional hydroxyl groups but preserves the spectral properties of Nile Red. As a result, the localization density of the probe in the PAINT image is 13 times larger at the polyamide phase than at the polyethylene phase, enabling quantitative evaluation of the spatial polyamide/polyethylene distribution down to the nanoscale. The method achieved a spatial resolution of 18.8 nm, and we found that over half of the polyamide particles in a recycled sample were smaller than the optical diffraction limit. Being able to image the blends with nanoscopic resolution can help to optimize the composition and mechanical properties of recycled materials and thus contribute to an increased reuse of plastics.
Collapse
Affiliation(s)
- Chao-Chun Hsu
- van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Markus Rückel
- Group
Research, BASF SE, Ludwigshafen D-67056, Germany
| | - Daniel Bonn
- van
der Waals-Zeeman Institute, Institute of
Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Albert M. Brouwer
- van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
13
|
Bingham D, Jakobs CE, Wernert F, Boroni-Rueda F, Jullien N, Schentarra EM, Friedl K, Da Costa Moura J, van Bommel DM, Caillol G, Ogawa Y, Papandréou MJ, Leterrier C. Presynapses contain distinct actin nanostructures. J Cell Biol 2023; 222:e202208110. [PMID: 37578754 PMCID: PMC10424573 DOI: 10.1083/jcb.202208110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 06/07/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
The architecture of the actin cytoskeleton that concentrates at presynapses remains poorly known, hindering our understanding of its roles in synaptic physiology. In this work, we measure and visualize presynaptic actin by diffraction-limited and super-resolution microscopy, thanks to a validated model of bead-induced presynapses in cultured neurons. We identify a major population of actin-enriched presynapses that concentrates more presynaptic components and shows higher synaptic vesicle cycling than their non-enriched counterparts. Pharmacological perturbations point to an optimal actin amount and the presence of distinct actin structures within presynapses. We directly visualize these nanostructures using Single Molecule Localization Microscopy (SMLM), defining three distinct types: an actin mesh at the active zone, actin rails between the active zone and deeper reserve pools, and actin corrals around the whole presynaptic compartment. Finally, CRISPR-tagging of endogenous actin allows us to validate our results in natural synapses between cultured neurons, confirming the role of actin enrichment and the presence of three types of presynaptic actin nanostructures.
Collapse
Affiliation(s)
- Dominic Bingham
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
| | | | - Florian Wernert
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
| | - Fanny Boroni-Rueda
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
| | - Nicolas Jullien
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
| | | | - Karoline Friedl
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
- Abbelight, Cachan, France
| | | | | | - Ghislaine Caillol
- CNRS, INP UMR7051, NeuroCyto, Aix Marseille Université, Marseille, France
| | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
14
|
Colson L, Kwon Y, Nam S, Bhandari A, Maya NM, Lu Y, Cho Y. Trends in Single-Molecule Total Internal Reflection Fluorescence Imaging and Their Biological Applications with Lab-on-a-Chip Technology. SENSORS (BASEL, SWITZERLAND) 2023; 23:7691. [PMID: 37765748 PMCID: PMC10537725 DOI: 10.3390/s23187691] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
Single-molecule imaging technologies, especially those based on fluorescence, have been developed to probe both the equilibrium and dynamic properties of biomolecules at the single-molecular and quantitative levels. In this review, we provide an overview of the state-of-the-art advancements in single-molecule fluorescence imaging techniques. We systematically explore the advanced implementations of in vitro single-molecule imaging techniques using total internal reflection fluorescence (TIRF) microscopy, which is widely accessible. This includes discussions on sample preparation, passivation techniques, data collection and analysis, and biological applications. Furthermore, we delve into the compatibility of microfluidic technology for single-molecule fluorescence imaging, highlighting its potential benefits and challenges. Finally, we summarize the current challenges and prospects of fluorescence-based single-molecule imaging techniques, paving the way for further advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Louis Colson
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (A.B.); (N.M.M.); (Y.L.)
| | - Youngeun Kwon
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (S.N.)
| | - Soobin Nam
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (S.N.)
| | - Avinashi Bhandari
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (A.B.); (N.M.M.); (Y.L.)
| | - Nolberto Martinez Maya
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (A.B.); (N.M.M.); (Y.L.)
| | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (A.B.); (N.M.M.); (Y.L.)
| | - Yongmin Cho
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (S.N.)
| |
Collapse
|
15
|
Ramsay HJ, Gookin SE, Ramsey AM, Kareemo DJ, Crosby KC, Stich DG, Olah SS, Actor-Engel HS, Smith KR, Kennedy MJ. AMPA and GABAA receptor nanodomains assemble in the absence of synaptic neurotransmitter release. Front Mol Neurosci 2023; 16:1232795. [PMID: 37602191 PMCID: PMC10435253 DOI: 10.3389/fnmol.2023.1232795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Postsynaptic neurotransmitter receptors and their associated scaffolding proteins assemble into discrete, nanometer-scale subsynaptic domains (SSDs) within the postsynaptic membrane at both excitatory and inhibitory synapses. Intriguingly, postsynaptic receptor SSDs are mirrored by closely apposed presynaptic active zones. These trans-synaptic molecular assemblies are thought to be important for efficient neurotransmission because they concentrate postsynaptic receptors near sites of presynaptic neurotransmitter release. While previous studies have characterized the role of synaptic activity in sculpting the number, size, and distribution of postsynaptic SSDs at established synapses, it remains unknown whether neurotransmitter signaling is required for their initial assembly during synapse development. Here, we evaluated synaptic nano-architecture under conditions where presynaptic neurotransmitter release was blocked prior to, and throughout synaptogenesis with tetanus neurotoxin (TeNT). In agreement with previous work, neurotransmitter release was not required for the formation of excitatory or inhibitory synapses. The overall size of the postsynaptic specialization at both excitatory and inhibitory synapses was reduced at chronically silenced synapses. However, both AMPARs and GABAARs still coalesced into SSDs, along with their respective scaffold proteins. Presynaptic active zone assemblies, defined by RIM1, were smaller and more numerous at silenced synapses, but maintained alignment with postsynaptic AMPAR SSDs. Thus, basic features of synaptic nano-architecture, including assembly of receptors and scaffolds into trans-synaptically aligned structures, are intrinsic properties that can be further regulated by subsequent activity-dependent mechanisms.
Collapse
Affiliation(s)
- Harrison J. Ramsay
- Anschutz Medical Campus, Department of Pharmacology, University of Colorado, Aurora, CO, United States
| | - Sara E. Gookin
- Anschutz Medical Campus, Department of Pharmacology, University of Colorado, Aurora, CO, United States
| | - Austin M. Ramsey
- Anschutz Medical Campus, Department of Pharmacology, University of Colorado, Aurora, CO, United States
| | - Dean J. Kareemo
- Anschutz Medical Campus, Department of Pharmacology, University of Colorado, Aurora, CO, United States
| | - Kevin C. Crosby
- Anschutz Medical Campus, Department of Pharmacology, University of Colorado, Aurora, CO, United States
| | - Dominik G. Stich
- Anschutz Medical Campus, Advanced Light Microscopy Core, University of Colorado, Aurora, CO, United States
| | - Samantha S. Olah
- Anschutz Medical Campus, Department of Pharmacology, University of Colorado, Aurora, CO, United States
| | - Hannah S. Actor-Engel
- Anschutz Medical Campus, Department of Pharmacology, University of Colorado, Aurora, CO, United States
| | - Katharine R. Smith
- Anschutz Medical Campus, Department of Pharmacology, University of Colorado, Aurora, CO, United States
| | - Matthew J. Kennedy
- Anschutz Medical Campus, Department of Pharmacology, University of Colorado, Aurora, CO, United States
| |
Collapse
|
16
|
Li K, Ni J, Tan X, Zhou Q, Chen D, Cao B, Lin J, Lin T, Zhao P, Yuan X, Ni Y. Motion screening of fiducial marker for improved localization precision and resolution in SMLM. OPTICS EXPRESS 2023; 31:26764-26776. [PMID: 37710528 DOI: 10.1364/oe.496761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 09/16/2023]
Abstract
Single-molecule localization microscopy (SMLM) provides unmatched high resolution but relies on accurate drift correction due to the long acquisition time for each field of view. A popular drift correction is implemented via referencing to fiducial markers that are assumed to be firmly immobilized and remain stationary relative to the imaged sample. However, there is so far lack of efficient approaches for evaluating other motions except sample drifting of immobilized markers and for addressing their potential impacts on images. Here, we developed a new approach for quantitatively assessing the motions of fiducial markers relative to the sample via mean squared displacement (MSD) analysis. Our findings revealed that over 90% of immobilized fluorescent beads in the SMLM imaging buffer exhibited higher MSDs compared to stationary beads in dry samples and displayed varying degrees of wobbling relative to the imaged field. By excluding extremely high-MSD beads in each field from drift correction, we optimized drift correction and experimentally measured localization precision. In SMLM experiments of cellular microtubules, we also found that including only relatively low-MSD beads for drift correction significantly improved the image resolution and quality. Our study presents a simple and effective approach to assess the potential relative motions of fiducial markers and emphasizes the importance of pre-screening fiducial markers for improved image quality and resolution in SMLM imaging.
Collapse
|
17
|
Yu W, Rush C, Tingey M, Junod S, Yang W. Application of Super-resolution SPEED Microscopy in the Study of Cellular Dynamics. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:356-371. [PMID: 37501792 PMCID: PMC10369678 DOI: 10.1021/cbmi.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023]
Abstract
Super-resolution imaging techniques have broken the diffraction-limited resolution of light microscopy. However, acquiring three-dimensional (3D) super-resolution information about structures and dynamic processes in live cells at high speed remains challenging. Recently, the development of high-speed single-point edge-excitation subdiffraction (SPEED) microscopy, along with its 2D-to-3D transformation algorithm, provides a practical and effective approach to achieving 3D subdiffraction-limit information in subcellular structures and organelles with rotational symmetry. One of the major benefits of SPEED microscopy is that it does not rely on complex optical components and can be implemented on a standard, inverted epifluorescence microscope, simplifying the process of sample preparation and the expertise requirement. SPEED microscopy is specifically designed to obtain 2D spatial locations of individual immobile or moving fluorescent molecules inside submicrometer biological channels or cavities at high spatiotemporal resolution. The collected data are then subjected to postlocalization 2D-to-3D transformation to obtain 3D super-resolution structural and dynamic information. In recent years, SPEED microscopy has provided significant insights into nucleocytoplasmic transport across the nuclear pore complex (NPC) and cytoplasm-cilium trafficking through the ciliary transition zone. This Review focuses on the applications of SPEED microscopy in studying the structure and function of nuclear pores.
Collapse
Affiliation(s)
- Wenlan Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Coby Rush
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Samuel Junod
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
18
|
Degen M, Santos JC, Pluhackova K, Cebrero G, Ramos S, Jankevicius G, Hartenian E, Guillerm U, Mari SA, Kohl B, Müller DJ, Schanda P, Maier T, Perez C, Sieben C, Broz P, Hiller S. Structural basis of NINJ1-mediated plasma membrane rupture in cell death. Nature 2023; 618:1065-1071. [PMID: 37198476 PMCID: PMC10307626 DOI: 10.1038/s41586-023-05991-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/21/2023] [Indexed: 05/19/2023]
Abstract
Eukaryotic cells can undergo different forms of programmed cell death, many of which culminate in plasma membrane rupture as the defining terminal event1-7. Plasma membrane rupture was long thought to be driven by osmotic pressure, but it has recently been shown to be in many cases an active process, mediated by the protein ninjurin-18 (NINJ1). Here we resolve the structure of NINJ1 and the mechanism by which it ruptures membranes. Super-resolution microscopy reveals that NINJ1 clusters into structurally diverse assemblies in the membranes of dying cells, in particular large, filamentous assemblies with branched morphology. A cryo-electron microscopy structure of NINJ1 filaments shows a tightly packed fence-like array of transmembrane α-helices. Filament directionality and stability is defined by two amphipathic α-helices that interlink adjacent filament subunits. The NINJ1 filament features a hydrophilic side and a hydrophobic side, and molecular dynamics simulations show that it can stably cap membrane edges. The function of the resulting supramolecular arrangement was validated by site-directed mutagenesis. Our data thus suggest that, during lytic cell death, the extracellular α-helices of NINJ1 insert into the plasma membrane to polymerize NINJ1 monomers into amphipathic filaments that rupture the plasma membrane. The membrane protein NINJ1 is therefore an interactive component of the eukaryotic cell membrane that functions as an in-built breaking point in response to activation of cell death.
Collapse
Affiliation(s)
- Morris Degen
- Biozentrum, University of Basel, Basel, Switzerland
| | - José Carlos Santos
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Kristyna Pluhackova
- Stuttgart Center for Simulation Science, Cluster of Excellence EXC 2075, University of Stuttgart, Stuttgart, Germany.
| | | | - Saray Ramos
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | | | - Ella Hartenian
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Undina Guillerm
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Stefania A Mari
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Bastian Kohl
- Biozentrum, University of Basel, Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Paul Schanda
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Timm Maier
- Biozentrum, University of Basel, Basel, Switzerland
| | - Camilo Perez
- Biozentrum, University of Basel, Basel, Switzerland
| | - Christian Sieben
- Nanoscale Infection Biology Group, Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| | | |
Collapse
|
19
|
Woelfle S, Deshpande D, Feldengut S, Braak H, Del Tredici K, Roselli F, Deisseroth K, Michaelis J, Boeckers TM, Schön M. CLARITY increases sensitivity and specificity of fluorescence immunostaining in long-term archived human brain tissue. BMC Biol 2023; 21:113. [PMID: 37221592 PMCID: PMC10207789 DOI: 10.1186/s12915-023-01582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/29/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Post mortem human brain tissue is an essential resource to study cell types, connectivity as well as subcellular structures down to the molecular setup of the central nervous system especially with respect to the plethora of brain diseases. A key method is immunostaining with fluorescent dyes, which allows high-resolution imaging in three dimensions of multiple structures simultaneously. Although there are large collections of formalin-fixed brains, research is often limited because several conditions arise that complicate the use of human brain tissue for high-resolution fluorescence microscopy. RESULTS In this study, we developed a clearing approach for immunofluorescence-based analysis of perfusion- and immersion-fixed post mortem human brain tissue, termed human Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging / Immunostaining / In situ hybridization-compatible Tissue-hYdrogel (hCLARITY). hCLARITY is optimized for specificity by reducing off-target labeling and yields very sensitive stainings in human brain sections allowing for super-resolution microscopy with unprecedented imaging of pre- and postsynaptic compartments. Moreover, hallmarks of Alzheimer's disease were preserved with hCLARITY, and importantly classical 3,3'-diaminobenzidine (DAB) or Nissl stainings are compatible with this protocol. hCLARITY is very versatile as demonstrated by the use of more than 30 well performing antibodies and allows for de- and subsequent re-staining of the same tissue section, which is important for multi-labeling approaches, e.g., in super-resolution microscopy. CONCLUSIONS Taken together, hCLARITY enables research of the human brain with high sensitivity and down to sub-diffraction resolution. It therefore has enormous potential for the investigation of local morphological changes, e.g., in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah Woelfle
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, IGradU, 89081, Ulm, Germany
| | - Dhruva Deshpande
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Chemical and Systems Biology Department, Stanford School of Medicine, 269 Campus Drive, Stanford, CA, 94305, USA
| | - Simone Feldengut
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Heiko Braak
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University, 89081, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE, Ulm Site, 89081, Ulm, Germany
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Howard Hughes Medical Institute, Stanford, CA, 94305, USA
| | - Jens Michaelis
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE, Ulm Site, 89081, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
20
|
Yao J, Guo H, Yin Z, Liu C, Da B, Liu Z, Chu Y, Zhong L, Sun L. Application of optical flow algorithm for drift correction in electron microscopy images. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:2890458. [PMID: 37184348 DOI: 10.1063/5.0129291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/25/2023] [Indexed: 05/16/2023]
Abstract
Transmission electron microscopy (TEM) image drift correction has been effectively addressed using diverse approaches, including the cross correlation algorithm (CC) and other strategies. However, most of the strategies fall short of achieving sufficient accuracy or cannot strike a balance between time consumption and accuracy. The present study proposes a TEM image drift correction strategy that enhances accuracy without any additional time consumption. Unlike the CC algorithm that matches pixels one by one, our approach involves the extraction of multiple feature points from the first TEM image and then uses the Lucas-Kanade (LK) optical flow algorithm to calculate the optical field of these feature points in the subsequent TEM images. The LK algorithm is used to calculate the instantaneous velocity of these feature points, which can help track the movement of the TEM image series. In addition, a high-precision sub-pixel level correction strategy by the utilization of linear interpolation during the correction process is developed in this work. Experimental results confirm that this strategy offers superior accuracy in comparison with the CC algorithm and also is insensitive to the size of the image. Furthermore, we offer a semantic segmentation neural network for electron microscope image pre-processing, thereby expanding the applicability of our methodology.
Collapse
Affiliation(s)
- JiaHao Yao
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Hongxuan Guo
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Ziqing Yin
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Chang Liu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Bo Da
- Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Ibaraki 305-0044, Japan
| | - Zheng Liu
- National Graphene Products Quality Inspection and Testing Center (Jiangsu), Wuxi 214174, People's Republic of China
| | - Yajie Chu
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, People's Republic of China
- Jiangsu Key Laboratory of Advanced Structure Materials and Application Technology, Nanjing 211167, People's Republic of China
| | - Li Zhong
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
21
|
Wu W, Luo S, Fan C, Yang T, Zhang S, Meng W, Xu T, Ji W, Gu L. Tetra-color superresolution microscopy based on excitation spectral demixing. LIGHT, SCIENCE & APPLICATIONS 2023; 12:9. [PMID: 36588110 PMCID: PMC9806106 DOI: 10.1038/s41377-022-01054-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 05/09/2023]
Abstract
Multicolor imaging allows protein colocalizations and organelle interactions to be studied in biological research, which is especially important for single-molecule localization microscopy (SMLM). Here, we propose a multicolor method called excitation-resolved stochastic optical reconstruction microscopy (ExR-STORM). The method, which is based on the excitation spectrum of fluorescent dyes, successfully separated four spectrally very close far-red organic fluorophores utilizing three excitation lasers with cross-talk of less than 3%. Dyes that are only 5 nm apart in the emission spectrum were resolved, resulting in negligible chromatic aberrations. This method was extended to three-dimensional (3D) imaging by combining the astigmatic method, providing a powerful tool for resolving 3D morphologies at the nanoscale.
Collapse
Affiliation(s)
- Wanyan Wu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihang Luo
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianjie Yang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuwen Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Xu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Bioland Laboratory, Guangzhou, 510005, China.
- Guangzhou Laboratory, Guangzhou, 510030, China.
| | - Wei Ji
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Bioland Laboratory, Guangzhou, 510005, China.
| | - Lusheng Gu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Bioland Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
22
|
Shelby SA, Shaw TR, Veatch SL. Measuring the Co-Localization and Dynamics of Mobile Proteins in Live Cells Undergoing Signaling Responses. Methods Mol Biol 2023; 2654:1-23. [PMID: 37106172 PMCID: PMC10758997 DOI: 10.1007/978-1-0716-3135-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Single molecule imaging in live cells enables the study of protein interactions and dynamics as they participate in signaling processes. When combined with fluorophores that stochastically transition between fluorescent and reversible dark states, as in super-resolution localization imaging, labeled molecules can be visualized in single cells over time. This improvement in sampling enables the study of extended cellular responses at the resolution of single molecule localization. This chapter provides optimized experimental and analytical methods used to quantify protein interactions and dynamics within the membranes of adhered live cells. Importantly, the use of pair-correlation functions resolved in both space and time allows researchers to probe interactions between proteins on biologically relevant distance and timescales, even though fluorescence localization methods typically require long times to assemble well-sampled reconstructed images. We describe an application of this approach to measure protein interactions in B cell receptor signaling and include sample analysis code for post-processing of imaging data. These methods are quantitative, sensitive, and broadly applicable to a range of signaling systems.
Collapse
Affiliation(s)
- Sarah A Shelby
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Thomas R Shaw
- Program in Applied Physics, University of Michigan, Ann Arbor, MI, USA
| | - Sarah L Veatch
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Danial JSH, Lam JYL, Wu Y, Woolley M, Dimou E, Cheetham MR, Emin D, Klenerman D. Constructing a cost-efficient, high-throughput and high-quality single-molecule localization microscope for super-resolution imaging. Nat Protoc 2022; 17:2570-2619. [PMID: 36002768 DOI: 10.1038/s41596-022-00730-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 05/24/2022] [Indexed: 11/09/2022]
Abstract
Single-molecule localization microscopy (SMLM) leverages the power of modern optics to unleash ultra-precise structural nanoscopy of complex biological machines in their native environments as well as ultra-sensitive and high-throughput medical diagnostics with the sensitivity of a single molecule. To achieve this remarkable speed and resolution, SMLM setups are either built by research laboratories with strong expertise in optical engineering or commercially sold at a hefty price tag. The inaccessibility of SMLM to life scientists for technical or financial reasons is detrimental to the progress of biological and biomedical discoveries reliant on super-resolution imaging. In this work, we present the NanoPro, an economic, high-throughput, high-quality and easy-to-assemble SMLM for super-resolution imaging. We show that our instrument performs similarly to the most expensive, best-in-class commercial microscopes and rivals existing open-source microscopes at a lower price and construction complexity. To facilitate its wide adoption, we compiled a step-by-step protocol, accompanied by extensive illustrations, to aid inexperienced researchers in constructing the NanoPro as well as assessing its performance by imaging ground-truth samples as small as 20 nm. The detailed visual instructions make it possible for students with little expertise in microscopy engineering to construct, validate and use the NanoPro in <1 week, provided that all components are available.
Collapse
Affiliation(s)
- John S H Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK.
| | - Jeff Y L Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Yunzhao Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Matthew Woolley
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Eleni Dimou
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Matthew R Cheetham
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Derya Emin
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
24
|
Lycas MD, Ejdrup AL, Sørensen AT, Haahr NO, Jørgensen SH, Guthrie DA, Støier JF, Werner C, Newman AH, Sauer M, Herborg F, Gether U. Nanoscopic dopamine transporter distribution and conformation are inversely regulated by excitatory drive and D2 autoreceptor activity. Cell Rep 2022; 40:111431. [PMID: 36170827 PMCID: PMC9617621 DOI: 10.1016/j.celrep.2022.111431] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/22/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
The nanoscopic organization and regulation of individual molecular components in presynaptic varicosities of neurons releasing modulatory volume neurotransmitters like dopamine (DA) remain largely elusive. Here we show, by application of several super-resolution microscopy techniques to cultured neurons and mouse striatal slices, that the DA transporter (DAT), a key protein in varicosities of dopaminergic neurons, exists in the membrane in dynamic equilibrium between an inward-facing nanodomain-localized and outward-facing unclustered configuration. The balance between these configurations is inversely regulated by excitatory drive and DA D2 autoreceptor activation in a manner dependent on Ca2+ influx via N-type voltage-gated Ca2+ channels. The DAT nanodomains contain tens of transporters molecules and overlap with nanodomains of PIP2 (phosphatidylinositol-4,5-bisphosphate) but show little overlap with D2 autoreceptor, syntaxin-1, and clathrin nanodomains. The data reveal a mechanism for rapid alterations of nanoscopic DAT distribution and show a striking link of this to the conformational state of the transporter.
Collapse
Affiliation(s)
- Matthew D Lycas
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Aske L Ejdrup
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Andreas T Sørensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Nicolai O Haahr
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Søren H Jørgensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Daryl A Guthrie
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jonatan F Støier
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Christian Werner
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Freja Herborg
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark.
| |
Collapse
|
25
|
Čavka I, Power RM, Walsh D, Zimmermann T, Köhler S. Super-Resolution Microscopy of the Synaptonemal Complex within the Caenorhabditis elegans Germline. J Vis Exp 2022:10.3791/64363. [PMID: 36190293 PMCID: PMC7614930 DOI: 10.3791/64363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
During meiosis, homologous chromosomes must recognize and adhere to one another to allow for their correct segregation. One of the key events that secures the interaction of homologous chromosomes is the assembly of the synaptonemal complex (SC) in meiotic prophase I. Even though there is little sequence homology between protein components within the SC among different species, the general structure of the SC has been highly conserved during evolution. In electron micrographs, the SC appears as a tripartite, ladder-like structure composed of lateral elements or axes, transverse filaments, and a central element. However, precisely identifying the localization of individual components within the complex by electron microscopy to determine the molecular structure of the SC remains challenging. By contrast, fluorescence microscopy allows for the identification of individual protein components within the complex. However, since the SC is only ~100 nm wide, its substructure cannot be resolved by diffraction-limited conventional fluorescence microscopy. Thus, determining the molecular architecture of the SC requires super-resolution light microscopy techniques such as structured illumination microscopy (SIM), stimulated-emission depletion (STED) microscopy, or single-molecule localization microscopy (SMLM). To maintain the structure and interactions of individual components within the SC, it is important to observe the complex in an environment that is close to its native environment in the germ cells. Therefore, we demonstrate an immunohistochemistry and imaging protocol that enables the study of the substructure of the SC in intact, extruded Caenorhabditis elegans germline tissue with SMLM and STED microscopy. Directly fixing the tissue to the coverslip reduces the movement of the samples during imaging and minimizes aberrations in the sample to achieve the high resolution necessary to visualize the substructure of the SC in its biological context.
Collapse
Affiliation(s)
- Ivana Čavka
- Cell Biology and Biophysics, European Molecular Biology Laboratory; Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Rory M Power
- EMBL Imaging Centre, European Molecular Biology Laboratory
| | - Dietrich Walsh
- EMBL Imaging Centre, European Molecular Biology Laboratory
| | - Timo Zimmermann
- Cell Biology and Biophysics, European Molecular Biology Laboratory; EMBL Imaging Centre, European Molecular Biology Laboratory;
| | - Simone Köhler
- Cell Biology and Biophysics, European Molecular Biology Laboratory;
| |
Collapse
|
26
|
Shaw TR, Fazekas FJ, Kim S, Flanagan-Natoli JC, Sumrall ER, Veatch SL. Estimating the localization spread function of static single-molecule localization microscopy images. Biophys J 2022; 121:2906-2920. [PMID: 35787472 PMCID: PMC9388596 DOI: 10.1016/j.bpj.2022.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 11/27/2022] Open
Abstract
Single-molecule localization microscopy (SMLM) permits the visualization of cellular structures an order of magnitude smaller than the diffraction limit of visible light, and an accurate, objective evaluation of the resolution of an SMLM data set is an essential aspect of the image processing and analysis pipeline. Here, we present a simple method to estimate the localization spread function (LSF) of a static SMLM data set directly from acquired localizations, exploiting the correlated dynamics of individual emitters and properties of the pair autocorrelation function evaluated in both time and space. The method is demonstrated on simulated localizations, DNA origami rulers, and cellular structures labeled by dye-conjugated antibodies, DNA-PAINT, or fluorescent fusion proteins. We show that experimentally obtained images have LSFs that are broader than expected from the localization precision alone, due to additional uncertainty accrued when localizing molecules imaged over time.
Collapse
Affiliation(s)
- Thomas R Shaw
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan; Program in Applied Physics, University of Michigan, Ann Arbor, Michigan
| | - Frank J Fazekas
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan
| | - Sumin Kim
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan
| | | | - Emily R Sumrall
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan
| | - Sarah L Veatch
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan; Program in Applied Physics, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
27
|
Dai Z, Xie X, Gao Z, Li Q. DNA‐PAINT Super‐Resolution Imaging for Characterization of Nucleic Acid Nanostructures. Chempluschem 2022; 87:e202200127. [DOI: 10.1002/cplu.202200127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/12/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Zheze Dai
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Xiaodong Xie
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering 200240 Shanghai CHINA
| | - Zhaoshuai Gao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering 200240 Shanghai CHINA
| | - Qian Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering Dongchuan Road 800中国 200240 Shanghai CHINA
| |
Collapse
|
28
|
Liu M, Han Y, Xi X, Zhu L, Fu H, Tan S, Zhang X, Li L, Chen J, Yan B. Thermal drift correction method for laboratory nanocomputed tomography based on global mixed evaluation. OPTICS EXPRESS 2022; 30:25034-25049. [PMID: 36237043 DOI: 10.1364/oe.462708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 06/16/2023]
Abstract
Nanocomputed tomography (nanoCT) is an effective tool for the nondestructive observation of 3D structures of nanomaterials; however, it requires additional correction phantom to reduce artifacts induced by the focal drift of the X-ray source and mechanical thermal expansion. Drift correction without a correction phantom typically uses rapidly acquired sparse projections to align the original projections. The noise and brightness difference in the projections limit the accuracy of existing feature-based methods such as locality preserving matching (LPM) and random sample consensus (RANSAC). Herein, a rough-to-refined correction framework based on global mixed evaluation (GME) is proposed for precise drift estimation. First, a new evaluation criterion for projection alignment, named GME, which comprises the structural similarity (SSIM) index and average phase difference (APD), is designed. Subsequently, an accurate projection alignment is achieved to estimate the drift by optimizing the GME within the proposed correction framework based on the rough-to-refined outlier elimination strategy. The simulated 2D projection alignment experiments show that the accuracy of the GME is improved by 14× and 12× than that of the mainstream feature-based methods LPM and RANSAC, respectively. The proposed method is validated through actual 3D imaging experiments.
Collapse
|
29
|
Xu X, Ge X, Xiong H, Qin Z. Toward dynamic, anisotropic, high-resolution, and functional measurement in the brain extracellular space. NEUROPHOTONICS 2022; 9:032210. [PMID: 35573823 PMCID: PMC9094757 DOI: 10.1117/1.nph.9.3.032210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Diffusion of substances in the brain extracellular space (ECS) is important for extrasynaptic communication, extracellular ionic homeostasis, drug delivery, and metabolic waste clearance. However, substance diffusion is largely constrained by the geometry of brain ECS and the extracellular matrix. Investigating the diffusion properties of substances not only reveals the structural information of the brain ECS but also advances the understanding of intercellular signaling of brain cells. Among different techniques for substance diffusion measurement, the optical imaging method is sensitive and straightforward for measuring the dynamics and distribution of fluorescent molecules or sensors and has been used for molecular diffusion measurement in the brain. We mainly discuss recent advances of optical imaging-enabled measurements toward dynamic, anisotropic, high-resolution, and functional aspects of the brain ECS diffusion within the last 5 to 10 years. These developments are made possible by advanced imaging, such as light-sheet microscopy and single-particle tracking in tissue, and new fluorescent biosensors for neurotransmitters. We envision future efforts to map the ECS diffusivity across the brain under healthy and diseased conditions to guide the therapeutic delivery and better understand neurochemical transmissions that are relevant to physiological signaling and functions in brain circuits.
Collapse
Affiliation(s)
- Xueqi Xu
- University of Texas at Dallas, Department of Mechanical Engineering, Richardson, Texas, United States
| | - Xiaoqian Ge
- University of Texas at Dallas, Department of Mechanical Engineering, Richardson, Texas, United States
| | - Hejian Xiong
- University of Texas at Dallas, Department of Mechanical Engineering, Richardson, Texas, United States
| | - Zhenpeng Qin
- University of Texas at Dallas, Department of Mechanical Engineering, Richardson, Texas, United States
- University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States
- University of Texas at Southwestern Medical Center, Department of Surgery, Richardson, Texas, United States
- University of Texas at Dallas, The Center for Advanced Pain Studies, Richardson, Texas, United States
| |
Collapse
|
30
|
Sirinakis G, Allgeyer ES, Cheng J, St Johnston D. Quantitative comparison of spinning disk geometries for PAINT based super-resolution microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:3773-3785. [PMID: 35991926 PMCID: PMC9352288 DOI: 10.1364/boe.459490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
PAINT methods that use DNA- or protein- based exchangeable probes have become popular for super-resolution imaging and have been combined with spinning disk confocal microscopy for imaging thicker samples. However, the widely available spinning disks used for routine biological imaging are not optimized for PAINT-based applications and may compromise resolution and imaging speed. Here, we use Drosophila egg chambers in the presence of the actin-binding peptide Lifeact to study the performance of four different spinning disk geometries. We find that disk geometries with higher light collection efficiency perform better for PAINT-based super-resolution imaging due to increased photon numbers and, subsequently, detection of more blinking events.
Collapse
Affiliation(s)
- George Sirinakis
- The Gurdon Institute & the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Edward S Allgeyer
- The Gurdon Institute & the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Jinmei Cheng
- The Gurdon Institute & the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Daniel St Johnston
- The Gurdon Institute & the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| |
Collapse
|
31
|
Atwal S, Wongsantichon J, Giengkam S, Saharat K, Pittayasathornthun YJ, Chuenklin S, Wang LC, Chung T, Huh H, Lee SH, Sobota RM, Salje J. The obligate intracellular bacterium Orientia tsutsugamushi differentiates into a developmentally distinct extracellular state. Nat Commun 2022; 13:3603. [PMID: 35739103 PMCID: PMC9226355 DOI: 10.1038/s41467-022-31176-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Orientia tsutsugamushi (Ot) is an obligate intracellular bacterium in the family Rickettsiaceae that causes scrub typhus, a severe mite-borne human disease. Its mechanism of cell exit is unusual amongst Rickettsiaceae, as Ot buds off the surface of infected cells enveloped in plasma membrane. Here, we show that Ot bacteria that have budded out of host cells are in a distinct developmental stage compared with intracellular bacteria. We refer to these two stages as intracellular and extracellular bacteria (IB and EB, respectively). These two forms differ in physical properties: IB is both round and elongated, and EB is round. Additionally, IB has higher levels of peptidoglycan and is physically robust compared with EB. The two bacterial forms differentially express proteins involved in bacterial physiology and host-pathogen interactions, specifically those involved in bacterial dormancy and stress response, and outer membrane autotransporter proteins ScaA and ScaC. Whilst both populations are infectious, entry of IB Ot is sensitive to inhibitors of both clathrin-mediated endocytosis and macropinocytosis, whereas entry of EB Ot is only sensitive to a macropinocytosis inhibitor. Our identification and detailed characterization of two developmental forms of Ot significantly advances our understanding of the intracellular lifecycle of an important human pathogen. Orientia tsutsugamushi (Ot) the causing agent of scrub typhus exits infected cells using a unique mechanism that involves budding off the surface of infected cells. Here, Atwal et al. report that Ots that have budded from their host cells are in a distinct developmental stage than intracellular bacteria and provide the first characterization of this extracellular stage. Both forms are infectious but differ in their physical properties, proteome, and entry mechanism into host cells.
Collapse
Affiliation(s)
- Sharanjeet Atwal
- Public Health Research Institute, Rutgers the State University of New Jersey, Newark, NJ, USA
| | - Jantana Wongsantichon
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Suparat Giengkam
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kittirat Saharat
- Public Health Research Institute, Rutgers the State University of New Jersey, Newark, NJ, USA
| | | | - Suthida Chuenklin
- Public Health Research Institute, Rutgers the State University of New Jersey, Newark, NJ, USA.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Loo Chien Wang
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,SingMass-National Mass Spectrometry Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Taerin Chung
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, USA
| | - Hyun Huh
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, USA
| | - Sang-Hyuk Lee
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, USA.,Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,SingMass-National Mass Spectrometry Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jeanne Salje
- Public Health Research Institute, Rutgers the State University of New Jersey, Newark, NJ, USA. .,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
32
|
Hung ST, Cnossen J, Fan D, Siemons M, Jurriens D, Grußmayer K, Soloviev O, Kapitein LC, Smith CS. SOLEIL: single-objective lens inclined light sheet localization microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:3275-3294. [PMID: 35781973 PMCID: PMC9208595 DOI: 10.1364/boe.451634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
High-NA light sheet illumination can improve the resolution of single-molecule localization microscopy (SMLM) by reducing the background fluorescence. These approaches currently require custom-made sample holders or additional specialized objectives, which makes the sample mounting or the optical system complex and therefore reduces the usability of these approaches. Here, we developed a single-objective lens-inclined light sheet microscope (SOLEIL) that is capable of 2D and 3D SMLM in thick samples. SOLEIL combines oblique illumination with point spread function PSF engineering to enable dSTORM imaging in a wide variety of samples. SOLEIL is compatible with standard sample holders and off-the-shelve optics and standard high NA objectives. To accomplish optimal optical sectioning we show that there is an ideal oblique angle and sheet thickness. Furthermore, to show what optical sectioning delivers for SMLM we benchmark SOLEIL against widefield and HILO microscopy with several biological samples. SOLEIL delivers in 15 μm thick Caco2-BBE cells a 374% higher intensity to background ratio and a 54% improvement in the estimated CRLB compared to widefield illumination, and a 184% higher intensity to background ratio and a 20% improvement in the estimated CRLB compared to HILO illumination.
Collapse
Affiliation(s)
- Shih-Te Hung
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
| | - Jelmer Cnossen
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
| | - Daniel Fan
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
| | - Marijn Siemons
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Daphne Jurriens
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Kristin Grußmayer
- Department of Bionanoscience and Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Oleg Soloviev
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
- Flexible Optical B.V., Polakweg 10-11, 2288 GG Rijswijk, Netherlands
| | - Lukas C. Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Carlas S. Smith
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
33
|
Bates M, Keller-Findeisen J, Przybylski A, Hüper A, Stephan T, Ilgen P, Cereceda Delgado AR, D'Este E, Egner A, Jakobs S, Sahl SJ, Hell SW. Optimal precision and accuracy in 4Pi-STORM using dynamic spline PSF models. Nat Methods 2022; 19:603-612. [PMID: 35577958 PMCID: PMC9119851 DOI: 10.1038/s41592-022-01465-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022]
Abstract
Coherent fluorescence imaging with two objective lenses (4Pi detection) enables single-molecule localization microscopy with sub-10 nm spatial resolution in three dimensions. Despite its outstanding sensitivity, wider application of this technique has been hindered by complex instrumentation and the challenging nature of the data analysis. Here we report the development of a 4Pi-STORM microscope, which obtains optimal resolution and accuracy by modeling the 4Pi point spread function (PSF) dynamically while also using a simpler optical design. Dynamic spline PSF models incorporate fluctuations in the modulation phase of the experimentally determined PSF, capturing the temporal evolution of the optical system. Our method reaches the theoretical limits for precision and minimizes phase-wrapping artifacts by making full use of the information content of the data. 4Pi-STORM achieves a near-isotropic three-dimensional localization precision of 2–3 nm, and we demonstrate its capabilities by investigating protein and nucleic acid organization in primary neurons and mammalian mitochondria. A dynamic model of the 4Pi point spread function enables localization microscopy with exceptional three-dimensional resolution and a simpler optical design. 4Pi-STORM images of neurons and mitochondria reveal new details of nanoscale protein and nucleic acid organization.
Collapse
Affiliation(s)
- Mark Bates
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. .,Department of Optical Nanoscopy, Institute for NanoPhotonics, Göttingen, Germany.
| | - Jan Keller-Findeisen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Adrian Przybylski
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Andreas Hüper
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Till Stephan
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Ilgen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Angel R Cereceda Delgado
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Alexander Egner
- Department of Optical Nanoscopy, Institute for NanoPhotonics, Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Steffen J Sahl
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. .,Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany.
| |
Collapse
|
34
|
Shang M, Huang ZL, Wang Y. Influence of drift correction precision on super-resolution localization microscopy. APPLIED OPTICS 2022; 61:3516-3522. [PMID: 36256388 DOI: 10.1364/ao.451561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/24/2022] [Indexed: 06/16/2023]
Abstract
Super-resolution localization microscopy (SRLM) breaks the diffraction limit successfully and improves the resolution of optical imaging systems by nearly an order of magnitude. However, SRLM typically takes several minutes or longer to collect a sufficient number of image frames that are required for reconstructing a final super-resolution image. During this long image acquisition period, system drift should be tightly controlled to ensure the imaging quality; thus, several drift correction methods have been developed. However, it is still unclear whether the performance of these methods is able to ensure sufficient image quality in SRLM. Without a clear answer to this question, it is hard to choose a suitable drift correction method for a specific SRLM experiment. In this paper, we use both theoretical analysis and simulation to investigate the relationship among drift correction precision, localization precision, and position estimation precision. We propose a concept of relative localization precision for evaluating the effect of drift correction on imaging resolution, which would help to select an appropriate drift correction method for a specific experiment.
Collapse
|
35
|
Chung KKH, Zhang Z, Kidd P, Zhang Y, Williams ND, Rollins B, Yang Y, Lin C, Baddeley D, Bewersdorf J. Fluorogenic DNA-PAINT for faster, low-background super-resolution imaging. Nat Methods 2022; 19:554-559. [PMID: 35501386 PMCID: PMC9133131 DOI: 10.1038/s41592-022-01464-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/23/2022] [Indexed: 11/21/2022]
Abstract
DNA-based points accumulation for imaging in nanoscale topography (DNA-PAINT) is a powerful super-resolution microscopy method that can acquire high-fidelity images at nanometer resolution. It suffers, however, from high background and slow imaging speed, both of which can be attributed to the presence of unbound fluorophores in solution. Here we present two-color fluorogenic DNA-PAINT, which uses improved imager probe and docking strand designs to solve these problems. These self-quenching single-stranded DNA probes are conjugated with a fluorophore and quencher at the terminals, which permits an increase in fluorescence by up to 57-fold upon binding and unquenching. In addition, the engineering of base pair mismatches between the fluorogenic imager probes and docking strands allowed us to achieve both high fluorogenicity and the fast binding kinetics required for fast imaging. We demonstrate a 26-fold increase in imaging speed over regular DNA-PAINT and show that our new implementation enables three-dimensional super-resolution DNA-PAINT imaging without optical sectioning.
Collapse
Affiliation(s)
- Kenny K H Chung
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Zhao Zhang
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Phylicia Kidd
- Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Yongdeng Zhang
- Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Nathan D Williams
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Bennett Rollins
- Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Yang Yang
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Chenxiang Lin
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - David Baddeley
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University, New Haven, CT, USA.
- Nanobiology Institute, Yale University, West Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
36
|
Gookin SE, Taylor MR, Schwartz SL, Kennedy MJ, Dell’Acqua ML, Crosby KC, Smith KR. Complementary Use of Super-Resolution Imaging Modalities to Study the Nanoscale Architecture of Inhibitory Synapses. Front Synaptic Neurosci 2022; 14:852227. [PMID: 35463850 PMCID: PMC9024107 DOI: 10.3389/fnsyn.2022.852227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
The nanoscale architecture of synapses has been investigated using multiple super-resolution methods, revealing a common modular structure for scaffolds, neurotransmitter receptors, and presynaptic proteins. This fundamental organization of proteins into subsynaptic domains (SSDs) is thought to be important for synaptic function and plasticity and common to many types of synapses. Using 3D super-resolution Structured Illumination Microscopy (3D-SIM), we recently showed that GABAergic inhibitory synapses exhibit this nanoscale organizational principle and are composed of SSDs of GABA A receptors (GABA A Rs), the inhibitory scaffold gephyrin, and the presynaptic active zone protein, RIM. Here, we have investigated the use of 3D-SIM and dSTORM to analyze the nanoscale architecture of the inhibitory synaptic adhesion molecule, neuroligin-2 (NL2). NL2 is a crucial mediator of inhibitory synapse formation and organization, associating with both GABA A Rs and gephyrin. However, the nanoscale sub-synaptic distribution NL2 remains unknown. We found that 3D-SIM and dSTORM provide complementary information regarding the distribution of NL2 at the inhibitory synapse, with NL2 forming nanoscale structures that have many similarities to gephyrin nanoscale architecture.
Collapse
Affiliation(s)
- Sara E. Gookin
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Matthew R. Taylor
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Samantha L. Schwartz
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Matthew J. Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Mark L. Dell’Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kevin C. Crosby
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | | |
Collapse
|
37
|
Abstract
Super-resolution microscopy techniques, and specifically single-molecule localization microscopy (SMLM), are approaching nanometer resolution inside cells and thus have great potential to complement structural biology techniques such as electron microscopy for structural cell biology. In this review, we introduce the different flavors of super-resolution microscopy, with a special emphasis on SMLM and MINFLUX (minimal photon flux). We summarize recent technical developments that pushed these localization-based techniques to structural scales and review the experimental conditions that are key to obtaining data of the highest quality. Furthermore, we give an overview of different analysis methods and highlight studies that used SMLM to gain structural insights into biologically relevant molecular machines. Ultimately, we give our perspective on what is needed to push the resolution of these techniques even further and to apply them to investigating dynamic structural rearrangements in living cells. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sheng Liu
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany;
| | - Philipp Hoess
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany;
| | - Jonas Ries
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany;
| |
Collapse
|
38
|
Martens KJA, Turkowyd B, Endesfelder U. Raw Data to Results: A Hands-On Introduction and Overview of Computational Analysis for Single-Molecule Localization Microscopy. FRONTIERS IN BIOINFORMATICS 2022; 1:817254. [PMID: 36303761 PMCID: PMC9580916 DOI: 10.3389/fbinf.2021.817254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/28/2021] [Indexed: 09/28/2023] Open
Abstract
Single-molecule localization microscopy (SMLM) is an advanced microscopy method that uses the blinking of fluorescent molecules to determine the position of these molecules with a resolution below the diffraction limit (∼5-40 nm). While SMLM imaging itself is becoming more popular, the computational analysis surrounding the technique is still a specialized area and often remains a "black box" for experimental researchers. Here, we provide an introduction to the required computational analysis of SMLM imaging, post-processing and typical data analysis. Importantly, user-friendly, ready-to-use and well-documented code in Python and MATLAB with exemplary data is provided as an interactive experience for the reader, as well as a starting point for further analysis. Our code is supplemented by descriptions of the computational problems and their implementation. We discuss the state of the art in computational methods and software suites used in SMLM imaging and data analysis. Finally, we give an outlook into further computational challenges in the field.
Collapse
Affiliation(s)
- Koen J. A. Martens
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, United States
- Institute for Microbiology and Biotechnology, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Bartosz Turkowyd
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, United States
- Institute for Microbiology and Biotechnology, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Ulrike Endesfelder
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, United States
- Institute for Microbiology and Biotechnology, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
39
|
Buscaglia G, Northington KR, Aiken J, Hoff KJ, Bates EA. Bridging the Gap: The Importance of TUBA1A α-Tubulin in Forming Midline Commissures. Front Cell Dev Biol 2022; 9:789438. [PMID: 35127710 PMCID: PMC8807549 DOI: 10.3389/fcell.2021.789438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Developing neurons undergo dramatic morphological changes to appropriately migrate and extend axons to make synaptic connections. The microtubule cytoskeleton, made of α/β-tubulin dimers, drives neurite outgrowth, promotes neuronal growth cone responses, and facilitates intracellular transport of critical cargoes during neurodevelopment. TUBA1A constitutes the majority of α-tubulin in the developing brain and mutations to TUBA1A in humans cause severe brain malformations accompanied by varying neurological defects, collectively termed tubulinopathies. Studies of TUBA1A function in mammalian cells have been limited by the presence of multiple genes encoding highly similar tubulin proteins, which leads to α-tubulin antibody promiscuity and makes genetic manipulation challenging. Here, we test mutant tubulin levels and assembly activity and analyze the impact of TUBA1A reduction on growth cone composition, neurite extension, and commissural axon architecture during brain development. We present a novel tagging method for studying and manipulating TUBA1A in cells without impairing tubulin function. Using this tool, we show that a TUBA1A loss-of-function mutation TUBA1A N102D (TUBA1A ND ), reduces TUBA1A protein levels and prevents incorporation of TUBA1A into microtubule polymers. Reduced Tuba1a α-tubulin in heterozygous Tuba1a ND/+ mice leads to grossly normal brain formation except a significant impact on axon extension and impaired formation of forebrain commissures. Neurons with reduced Tuba1a as a result of the Tuba1a ND mutation exhibit slower neuron outgrowth compared to controls. Neurons deficient in Tuba1a failed to localize microtubule associated protein-1b (Map1b) to the developing growth cone, likely impacting stabilization of microtubules. Overall, we show that reduced Tuba1a is sufficient to support neuronal migration and cortex development but not commissure formation, and provide mechanistic insight as to how TUBA1A tunes microtubule function to support neurodevelopment.
Collapse
Affiliation(s)
- Georgia Buscaglia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kyle R. Northington
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jayne Aiken
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Katelyn J. Hoff
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Emily A. Bates
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
40
|
Kuang W, Xin B, Huang ZL, Shi B. A labeling strategy with effective preservation of fluorophores for expansion single-molecule localization microscopy (Ex-SMLM). Analyst 2021; 147:139-146. [PMID: 34859796 DOI: 10.1039/d1an01680f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Expansion microscopy (ExM) significantly improves the resolution of conventional diffraction-limited optical microscopy by using physically expanding biological samples. Combining ExM with single-molecule localization microscopy (SMLM) could further enhance the resolving power of SMLM, which is typically in the order of 20-30 nm. However, to make this combination successful, we need to solve three key issues related to sample preparation, including mainly hydrogel shrinking in an ionic photoswitching buffer, fluorescence photobleaching due to a free-radical reaction and reduced labelling efficiency from protease digestion. Re-embedding polyacrylamide gel or using an improved photoswitching buffer with a low ionic strength is able to minimize or even solve the hydrogel shrinking problem, while the development of post-expansion labelling approaches avoids fluorescence bleaching. However, the preservation of protein epitopes (which determines the labelling efficiency) remains to be challenging. In this paper, we propose to tackle this challenge by introducing the highly selective and stable biotin-streptavidin interaction into the post-expansion labelling strategy. After upgrading the popular immunolabelling linkage scheme from Epitope-Primary antibody-Secondary antibody-Fluorophores to Epitope-Primary antibody-Secondary antibody-Biotin-Streptavidin-Fluorophores, we were able to label protein epitopes with biotin, which was stable during the expansion process, and thus avoid the troublesome problem in preserving protein epitopes or antibodies. We demonstrate that combining Ex-SMLM with the new post-expansion linkage scheme enables new possibilities in resolving the detailed arrangement of Nup133 proteins in the nuclear pore complex, which helps researchers to observe a clearer structure. This study provides new opportunities for studying the ultrastructural details of subcellular organelles or even biomacromolecules, using the conventional SMLM system.
Collapse
Affiliation(s)
- Weibing Kuang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bo Xin
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430040, China
| | - Zhen-Li Huang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China.
| | - Bing Shi
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
41
|
Cheng J, Allgeyer ES, Richens JH, Dzafic E, Palandri A, Lewków B, Sirinakis G, St Johnston D. A single-molecule localization microscopy method for tissues reveals nonrandom nuclear pore distribution in Drosophila. J Cell Sci 2021; 134:jcs259570. [PMID: 34806753 PMCID: PMC8729783 DOI: 10.1242/jcs.259570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/19/2023] Open
Abstract
Single-molecule localization microscopy (SMLM) can provide nanoscale resolution in thin samples but has rarely been applied to tissues because of high background from out-of-focus emitters and optical aberrations. Here, we describe a line scanning microscope that provides optical sectioning for SMLM in tissues. Imaging endogenously-tagged nucleoporins and F-actin on this system using DNA- and peptide-point accumulation for imaging in nanoscale topography (PAINT) routinely gives 30 nm resolution or better at depths greater than 20 µm. This revealed that the nuclear pores are nonrandomly distributed in most Drosophila tissues, in contrast to what is seen in cultured cells. Lamin Dm0 shows a complementary localization to the nuclear pores, suggesting that it corrals the pores. Furthermore, ectopic expression of the tissue-specific Lamin C causes the nuclear pores to distribute more randomly, whereas lamin C mutants enhance nuclear pore clustering, particularly in muscle nuclei. Given that nucleoporins interact with specific chromatin domains, nuclear pore clustering could regulate local chromatin organization and contribute to the disease phenotypes caused by human lamin A/C laminopathies.
Collapse
Affiliation(s)
- Jinmei Cheng
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Edward S. Allgeyer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Jennifer H. Richens
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Edo Dzafic
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Amandine Palandri
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Bohdan Lewków
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - George Sirinakis
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Daniel St Johnston
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
42
|
Wester MJ, Schodt DJ, Mazloom-Farsibaf H, Fazel M, Pallikkuth S, Lidke KA. Robust, fiducial-free drift correction for super-resolution imaging. Sci Rep 2021; 11:23672. [PMID: 34880301 PMCID: PMC8655078 DOI: 10.1038/s41598-021-02850-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
We describe a robust, fiducial-free method of drift correction for use in single molecule localization-based super-resolution methods. The method combines periodic 3D registration of the sample using brightfield images with a fast post-processing algorithm that corrects residual registration errors and drift between registration events. The method is robust to low numbers of collected localizations, requires no specialized hardware, and provides stability and drift correction for an indefinite time period.
Collapse
Affiliation(s)
- Michael J Wester
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, 87131, USA
| | - David J Schodt
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Hanieh Mazloom-Farsibaf
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, 87131, USA.,Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mohamadreza Fazel
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Physics, Center for Biological Physics, Arizona State University, Tempe, AZ, 85287, USA
| | - Sandeep Pallikkuth
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
43
|
Sørensen G, Rickhag M, Leo D, Lycas MD, Ridderstrøm PH, Weikop P, Lilja JH, Rifes P, Herborg F, Woldbye D, Wörtwein G, Gainetdinov RR, Fink-Jensen A, Gether U. Disruption of the PDZ domain-binding motif of the dopamine transporter uniquely alters nanoscale distribution, dopamine homeostasis, and reward motivation. J Biol Chem 2021; 297:101361. [PMID: 34756883 PMCID: PMC8648841 DOI: 10.1016/j.jbc.2021.101361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/04/2022] Open
Abstract
The dopamine (DA) transporter (DAT) is part of a presynaptic multiprotein network involving interactions with scaffold proteins via its C-terminal PDZ domain-binding sequence. Using a mouse model expressing DAT with mutated PDZ-binding sequence (DAT-AAA), we previously demonstrated the importance of this binding sequence for striatal expression of DAT. Here, we show by application of direct stochastic reconstruction microscopy not only that the striatal level of transporter is reduced in DAT-AAA mice but also that the nanoscale distribution of this transporter is altered with a higher propensity of DAT-AAA to localize to irregular nanodomains in dopaminergic terminals. In parallel, we observe mesostriatal DA adaptations and changes in DA-related behaviors distinct from those seen in other genetic DAT mouse models. DA levels in the striatum are reduced to ∼45% of that of WT, accompanied by elevated DA turnover. Nonetheless, fast-scan cyclic voltammetry recordings on striatal slices reveal a larger amplitude and prolonged clearance rate of evoked DA release in DAT-AAA mice compared with WT mice. Autoradiography and radioligand binding show reduced DA D2 receptor levels, whereas immunohistochemistry and autoradiography show unchanged DA D1 receptor levels. In behavioral experiments, we observe enhanced self-administration of liquid food under both a fixed ratio of one and progressive ratio schedule of reinforcement but a reduction compared with WT when using cocaine as reinforcer. In summary, our data demonstrate how disruption of PDZ domain interactions causes changes in DAT expression and its nanoscopic distribution that in turn alter DA clearance dynamics and related behaviors.
Collapse
Affiliation(s)
- Gunnar Sørensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Mental Health Center & University of Copenhagen, Copenhagen, Denmark
| | - Mattias Rickhag
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Damiana Leo
- Neuroscience and Brain Technologies Department, Italian Institute of Technology, Genoa, Italy
| | - Matthew D Lycas
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Herrstedt Ridderstrøm
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Mental Health Center & University of Copenhagen, Copenhagen, Denmark
| | - Pia Weikop
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Mental Health Center & University of Copenhagen, Copenhagen, Denmark
| | - Jamila H Lilja
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pedro Rifes
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Freja Herborg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Woldbye
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gitta Wörtwein
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Mental Health Center & University of Copenhagen, Copenhagen, Denmark
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine and Saint-Petersburg University Hospital, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Anders Fink-Jensen
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Mental Health Center & University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Gether
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
44
|
Masullo LA, Szalai AM, Lopez LF, Stefani FD. Fluorescence nanoscopy at the sub-10 nm scale. Biophys Rev 2021; 13:1101-1112. [PMID: 35059030 PMCID: PMC8724505 DOI: 10.1007/s12551-021-00864-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Fluorescence nanoscopy represented a breakthrough for the life sciences as it delivers 20-30 nm resolution using far-field fluorescence microscopes. This resolution limit is not fundamental but imposed by the limited photostability of fluorophores under ambient conditions. This has motivated the development of a second generation of fluorescence nanoscopy methods that aim to deliver sub-10 nm resolution, reaching the typical size of structural proteins and thus providing true molecular resolution. In this review, we present common fundamental aspects of these nanoscopies, discuss the key experimental factors that are necessary to fully exploit their capabilities, and discuss their current and future challenges.
Collapse
Affiliation(s)
- Luciano A. Masullo
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Alan M. Szalai
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía F. Lopez
- Departamento de Física, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando D. Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
45
|
Truong Quang BA, Peters R, Cassani DAD, Chugh P, Clark AG, Agnew M, Charras G, Paluch EK. Extent of myosin penetration within the actin cortex regulates cell surface mechanics. Nat Commun 2021; 12:6511. [PMID: 34764258 PMCID: PMC8586027 DOI: 10.1038/s41467-021-26611-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
In animal cells, shape is mostly determined by the actomyosin cortex, a thin cytoskeletal network underlying the plasma membrane. Myosin motors generate tension in the cortex, and tension gradients result in cellular deformations. As such, many cell morphogenesis studies have focused on the mechanisms controlling myosin activity and recruitment to the cortex. Here, we demonstrate using super-resolution microscopy that myosin does not always overlap with actin at the cortex, but remains restricted towards the cytoplasm in cells with low cortex tension. We propose that this restricted penetration results from steric hindrance, as myosin minifilaments are considerably larger than the cortical actin meshsize. We identify myosin activity and actin network architecture as key regulators of myosin penetration into the cortex, and show that increasing myosin penetration increases cortical tension. Our study reveals that the spatial coordination of myosin and actin at the cortex regulates cell surface mechanics, and unveils an important mechanism whereby myosin size controls its action by limiting minifilament penetration into the cortical actin network. More generally, our findings suggest that protein size could regulate function in dense cytoskeletal structures. Cellular deformations are largely driven by contractile forces generated by myosin motors in the submembraneous actin cortex. Here we show that these forces are controlled not simply by cortical myosin levels, but rather by myosins spatial arrangement, specifically the extent of their overlap with cortical actin.
Collapse
Affiliation(s)
- Binh An Truong Quang
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Ruby Peters
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Davide A D Cassani
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Priyamvada Chugh
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Andrew G Clark
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK.,University of Stuttgart, Institute of Cell Biology and Immunology, Allmandring 31, 70569, Stuttgart, Germany
| | - Meghan Agnew
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK.,Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK. .,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK.
| |
Collapse
|
46
|
Shang M, Zhou Z, Kuang W, Wang Y, Xin B, Huang ZL. High-precision 3D drift correction with differential phase contrast images. OPTICS EXPRESS 2021; 29:34641-34655. [PMID: 34809249 DOI: 10.1364/oe.438160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Single molecule localization microscopy (SMLM) usually requires long image acquisition time at the order of minutes and thus suffers from sample drift, which deteriorates image quality. A drift estimation method with high precision is typically used in SMLM, which can be further combined with a drift compensation device to enable active microscope stabilization. Among all the reported methods, the drift estimation method based on bright-field image correlation requires no extra sample preparation or complicated modification to the imaging setup. However, the performance of this method is limited by the contrast of bright-field images, especially for the structures without sufficient features. In this paper, we proposed to use differential phase contrast (DPC) microscopy to enhance the image contrast and presented a 3D drift correction method with higher precision and robustness. This DPC-based drift correction method is suitable even for biological samples without clear morphological features. We demonstrated that this method can achieve a correction precision of < 6 nm in both the lateral direction and axial direction. Using SMLM imaging of microtubules, we verified that this method provides a comparable drift estimation performance as redundant cross-correlation.
Collapse
|
47
|
Wang Y, Kuang W, Shang M, Huang ZL. Two-color super-resolution localization microscopy via joint encoding of emitter location and color. OPTICS EXPRESS 2021; 29:34797-34809. [PMID: 34809261 DOI: 10.1364/oe.440706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Multi-color super-resolution localization microscopy (SRLM) provides great opportunities for studying the structural and functional details of biological samples. However, current multi-color SRLM methods either suffer from medium to high crosstalk, or require a dedicated optical system and a complicated image analysis procedure. To address these problems, here we propose a completely different method to realize multi-color SRLM. This method is built upon a customized RGBW camera with a repeated pattern of filtered (Red, Green, Blue and Near-infrared) and unfiltered (White) pixels. With a new insight that RGBW camera is advantageous for color recognition instead of color reproduction, we developed a joint encoding scheme of emitter location and color. By combing this RGBW camera with the joint encoding scheme and a simple optical set-up, we demonstrated two-color SRLM with ∼20 nm resolution and < 2% crosstalk (which is comparable to the best-reported values). This study significantly reduces the complexity of two-color SRLM (and potentially multi-color SRLM), and thus offers good opportunities for general biomedical research laboratories to use multi-color SRLM, which is currently mastered only by well-trained researchers.
Collapse
|
48
|
Fast and robust multiplane single-molecule localization microscopy using a deep neural network. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Fazekas FJ, Shaw TR, Kim S, Bogucki RA, Veatch SL. A mean shift algorithm for drift correction in localization microscopy. BIOPHYSICAL REPORTS 2021; 1. [PMID: 35382035 PMCID: PMC8978553 DOI: 10.1016/j.bpr.2021.100008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Single-molecule localization microscopy techniques transcend the diffraction limit of visible light by localizing isolated emitters sampled stochastically. This time-lapse imaging necessitates long acquisition times, over which sample drift can become large relative to the localization precision. Here, we present an efficient and robust method for estimating drift, using a simple peak-finding algorithm based on mean shifts that is effective for single-molecule localization microscopy in two or three dimensions.
Collapse
|
50
|
Cnossen J, Cui TJ, Joo C, Smith C. Drift correction in localization microscopy using entropy minimization. OPTICS EXPRESS 2021; 29:27961-27974. [PMID: 34614938 DOI: 10.1364/oe.426620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Localization microscopy offers resolutions down to a single nanometer but currently requires additional dedicated hardware or fiducial markers to reduce resolution loss from the drift of the sample. Drift estimation without fiducial markers is typically implemented using redundant cross correlation (RCC). We show that RCC has sub-optimal precision and bias, which leaves room for improvement. Here, we minimize a bound on the entropy of the obtained localizations to efficiently compute a precise drift estimate. Within practical compute-time constraints, simulations show a 5x improvement in drift estimation precision over the widely used RCC algorithm. The algorithm operates directly on fluorophore localizations and is tested on simulated and experimental datasets in 2D and 3D. An open source implementation is provided, implemented in Python and C++, and can utilize a GPU if available.
Collapse
|