1
|
Lu X, Zhou C, Delima RS, Lees EW, Soni A, Dvorak DJ, Ren S, Ji T, Bahi A, Ko F, Berlinguette CP. Visualization of CO 2 electrolysis using optical coherence tomography. Nat Chem 2024; 16:979-987. [PMID: 38429344 DOI: 10.1038/s41557-024-01465-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024]
Abstract
Electrolysers offer an appealing technology for conversion of CO2 into high-value chemicals. However, there are few tools available to track the reactions that occur within electrolysers. Here we report an electrolysis optical coherence tomography platform to visualize the chemical reactions occurring in a CO2 electrolyser. This platform was designed to capture three-dimensional images and videos at high spatial and temporal resolutions. We recorded 12 h of footage of an electrolyser containing a porous electrode separated by a membrane, converting a continuous feed of liquid KHCO3 to reduce CO2 into CO at applied current densities of 50-800 mA cm-2. This platform visualized reactants, intermediates and products, and captured the strikingly dynamic movement of the cathode and membrane components during electrolysis. It also linked CO production to regions of the electrolyser in which CO2 was in direct contact with both membrane and catalyst layers. These results highlight how this platform can be used to track reactions in continuous flow electrochemical reactors.
Collapse
Affiliation(s)
- Xin Lu
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Zhou
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Materials Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Roxanna S Delima
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric W Lees
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Abhishek Soni
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - David J Dvorak
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shaoxuan Ren
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Tengxiao Ji
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Addie Bahi
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank Ko
- Department of Materials Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Curtis P Berlinguette
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada.
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia, Canada.
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Li K, Liu B, Wang Z, Li Y, Li H, Wu S, Li Z. Quantitative characterization of zebrafish development based on multiple classifications using Mueller matrix OCT. BIOMEDICAL OPTICS EXPRESS 2023; 14:2889-2904. [PMID: 37342688 PMCID: PMC10278635 DOI: 10.1364/boe.488614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
Organ development analysis plays an important role in assessing an individual' s growth health. In this study, we present a non-invasive method for the quantitative characterization of zebrafish multiple organs during their growth, utilizing Mueller matrix optical coherence tomography (Mueller matrix OCT) in combination with deep learning. Firstly, Mueller matrix OCT was employed to acquire 3D images of zebrafish during development. Subsequently, a deep learning based U-Net network was applied to segment various anatomical structures, including the body, eyes, spine, yolk sac, and swim bladder of the zebrafish. Following segmentation, the volume of each organ was calculated. Finally, the development and proportional trends of zebrafish embryos and organs from day 1 to day 19 were quantitatively analyzed. The obtained quantitative results revealed that the volume development of the fish body and individual organs exhibited a steady growth trend. Additionally, smaller organs, such as the spine and swim bladder, were successfully quantified during the growth process. Our findings demonstrate that the combination of Mueller matrix OCT and deep learning effectively quantify the development of various organs throughout zebrafish embryonic development. This approach offers a more intuitive and efficient monitoring method for clinical medicine and developmental biology studies.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Bin Liu
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Zaifan Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Yao Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Hui Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Shulian Wu
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Zhifang Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
- Bionovel Lab, Guangzhou, Guangdong, 510407, China
| |
Collapse
|
3
|
Yin Q, Gao W, Chang Y. Mueller matrix polarization imaging and quantitative parameters analysis method. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:714-721. [PMID: 37132965 DOI: 10.1364/josaa.483300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mueller matrix polarization imaging is a new biomedical optical imaging method that can generate both polarization and isotropic intensity images of structures of the biological tissue sample surface. In this paper, a Mueller polarization imaging system in the reflection mode is described for obtaining the Mueller matrix of the specimens. Diattenuation, phase retardation, and depolarization of the specimens are derived by using the conventional Mueller matrix polarization decomposition method and a newly proposed direct method. The results show that the direct method is more convenient and faster than the conventional decomposition method. The polarization parameter combination method is then presented in which any two of the diattenuation, phase retardation, and depolarization parameters are combined, and three new quantitative parameters are defined in order to reveal more detailed anisotropic structures. The images of in vitro samples are presented to demonstrate the capability of the parameters introduced.
Collapse
|
4
|
Dai X, Xu S, Yang X, Zhou KC, Glass C, Konda PC, Horstmeyer R. Quantitative Jones matrix imaging using vectorial Fourier ptychography. BIOMEDICAL OPTICS EXPRESS 2022; 13:1457-1470. [PMID: 35414998 PMCID: PMC8973192 DOI: 10.1364/boe.448804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 05/29/2023]
Abstract
This paper presents a microscopic imaging technique that uses variable-angle illumination to recover the complex polarimetric properties of a specimen at high resolution and over a large field-of-view. The approach extends Fourier ptychography, which is a synthetic aperture-based imaging approach to improve resolution with phaseless measurements, to additionally account for the vectorial nature of light. After images are acquired using a standard microscope outfitted with an LED illumination array and two polarizers, our vectorial Fourier ptychography (vFP) algorithm solves for the complex 2x2 Jones matrix of the anisotropic specimen of interest at each resolved spatial location. We introduce a new sequential Gauss-Newton-based solver that additionally jointly estimates and removes polarization-dependent imaging system aberrations. We demonstrate effective vFP performance by generating large-area (29 mm2), high-resolution (1.24 μm full-pitch) reconstructions of sample absorption, phase, orientation, diattenuation, and retardance for a variety of calibration samples and biological specimens.
Collapse
Affiliation(s)
- Xiang Dai
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- These authors contributed equally
| | - Shiqi Xu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- These authors contributed equally
| | - Xi Yang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Kevin C. Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Carolyn Glass
- Department of Pathology, Duke University, Durham, NC 27708, USA
| | - Pavan Chandra Konda
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Roarke Horstmeyer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
5
|
Veselka L, Krainz L, Mindrinos L, Drexler W, Elbau P. A Quantitative Model for Optical Coherence Tomography. SENSORS 2021; 21:s21206864. [PMID: 34696077 PMCID: PMC8539377 DOI: 10.3390/s21206864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022]
Abstract
Optical coherence tomography (OCT) is a widely used imaging technique in the micrometer regime, which gained accelerating interest in medical imaging in the last twenty years. In up-to-date OCT literature, certain simplifying assumptions are made for the reconstructions, but for many applications, a more realistic description of the OCT imaging process is of interest. In mathematical models, for example, the incident angle of light onto the sample is usually neglected or a plane wave description for the light–sample interaction in OCT is used, which ignores almost completely the occurring effects within an OCT measurement process. In this article, we make a first step to a quantitative model by considering the measured intensity as a combination of back-scattered Gaussian beams affected by the system. In contrast to the standard plane wave simplification, the presented model includes system relevant parameters, such as the position of the focus and the spot size of the incident laser beam, which allow a precise prediction of the OCT data. The accuracy of the proposed model—after calibration of all necessary system parameters—is illustrated by simulations and validated by a comparison with experimental data obtained from a 1300 nm swept-source OCT system.
Collapse
Affiliation(s)
- Leopold Veselka
- Faculty of Mathematics, University of Vienna, 1090 Vienna, Austria; (L.V.); (L.M.); (P.E.)
| | - Lisa Krainz
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria;
| | - Leonidas Mindrinos
- Faculty of Mathematics, University of Vienna, 1090 Vienna, Austria; (L.V.); (L.M.); (P.E.)
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria;
- Correspondence:
| | - Peter Elbau
- Faculty of Mathematics, University of Vienna, 1090 Vienna, Austria; (L.V.); (L.M.); (P.E.)
| |
Collapse
|
6
|
He C, He H, Chang J, Chen B, Ma H, Booth MJ. Polarisation optics for biomedical and clinical applications: a review. LIGHT, SCIENCE & APPLICATIONS 2021; 10:194. [PMID: 34552045 PMCID: PMC8458371 DOI: 10.1038/s41377-021-00639-x] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 05/13/2023]
Abstract
Many polarisation techniques have been harnessed for decades in biological and clinical research, each based upon measurement of the vectorial properties of light or the vectorial transformations imposed on light by objects. Various advanced vector measurement/sensing techniques, physical interpretation methods, and approaches to analyse biomedically relevant information have been developed and harnessed. In this review, we focus mainly on summarising methodologies and applications related to tissue polarimetry, with an emphasis on the adoption of the Stokes-Mueller formalism. Several recent breakthroughs, development trends, and potential multimodal uses in conjunction with other techniques are also presented. The primary goal of the review is to give the reader a general overview in the use of vectorial information that can be obtained by polarisation optics for applications in biomedical and clinical research.
Collapse
Affiliation(s)
- Chao He
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| | - Honghui He
- Guangdong Engineering Center of Polarisation Imaging and Sensing Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China.
| | - Jintao Chang
- Guangdong Engineering Center of Polarisation Imaging and Sensing Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
- Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Binguo Chen
- Guangdong Engineering Center of Polarisation Imaging and Sensing Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
- Department of Biomedical Engineering, Tsinghua University, 100084, Beijing, China
| | - Hui Ma
- Guangdong Engineering Center of Polarisation Imaging and Sensing Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
- Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Martin J Booth
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| |
Collapse
|
7
|
Huynh RN, Nehmetallah G, Raub CB. Mueller matrix polarimetry and polar decomposition of articular cartilage imaged in reflectance. BIOMEDICAL OPTICS EXPRESS 2021; 12:5160-5178. [PMID: 34513249 PMCID: PMC8407819 DOI: 10.1364/boe.428223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 05/31/2023]
Abstract
Articular cartilage birefringence relates to zonal architecture primarily of type II collagen, which has been assessed extensively in transmission, through thin tissue sections, to evaluate cartilage repair and degeneration. Mueller matrix imaging of articular cartilage in reflection is of potential utility for non-destructive imaging in clinical and research applications. Therefore, such an imaging system was constructed to measure laser reflectance signals, calibrated, and tested with optical standards. Polar decomposition was chosen as a method to extract fundamental optical parameters from the experimental Mueller matrices, with performance confirmed by simulations. Adult bovine articular cartilage from the patellofemoral groove was found to have ∼0.93 radians retardance, low diattenuation of ∼0.2, and moderately high depolarization of 0.66. Simulations showed that variation in depolarization drives inaccuracy of depolarization and retardance maps derived by polar decomposition. These results create a basis for further investigation of the clinical utility of polarized signals from knee tissue and suggest potential approaches for improving the accuracy of polar decomposition maps.
Collapse
Affiliation(s)
- Ruby N. Huynh
- Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064, USA
| | - George Nehmetallah
- Department of Electrical Engineering and Computer Science, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064, USA
| | - Christopher B. Raub
- Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064, USA
| |
Collapse
|
8
|
Motschi AR, Roberts PK, Desissaire S, Schranz M, Schwarzhans F, Bogunović H, Pircher M, Hitzenberger CK. Identification and quantification of fibrotic areas in the human retina using polarization-sensitive OCT. BIOMEDICAL OPTICS EXPRESS 2021; 12:4380-4400. [PMID: 34457420 PMCID: PMC8367236 DOI: 10.1364/boe.426650] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 05/08/2023]
Abstract
Subretinal fibrosis is one of the most prevalent causes of blindness in the elderly population, but a true gold standard to objectively diagnose fibrosis is still lacking. Since fibrotic tissue is birefringent, it can be detected by polarization-sensitive optical coherence tomography (PS-OCT). We present a new algorithm to automatically detect, segment, and quantify fibrotic lesions within 3D data sets recorded by PS-OCT. The algorithm first compensates for the birefringence of anterior ocular tissues and then uses the uniformity of the birefringent optic axis as an indicator to identify fibrotic tissue, which is then segmented and quantified. The algorithm was applied to 3D volumes recorded in 57 eyes of 57 patients with neovascular age-related macular degeneration using a spectral domain PS-OCT system. The results of fibrosis detection were compared to the clinical diagnosis based on color fundus photography (CFP), and the precision of fibrotic area measurement was assessed by three repeated measurements in a sub-set of 15 eyes. The average standard deviation of the fibrotic area obtained in eyes with a lesion area > 0.7 mm2 was 15%. Fibrosis detection by CFP and PS-OCT agreed in 48 cases, discrepancies were only observed in cases of lesion area < 0.7 mm2. These remaining discrepancies are discussed, and a new method to treat ambiguous cases is presented.
Collapse
Affiliation(s)
- Alice R. Motschi
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Philipp K. Roberts
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Sylvia Desissaire
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Markus Schranz
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Florian Schwarzhans
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Hrvoje Bogunović
- Christian Doppler Laboratory for Ophthalmic Image Analysis, Medical University of Vienna, Vienna, Austria
| | - Michael Pircher
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Christoph K. Hitzenberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Jiao Y, Kandel ME, Liu X, Lu W, Popescu G. Real-time Jones phase microscopy for studying transparent and birefringent specimens. OPTICS EXPRESS 2020; 28:34190-34200. [PMID: 33182894 PMCID: PMC7679182 DOI: 10.1364/oe.397062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Tissue birefringence is an intrinsic marker of potential value for cancer diagnosis. Traditionally, birefringence properties have been studied by using intensity-based formalisms, through the Mueller matrix algebra. On the other hand, the Jones matrix description allows for a direct assessment of the sample's anisotropic response. However, because Jones algebra is based on complex fields, requiring measurements of both phase and amplitude, it is less commonly used. Here we propose a real-time imaging method for measuring Jones matrices by quantitative phase imaging. We combine a broadband phase imaging system with a polarization-sensitive detector to obtain Jones matrices at each point in a megapixel scale image, with near video rate capture speeds. To validate the utility of our approach, we measured standard targets, partially birefringent samples, dynamic specimens, and thinly sliced histopathological tissue.
Collapse
Affiliation(s)
- Yuheng Jiao
- Quantitative Light Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, the University of Illinois at Urbana-Champaign, Illinois 61801, USA
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mikhail E. Kandel
- Quantitative Light Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, the University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Xiaojun Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenlong Lu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Gabriel Popescu
- Quantitative Light Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, the University of Illinois at Urbana-Champaign, Illinois 61801, USA
| |
Collapse
|
10
|
Cerda T, Ruiz U, Sánchez-de-la-Llave D, Arrizon V. Simple techniques to generate binary periodical polarization fields. APPLIED OPTICS 2020; 59:6155-6160. [PMID: 32672763 DOI: 10.1364/ao.393867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
We report two new, to the best of our knowledge, methods to generate polarization gratings, whose basic cells are formed by sections that are orthogonally polarized. One of the methods employs a spatial filtering setup that modulates the diffraction orders in the Fourier domain of a Ronchi grating, with two orthogonal polarizations. In the second method, a binary phase modulation, generated by a liquid crystal device, is converted into orthogonal polarizations in different zones of an incident beam. The analysis of the generated polarization states is made at 1/4 of the Talbot distance of the generated gratings. The experimental results are in good agreement with the theoretical description.
Collapse
|
11
|
Machine assisted classification of chicken, beef and mutton tissues using optical polarimetry and Bagging model. Photodiagnosis Photodyn Ther 2020; 31:101779. [PMID: 32320755 DOI: 10.1016/j.pdpdt.2020.101779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/17/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
Optical polarimetry has been used to characterize muscle tissue samples of chicken, beef and mutton, exhibiting statistically significant (p < 0.01) differences in total depolarization and retardance of three tissue groups. Herein, the total depolarization and retardance were utilized to differentiate and classify the three tissue groups. Specifically, the Bagging classification algorithm was employed for this multi-class differentiation. The performance of the optical polarimetry in tandem with the Bagging model for machine-assisted classification of the three tissue groups was assessed in terms of a comprehensive set of evaluation metrics. The Bagging model correctly classified 47/48, 19/20 and 15/18, whereas the sensitivity (Sn = 97.9 %, 82.6 %, 100 %), specificity (Sp = 97.4 %, 98.4 %, 95.8 %), positive predictive values (PPV = 0.97, 0.95, 0.83) and negative predictive values (NPV = 0.97, 0.94, 1.0) were calculated for the chicken, beef and mutton tissue samples, respectively. This automatic classification of the three tissue samples indicates a novel application of the optical polarimetry in the meat industry.
Collapse
|
12
|
Wang C, Qin P, Lv D, Wan J, Sun S, Ma H. Characterization of anisotropy of the porous anodic alumina by the Mueller matrix imaging method. OPTICS EXPRESS 2020; 28:6740-6754. [PMID: 32225915 DOI: 10.1364/oe.380070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Porous anodic alumina (PAA) is a photonic crystal with a hexagonal porous structure. To learn more about the effects brought by pores on the anisotropy of the PAA, we use the orientation sensitive Mueller matrix imaging (MMI) method to study it. We fabricated the PAA samples with uniform pores and two different pore diameters. By the MMI experiments with these samples, we found that the birefringence is the major anisotropy of the PAA and that there are many small areas with different orientations that formed spontaneously in the process of production on the surface of the PAA. By the MMI experiments at different orientations of the sample with two different pore diameters, we found that the pores affect the birefringence of the sample and the effect increases with the increased inclination of the sample. To further analyze the PAA, we present a symmetrical rotation measurement method according to the Mueller matrix of the retarder. With this method, we can calculate the average refractive index (RI) of birefringence and the orientation of the optical axis of uniaxial crystal. The results also show the effect of the pores on the anisotropy of PAA.
Collapse
|
13
|
Hemphill AS, Shen Y, Hwang J, Wang LV. High-speed alignment optimization of digital optical phase conjugation systems based on autocovariance analysis in conjunction with orthonormal rectangular polynomials. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-11. [PMID: 30156064 PMCID: PMC6444113 DOI: 10.1117/1.jbo.24.3.031004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/06/2018] [Indexed: 05/23/2023]
Abstract
Digital optical phase conjugation (DOPC) enables many optical applications by permitting focusing of light through scattering media. However, DOPC systems require precise alignment of all optical components, particularly of the spatial light modulator (SLM) and camera, in order to accurately record the wavefront and perform playback through the use of time-reversal symmetry. We present a digital compensation technique to optimize the alignment of the SLM in five degrees of freedom, permitting focusing through thick scattering media with a thickness of 5 mm and transport scattering coefficient of 2.5 mm - 1 while simultaneously improving focal quality, as quantified by the peak-to-background ratio, by several orders of magnitude over an unoptimized alignment.
Collapse
Affiliation(s)
- Ashton S. Hemphill
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Department of Electrical Engineering, Pasadena, California, United States
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Yuecheng Shen
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Department of Electrical Engineering, Pasadena, California, United States
| | - Jeeseong Hwang
- National Institute of Standards and Technology, Quantum Electromagnetics Division, Boulder, Colorado, United States
| | - Lihong V. Wang
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Department of Electrical Engineering, Pasadena, California, United States
| |
Collapse
|
14
|
Chen TL, Lo YL, Liao CC, Phan QH. Noninvasive measurement of glucose concentration on human fingertip by optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 29637760 DOI: 10.1117/1.jbo.23.4.047001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/16/2018] [Indexed: 05/03/2023]
Abstract
A method is proposed for determining the glucose concentration on the human fingertip by extracting two optical parameters, namely the optical rotation angle and the depolarization index, using a Mueller optical coherence tomography technique and a genetic algorithm. The feasibility of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index of aqueous glucose solutions with low and high scattering, respectively. It is shown that for both solutions, the optical rotation angle and depolarization index vary approximately linearly with the glucose concentration. As a result, the ability of the proposed method to obtain the glucose concentration by means of just two optical parameters is confirmed. The practical applicability of the proposed technique is demonstrated by measuring the optical rotation angle and depolarization index on the human fingertip of healthy volunteers under various glucose conditions.
Collapse
Affiliation(s)
- Tseng-Lin Chen
- National Cheng Kung University, Department of Mechanical Engineering, Tainan, Taiwan
| | - Yu-Lung Lo
- National Cheng Kung University, Department of Mechanical Engineering, Tainan, Taiwan
- National Cheng Kung University, Advanced Optoelectronic Technology Center, Tainan, Taiwan
| | - Chia-Chi Liao
- National Cheng Kung University, Department of Mechanical Engineering, Tainan, Taiwan
| | - Quoc-Hung Phan
- National Cheng Kung University, Department of Mechanical Engineering, Tainan, Taiwan
| |
Collapse
|
15
|
Hemphill AS, Shen Y, Liu Y, Wang LV. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping. APPLIED PHYSICS LETTERS 2017; 111:221109. [PMID: 29249832 PMCID: PMC5709093 DOI: 10.1063/1.5009113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/03/2017] [Indexed: 05/28/2023]
Abstract
In biological applications, optical focusing is limited by the diffusion of light, which prevents focusing at depths greater than ∼1 mm in soft tissue. Wavefront shaping extends the depth by compensating for phase distortions induced by scattering and thus allows for focusing light through biological tissue beyond the optical diffusion limit by using constructive interference. However, due to physiological motion, light scattering in tissue is deterministic only within a brief speckle correlation time. In in vivo tissue, this speckle correlation time is on the order of milliseconds, and so the wavefront must be optimized within this brief period. The speed of digital wavefront shaping has typically been limited by the relatively long time required to measure and display the optimal phase pattern. This limitation stems from the low speeds of cameras, data transfer and processing, and spatial light modulators. While binary-phase modulation requiring only two images for the phase measurement has recently been reported, most techniques require at least three frames for the full-phase measurement. Here, we present a full-phase digital optical phase conjugation method based on off-axis holography for single-shot optical focusing through scattering media. By using off-axis holography in conjunction with graphics processing unit based processing, we take advantage of the single-shot full-phase measurement while using parallel computation to quickly reconstruct the phase map. With this system, we can focus light through scattering media with a system latency of approximately 9 ms, on the order of the in vivo speckle correlation time.
Collapse
Affiliation(s)
| | - Yuecheng Shen
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yan Liu
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
16
|
Hemphill AS, Shen Y, Liu Y, Wang LV. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping. APPLIED PHYSICS LETTERS 2017. [PMID: 29249832 DOI: 10.1063/1.4994311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In biological applications, optical focusing is limited by the diffusion of light, which prevents focusing at depths greater than ∼1 mm in soft tissue. Wavefront shaping extends the depth by compensating for phase distortions induced by scattering and thus allows for focusing light through biological tissue beyond the optical diffusion limit by using constructive interference. However, due to physiological motion, light scattering in tissue is deterministic only within a brief speckle correlation time. In in vivo tissue, this speckle correlation time is on the order of milliseconds, and so the wavefront must be optimized within this brief period. The speed of digital wavefront shaping has typically been limited by the relatively long time required to measure and display the optimal phase pattern. This limitation stems from the low speeds of cameras, data transfer and processing, and spatial light modulators. While binary-phase modulation requiring only two images for the phase measurement has recently been reported, most techniques require at least three frames for the full-phase measurement. Here, we present a full-phase digital optical phase conjugation method based on off-axis holography for single-shot optical focusing through scattering media. By using off-axis holography in conjunction with graphics processing unit based processing, we take advantage of the single-shot full-phase measurement while using parallel computation to quickly reconstruct the phase map. With this system, we can focus light through scattering media with a system latency of approximately 9 ms, on the order of the in vivo speckle correlation time.
Collapse
Affiliation(s)
| | - Yuecheng Shen
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yan Liu
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
17
|
de Boer JF, Hitzenberger CK, Yasuno Y. Polarization sensitive optical coherence tomography - a review [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:1838-1873. [PMID: 28663869 PMCID: PMC5480584 DOI: 10.1364/boe.8.001838] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT) is now a well-established modality for high-resolution cross-sectional and three-dimensional imaging of transparent and translucent samples and tissues. Conventional, intensity based OCT, however, does not provide a tissue-specific contrast, causing an ambiguity with image interpretation in several cases. Polarization sensitive (PS) OCT draws advantage from the fact that several materials and tissues can change the light's polarization state, adding an additional contrast channel and providing quantitative information. In this paper, we review basic and advanced methods of PS-OCT and demonstrate its use in selected biomedical applications.
Collapse
Affiliation(s)
- Johannes F. de Boer
- Department of Physics and Astronomy, LaserLaB Amsterdam, VU University, Amsterdam, The Netherlands
- Authors were listed in alphabetical order and contributed equally to the manuscript
| | - Christoph K. Hitzenberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Authors were listed in alphabetical order and contributed equally to the manuscript
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Japan
- Authors were listed in alphabetical order and contributed equally to the manuscript
| |
Collapse
|
18
|
Yamanari M, Tsuda S, Kokubun T, Shiga Y, Omodaka K, Aizawa N, Yokoyama Y, Himori N, Kunimatsu-Sanuki S, Maruyama K, Kunikata H, Nakazawa T. Estimation of Jones matrix, birefringence and entropy using Cloude-Pottier decomposition in polarization-sensitive optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:3551-3573. [PMID: 27699120 PMCID: PMC5030032 DOI: 10.1364/boe.7.003551] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/13/2016] [Accepted: 08/13/2016] [Indexed: 05/18/2023]
Abstract
Estimation of polarimetric parameters has been a fundamental issue to assess biological tissues that have form birefringence or polarization scrambling in polarization-sensitive optical coherence tomography (PS-OCT). We present a mathematical framework to provide a maximum likelihood estimation of the target covariance matrix and its incoherent target decomposition to estimate a Jones matrix of a dominant scattering mechanism, called Cloude-Pottier decomposition, thereby deriving the phase retardation and the optic axis of the sample. In addition, we introduce entropy that shows the randomness of the polarization property. Underestimation of the entropy at a low sampling number is mitigated by asymptotic quasi maximum likelihood estimator. A bias of the entropy from random noises is corrected to show only the polarization property inherent in the sample. The theory is validated with experimental measurements of a glass plate and waveplates, and applied to the imaging of a healthy human eye anterior segment as an image filter.
Collapse
Affiliation(s)
- Masahiro Yamanari
- Department of Technology Development, Tomey Corporation, 2-11-33 Noritakeshinmachi, Nishi-ku, Nagoya, Aichi, 451-0051, Japan;
| | - Satoru Tsuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Taiki Kokubun
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Naoko Aizawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yu Yokoyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Shiho Kunimatsu-Sanuki
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kazuichi Maruyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan;
| |
Collapse
|
19
|
Yakovlev DD, Shvachkina ME, Sherman MM, Spivak AV, Pravdin AB, Yakovlev DA. Quantitative mapping of collagen fiber alignment in thick tissue samples using transmission polarized-light microscopy. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:71111. [PMID: 27027930 DOI: 10.1117/1.jbo.21.7.071111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
Immersion optical clearing makes it possible to use transmission polarized-light microscopy for characterization of thick (200 to 2000 μm) layers of biological tissues. We discuss polarization properties of thick samples in the context of the problem of characterization of collagen fiber alignment in connective tissues such as sclera and dermis. Optical chirality caused by azimuthal variations of the macroscopic (effective) optic axis of the medium across the sample thickness should be considered in polarization mapping of thick samples of these tissues. We experimentally evaluate to what extent the optical chirality affects the measurement results in typical situations and show under what conditions it can be easily taken into account and does not hinder, but rather helps, in characterization of collagen fiber alignment.
Collapse
|
20
|
Tuchin VV. Polarized light interaction with tissues. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:71114. [PMID: 27121763 DOI: 10.1117/1.jbo.21.7.071114] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/22/2016] [Indexed: 05/02/2023]
Abstract
This tutorial-review introduces the fundamentals of polarized light interaction with biological tissues and presents some of the recent key polarization optical methods that have made possible the quantitative studies essential for biomedical diagnostics. Tissue structures and the corresponding models showing linear and circular birefringence, dichroism, and chirality are analyzed. As the basis for a quantitative description of the interaction of polarized light with tissues, the theory of polarization transfer in a random medium is used. This theory employs the modified transfer equation for Stokes parameters to predict the polarization properties of single- and multiple-scattered optical fields. The near-order of scatterers in tissues is accounted for to provide an adequate description of tissue polarization properties. Biomedical diagnostic techniques based on polarized light detection, including polarization imaging and spectroscopy, amplitude and intensity light scattering matrix measurements, and polarization-sensitive optical coherence tomography are described. Examples of biomedical applications of these techniques for early diagnostics of cataracts, detection of precancer, and prediction of skin disease are presented. The substantial reduction of light scattering multiplicity at tissue optical clearing that leads to a lesser influence of scattering on the measured intrinsic polarization properties of the tissue and allows for more precise quantification of these properties is demonstrated.
Collapse
Affiliation(s)
- Valery V Tuchin
- Saratov National Research State University, Research-Educational Institute of Optics and Biophotonics, 83 Astrakhanskaya street, Saratov 410012, RussiabInstitute of Precision Mechanics and Control of Russian Academy of Sciences, 24 Rabochaya street, Sarat
| |
Collapse
|
21
|
Ortega-Quijano N, Marvdashti T, Ellerbee Bowden AK. Enhanced depolarization contrast in polarization-sensitive optical coherence tomography. OPTICS LETTERS 2016; 41:2350-3. [PMID: 27177000 DOI: 10.1364/ol.41.002350] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We demonstrate the first application of the differential depolarization index (DDI) for depolarization imaging in polarization-sensitive optical coherence tomography (PS-OCT). Unlike the widely used degree of polarization uniformity (DOPU), the DDI is independent of the incident polarization state and, therefore, more robust to varying system and sample parameters. Moreover, it can be applied to single-input-polarization-state PS-OCT systems, and it overcomes several limitations of the emerging depolarization index used in multiple-input-polarization-state systems. Our results on tissue phantoms and human skin prove that DDI yields significant depolarization contrast improvements compared to DOPU, which highlights its potential for depolarization imaging in PS-OCT.
Collapse
|
22
|
Ding Z, Liang CP, Tang Q, Chen Y. Quantitative single-mode fiber based PS-OCT with single input polarization state using Mueller matrix. BIOMEDICAL OPTICS EXPRESS 2015; 6:1828-43. [PMID: 26137383 PMCID: PMC4467718 DOI: 10.1364/boe.6.001828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/12/2015] [Accepted: 04/14/2015] [Indexed: 05/18/2023]
Abstract
We present a simple but effective method to quantitatively measure the birefringence of tissue by an all single-mode fiber (SMF) based polarization-sensitive optical coherence tomography (PS-OCT) with single input polarization state. We theoretically verify that our SMF based PS-OCT system can quantify the phase retardance and optic axis orientation after a simple calibration process using a quarter wave plate (QWP). Based on the proposed method, the quantification of the phase retardance and optic axis orientation of a Berek polarization compensator and biological tissues were demonstrated.
Collapse
Affiliation(s)
- Zhenyang Ding
- College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072,
China
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
USA
- These authors contributed equally to this work
| | - Chia-Pin Liang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
USA
- These authors contributed equally to this work
| | - Qinggong Tang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
USA
| | - Yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
USA
| |
Collapse
|
23
|
Liao CC, Lo YL. Extraction of linear anisotropic parameters using optical coherence tomography and hybrid Mueller matrix formalism. OPTICS EXPRESS 2015; 23:10653-10667. [PMID: 25969104 DOI: 10.1364/oe.23.010653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A method is proposed for extracting the linear birefringence (LB) and linear dichroism (LD) properties of an anisotropic optical sample using reflection-mode optical coherence tomography (OCT) and a hybrid Mueller matrix formalism. To ensure the accuracy of the extracted parameter values, a method is proposed for calibrating and compensating the polarization distortion effect induced by the beam splitters in the OCT system using a composite quarter-waveplate / half-waveplate / quarter-waveplate structure. The validity of the proposed method is confirmed by extracting the LB and LD properties of a quarter-wave plate and a defective polarizer. To the best of the authors' knowledge, the method proposed in this study represents the first reported attempt to utilize an inverse Mueller matrix formalism and a reflection-mode OCT structure to extract the LB and LD parameters of optically anisotropic samples.
Collapse
|
24
|
Wan C. Laser beam splitting by polarization encoding. APPLIED OPTICS 2015; 54:2495-2500. [PMID: 25968540 DOI: 10.1364/ao.54.002495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/17/2015] [Indexed: 06/04/2023]
Abstract
A scheme is proposed to design a polarization grating that splits an incident linearly polarized beam to an array of linearly polarized beams of identical intensity distribution and various azimuth angles of linear polarization. The grating is equivalent to a wave plate with space-variant azimuth angle and space-variant phase retardation. The linear polarization states of all split beams make the grating suitable for coherent beam combining architectures based on Dammann gratings.
Collapse
|
25
|
Fiber-Based Polarization Diversity Detection for Polarization-Sensitive Optical Coherence Tomography. PHOTONICS 2014. [DOI: 10.3390/photonics1040283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Nam MH, Baek M, Lim J, Lee S, Yoon J, Kim J, Lee MS, Soh KS. Discovery of a novel fibrous tissue in the spinal pia mater by polarized light microscopy. Connect Tissue Res 2014; 55:147-55. [PMID: 24409813 DOI: 10.3109/03008207.2013.879864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Abstract It is very well known that spinal meninges are composed of three layers, dura, arachnoid and pia mater, and that the main components of pia mater are collagen and reticular fibers. However, the distribution of those fibers has not been extensively investigated but just described as a mesh of fibers. In this study, we detected novel structures, which are composed of unidirectionally arranged fibers, in a rat spinal pia mater by using a polarized light microscope. They were seen as three parallel lines, one of which ran along a posterior spinal vein and the rest two of which ran along a pair of posterior spinal arteries. Histological analysis including Masson's trichrome, picrosirius-red staining, Gordon & Sweet's staining and immunohistochemistry with anti-collagen type 1 and 3 antibodies uncovered that they are mainly composed of collagen fibers and some reticular fibers. In addition, a putative primo vessel was detected in the novel fibrous tissue, which was proven out to be different from a blood vessel. In conclusion, we report a newly detected fibrous structure in the spinal pia mater, which may contribute to provide tensile force to the spinal meninges and to harbor the primo vascular system inside.
Collapse
Affiliation(s)
- Min-Ho Nam
- Nano Primo Research Center, Advanced Institute of Convergence Technology, Seoul National University , Suwon , Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ortega-Quijano N, Fanjul-Vélez F, Arce-Diego JL. Polarimetric study of birefringent turbid media with three-dimensional optic axis orientation. BIOMEDICAL OPTICS EXPRESS 2013; 5:287-92. [PMID: 24466494 PMCID: PMC3891339 DOI: 10.1364/boe.5.000287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/05/2013] [Accepted: 11/25/2013] [Indexed: 05/18/2023]
Abstract
Recent approaches to the analysis of biological samples with three-dimensional linear birefringence orientation require numerical methods to estimate the best fit parameters from experimental measures. We present a novel analytical method for characterizing the intrinsic retardance and the three-dimensional optic axis orientation of uniform and uniaxial turbid media. It is based on a model that exploits the recently proposed differential generalized Jones calculus, remarkably suppressing the need for numerical procedures. The method is applied to the analysis of samples modeled with polarized sensitive Monte Carlo. The results corroborate its capacity to successfully characterize 3D linear birefringence in a straightforward way.
Collapse
|
28
|
Ahmad M, Ali S, Mehmood MS, Ali H, Khurshid A, Firdous S, Muhammad S, Ikram M. Ex vivo assessment of carbon tetrachloride (CCl(4))-induced chronic injury using polarized light spectroscopy. APPLIED SPECTROSCOPY 2013; 67:1382-1389. [PMID: 24359651 DOI: 10.1366/13-07090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The liver performs various functions, such as the production and detoxification of chemicals; therefore, it is susceptible to hepatotoxins such as carbon tetrachloride (CCl4), which causes chronic injury. Thus, assessment of injury and its status of severity are of prime importance. Current work reports an ex vivo study for probing the severance of hepatic injury induced by CCl4 with polarized light over the spectral range 400-800 nm. Different concentrations of CCl4 were used to induce varying severity of hepatic injury in a rat model. Linear retardance, depolarization rates, and diagonal Mueller matrix elements (m22, m33, and m44), were successfully used as the distinguishing criterion for normal and different liver injuries. Our results show that linear retardance for injured liver samples with lower doses of CCl4 tends to increase when compared with normal liver samples, while samples injured at higher doses of CCl4 offer almost no retardance. Total, linear, and circular depolarizations follow decreasing trends with increased liver injury severity over the entire investigated wavelength range. Linear polarization states were observed to be better maintained as compared to circular polarization states for all samples. Furthermore, numerical values of diagonal elements of the experimentally measured Mueller matrix also increase with increasing doses of CCl4. Liver fibroses, change in transport albedo, and the relative refractive index of the extracellular matrix caused by CCl4 are responsible for the observed differences. These results will provide a pathway to gauge the severity of injury caused by toxic chemicals.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Pakistan Institute of Engineering and Applied Sciences, Nilore, 45650, Islamabad, Pakistan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gecevičius M, Beresna M, Kazansky PG. Polarization sensitive camera by femtosecond laser nanostructuring. OPTICS LETTERS 2013; 38:4096-4099. [PMID: 24321932 DOI: 10.1364/ol.38.004096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A polarization imaging device based on a femtosecond laser nanostructured birefringent array is demonstrated. The device enables instant measurement of the distribution of the Stokes vectors in the visible spectrum. Polarimetric measurements with radially and circularly polarized light distributions are demonstrated.
Collapse
|
30
|
Bonesi M, Sattmann H, Torzicky T, Zotter S, Baumann B, Pircher M, Götzinger E, Eigenwillig C, Wieser W, Huber R, Hitzenberger CK. High-speed polarization sensitive optical coherence tomography scan engine based on Fourier domain mode locked laser. BIOMEDICAL OPTICS EXPRESS 2012; 3:2987-3000. [PMID: 23162734 PMCID: PMC3493228 DOI: 10.1364/boe.3.002987] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/23/2012] [Accepted: 10/23/2012] [Indexed: 05/04/2023]
Abstract
We report on a new swept source polarization sensitive optical coherence tomography scan engine that is based on polarization maintaining (PM) fiber technology. The light source is a Fourier domain mode locked laser with a PM cavity that operates in the 1300 nm wavelength regime. It is equipped with a PM buffer stage that doubles the fundamental sweep frequency of 54.5 kHz. The fiberization allows coupling of the scan engine to different delivery probes. In a first demonstration, we use the system for imaging human skin at an A-scan rate of 109 kHz. The system illuminates the sample with circularly polarized light and measures reflectivity, retardation, optic axis orientation, and Stokes vectors simultaneously. Furthermore, depolarization can be quantified by calculating the degree of polarization uniformity (DOPU). The high scanning speed of the system enables dense sampling in both, the x- and y-direction, which provides the opportunity to use 3D evaluation windows for DOPU calculation. This improves the spatial resolution of DOPU images considerably.
Collapse
Affiliation(s)
- Marco Bonesi
- Center for Medical Physics and Biomedical Engineering, Medical
University of Vienna, A-1090 Vienna, Austria
| | - Harald Sattmann
- Center for Medical Physics and Biomedical Engineering, Medical
University of Vienna, A-1090 Vienna, Austria
| | - Teresa Torzicky
- Center for Medical Physics and Biomedical Engineering, Medical
University of Vienna, A-1090 Vienna, Austria
| | - Stefan Zotter
- Center for Medical Physics and Biomedical Engineering, Medical
University of Vienna, A-1090 Vienna, Austria
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical
University of Vienna, A-1090 Vienna, Austria
| | - Michael Pircher
- Center for Medical Physics and Biomedical Engineering, Medical
University of Vienna, A-1090 Vienna, Austria
| | - Erich Götzinger
- Center for Medical Physics and Biomedical Engineering, Medical
University of Vienna, A-1090 Vienna, Austria
| | - Christoph Eigenwillig
- Lehrstuhl für BioMolekulare Optik, Fakultät für
Physik, Ludwig-Maximilians-Universität München, D-80538 München,
Germany
| | - Wolfgang Wieser
- Lehrstuhl für BioMolekulare Optik, Fakultät für
Physik, Ludwig-Maximilians-Universität München, D-80538 München,
Germany
| | - Robert Huber
- Lehrstuhl für BioMolekulare Optik, Fakultät für
Physik, Ludwig-Maximilians-Universität München, D-80538 München,
Germany
| | - Christoph K. Hitzenberger
- Center for Medical Physics and Biomedical Engineering, Medical
University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
31
|
Fan C, Yao G. Full-range spectral domain Jones matrix optical coherence tomography using a single spectral camera. OPTICS EXPRESS 2012; 20:22360-71. [PMID: 23037384 DOI: 10.1364/oe.20.022360] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Jones matrix optical coherence tomography can fully characterize depth-resolved polarization properties in tissue. In this report, we described a simple single-camera based implementation of full-range spectral domain Jones matrix optical coherence tomography. The Jones matrix reconstruction algorithm was described in detail and system calibration was demonstrated with comprehensive examples. In addition to the conventional structural image, the images of retardance, optical axis and relative attenuation can be obtained from the measured Jones matrix image. Both in vitro and in vivo image examples were presented to demonstrate the polarization imaging ability of the system.
Collapse
Affiliation(s)
- Chuanmao Fan
- Department of Biological Engineering, University of Missouri, Columbia, MO 65211 USA
| | | |
Collapse
|
32
|
Fan C, Yao G. Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography. OPTICS LETTERS 2012; 37:1415-7. [PMID: 22555689 DOI: 10.1364/ol.37.001415] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We proposed a method to extract depth-resolved local retardance in birefringent samples from conventional polarization-sensitive optical coherence tomography (PSOCT) that uses one circularly polarized incident light. Despite the wide use of such PSOCT systems in characterizing birefringent samples, the measured cumulative retardance does not represent the true cumulative retardance when optical axis varies with depth. A Jones calculus based algorithm was designed to derive the local depth-resolved retardance from conventional cumulative PSOCT results. The algorithm was tested in samples with homogeneous optical axis as well as samples with depth-dependent optical axis.
Collapse
Affiliation(s)
- Chuanmao Fan
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, 65211-5200, USA
| | | |
Collapse
|
33
|
Duan L, Yamanari M, Yasuno Y. Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography. OPTICS EXPRESS 2012; 20:3353-66. [PMID: 22330573 DOI: 10.1364/oe.20.003353] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An automated chorio-scleral interface (CSI) detection algorithm based on polarization sensitive optical coherence tomography (PS-OCT) is presented. This algorithm employs a two-step scheme based on the phase retardation variation detected by PS-OCT. In the first step, a rough CSI segmentation is implemented to distinguish the choroid and sclera by using depth-oriented second derivative of the phase retardation. Second, the CSI is further finely defined as the intersection of lines fitted to the phase retardation in the choroid and sclera. This algorithm challenges the current back-scattering intensity based CSI segmentation approaches that are not fully based on anatomical and morphological evidence, and provides a rational segmentation method for the morphological investigation of the choroid. Applications of this algorithm are demonstrated on in vivo posterior images acquired by a PS-OCT system with 1-μm probe.
Collapse
Affiliation(s)
- Lian Duan
- Computational Optics Group, Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
34
|
Chen Y, Otis L, Zhu Q. Polarization memory effect in optical coherence tomography and dental imaging application. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:086005. [PMID: 21895317 PMCID: PMC3273306 DOI: 10.1117/1.3606573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 05/25/2011] [Accepted: 06/10/2011] [Indexed: 05/29/2023]
Abstract
We report the existence of polarization memory effect (PME) in optical coherence tomography and investigate its potential applications in dental imaging. We performed the study in three steps. First, microsphere scattering phantoms of different sizes were imaged in order to validate experimental results with PME theory. Both linearly and circularly polarized light were used to probe the samples. Second, healthy tooth samples were scanned and polarization memory effect was identified in dentin. In this step, specific verification and signal processing were performed to rule out possible image interpretation by birefringence effect. Third, we evaluated dentin demineralization with PME. Results show polarization memory can be useful to characterize this dynamic mineralization process for early caries detection and rehabilitation.
Collapse
Affiliation(s)
- Yueli Chen
- Agiltron Incorporated, Woburn, Massachusetts 01801, USA.
| | | | | |
Collapse
|
35
|
Optical coherence tomography in biomedical research. Anal Bioanal Chem 2011; 400:2721-43. [DOI: 10.1007/s00216-011-5052-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 12/16/2022]
|
36
|
Marschall S, Sander B, Mogensen M, Jørgensen TM, Andersen PE. Optical coherence tomography-current technology and applications in clinical and biomedical research. Anal Bioanal Chem 2011; 400:2699-720. [PMID: 21547430 DOI: 10.1007/s00216-011-5008-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/25/2011] [Accepted: 04/08/2011] [Indexed: 12/21/2022]
Abstract
Optical coherence tomography (OCT) is a noninvasive imaging technique that provides real-time two- and three-dimensional images of scattering samples with micrometer resolution. By mapping the local reflectivity, OCT visualizes the morphology of the sample. In addition, functional properties such as birefringence, motion, or the distributions of certain substances can be detected with high spatial resolution. Its main field of application is biomedical imaging and diagnostics. In ophthalmology, OCT is accepted as a clinical standard for diagnosing and monitoring the treatment of a number of retinal diseases, and OCT is becoming an important instrument for clinical cardiology. New applications are emerging in various medical fields, such as early-stage cancer detection, surgical guidance, and the early diagnosis of musculoskeletal diseases. OCT has also proven its value as a tool for developmental biology. The number of companies involved in manufacturing OCT systems has increased substantially during the last few years (especially due to its success in opthalmology), and this technology can be expected to continue to spread into various fields of application.
Collapse
Affiliation(s)
- Sebastian Marschall
- DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Roskilde, Denmark
| | | | | | | | | |
Collapse
|
37
|
Ushenko YA, Misevich IZ, Telenga OY, Tomka YY, Karachevtsev AO. Polarization-singular structure of laser images of stratified phase-inhomogeneous layers for the diagnostics and classification of their optical properties. ACTA ACUST UNITED AC 2011. [DOI: 10.3103/s1060992x11010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Lu Z, Kasaragod DK, Matcher SJ. Performance comparison between 8- and 14-bit-depth imaging in polarization-sensitive swept-source optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2011; 2:794-804. [PMID: 21483604 PMCID: PMC3072122 DOI: 10.1364/boe.2.000794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/02/2011] [Accepted: 03/02/2011] [Indexed: 05/09/2023]
Abstract
Recently the effects of reduced bit-depth acquisition on swept-source optical coherence tomography (SS-OCT) image quality have been evaluated by using simulations and empirical studies, showing that image acquisition at 8-bit depth allows high system sensitivity with only a minimal drop in the signal-to-noise ratio compared to higher bit-depth systems. However, in these studies the 8-bit data is actually 12- or 14-bit ADC data numerically truncated to 8 bits. In practice, a native 8-bit ADC could actually possess a true bit resolution lower than this due to the electronic jitter in the converter etc. We compare true 8- and 14-bit-depth imaging of SS-OCT and polarization-sensitive SS-OCT (PS-SS-OCT) by using two hardware-synchronized high-speed data acquisition (DAQ) boards. The two DAQ boards read exactly the same imaging data for comparison. The measured system sensitivity at 8-bit depth is comparable to that for 14-bit acquisition when using the more sensitive of the available full analog input voltage ranges of the ADC. Ex-vivo structural and birefringence images of equine tendon indicate no significant differences between images acquired by the two DAQ boards suggesting that 8-bit DAQ boards can be employed to increase imaging speeds and reduce storage in clinical SS-OCT/PS-SS-OCT systems. One possible disadvantage is a reduced imaging dynamic range which can manifest itself as an increase in image artifacts due to strong Fresnel reflection.
Collapse
|
39
|
Kim KH, Park BH, Tu Y, Hasan T, Lee B, Li J, de Boer JF. Polarization-sensitive optical frequency domain imaging based on unpolarized light. OPTICS EXPRESS 2011; 19:552-61. [PMID: 21263595 DOI: 10.1364/oe.19.000552] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Polarization-sensitive optical coherence tomography (PS-OCT) is an augmented form of OCT, providing 3D images of both tissue structure and polarization properties. We developed a new method of polarization-sensitive optical frequency domain imaging (PS-OFDI), which is based on a wavelength-swept source. In this method the sample was illuminated with unpolarized light, which was composed of two orthogonal polarization states (i.e., separated by 180° in the Poincaré sphere) that are uncorrelated to each other. Reflection of these polarization states from within the sample was detected simultaneously and independently using a frequency multiplexing scheme. This simultaneous sample probing with two polarization states enabled determination of the depth-resolved Jones matrices of the sample. Polarization properties of the sample were obtained by analyzing the sample Jones matrices through eigenvector decomposition. The new PS-OFDI system ran at 31K wavelength-scans/s with 3072 pixels per wavelength-scan, and was tested by imaging a polarizer and several birefringent tissues such as chicken muscle and human skin. Lastly the new PS-OFDI was applied to imaging two cancer animal models: a mouse model by injecting cancer cells and a hamster cheek pouch model. These animal model studies demonstrated the significant differences in tissue polarization properties between cancer and normal tissues in vivo.
Collapse
Affiliation(s)
- Ki Hean Kim
- Department of Mechanical Engineering and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Pierangelo A, Benali A, Antonelli MR, Novikova T, Validire P, Gayet B, De Martino A. Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging. OPTICS EXPRESS 2011; 19:1582-93. [PMID: 21263698 DOI: 10.1364/oe.19.001582] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cancerous and healthy human colon samples have been analyzed ex-vivo using a multispectral imaging Mueller polarimeter operated in the visible (from 500 to 700 nm) in a backscattering configuration with diffuse light illumination. Three samples of Liberkühn colon adenocarcinomas have been studied: common, mucinous and treated by radiochemotherapy. For each sample, several specific zones have been chosen, based on their visual staging and polarimetric responses, which have been correlated to the histology of the corresponding cuts. The most relevant polarimetric images are those quantifying the depolarization for incident linearly polarized light. The measured depolarization depends on several factors, namely the presence or absence of tumor, its exophytic (budding) or endophytic (penetrating) nature, its thickness (its degree of ulceration) and its level of penetration in deeper layers (submucosa, muscularis externa and serosa). The cellular density, the concentration of stroma, the presence or absence of mucus and the light penetration depth, which increases with wavelength, are also relevant parameters. Our data indicate that the tissues with the lowest and highest depolarizing powers are respectively mucus-free tumoral tissue with high cellular density and healthy serosa, while healthy submucosa, muscularis externa as well as mucinous tumor probably feature intermediate values. Moreover, the specimen coming from a patient treated successfully with radiochemotherapy exhibited a uniform polarimetric response typical of healthy tissue even in the initially pathological zone. These results demonstrate that multi-spectral Mueller imaging can provide useful contrasts to quickly stage human colon cancer ex-vivo and to distinguish between different histological variants of tumor.
Collapse
|
41
|
Chuanmao Fan, Gang Yao. Correcting Optical-Axis Calculation in Polarization-Sensitive Optical Coherence Tomography. IEEE Trans Biomed Eng 2010; 57:2556-9. [DOI: 10.1109/tbme.2010.2053927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Antonelli MR, Pierangelo A, Novikova T, Validire P, Benali A, Gayet B, De Martino A. Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data. OPTICS EXPRESS 2010; 18:10200-8. [PMID: 20588874 DOI: 10.1364/oe.18.010200] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Colon samples with both healthy and cancerous regions have been imaged in diffuse light and backscattering geometry by using a Mueller imaging polarimeter. The tumoral parts at the early stage of cancer are found to be less depolarizing than the healthy ones. This trend clearly shows that polarimetric imaging may provide useful contrasts for optical biopsy. Moreover, both types of tissues are less depolarizing when the incident polarization is linear rather than circular. However, to really optimize an optical biopsy technique based on polarimetric imaging a realistic model is needed for polarized light scattering by tissues. Our approach to this goal is based on numerical Monte-Carlo simulations of polarized light propagation in biological tissues modeled as suspensions of monodisperse spherical scatterers representing the cell nuclei. The numerical simulations were validated by comparison with measurements on aqueous polystyrene sphere suspensions, which are commonly used as tissue phantoms. Such systems exhibit lower depolarization for incident linear polarization in the Rayleigh scattering regime, i.e. when the sphere diameters are smaller than the wavelength, which is obviously not the case for cell nuclei. In contrast, our results show that this behaviour can also be seen for "large" scatterers provided the optical index contrast between the spheres and the surrounding medium is small enough, as it is likely to be the case in biological tissues.
Collapse
|
43
|
Al-Qaisi MK, Akkin T. Swept-source polarization-sensitive optical coherence tomography based on polarization-maintaining fiber. OPTICS EXPRESS 2010; 18:3392-403. [PMID: 20389349 DOI: 10.1364/oe.18.003392] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We present a swept-source polarization-sensitive optical coherence tomography system based on a polarization-maintaining fiber interferometer. The system produces reflectivity and birefringence information along a depth profile with a single sweep of the optical spectrum. Unlike single-mode fiber systems, retardance and relative optical axis orientation images are calculated without compensation. The source is a 45 mW polygon-based swept-source centered at 1290 nm and tuned at a rate of 28 kHz. The interferometer consists of a single polarization-maintaining coupler that utilizes balanced detection for improved performance. Characterization data shows that this system yields accurate measurements with high sensitivity (106.2 dB) comparable to conventional setups. Images of biological tissues with high dynamic range are demonstrated.
Collapse
Affiliation(s)
- Muhammad K Al-Qaisi
- Department of Biomedical Engineering, University of Minnesota, 312 Church St SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
44
|
Liu G, Zhang J, Yu L, Xie T, Chen Z. Real-time polarization-sensitive optical coherence tomography data processing with parallel computing. APPLIED OPTICS 2009; 48:6365-70. [PMID: 19904337 PMCID: PMC2866633 DOI: 10.1364/ao.48.006365] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
With the increase of the A-line speed of optical coherence tomography (OCT) systems, real-time processing of acquired data has become a bottleneck. The shared-memory parallel computing technique is used to process OCT data in real time. The real-time processing power of a quad-core personal computer (PC) is analyzed. It is shown that the quad-core PC could provide real-time OCT data processing ability of more than 80 K A-lines per second. A real-time, fiber-based, swept source polarization-sensitive OCT system with 20 K A-line speed is demonstrated with this technique. The real-time 2D and 3D polarization-sensitive imaging of chicken muscle and pig tendon is also demonstrated.
Collapse
Affiliation(s)
- Gangjun Liu
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road, Irvine, California 92612, USA.
| | | | | | | | | |
Collapse
|
45
|
TODOROVIĆ MILOŠ, JIAO SHULIANG, STOICA GEORGE, WANG LIHONGV. PRELIMINARY STUDY ON SKIN CANCER DETECTION IN SENCAR MICE USING MUELLER OPTICAL COHERENCE TOMOGRAPHY. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2009; 2:289-294. [PMID: 33968211 PMCID: PMC8101947 DOI: 10.1142/s1793545809000577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We report on the use of a fiber-based Mueller-matrix optical coherence tomography (OCT) system with continuous source-polarization modulation for in vivo imaging of early stages of skin cancer in SENCAR mice. A homemade hand-held probe with integrated optical scanning and beam delivering optics was coupled in the sample arm. The OCT images show the morphological changes in skin resulting from pre-cancerous papilloma formations that are consistent with histology, thus demonstrating the system's potential for early skin cancer detection.
Collapse
Affiliation(s)
- MILOŠ TODOROVIĆ
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, USA
| | - SHULIANG JIAO
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - GEORGE STOICA
- Department of Pathobiology, Texas A&M University, College Station, Texas 77843-5547, USA
| | - LIHONG V. WANG
- Corresponding author. Current affiliation: Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130-4899, USA.
| |
Collapse
|
46
|
Li X, Yao G. Mueller matrix decomposition of diffuse reflectance imaging in skeletal muscle. APPLIED OPTICS 2009; 48:2625-31. [PMID: 19424381 DOI: 10.1364/ao.48.002625] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Propagation of polarized light in skeletal muscle is significantly affected by anisotropic muscle structures. To completely characterize muscle polarization properties, we acquired the whole Mueller matrix images of the diffuse reflectance. A polar decomposition algorithm was applied to extract the individual diattenuation, retardance, and depolarization images from the measured Mueller matrix. The decomposed polarization properties in muscle show distinctly different patterns from those obtained in isotropic scattering media. Stretching the prerigor muscle sample induced clear changes in the raw polarization reflectance images. However, muscle stretching induced minimal changes in the decomposed Mueller matrix images.
Collapse
Affiliation(s)
- Xin Li
- Department of Biological Engineering, University of Missouri, 249 Agricultural Engineering Building, Columbia, Missouri 65211, USA
| | | |
Collapse
|
47
|
Kim CS, Wilder-Smith P, Ahn YC, Liaw LHL, Chen Z, Kwon YJ. Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:034008. [PMID: 19566301 PMCID: PMC2872553 DOI: 10.1117/1.3130323] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Contrast in optical coherence tomography (OCT) images can be enhanced by utilizing surface plasmon resonant gold nanoparticles. To improve the poor in vivo transport of gold nanoparticles through biological barriers, an efficient delivery strategy is needed. In this study, the improved penetration and distribution of gold nanoparticles were achieved by microneedle and ultrasound, respectively, and it was demonstrated that this multimodal delivery of antibody-conjugated PEGylated gold nanoparticles enhanced the contrast in in vivo OCT images of oral dysplasia in a hamster model.
Collapse
Affiliation(s)
- Chang Soo Kim
- University of California, Irvine, Department of Chemical Engineering, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
48
|
Nadkarni SK, Bouma BE, de Boer J, Tearney GJ. Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods. Lasers Med Sci 2009; 24:439-45. [PMID: 18386093 PMCID: PMC2776077 DOI: 10.1007/s10103-007-0535-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 11/24/2007] [Indexed: 10/22/2022]
Abstract
Acute coronary events such as myocardial infarction are frequently caused by the rupture of unstable atherosclerotic plaque. Collagen plays a key role in determining plaque stability. Methods to measure plaque collagen content are invaluable in detecting unstable atherosclerotic plaques. Recently, novel coherent laser-based imaging techniques, such as polarization-sensitive optical coherence tomography (PSOCT) and laser speckle imaging (LSI) have been investigated, and they provide a wealth of information related to collagen content and plaque stability. Additionally, given their potential for intravascular use, these technologies will be invaluable for improving our understanding of the natural history of plaque development and rupture and, hence, enable the detection of unstable plaques. In this article we review recent developments in these techniques and potential challenges in translating these methods into intra-arterial use in patients.
Collapse
Affiliation(s)
- Seemantini K Nadkarni
- Harvard Medical School, Massachusetts General Hospital and Wellman Center for Photomedicine, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
49
|
Götzinger E, Pircher M, Baumann B, Ahlers C, Geitzenauer W, Schmidt-Erfurth U, Hitzenberger CK. Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina. OPTICS EXPRESS 2009; 17:4151-65. [PMID: 19259252 PMCID: PMC2976033 DOI: 10.1364/oe.17.004151] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Polarization sensitive OCT has recently been shown to provide tissue specific contrast, enabling direct identification of retinal layers based on the intrinsic properties of their interaction with light. However, the capabilities of displaying and analyzing 3D datasets in scientific publications were rather limited. Within the framework of the Interactive Science Publishing project, we present new ways of displaying and analyzing 3D sets of various polarization parameters recorded in healthy and diseased human retinas. These datasets can be interactively explored by the reader. Furthermore, we provide data of the 3D distribution of backscattered Stokes vectors to allow the reader to develop and test their own data processing algorithms.
Collapse
Affiliation(s)
- Erich Götzinger
- Center for Biomedical Engineering and Physics, Medical University of Vienna, Austria
| | - Michael Pircher
- Center for Biomedical Engineering and Physics, Medical University of Vienna, Austria
| | - Bernhard Baumann
- Center for Biomedical Engineering and Physics, Medical University of Vienna, Austria
| | - Christian Ahlers
- Department of Ophthalmology, General Hospital and Medical University of Vienna, Austria
| | - Wolfgang Geitzenauer
- Department of Ophthalmology, General Hospital and Medical University of Vienna, Austria
| | | | | |
Collapse
|
50
|
Götzinger E, Pircher M, Geitzenauer W, Ahlers C, Baumann B, Michels S, Schmidt-Erfurth U, Hitzenberger CK. Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography. OPTICS EXPRESS 2008; 16:16410-22. [PMID: 18852747 PMCID: PMC2976032 DOI: 10.1364/oe.16.016410] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 09/26/2008] [Indexed: 05/18/2023]
Abstract
We present a new method for identifying and segmenting the retinal pigment epithelium (RPE) in polarization sensitive optical coherence tomography (PS-OCT) images of the human retina. Contrary to previous, intensity based segmentation algorithms, our method uses an intrinsic tissue property of the RPE: its depolarizing, or polarization scrambling effect on backscattered light. Two different segmentation algorithms are presented and discussed: a simpler algorithm based on retardation data, and a more sophisticated algorithm based on local variations of the polarization state calculated from averaged Stokes vector elements. By using a state of the art spectral domain PS-OCT instrument, we demonstrate the method in healthy and diseased eyes.
Collapse
Affiliation(s)
- Erich Götzinger
- Center for Biomedical Engineering and Physics, Medical University of Vienna, Austria
| | - Michael Pircher
- Center for Biomedical Engineering and Physics, Medical University of Vienna, Austria
| | - Wolfgang Geitzenauer
- Department of Ophthalmology, General Hospital and Medical University of Vienna, Austria
| | - Christian Ahlers
- Department of Ophthalmology, General Hospital and Medical University of Vienna, Austria
| | - Bernhard Baumann
- Center for Biomedical Engineering and Physics, Medical University of Vienna, Austria
| | - Stephan Michels
- Department of Ophthalmology, General Hospital and Medical University of Vienna, Austria
- Department of Ophthalmology, University Hospital Zurich, Switzerland
| | | | | |
Collapse
|