1
|
Forget A, Shastri VP. Sulfated and Phosphorylated Agarose as Biomaterials for a Biomimetic Paradigm for FGF-2 Release. Biomimetics (Basel) 2024; 10:12. [PMID: 39851728 PMCID: PMC11761575 DOI: 10.3390/biomimetics10010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
Cardiovascular diseases such as myocardial infarction or limb ischemia are characterized by regression of blood vessels. Local delivery of growth factors (GFs) involved in angiogenesis such as fibroblast blast growth factor-2 (FGF-2) has been shown to trigger collateral neovasculature and might lead to a therapeutic strategy. In vivo, heparin, a sulfated polysaccharide present in abundance in the extracellular matrix (ECM), has been shown to function as a local reservoir for FGF-2 by binding FGF-2 and other morphogens and it plays a role in the evolution of GF gradients. To access injectable biomaterials that can mimic such natural electrostatic interactions between soluble signals and macromolecules and mechanically tunable environments, the backbone of agarose, a thermogelling marine-algae-derived polysaccharide, was modified with sulfate, phosphate, and carboxylic moieties and the interaction and release of FGF-2 from these functionalized hydrogels was assessed by ELISA in vitro and CAM assay in ovo. Our findings show that FGF-2 remains active after release, and FGF-2 release profiles can be influenced by sulfated and phosphorylated agarose, and in turn, promote varied blood vessel formation kinetics. These modified agaroses offer a simple approach to mimicking electrostatic interactions experienced by GFs in the extracellular environment and provide a platform to probe the role of these interactions in the modulation of growth factor activity and may find utility as an injectable gel for promoting angiogenesis and as bioinks in 3D bioprinting.
Collapse
Affiliation(s)
- Aurelien Forget
- Institute for Macromolecular Chemistry, Stefan-Meier-Strasse 31, 79104 Freiburg, Germany;
- BIOSS, Centre for Biological Signalling, Schanzelstrasse 18, 79104 Freiburg, Germany
| | - V. Prasad Shastri
- Institute for Macromolecular Chemistry, Stefan-Meier-Strasse 31, 79104 Freiburg, Germany;
- BIOSS, Centre for Biological Signalling, Schanzelstrasse 18, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Fu Z, Yang G, Yun SY, Jang JM, Ha HC, Shin IC, Back MJ, Piao Y, Kim DK. Hyaluronan and proteoglycan link protein 1 - A novel signaling molecule for rejuvenating aged skin. Matrix Biol 2024; 134:30-47. [PMID: 39226945 DOI: 10.1016/j.matbio.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
The skin seems to rejuvenate upon exposure to factors within the circulation of young organisms. Intrinsic factors that modulate skin aging are poorly understood. We used heterochronic parabiosis and aptamer-based proteomics to identify serum-derived rejuvenating factors. We discovered a novel extracellular function of hyaluronan and proteoglycan link protein 1 (HAPLN1). Its serum levels decreased with age, disturbing the integrity of the skin extracellular matrix, which is predominantly composed of collagen I and hyaluronan; levels of various markers, which decrease in aged skin, were significantly restored in vivo and in vitro by the administration of recombinant human HAPLN1 (rhHAPLN1). rhHAPLN1 protected transforming growth factor beta receptor 2 on the cell surface from endocytic degradation via mechanisms such as regulation of viscoelasticity, CD44 clustering. Moreover, rhHAPLN1 regulated the levels of nuclear factor erythroid 2-related factor 2, phosphorylated nuclear factor kappa B, and some cyclin-dependent kinase inhibitors such as p16 and p21. Therefore, rhHAPLN1 may act as a novel biomechanical signaling protein to rejuvenate aged skin.
Collapse
Affiliation(s)
- Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - Goowon Yang
- HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - So Yoon Yun
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hae Chan Ha
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - In Chul Shin
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Moon Jung Back
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yongwei Piao
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea.
| |
Collapse
|
3
|
Arslan G, Hazan F, Tabanlı G, Kırkgöz T, Özkan B. A rare case of skeletal dysplasia: biallelic variant in ACAN gene. J Pediatr Endocrinol Metab 2024:jpem-2024-0255. [PMID: 39295451 DOI: 10.1515/jpem-2024-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024]
Abstract
OBJECTIVES Spondylo-epimetaphyseal dysplasia-aggregan (SEMD-ACAN) is a rare form of osteo-chondrodysplasia that includes vertebral, epiphyseal and metaphyseal dysplasia. It occurs as a result of loss-of-function mutations in the ACAN gene, which encodes aggregan protein, which is the basic component of the extracellular matrix in cartilage. It results in disproportionately short stature and skeletal abnormalities. Here, we aimed to present the fourth SEMD-ACAN report in the literature. CASE PRESENTATION A 9-year-old girl was admitted to our clinic with growth retardation. She was born from a first-degree cousin marriage with severe short stature (41 cm; -3.54 SDS). Her mother also had severe short stature. Her height was 110 cm (-4.6 SDS); she had midface hypoplasia, low-set ears, short neck, short limbs, and central obesity. Biochemical and hormonal tests were normal. Skeletal survey showed moderate platyspondylia, thoracolumbar scoliosis, lumbar lordosis, bilateral femoro-acetabular narrowing, and advanced bone age (10 years). The patient's brother was 100 cm (-3.97 SDS). He had similar but milder clinical findings. Biallelic ACAN variation (c.512C>T; p. Ala171Val) was detected in two siblings by next-generation sequencing. The parents were heterozygous carriers. Before, the heterozygous form of this variant has been reported in a 15-year-old boy with short stature, advanced bone age, and dysmorphic features. CONCLUSIONS SEMD-ACAN is a rare genetic condition that affects bone growth and development and can cause physical and developmental abnormalities. This article highlights the importance of considering genetic testing in characteristic symptoms associated with SEMD-ACAN, such as severe growth retardation and skeletal abnormalities.
Collapse
Affiliation(s)
- Gülçin Arslan
- Department of Pediatric Endocrinology, Dr. Behçet Uz Training and Research Hospital, University of Health Science, Izmir, Türkiye
| | - Filiz Hazan
- Department of Pediatric Genetic, Dr. Behçet Uz Training and Research Hospital, University of Health Science, Izmir, Türkiye
| | - Gülin Tabanlı
- Department of Pediatric Endocrinology, Dr. Behçet Uz Training and Research Hospital, University of Health Science, Izmir, Türkiye
| | - Tarık Kırkgöz
- Department of Pediatric Endocrinology, Dr. Behçet Uz Training and Research Hospital, University of Health Science, Izmir, Türkiye
| | - Behzat Özkan
- Department of Pediatric Endocrinology, Dr. Behçet Uz Training and Research Hospital, University of Health Science, Izmir, Türkiye
| |
Collapse
|
4
|
Yang X, Tang H, He L, Peng T, Li J, Zhang J, Liu L, Zhou H, Chen Z, Zhao J, Zhang Y, Zhong M, Han M, Zhang M, Niu H, Xu K. Proteomic changes of botulinum neurotoxin injection on muscle growth in children with spastic cerebral palsy. Proteomics Clin Appl 2024; 18:e2300070. [PMID: 38456375 DOI: 10.1002/prca.202300070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE The study aims to explore the proteomic profile and specific target proteins associated with muscle growth in response to botulinum neurotoxin A (BoNT-A) treatment, in order to improve spasticity management in children with cerebral palsy (CP). EXPERIMENTAL DESIGN A total of 54 participants provided 60 plasma samples for proteomic analysis. Among them, six children were sampled before and after receiving their first BoNT-A injection. In addition, 48 unrelated children were enrolled, among whom one group had never received BoNT-A injections and another group was sampled after their first BoNT-A injection. Differentially expressed proteins were identified using the data-independent acquisition (DIA) mass spectrometry approach. Gene Ontology (GO), protein-protein interaction network, and Kyoto Encyclopedia of Genes and Genome analysis were conducted to explore the function and relationship among differentially expressed proteins. The expression levels of target proteins were verified by quantitative real-time PCR and western blotting. RESULTS Analysis identified significant differential expression of 90 proteins across two time points, including 48 upregulated and 42 downregulated proteins. The upregulated thioredoxin, α-actinin-1, and aggrecan, and the downregulated integrin beta-1 may affect the growth of muscles affected by spasticity 3 months after BoNT-A injection. This effect is potentially mediated through the activation or inhibition of PI3K-Akt, focal adhesion, and regulation of actin cytoskeleton signaling pathways. CONCLUSION AND CLINICAL RELEVANCE BoNT-A injection could lead to a disruption of protein levels and signaling pathways, a condition subsequently associated with muscle growth. This finding might aid clinicians in optimizing the management of spasticity in children with CP.
Collapse
Affiliation(s)
- Xubo Yang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tingting Peng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinling Li
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingbo Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongyu Zhou
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhaofang Chen
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingyi Zhao
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Sport Rehabilitation, Shanghai University of Sport, shanghai, China
| | - Yage Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mengru Zhong
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mingshan Han
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mengqing Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huiran Niu
- Genechem Biotechnology Co., Ltd, Shanghai, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Rehan IF, Elnagar A, Zigo F, Sayed-Ahmed A, Yamada S. Biomimetic strategies for the deputization of proteoglycan functions. Front Cell Dev Biol 2024; 12:1391769. [PMID: 39170918 PMCID: PMC11337302 DOI: 10.3389/fcell.2024.1391769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Proteoglycans (PGs), which have glycosaminoglycan chains attached to their protein cores, are essential for maintaining the morphology and function of healthy body tissues. Extracellular PGs perform various functions, classified into the following four categories: i) the modulation of tissue mechanical properties; ii) the regulation and protection of the extracellular matrix; iii) protein sequestration; and iv) the regulation of cell signaling. The depletion of PGs may significantly impair tissue function, encompassing compromised mechanical characteristics and unregulated inflammatory responses. Since PGs play critical roles in the function of healthy tissues and their synthesis is complex, the development of PG mimetic molecules that recapitulate PG functions for tissue engineering and therapeutic applications has attracted the interest of researchers for more than 20 years. These approaches have ranged from semisynthetic graft copolymers to recombinant PG domains produced by cells that have undergone genetic modifications. This review discusses some essential extracellular PG functions and approaches to mimicking these functions.
Collapse
Affiliation(s)
- Ibrahim F. Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Egypt
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Asmaa Elnagar
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - František Zigo
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Ahmed Sayed-Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Egypt
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| |
Collapse
|
6
|
Melrose J. CNS/PNS proteoglycans functionalize neuronal and astrocyte niche microenvironments optimizing cellular activity by preserving membrane polarization dynamics, ionic microenvironments, ion fluxes, neuronal activation, and network neurotransductive capacity. J Neurosci Res 2024; 102:e25361. [PMID: 39034899 DOI: 10.1002/jnr.25361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/22/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024]
Abstract
Central and peripheral nervous system (CNS/PNS) proteoglycans (PGs) have diverse functional roles, this study examined how these control cellular behavior and tissue function. The CNS/PNS extracellular matrix (ECM) is a dynamic, responsive, highly interactive, space-filling, cell supportive, stabilizing structure maintaining tissue compartments, ionic microenvironments, and microgradients that regulate neuronal activity and maintain the neuron in an optimal ionic microenvironment. The CNS/PNS contains a high glycosaminoglycan content (60% hyaluronan, HA) and a diverse range of stabilizing PGs. Immobilization of HA in brain tissues by HA interactive hyalectan PGs preserves tissue hydration and neuronal activity, a paucity of HA in brain tissues results in a pro-convulsant epileptic phenotype. Diverse CS, KS, and HSPGs stabilize the blood-brain barrier and neurovascular unit, provide smart gel neurotransmitter neuron vesicle storage and delivery, organize the neuromuscular junction basement membrane, and provide motor neuron synaptic plasticity, and photoreceptor and neuron synaptic functions. PG-HA networks maintain ionic fluxes and microgradients and tissue compartments that contribute to membrane polarization dynamics essential to neuronal activation and neurotransduction. Hyalectans form neuroprotective perineuronal nets contributing to synaptic plasticity, memory, and cognitive learning. Sialoglycoprotein associated with cones and rods (SPACRCAN), an HA binding CSPG, stabilizes the inter-photoreceptor ECM. HSPGs pikachurin and eyes shut stabilize the photoreceptor synapse aiding in phototransduction and neurotransduction with retinal bipolar neurons crucial to visual acuity. This is achieved through Laminin G motifs in pikachurin, eyes shut, and neurexins that interact with the dystroglycan-cytoskeleton-ECM-stabilizing synaptic interconnections, neuronal interactive specificity, and co-ordination of regulatory action potentials in neural networks.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney Faculty of Medicine and Health, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
7
|
Wozniak J, Loba W, Wysocka A, Dzimira S, Przadka P, Switonski M, Nowacka-Woszuk J. Altered Transcript Levels of MMP13 and VIT Genes in the Muscle and Connective Tissue of Pigs with Umbilical Hernia. Genes (Basel) 2023; 14:1903. [PMID: 37895252 PMCID: PMC10606093 DOI: 10.3390/genes14101903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Umbilical hernia (UH) and inguinal hernia (IH) are among the most common defects in pigs, affecting their welfare and resulting in economic losses. In this study, we aimed to verify the association of previously reported differences in transcript levels of the ACAN, COL6A5, MMP13, and VIT genes with the occurrence of UH and IH. We examined mRNA levels in muscle and connective tissue from 68 animals-34 affected by UH and 34 controls. In a second cohort, we examined inguinal channel samples from 46 pigs (in four groups). We determined DNA methylation levels in muscle tissue for the UH and control animals. The transcript level of MMP13 changed in the UH cases, being upregulated and downregulated in muscle and connective tissue, respectively, and the VIT gene also showed an increased muscular mRNA level. The transcript of the ACAN gene significantly decreased in old pigs with IH. We further observed an increased DNA methylation level for one CpG site within the MMP13 gene in UH individuals. We conclude that these alterations in gene mRNA levels in the UH animals depend on the tissue and can sometimes be a consequence of, not a cause of, the affected phenotype.
Collapse
Affiliation(s)
- Jakub Wozniak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (J.W.); (W.L.); (A.W.); (M.S.)
| | - Weronika Loba
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (J.W.); (W.L.); (A.W.); (M.S.)
| | - Alicja Wysocka
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (J.W.); (W.L.); (A.W.); (M.S.)
| | - Stanislaw Dzimira
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wroclaw, Poland;
| | - Przemyslaw Przadka
- Department of Surgery, Wroclaw University of Environmental and Life Sciences, Plac Grunwaldzki 51, 50-366 Wroclaw, Poland;
| | - Marek Switonski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (J.W.); (W.L.); (A.W.); (M.S.)
| | - Joanna Nowacka-Woszuk
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland; (J.W.); (W.L.); (A.W.); (M.S.)
| |
Collapse
|
8
|
Dantas NCB, Funari MFA, Lerário AM, Andrade NLM, Rezende RC, Cellin LP, Alves C, Crisostomo LG, Arnhold IJP, Mendonca B, Scalco RC, Jorge AAL. Identification of a second genetic alteration in patients with SHOX deficiency individuals: a potential explanation for phenotype variability. Eur J Endocrinol 2023; 189:387-395. [PMID: 37695807 DOI: 10.1093/ejendo/lvad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE Our study aimed to assess the impact of genetic modifiers on the significant variation in phenotype that is observed in individuals with SHOX deficiency, which is the most prevalent monogenic cause of short stature. DESIGN AND METHODS We performed a genetic analysis in 98 individuals from 48 families with SHOX deficiency with a target panel designed to capture the entire SHOX genomic region and 114 other genes that modulate growth and/or SHOX action. We prioritized rare potentially deleterious variants. RESULTS We did not identify potential deleterious variants in the promoter or intronic regions of the SHOX genomic locus. In contrast, we found eight heterozygous variants in 11 individuals from nine families in genes with a potential role as genetic modifiers. In addition to a previously described likely pathogenic (LP) variant in CYP26C1 observed in two families, we identified LP variants in PTHLH and ACAN, and variants of uncertain significance in NPR2, RUNX2, and TP53 in more affected individuals from families with SHOX deficiency. Families with a SHOX alteration restricted to the regulatory region had a higher prevalence of a second likely pathogenic variant (27%) than families with an alteration compromising the SHOX coding region (2.9%, P = .04). CONCLUSION In conclusion, variants in genes related to the growth plate have a potential role as genetic modifiers of the phenotype in individuals with SHOX deficiency. In individuals with SHOX alterations restricted to the regulatory region, a second alteration could be critical to determine the penetrance and expression of the phenotype.
Collapse
Affiliation(s)
- Naiara C B Dantas
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, SP, Brazil
| | - Mariana F A Funari
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 05403-900 Sao Paulo, SP, Brazil
| | - Antonio M Lerário
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Michigan, Ann Arbor, MI 48105, United States
| | - Nathalia L M Andrade
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, SP, Brazil
| | - Raíssa C Rezende
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, SP, Brazil
| | - Laurana P Cellin
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, SP, Brazil
| | - Crésio Alves
- Pediatric Endocrinology Unit, Hospital Universitario Prof. Edgard Santos, Faculdade de Medicina, Universidade Federal da Bahia, 40026-010 Salvador, BA, Brazil
| | - Lindiane G Crisostomo
- Department of Pediatrics, Centro Universitário Sao Camilo, 04263-200 Sao Paulo SP, Brazil
| | - Ivo J P Arnhold
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 05403-900 Sao Paulo, SP, Brazil
| | - Berenice Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 05403-900 Sao Paulo, SP, Brazil
| | - Renata C Scalco
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, SP, Brazil
- Disciplina de Endocrinologia, Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo, 01221-020 Sao Paulo SP, Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, SP, Brazil
| |
Collapse
|
9
|
Wight TN, Day AJ, Kang I, Harten IA, Kaber G, Briggs DC, Braun KR, Lemire JM, Kinsella MG, Hinek A, Merrilees MJ. V3: an enigmatic isoform of the proteoglycan versican. Am J Physiol Cell Physiol 2023; 325:C519-C537. [PMID: 37399500 PMCID: PMC10511178 DOI: 10.1152/ajpcell.00059.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/05/2023]
Abstract
V3 is an isoform of the extracellular matrix (ECM) proteoglycan (PG) versican generated through alternative splicing of the versican gene such that the two major exons coding for sequences in the protein core that support chondroitin sulfate (CS) glycosaminoglycan (GAG) chain attachment are excluded. Thus, versican V3 isoform carries no GAGs. A survey of PubMed reveals only 50 publications specifically on V3 versican, so it is a very understudied member of the versican family, partly because to date there are no antibodies that can distinguish V3 from the CS-carrying isoforms of versican, that is, to facilitate functional and mechanistic studies. However, a number of in vitro and in vivo studies have identified the expression of the V3 transcript during different phases of development and in disease, and selective overexpression of V3 has shown dramatic phenotypic effects in "gain and loss of function" studies in experimental models. Thus, we thought it would be useful and instructive to discuss the discovery, characterization, and the putative biological importance of the enigmatic V3 isoform of versican.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Anthony J Day
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Ingrid A Harten
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Gernot Kaber
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - David C Briggs
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Kathleen R Braun
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Joan M Lemire
- Department of Biology, Tufts University, Medford, Massachusetts, United States
| | - Michael G Kinsella
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Aleksander Hinek
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mervyn J Merrilees
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Alcaide-Ruggiero L, Cugat R, Domínguez JM. Proteoglycans in Articular Cartilage and Their Contribution to Chondral Injury and Repair Mechanisms. Int J Mol Sci 2023; 24:10824. [PMID: 37446002 DOI: 10.3390/ijms241310824] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Proteoglycans are vital components of the extracellular matrix in articular cartilage, providing biomechanical properties crucial for its proper functioning. They are key players in chondral diseases, specifically in the degradation of the extracellular matrix. Evaluating proteoglycan molecules can serve as a biomarker for joint degradation in osteoarthritis patients, as well as assessing the quality of repaired tissue following different treatment strategies for chondral injuries. Despite ongoing research, understanding osteoarthritis and cartilage repair remains unclear, making the identification of key molecules essential for early diagnosis and effective treatment. This review offers an overview of proteoglycans as primary molecules in articular cartilage. It describes the various types of proteoglycans present in both healthy and damaged cartilage, highlighting their roles. Additionally, the review emphasizes the importance of assessing proteoglycans to evaluate the quality of repaired articular tissue. It concludes by providing a visual and narrative description of aggrecan distribution and presence in healthy cartilage. Proteoglycans, such as aggrecan, biglycan, decorin, perlecan, and versican, significantly contribute to maintaining the health of articular cartilage and the cartilage repair process. Therefore, studying these proteoglycans is vital for early diagnosis, evaluating the quality of repaired cartilage, and assessing treatment effectiveness.
Collapse
Affiliation(s)
- Lourdes Alcaide-Ruggiero
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Córdoba, Hospital Clínico Veterinario, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014 Córdoba, Spain
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain
| | - Ramón Cugat
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain
- Instituto Cugat y Mutualidad de Futbolistas Españoles, Delegación Catalana, 08023 Barcelona, Spain
| | - Juan Manuel Domínguez
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Córdoba, Hospital Clínico Veterinario, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014 Córdoba, Spain
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain
| |
Collapse
|
11
|
Maciej-Hulme ML, Melrose J, Farrugia BL. Arthritis and Duchenne muscular dystrophy: the role of chondroitin sulfate and its associated proteoglycans in disease pathology and as a diagnostic marker. Am J Physiol Cell Physiol 2023; 324:C142-C152. [PMID: 36409173 PMCID: PMC9829464 DOI: 10.1152/ajpcell.00103.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
Chondroitin sulfate (CS) is a ubiquitous glycosaminoglycan covalently attached to the core proteins of cell surface, extracellular, and intracellular proteoglycans. The multistep and highly regulated biosynthesis of chondroitin sulfate and its degradation products give rise to a diverse species of molecules with functional regulatory properties in biological systems. This review will elucidate and expand on the most recent advances in understanding the role of chondroitin sulfate and its associate proteoglycans, in arthritis and Duchenne muscular dystrophy (DMD), two different and discrete pathologies. Highlighting not only the biodiverse nature of this family of molecules but also the utilization of CS proteoglycans, CS, and its catabolic fragments as biomarkers and potential therapeutic targets for disease pathologies.
Collapse
Affiliation(s)
- Marissa L Maciej-Hulme
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and The Faculty of Medicine and Health, The University of Sydney, St. Leonard's, New South Wales, Australia
| | - Brooke L Farrugia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Empere M, Wang X, Prein C, Aspberg A, Moser M, Oohashi T, Clausen-Schaumann H, Aszodi A, Alberton P. Aggrecan governs intervertebral discs development by providing critical mechanical cues of the extracellular matrix. Front Bioeng Biotechnol 2023; 11:1128587. [PMID: 36937743 PMCID: PMC10017878 DOI: 10.3389/fbioe.2023.1128587] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Aggrecan (ACAN) is localized in the intervertebral disc (IVD) in unique compartment-specific patterns where it contributes to the tissue structure and mechanical function together with collagens. The extracellular matrix (ECM) of the IVD undergoes degenerative changes during aging, misuse or trauma, which inevitably alter the biochemical and biomechanical properties of the tissue. A deeper understanding of these processes can be achieved in genetically engineered mouse models, taking into account the multifaceted aspects of IVD development. In this study, we generated aggrecan insertion mutant mice (Acan iE5/iE5 ) by interrupting exon 5 coding for the G1 domain of ACAN, and analyzed the morphological and mechanical properties of the different IVD compartments during embryonic development. Western blotting using an antibody against the total core protein failed to detect ACAN in cartilage extracts, whereas immunohistochemistry by a G1-specific antibody showed weak signals in vertebral tissues of Acan iE5/iE5 mice. Homozygous mutant mice are perinatally lethal and characterized by short snout, cleft palate and disproportionate dwarfism. Whole-mount skeletal staining and µ-CT analysis of Acan iE5/iE5 mice at embryonic day 18.5 revealed compressed vertebral bodies with accelerated mineralization compared to wild type controls. In Acan iE5/iE5 mice, histochemical staining revealed collapsed extracellular matrix with negligible sulfated glycosaminoglycan content accompanied by a high cellular density. Collagen type II deposition was not impaired in the IVD of Acan iE5/iE5 mice, as shown by immunohistochemistry. Mutant mice developed a severe IVD phenotype with deformed nucleus pulposus and thinned cartilaginous endplates accompanied by a disrupted growth plate structure in the vertebral body. Atomic force microscopy (AFM) imaging demonstrated a denser collagen network with thinner fibrils in the mutant IVD zones compared to wild type. Nanoscale AFM indentation revealed bimodal stiffness distribution attributable to the softer proteoglycan moiety and harder collagenous fibrils of the wild type IVD ECM. In Acan iE5/iE5 mice, loss of aggrecan resulted in a marked shift of the Young's modulus to higher values in all IVD zones. In conclusion, we demonstrated that aggrecan is pivotal for the determination and maintenance of the proper stiffness of IVD and vertebral tissues, which in turn could play an essential role in providing developmental biomechanical cues.
Collapse
Affiliation(s)
- Marta Empere
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Xujia Wang
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Carina Prein
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Anders Aspberg
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Markus Moser
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Max Planck Society, Martinsried, Germany
- Institute of Experimental Hematology, School of Medicine, Technische Universität München, Munich, Germany
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Attila Aszodi
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Paolo Alberton
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
- *Correspondence: Paolo Alberton,
| |
Collapse
|
13
|
Kang KJ, Choi MJ, Min TJ, You TM, Lee G, Ko SY, Jang YJ. Cell surface accumulation of intracellular leucine proline-enriched proteoglycan 1 enhances odontogenic potential of human dental pulp stem cells. Stem Cells Dev 2022; 31:684-695. [PMID: 35859453 DOI: 10.1089/scd.2022.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Primary dental pulp cells can be differentiated into odontoblast-like cells, which are responsible for dentin formation and mineralization. Successful differentiation of primary dental pulp cells can be verified using a few markers. However, odontoblast-specific cell surface markers have not been fully studied yet. LEucine PRoline-Enriched Proteoglycan 1 (LEPRE1) is a basement membrane-associated proteoglycan. LEPRE1 protein levels are increased during odontoblastic differentiation of human dental pulp cells. Intracellular and cell surface accumulation of this protein completely disappeared during dentin maturation and mineralization. Cell surface binding of an anti-LEPRE1 monoclonal antibody that could recognize an extracellular region was gradually increased in the odontoblastic stage. Overexpression and knock-down experiments showed that accumulation of intracellular LEPRE1 could lead to inefficient odontoblastic differentiation and that the movement of LEPRE1 from intracellular region to the cell surface was required for odontoblastic differentiation. Indeed, when LEPRE1 already located on the cell surface was blocked by the anti-LEPRE1 monoclonal antibody, odontoblastic differentiation of human dental pulp cells was inhibited. In this study, we looked at other aspects of LEPRE1 function as a cell surface molecule rather than its known intracellular hydroxylase activity. Our results indicate that this protein has potential as a specific cell surface marker in odontoblastic differentiation.
Collapse
Affiliation(s)
- Kyung-Jung Kang
- Dankook University - Cheonan Campus, Cheonan, Chungnam, Korea (the Republic of);
| | - Min-Jeong Choi
- Dankook University - Cheonan Campus, Cheonan, Chungnam, Korea (the Republic of);
| | - Tae-Jun Min
- Dankook University - Cheonan Campus, Cheonan, Chungnam, Korea (the Republic of);
| | - Tae Min You
- Dankook University College of Dentistry, School of Dentistry, Cheonan, Korea (the Republic of);
| | - Gyutae Lee
- Yonsei Wooil Dental Hospital, Cheonan, Korea (the Republic of);
| | - Seon-Yle Ko
- Dankook University - Cheonan Campus, Cheonan, Chungnam, Korea (the Republic of);
| | - Young-Joo Jang
- Dankook University - Cheonan Campus, Dept. Nanobiomedical Science, Cheonan, Chungnam, Korea (the Republic of).,Dankook University College of Dentistry, Cheonan, Korea (the Republic of);
| |
Collapse
|
14
|
Gabius H, Cudic M, Diercks T, Kaltner H, Kopitz J, Mayo KH, Murphy PV, Oscarson S, Roy R, Schedlbauer A, Toegel S, Romero A. What is the Sugar Code? Chembiochem 2022; 23:e202100327. [PMID: 34496130 PMCID: PMC8901795 DOI: 10.1002/cbic.202100327] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Indexed: 12/18/2022]
Abstract
A code is defined by the nature of the symbols, which are used to generate information-storing combinations (e. g. oligo- and polymers). Like nucleic acids and proteins, oligo- and polysaccharides are ubiquitous, and they are a biochemical platform for establishing molecular messages. Of note, the letters of the sugar code system (third alphabet of life) excel in coding capacity by making an unsurpassed versatility for isomer (code word) formation possible by variability in anomery and linkage position of the glycosidic bond, ring size and branching. The enzymatic machinery for glycan biosynthesis (writers) realizes this enormous potential for building a large vocabulary. It includes possibilities for dynamic editing/erasing as known from nucleic acids and proteins. Matching the glycome diversity, a large panel of sugar receptors (lectins) has developed based on more than a dozen folds. Lectins 'read' the glycan-encoded information. Hydrogen/coordination bonding and ionic pairing together with stacking and C-H/π-interactions as well as modes of spatial glycan presentation underlie the selectivity and specificity of glycan-lectin recognition. Modular design of lectins together with glycan display and the nature of the cognate glycoconjugate account for the large number of post-binding events. They give an entry to the glycan vocabulary its functional, often context-dependent meaning(s), hereby building the dictionary of the sugar code.
Collapse
Affiliation(s)
- Hans‐Joachim Gabius
- Institute of Physiological ChemistryFaculty of Veterinary MedicineLudwig-Maximilians-University MunichVeterinärstr. 1380539MunichGermany
| | - Maré Cudic
- Department of Chemistry and BiochemistryCharles E. Schmidt College of ScienceFlorida Atlantic University777 Glades RoadBoca RatonFlorida33431USA
| | - Tammo Diercks
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801 A48160DerioBizkaiaSpain
| | - Herbert Kaltner
- Institute of Physiological ChemistryFaculty of Veterinary MedicineLudwig-Maximilians-University MunichVeterinärstr. 1380539MunichGermany
| | - Jürgen Kopitz
- Institute of PathologyDepartment of Applied Tumor BiologyFaculty of MedicineRuprecht-Karls-University HeidelbergIm Neuenheimer Feld 22469120HeidelbergGermany
| | - Kevin H. Mayo
- Department of BiochemistryMolecular Biology & BiophysicsUniversity of MinnesotaMinneapolisMN 55455USA
| | - Paul V. Murphy
- CÚRAM – SFI Research Centre for Medical Devices and theSchool of ChemistryNational University of Ireland GalwayUniversity RoadGalwayH91 TK33Ireland
| | - Stefan Oscarson
- Centre for Synthesis and Chemical BiologyUniversity College DublinBelfieldDublin 4Ireland
| | - René Roy
- Département de Chimie et BiochimieUniversité du Québec à MontréalCase Postale 888Succ. Centre-Ville MontréalQuébecH3C 3P8Canada
| | - Andreas Schedlbauer
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801 A48160DerioBizkaiaSpain
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Antonio Romero
- Department of Structural and Chemical BiologyCIB Margarita Salas, CSICRamiro de Maeztu 928040MadridSpain
| |
Collapse
|
15
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
16
|
Synovial mesenchymal progenitor derived aggrecan regulates cartilage homeostasis and endogenous repair capacity. Cell Death Dis 2022; 13:470. [PMID: 35585042 PMCID: PMC9117284 DOI: 10.1038/s41419-022-04919-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022]
Abstract
Aggrecan is a critical component of the extracellular matrix of all cartilages. One of the early hallmarks of osteoarthritis (OA) is the loss of aggrecan from articular cartilage followed by degeneration of the tissue. Mesenchymal progenitor cell (MPC) populations in joints, including those in the synovium, have been hypothesized to play a role in the maintenance and/or repair of cartilage, however, the mechanism by which this may occur is unknown. In the current study, we have uncovered that aggrecan is secreted by synovial MPCs from healthy joints yet accumulates inside synovial MPCs within OA joints. Using human synovial biopsies and a rat model of OA, we established that this observation in aggrecan metabolism also occurs in vivo. Moreover, the loss of the "anti-proteinase" molecule alpha-2 macroglobulin (A2M) inhibits aggrecan secretion in OA synovial MPCs, whereas overexpressing A2M rescues the normal secretion of aggrecan. Using mice models of OA and cartilage repair, we have demonstrated that intra-articular injection of aggrecan into OA joints inhibits cartilage degeneration and stimulates cartilage repair respectively. Furthermore, when synovial MPCs overexpressing aggrecan were transplanted into injured joints, increased cartilage regeneration was observed vs. wild-type MPCs or MPCs with diminished aggrecan expression. Overall, these results suggest that aggrecan secreted from joint-associated MPCs may play a role in tissue homeostasis and repair of synovial joints.
Collapse
|
17
|
Cao Y, Guan X, Li S, Wu N, Chen X, Yang T, Yang B, Zhao X. Identification of variants in ACAN and PAPSS2 leading to spondyloepi(meta)physeal dysplasias in four Chinese families. Mol Genet Genomic Med 2022; 10:e1916. [PMID: 35261200 PMCID: PMC9034684 DOI: 10.1002/mgg3.1916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background Spondyloepi(meta)physeal dysplasias (SE[M]D) are a group of inherited skeletal disorders that mainly affect bone and cartilage, and next‐generation sequencing has aided the detection of genetic defects of such diseases. In this study, we aimed to identify causative variants in four Chinese families associated with SE(M)D. Methods We recruited four unrelated Chinese families all displaying short stature and growth retardation. Clinical manifestations and X‐ray imaging were recorded for all patients. Candidate variants were identified by whole‐exome sequencing (WES) and verified by Sanger sequencing. Pathogenicity was assessed by conservation analysis, 3D protein modeling and in silico prediction, and was confirmed according to American College of Medical Genetics and Genomics. Results Three novel SE(M)D‐related variants c.1090dupG, c.7168 T > G, and c.2947G > C in ACAN, and one reported variant c.712C > T in PAPSS2 were identified. Among them, c.1090dupG in ACAN and c.712C > T in PAPSS2 caused truncated protein and the other two variants led to amino acid alterations. Conservation analysis revealed sites of the two missense variants were highly conserved, and bioinformatic findings confirmed their pathogenicity. 3D modeling of mutant protein encoded by c.7168 T > G(p.Trp2390Gly) in ACAN proved the structural alteration in protein level. Conclusion Our data suggested ACAN is a common pathogenic gene of SE(M)D. This study enriched the genetic background of skeletal dysplasias, and expanded the mutation spectra of ACAN and PAPSS2.
Collapse
Affiliation(s)
- Yixuan Cao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xin Guan
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shan Li
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiumin Chen
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Yang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Bo Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
von Mentzer U, Corciulo C, Stubelius A. Biomaterial Integration in the Joint: Pathological Considerations, Immunomodulation, and the Extracellular Matrix. Macromol Biosci 2022; 22:e2200037. [PMID: 35420256 DOI: 10.1002/mabi.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/30/2022] [Indexed: 11/08/2022]
Abstract
Defects of articular joints are becoming an increasing societal burden due to a persistent increase in obesity and aging. For some patients suffering from cartilage erosion, joint replacement is the final option to regain proper motion and limit pain. Extensive research has been undertaken to identify novel strategies enabling earlier intervention to promote regeneration and cartilage healing. With the introduction of decellularized extracellular matrix (dECM), researchers have tapped into the potential for increased tissue regeneration by designing biomaterials with inherent biochemical and immunomodulatory signals. Compared to conventional and synthetic materials, dECM-based materials invoke a reduced foreign body response. It is therefore highly beneficial to understand the interplay of how these native tissue-based materials initiate a favorable remodeling process by the immune system. Yet, such an understanding also demands increasing considerations of the pathological environment and remodeling processes, especially for materials designed for early disease intervention. This knowledge would avoid rejection and help predict complications in conditions with inflammatory components such as arthritides. This review outlines general issues facing biomaterial integration and emphasizes the importance of tissue-derived macromolecular components in regulating essential homeostatic, immunological, and pathological processes to increase biomaterial integration for patients suffering from joint degenerative diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ula von Mentzer
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, 41296, Sweden
| | - Carmen Corciulo
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation, Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, Gothenburg, 41296, Sweden
| | - Alexandra Stubelius
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, 41296, Sweden
| |
Collapse
|
19
|
Abstract
Aggrecan (Acan) and versican (Vcan) are large chondroitin sulfate proteoglycans of the extracellular matrix. They share the same structural domains at both N and C-termini. The N-terminal G1 domain binds hyaluronan (HA), forms an HA-rich matrix, and regulates HA-mediated signaling. The C-terminal G3 domain binds other extracellular matrix molecules and forms a supramolecular structure that stores TGFb and BMPs and regulates their signaling. EGF-like motifs in the G3 domain may directly act like an EGF ligand. Both Acan and Vcan are present in cartilage, intervertebral disc, brain, heart, and aorta. Their localizations are essentially reciprocal. This review describes their structural domains, expression patterns and functions, and regulation of their expression.
Collapse
Affiliation(s)
- Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
20
|
Yin LP, Zheng HX, Zhu H. Short stature associated with a novel mutation in the aggrecan gene: A case report and literature review. World J Clin Cases 2022; 10:2811-2817. [PMID: 35434101 PMCID: PMC8968812 DOI: 10.12998/wjcc.v10.i9.2811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/02/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mutations in the aggrecan (ACAN) gene are identified in patients with: spondyloepiphyseal dysplasia, Kimberley type; short stature with advanced bone age (BA); in the presence or absence of heterozygous ACAN mutation-induced early-onset osteoarthritis and/or osteochondritis dissecans; and spondyloepimetaphyseal dysplasia, ACAN type. Heterozygous mutations contribute to spondyloepiphyseal dysplasia, Kimberley type (MIM#608361), which is a milder skeletal dysplasia. In contrast, homozygous mutations cause a critical skeletal dysplasia, which is called spondyloepimetaphyseal dysplasia, ACAN type (MIM#612813). Lately, investigations on exome and genome sequencing have shown that ACAN mutations can also lead to idiopathic short stature with or without an advanced BA, in the presence or absence of early-onset osteoarthritis and/or osteochondritis dissecans (MIM#165800). We herein reported a heterozygous defect of ACAN in a family with autosomal dominant short stature, BA acceleration, and premature growth cessation.
CASE SUMMARY A 2-year-old male patient visited us due to growth retardation. The patient presented symmetrical short stature (height 79 cm, < -2 SD) without facial features and other congenital abnormalities. Whole-exome sequencing revealed a heterozygous pathogenic variant c. 871C>T (p. Gln291*) of ACAN, which was not yet reported in cases of short stature. This mutation was also detected in his father and paternal grandmother. According to the Human Gene Mutation Database, 67 ACAN mutations are registered. Most of these mutations are genetically inheritable, and very few children with short stature are associated with ACAN mutations. To date, heterozygous ACAN mutations have been reported in approximately 40 families worldwide, including a few individuals with a decelerated BA.
CONCLUSION Heterozygous c. 871C>T (p. Gln291*) variation of the ACAN gene was the disease-causing variant in this family. Collectively, our newly discovered mutation expanded the spectrum of ACAN gene mutations.
Collapse
Affiliation(s)
- Li-Ping Yin
- Department of Paediatrics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, China
| | - Hong-Xue Zheng
- Department of Paediatrics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, China
| | - Hong Zhu
- Department of Paediatrics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, China
| |
Collapse
|
21
|
Stattin EL, Lindblom K, Struglics A, Önnerfjord P, Goldblatt J, Dixit A, Sarkar A, Randell T, Suri M, Raggio C, Davis J, Carter E, Aspberg A. Novel missense ACAN gene variants linked to familial osteochondritis dissecans cluster in the C-terminal globular domain of aggrecan. Sci Rep 2022; 12:5215. [PMID: 35338222 PMCID: PMC8956744 DOI: 10.1038/s41598-022-09211-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
The cartilage aggrecan proteoglycan is crucial for both skeletal growth and articular cartilage function. A number of aggrecan (ACAN) gene variants have been linked to skeletal disorders, ranging from short stature to severe chondrodyplasias. Osteochondritis dissecans is a disorder where articular cartilage and subchondral bone fragments come loose from the articular surface. We previously reported a missense ACAN variant linked to familial osteochondritis dissecans, with short stature and early onset osteoarthritis, and now describe three novel ACAN gene variants from additional families with this disorder. Like the previously described variant, these are autosomal dominant missense variants, resulting in single amino acid residue substitutions in the C-type lectin repeat of the aggrecan G3 domain. Functional studies showed that neither recombinant variant proteins, nor full-length variant aggrecan proteoglycan from heterozygous patient cartilage, were secreted to the same level as wild-type aggrecan. The variant proteins also showed decreased binding to known cartilage extracellular matrix ligands. Mapping these and other ACAN variants linked to hereditary skeletal disorders showed a clustering of osteochondritis dissecans-linked variants to the G3 domain. Taken together, this supports a link between missense ACAN variants affecting the aggrecan G3 domain and hereditary osteochondritis dissecans.
Collapse
Affiliation(s)
- Eva-Lena Stattin
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Karin Lindblom
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, BMC-C12, 22184, Lund, Sweden
| | - André Struglics
- Orthopaedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Patrik Önnerfjord
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, BMC-C12, 22184, Lund, Sweden
| | - Jack Goldblatt
- Genetic Services & Familial Cancer Program of Western Australia, King Edward Memorial Hospital for Women, Perth, WA, Australia
| | - Abhijit Dixit
- Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Ajoy Sarkar
- Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Tabitha Randell
- Department of Paediatric Endocrinology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Mohnish Suri
- Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Cathleen Raggio
- Kathryn O. and Alan C. Greenberg Center for Skeletal Dysplasias, Hospital for Special Surgery, New York, NY, USA
| | - Jessica Davis
- Kathryn O. and Alan C. Greenberg Center for Skeletal Dysplasias, Hospital for Special Surgery, New York, NY, USA
| | - Erin Carter
- Kathryn O. and Alan C. Greenberg Center for Skeletal Dysplasias, Hospital for Special Surgery, New York, NY, USA
| | - Anders Aspberg
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, BMC-C12, 22184, Lund, Sweden.
| |
Collapse
|
22
|
Smith MM, Hayes AJ, Melrose J. Pentosan Polysulphate (PPS), a Semi-Synthetic Heparinoid DMOAD With Roles in Intervertebral Disc Repair Biology emulating The Stem Cell Instructive and Tissue Reparative Properties of Heparan Sulphate. Stem Cells Dev 2022; 31:406-430. [PMID: 35102748 DOI: 10.1089/scd.2022.0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review highlights the attributes of pentosan polysulphate (PPS) in the promotion of intervertebral disc (IVD) repair processes. PPS has been classified as a disease modifying osteoarthritic drug (DMOAD) and many studies have demonstrated its positive attributes in the countering of degenerative changes occurring in cartilaginous tissues during the development of osteoarthritis (OA). Degenerative changes in the IVD also involve inflammatory cytokines, degradative proteases and cell signalling pathways similar to those operative in the development of OA in articular cartilage. PPS acts as a heparan sulphate (HS) mimetic to effect its beneficial effects in cartilage. The IVD contains small cell membrane HS-proteoglycans (HSPGs) such as syndecan, and glypican and a large multifunctional HS/chondroitin sulphate (CS) hybrid proteoglycan (HSPG2/perlecan) that have important matrix stabilising properties and sequester, control and present growth factors from the FGF, VEGF, PDGF and BMP families to cellular receptors to promote cell proliferation, differentiation and matrix synthesis. HSPG2 also has chondrogenic properties and stimulates the synthesis of extracellular matrix (ECM) components, expansion of cartilaginous rudiments and has roles in matrix stabilisation and repair. Perlecan is a perinuclear and nuclear proteoglycan in IVD cells with roles in chromatin organisation and control of transcription factor activity, immunolocalises to stem cell niches in cartilage, promotes escape of stem cells from quiescent recycling, differentiation and attainment of pluripotency and migratory properties. These participate in tissue development and morphogenesis, ECM remodelling and repair. PPS also localises in the nucleus of stromal stem cells, promotes development of chondroprogenitor cell lineages, ECM synthesis and repair and discal repair by resident disc cells. The availability of recombinant perlecan and PPS offer new opportunities in repair biology. These multifunctional agents offer welcome new developments in repair strategies for the IVD.
Collapse
Affiliation(s)
- Margaret M Smith
- The University of Sydney Raymond Purves Bone and Joint Research Laboratories, 247198, St Leonards, New South Wales, Australia;
| | - Anthony J Hayes
- Cardiff School of Biosciences, University of Cardiff, UK, Bioimaging Unit, Cardiff, Wales, United Kingdom of Great Britain and Northern Ireland;
| | - James Melrose
- Kolling Institute, University of Sydney, Royal North Shore Hospital, Raymond Purves Lab, Sydney Medical School Northern, Level 10, Kolling Institute B6, Royal North Shore Hospital, St. Leonards, New South Wales, Australia, 2065.,University of New South Wales, 7800, Graduate School of Biomedical Engineering, University of NSW, Sydney, New South Wales, Australia, 2052;
| |
Collapse
|
23
|
Nojima K, Miyazaki H, Hori T, Vargova L, Oohashi T. Assessment of Possible Contributions of Hyaluronan and Proteoglycan Binding Link Protein 4 to Differential Perineuronal Net Formation at the Calyx of Held. Front Cell Dev Biol 2021; 9:730550. [PMID: 34604231 PMCID: PMC8485899 DOI: 10.3389/fcell.2021.730550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
The calyx of Held is a giant nerve terminal mediating high-frequency excitatory input to principal cells of the medial nucleus of the trapezoid body (MNTB). MNTB principal neurons are enwrapped by densely organized extracellular matrix structures, known as perineuronal nets (PNNs). Emerging evidence indicates the importance of PNNs in synaptic transmission at the calyx of Held. Previously, a unique differential expression of aggrecan and brevican has been reported at this calyceal synapse. However, the role of hyaluronan and proteoglycan binding link proteins (HAPLNs) in PNN formation and synaptic transmission at this synapse remains elusive. This study aimed to assess immunohistochemical evidence for the effect of HAPLN4 on differential PNN formation at the calyx of Held. Genetic deletion of Hapln4 exhibited a clear ectopic shift of brevican localization from the perisynaptic space between the calyx of Held terminals and principal neurons to the neuropil surrounding the whole calyx of Held terminals. In contrast, aggrecan expression showed a consistent localization at the surrounding neuropil, together with HAPLN1 and tenascin-R, in both gene knockout (KO) and wild-type (WT) mice. An in situ proximity ligation assay demonstrated the molecular association of brevican with HAPLN4 in WT and HAPLN1 in gene KO mice. Further elucidation of the roles of HAPLN4 may highlight the developmental and physiological importance of PNN formation in the calyx of Held.
Collapse
Affiliation(s)
- Kojiro Nojima
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Haruko Miyazaki
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tetsuya Hori
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Lydia Vargova
- Department of Neuroscience, Charles University, Second Faculty of Medicine, Prague, Czechia.,Department of Cellular Physiology, Institute of Experimental Medicine AS CR, Prague, Czechia
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
24
|
Mancioppi V, Prodam F, Mellone S, Ricotti R, Giglione E, Grasso N, Vurchio D, Petri A, Rabbone I, Giordano M, Bellone S. Retrospective Diagnosis of a Novel ACAN Pathogenic Variant in a Family With Short Stature: A Case Report and Review of the Literature. Front Genet 2021; 12:708864. [PMID: 34456977 PMCID: PMC8397523 DOI: 10.3389/fgene.2021.708864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Short stature is a frequent disorder in the pediatric population and can be caused by multiple factors. In the last few years, the introduction of Next Generation Sequencing (NGS) in the molecular diagnostic workflow led to the discovery of mutations in novel genes causing short stature including heterozygous mutations in ACAN gene. It encodes for aggrecan, a primary proteoglycan component specific for the structure of the cartilage growth plate, articular and intervertebral disc. We report a novel ACAN heterozygous pathogenic variant in a family with idiopathic short stature, early-onset osteoarthritis and osteoarthritis dissecans (SSOAOD). We also performed a literature review summarizing the clinical characteristic of ACAN's patients. The probands are two Caucasian sisters with a family history of short stature and osteoarthritis dissecans. They showed dysmorphic features such as mild midface hypoplasia, brachydactyly and broad thumbs, especially the great toes. The same phenotype was presented in the mother who had had short stature and suffered from intervertebral disc disease. DNA sequencing identified a heterozygous pathogenic variation (c.4390delG p.Val1464Ter) in the sisters, with a maternal inheritance. The nonsense mutation, located on exon 12, results in premature truncation and presumed loss of protein function. In terms of treatment, our patients underwent recombinant human growth hormone replacement therapy, associated with gonadotropin releasing hormone therapy, in order to block early growth cessation and therefore reach a better final height. Our case suggests that SSOAOD ACAN related should be considered in the differential diagnosis of children with autosomal dominant short stature and family history of joints disease.
Collapse
Affiliation(s)
- Valentina Mancioppi
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Flavia Prodam
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.,Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.,Interdisciplinary Research Center of Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Simona Mellone
- Laboratory of Genetics, SCDU Biochimica Clinica, Ospedale Maggiore della Carità, Novara, Italy
| | - Roberta Ricotti
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Enza Giglione
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Nicolino Grasso
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Denise Vurchio
- Laboratory of Genetics, SCDU Biochimica Clinica, Ospedale Maggiore della Carità, Novara, Italy
| | - Antonella Petri
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Ivana Rabbone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Mara Giordano
- Laboratory of Genetics, SCDU Biochimica Clinica, Ospedale Maggiore della Carità, Novara, Italy.,Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Simonetta Bellone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.,Interdisciplinary Research Center of Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
25
|
Klarmann GJ, Gaston J, Ho VB. A review of strategies for development of tissue engineered meniscal implants. BIOMATERIALS AND BIOSYSTEMS 2021; 4:100026. [PMID: 36824574 PMCID: PMC9934480 DOI: 10.1016/j.bbiosy.2021.100026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 12/09/2022] Open
Abstract
The meniscus is a key stabilizing tissue of the knee that facilitates proper tracking and movement of the knee joint and absorbs stresses related to physical activity. This review article describes the biology, structure, and functions of the human knee meniscus, common tears and repair approaches, and current research and development approaches using modern methods to fabricate a scaffold or tissue engineered meniscal replacement. Meniscal tears are quite common, often resulting from sports or physical training, though injury can result without specific contact during normal physical activity such as bending or squatting. Meniscal injuries often require surgical intervention to repair, restore basic functionality and relieve pain, and severe damage may warrant reconstruction using allograft transplants or commercial implant devices. Ongoing research is attempting to develop alternative scaffold and tissue engineered devices using modern fabrication techniques including three-dimensional (3D) printing which can fabricate a patient-specific meniscus replacement. An ideal meniscal substitute should have mechanical properties that are close to that of natural human meniscus, and also be easily adapted for surgical procedures and fixation. A better understanding of the organization and structure of the meniscus as well as its potential points of failure will lead to improved design approaches to generate a suitable and functional replacement.
Collapse
Affiliation(s)
- George J. Klarmann
- 4D Bio³ Center, Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA,The Geneva Foundation, 917 Pacific Ave., Tacoma, WA 98402, USA,Corresponding author at: USU-4D Bio³ Center, 9410 Key West Ave., Rockville, MD 20850, USA.
| | - Joel Gaston
- 4D Bio³ Center, Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA,The Geneva Foundation, 917 Pacific Ave., Tacoma, WA 98402, USA
| | - Vincent B. Ho
- 4D Bio³ Center, Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| |
Collapse
|
26
|
Højland AT, Tavernier LJM, Schrauwen I, Sommen M, Topsakal V, Schatteman I, Dhooge I, Huber A, Zanetti D, Kunst HPM, Hoischen A, Petersen MB, Van Camp G, Fransen E. A wide range of protective and predisposing variants in aggrecan influence the susceptibility for otosclerosis. Hum Genet 2021; 141:951-963. [PMID: 34410490 DOI: 10.1007/s00439-021-02334-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022]
Abstract
In this study, we investigated the association of ACAN variants with otosclerosis, a frequent cause of hearing loss among young adults. We sequenced the coding, 5'-UTR and 3'-UTR regions of ACAN in 1497 unrelated otosclerosis cases and 1437 matched controls from six different subpopulations. The association between variants in ACAN and the disease risk was tested through single variant and gene-based association tests. After correction for multiple testing, 14 variants were significantly associated with otosclerosis, ten of which represented independent association signals. Eight variants showed a consistent association across all subpopulations. Allelic odds ratios of the variants identified four predisposing and ten protective variants. Gene-based tests showed an association of very rare variants in the 3'-UTR with the phenotype. The associated exonic variants are all located in the CS domain of ACAN and include both protective and predisposing variants with a broad spectrum of effect sizes and population frequencies. This includes variants with strong effect size and low frequency, typical for monogenic diseases, to low effect size variants with high frequency, characteristic for common complex traits. This single-gene allelic spectrum with both protective and predisposing alleles is unique in the field of complex diseases. In conclusion, these findings are a significant advancement to the understanding of the etiology of otosclerosis.
Collapse
Affiliation(s)
- Allan Thomas Højland
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Research and Knowledge Center in Sensory Genetics, Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Lisse J M Tavernier
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Department of Neurology, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA
| | - Manou Sommen
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Vedat Topsakal
- Department of ORL and Head and Neck Surgery, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Isabelle Schatteman
- European Institute for ORL, St-Augustinus Hospital Antwerp, Antwerp, Belgium
| | - Ingeborg Dhooge
- Department of Otolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Alex Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Diego Zanetti
- Department of Clinical Sciences and Community Health, Audiology Unit, University of Milan, I.R.C.C.S. Fondazione "Cà Granda", Osp.Le Maggiore Policlinico, Milano, Italy
| | - Henricus P M Kunst
- Department of Otorhinolaryngology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands.,Department of Otorhinolaryngology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael B Petersen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Research and Knowledge Center in Sensory Genetics, Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.
| | - Erik Fransen
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium. .,StatUa Center for Statistics, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
27
|
Li W, Zhang Q, Wang X, Wang H, Zuo W, Xie H, Tang J, Wang M, Zeng Z, Cai W, Tang D, Dai Y. Comparative Proteomic Analysis to Investigate the Pathogenesis of Oral Adenoid Cystic Carcinoma. ACS OMEGA 2021; 6:18623-18634. [PMID: 34337202 PMCID: PMC8319923 DOI: 10.1021/acsomega.1c01270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/07/2021] [Indexed: 05/25/2023]
Abstract
Adenoid cystic carcinoma (ACC) belongs to salivary gland malignancies commonly occurring in an oral cavity with a poor long-term prognosis. The potential biomarkers and cellular functions acting on local recurrences and distant metastases remain to be illustrated. Proteomics is the core content of precision medicine research, which provides accurate information for early detection of cancer, benign and malignant diagnosis, classification and personalized medication, efficacy monitoring, and prognosis judgment. To obtain a comprehensive regulation network and supply clues for the treatment of oral ACC (OACC), we utilized mass spectrometry-based quantitative proteomics to analyze the protein expression profile in paired tumor and adjacent normal tissues. We identified a total of 40,547 specific peptides and 4454 differentially expressed proteins (DEPs), in which HAPLN1 was the most upregulated protein and BPIFB1 was the most downregulated. Then, we annotated the functions and characteristics of DEPs in detail from the aspects of gene ontology, subcellular structural localization, KEGG, and protein domain to thoroughly understand the identified and quantified proteins. Glycosphingolipid biosynthesis and glycosaminoglycan degradation pathways showed the biggest difference according to KEGG analysis. Moreover, we confirmed 20 proteins from the ECM-receptor signaling pathway by a parallel reaction monitoring quantitative detection and 19 proteins were quantified. This study provides useful insights to analyze DEPs in OACC and guide in-depth thinking of the pathogenesis from a proteomics view for anticancer mechanisms and potential biomarkers.
Collapse
Affiliation(s)
- Wen Li
- Carson
International Cancer Centre, Shenzhen University General Hospital
and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, 1098 Xueyuan Road, Shenzhen, Guangdong 518000, China
- Key
Laboratory of Optoelectronic Devices and Systems, College of Physics
and Optoelectronic Engineering, Shenzhen
University, Shenzhen 518060, China
- Health
Science Center, School of Medicine, Shenzhen
University, Shenzhen 518060, China
| | - Qian Zhang
- Carson
International Cancer Centre, Shenzhen University General Hospital
and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, 1098 Xueyuan Road, Shenzhen, Guangdong 518000, China
- Key
Laboratory of Optoelectronic Devices and Systems, College of Physics
and Optoelectronic Engineering, Shenzhen
University, Shenzhen 518060, China
- Health
Science Center, School of Medicine, Shenzhen
University, Shenzhen 518060, China
| | - Xiaobin Wang
- Carson
International Cancer Centre, Shenzhen University General Hospital
and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, 1098 Xueyuan Road, Shenzhen, Guangdong 518000, China
- Key
Laboratory of Optoelectronic Devices and Systems, College of Physics
and Optoelectronic Engineering, Shenzhen
University, Shenzhen 518060, China
- Health
Science Center, School of Medicine, Shenzhen
University, Shenzhen 518060, China
| | - Hanlin Wang
- Health
Science Center, School of Medicine, Shenzhen
University, Shenzhen 518060, China
| | - Wenxin Zuo
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| | - Hongliang Xie
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| | - Jianming Tang
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| | - Mengmeng Wang
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| | - Zhipeng Zeng
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| | - Wanxia Cai
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| | - Donge Tang
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| | - Yong Dai
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| |
Collapse
|
28
|
Lin L, Li M, Luo J, Li P, Zhou S, Yang Y, Chen K, Weng Y, Ge X, Mireguli M, Wei H, Yang H, Li G, Sun Y, Cui L, Zhang S, Chen J, Zeng G, Xu L, Luo X, Shen Y. A High Proportion of Novel ACAN Mutations and Their Prevalence in a Large Cohort of Chinese Short Stature Children. J Clin Endocrinol Metab 2021; 106:e2711-e2719. [PMID: 33606014 PMCID: PMC8208663 DOI: 10.1210/clinem/dgab088] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 12/20/2022]
Abstract
CONTEXT Aggrecan, encoded by the ACAN gene, is the main proteoglycan component in the extracellular cartilage matrix. Heterozygous mutations in ACAN have been reported to cause idiopathic short stature. However, the prevalence of ACAN pathogenic variants in Chinese short stature patients and clinical phenotypes remain to be evaluated. OBJECTIVE We sought to determine the prevalence of ACAN pathogenic variants among Chinese short stature children and characterize the phenotypic spectrum and their responses to growth hormone therapies. PATIENTS AND METHODS Over 1000 unrelated short stature patients ascertained across China were genetically evaluated by next-generation sequencing-based test. RESULT We identified 10 novel likely pathogenic variants and 2 recurrent pathogenic variants in this cohort. None of ACAN mutation carriers exhibited significant dysmorphic features or skeletal abnormities. The prevalence of ACAN defect is estimated to be 1.2% in the whole cohort; it increased to 14.3% among those with advanced bone age and to 35.7% among those with both advanced bone age and family history of short stature. Nonetheless, 5 of 11 ACAN mutation carries had no advanced bone age. Two individuals received growth hormone therapy with variable levels of height SD score improvement. CONCLUSION Our data suggest that ACAN mutation is 1 of the common causes of Chinese pediatric short stature. Although it has a higher detection rate among short stature patients with advanced bone age and family history, part of affected probands presented with delayed bone age in Chinese short stature population. The growth hormone treatment was moderately effective for both individuals.
Collapse
Affiliation(s)
- Li Lin
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Mengting Li
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Pin Li
- Department of Endocrinology, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shasha Zhou
- Department of Endocrinology, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Yang
- Affiliation Children’s Hospital of Nanchang University, Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Ka Chen
- Affiliation Children’s Hospital of Nanchang University, Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Ying Weng
- Department of Pediatrics, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuying Ge
- Linyi Maternal and Child Health Care Hospital, Linyi, Shandong, China
| | - Maimaiti Mireguli
- Department of Pediatrics, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, China
| | - Haiyan Wei
- Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Haihua Yang
- Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Guimei Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yan Sun
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lanwei Cui
- Department of Pediatrics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shulin Zhang
- Department of Pediatrics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Chen
- Department of Child Health, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Guozhang Zeng
- Department of Child Health, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Lijun Xu
- Department of Child Health, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
- Correspondence: Xiaoping Luo, Department of Pediatrics, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, 430074, China. E-mail:
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Neurology, Harvard Medical School, Boston, MA, USA
- Yiping Shen, Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China. E-mail:
| |
Collapse
|
29
|
Zaydman AM, Strokova EL, Pahomova NY, Gusev AF, Mikhaylovskiy MV, Shevchenko AI, Zaidman MN, Shilo AR, Subbotin VM. Etiopathogenesis of adolescent idiopathic scoliosis: Review of the literature and new epigenetic hypothesis on altered neural crest cells migration in early embryogenesis as the key event. Med Hypotheses 2021; 151:110585. [PMID: 33932710 DOI: 10.1016/j.mehy.2021.110585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/28/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) affects 2-3% of children. Numerous hypotheses on etiologic/causal factors of AIS were investigated, but all failed to identify therapeutic targets and hence failed to offer a cure. Therefore, currently there are only two options to minimize morbidity of the patients suffering AIS: bracing and spinal surgery. From the beginning of 1960th, spinal surgery, both fusion and rod placement, became the standard of management for progressive adolescent idiopathic spine deformity. However, spinal surgery is often associated with complications. These circumstances motivate AIS scientific community to continue the search for new etiologic and causal factors of AIS. While the role of the genetic factors in AIS pathogenesis was investigated intensively and universally recognized, these studies failed to nominate mutation of a particular gene or genes combination responsible for AIS development. More recently epigenetic factors were suggested to play causal role in AIS pathogenesis. Sharing this new approach, we investigated scoliotic vertebral growth plates removed during vertebral fusion (anterior surgery) for AIS correction. In recent publications we showed that cells from the convex side of human scoliotic deformities undergo normal chondrogenic/osteogenic differentiation, while cells from the concave side acquire a neuronal phenotype. Based on these facts we hypothesized that altered neural crest cell migration in early embryogenesis can be the etiological factor of AIS. In particular, we suggested that neural crest cells failed to migrate through the anterior half of somites and became deposited in sclerotome, which in turn produced chondrogenic/osteogenic-insufficient vertebral growth plates. To test this hypothesis we conducted experiments on chicken embryos with arrest neural crest cell migration by inhibiting expression of Paired-box 3 (Pax3) gene, a known enhancer and promoter of neural crest cells migration and differentiation. The results showed that chicken embryos treated with Pax3 siRNA (microinjection into the neural tube, 44 h post-fertilization) progressively developed scoliotic deformity during maturation. Therefore, this analysis suggests that although adolescent idiopathic scoliosis manifests in children around puberty, the real onset of the disease is of epigenetic nature and takes place in early embryogenesis and involves altered neural crest cells migration. If these results confirmed and further elaborated, the hypothesis may shed new light on the etiology and pathogenesis of AIS.
Collapse
Affiliation(s)
- Alla M Zaydman
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Elena L Strokova
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Nataliya Y Pahomova
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Arkady F Gusev
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Mikhail V Mikhaylovskiy
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Alexander I Shevchenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences", Novosibirsk, Russia
| | | | - Andrey R Shilo
- Novosibirsk Zoo named after R.A. Shilo, Novosibirsk, Russia
| | - Vladimir M Subbotin
- Arrowhead Pharmaceuticals Inc., Madison WI, USA; University of Pittsburgh, Pittsburgh PA, USA; University of Wisconsin, Madison WI, USA.
| |
Collapse
|
30
|
Wojdas M, Dąbkowska K, Winsz-Szczotka K. Alterations of Extracellular Matrix Components in the Course of Juvenile Idiopathic Arthritis. Metabolites 2021; 11:132. [PMID: 33668781 PMCID: PMC7996267 DOI: 10.3390/metabo11030132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most common group of chronic connective tissue diseases in children that is accompanied by joint structure and function disorders. Inflammation underlying the pathogenic changes in JIA, caused by hypersecretion of proinflammatory cytokines, leads to the destruction of articular cartilage. The degradation which progresses with the duration of JIA is not compensated by the extent of repair processes. These disorders are attributed in particular to changes in homeostasis of extracellular matrix (ECM) components, including proteoglycans, that forms articular cartilage. Changes in metabolism of matrix components, associated with the disturbance of their degradation and biosynthesis processes, are the basis of the progressive wear of joint structures observed in the course of JIA. Clinical evaluation and radiographic imaging are current methods to identify the destruction. The aim of this paper is to review enzymatic and non-enzymatic factors involved in catabolism of matrix components and molecules stimulating their biosynthesis. Therefore, we discuss the changes in these factors in body fluids of children with JIA and their potential diagnostic use in the assessment of disease activity. Understanding the changes in ECM components in the course of the child-hood arthritis may provide the introduction of both new diagnostic tools and new therapeutic strategies in children with JIA.
Collapse
Affiliation(s)
- Magdalena Wojdas
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.W.-S.)
| | | | | |
Collapse
|
31
|
de Andrade DGA, Basso RM, Magro AJ, Laufer-Amorim R, Borges AS, de Oliveira-Filho JP. Evaluation of a new variant in the aggrecan gene potentially associated with chondrodysplastic dwarfism in Miniature horses. Sci Rep 2020; 10:15238. [PMID: 32943661 PMCID: PMC7499210 DOI: 10.1038/s41598-020-72192-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Chondrodysplastic dwarfism in Miniature horses is an autosomal recessive disorder previously associated with four mutations (D1, D2, D3*, and D4) in the aggrecan (ACAN) gene. The aim of this study was to identify additional variants in the candidate ACAN gene associated with chondrodysplastic dwarfism in Miniature horses. Fifteen dwarf Miniature horses were found to possess only one of the dwarfism-causing variants, and two possessed none of the variants. The ACAN exons (EquCab3.0) of seven dwarf Miniature horses were sequenced. A missense SNP in coding exon 11 (g.95271115A > T, c.6465A > T-RefSeq XM_005602799.2), which resulted in the amino acid substitution p.Leu2155Phe (RefSeq XP_005602856.2), was initially associated with the dwarf phenotype. The variant was tested and found present in 14 dwarf foals as well as one parent of each, and both parents of a dwarf possessing two copies. Genetic testing of 347 phenotypically normal Miniature horses demonstrated that none had more than one of the dwarf alleles or c.6465A > T. However, a study of large breeds revealed the presence of c.6465A > T, which was present in homozygosis in two Mangalarga Marchador horses. We suggest that c.6465A > T as a marker of disequilibrium or complex interactions in the Miniature horse genome could contribute to the associated dwarfism.
Collapse
Affiliation(s)
| | - Roberta Martins Basso
- School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, 18618-681, Brazil
| | - Angelo José Magro
- Institute for Biotechnology, São Paulo State University (Unesp), Botucatu, 18607-440, Brazil.,School of Agriculture, São Paulo State University (Unesp), Botucatu, 18610-034, Brazil
| | - Renée Laufer-Amorim
- School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, 18618-681, Brazil
| | - Alexandre Secorun Borges
- School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, 18618-681, Brazil
| | - José Paes de Oliveira-Filho
- School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, 18618-681, Brazil.
| |
Collapse
|
32
|
Cui J, Dean D, Hornicek FJ, Chen Z, Duan Z. The role of extracelluar matrix in osteosarcoma progression and metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:178. [PMID: 32887645 PMCID: PMC7650219 DOI: 10.1186/s13046-020-01685-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy and responsible for considerable morbidity and mortality due to its high rates of pulmonary metastasis. Although neoadjuvant chemotherapy has improved 5-year survival rates for patients with localized OS from 20% to over 65%, outcomes for those with metastasis remain dismal. In addition, therapeutic regimens have not significantly improved patient outcomes over the past four decades, and metastases remains a primary cause of death and obstacle in curative therapy. These limitations in care have given rise to numerous works focused on mechanisms and novel targets of OS pathogenesis, including tumor niche factors. OS is notable for its hallmark production of rich extracellular matrix (ECM) of osteoid that goes beyond simple physiological growth support. The aberrant signaling and structural components of the ECM are rich promoters of OS development, and very recent works have shown the specific pathogenic phenotypes induced by these macromolecules. Here we summarize the current developments outlining how the ECM contributes to OS progression and metastasis with supporting mechanisms. We also illustrate the potential of tumorigenic ECM elements as prognostic biomarkers and therapeutic targets in the evolving clinical management of OS.
Collapse
Affiliation(s)
- Juncheng Cui
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, 69 Chuanshan Road, Hengyang, 421001, Hunan, China.,Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - Dylan Dean
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - Zhiwei Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, 69 Chuanshan Road, Hengyang, 421001, Hunan, China.
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA.
| |
Collapse
|
33
|
Abstract
Aggrecan is a large proteoglycan that forms giant hydrated aggregates with hyaluronan in the extracellular matrix (ECM). The extraordinary resistance of these aggregates to compression explains their abundance in articular cartilage of joints where they ensure adequate load-bearing. In the brain, they provide mechanical buffering and contribute to formation of perineuronal nets, which regulate synaptic plasticity. Aggrecan is also present in cardiac jelly, developing heart valves, and blood vessels during cardiovascular development. Whereas aggrecan is essential for skeletal development, its function in the developing cardiovascular system remains to be fully elucidated. An excess of aggrecan was demonstrated in cardiovascular tissues in aortic aneurysms, atherosclerosis, vascular re-stenosis after injury, and varicose veins. It is a product of vascular smooth muscle and is likely to be an important component of pericellular matrix, where its levels are regulated by proteases. Aggrecan can contribute to specific biophysical and regulatory properties of cardiovascular ECM via the diverse interactions of its domains, and its accumulation is likely to have a significant role in developmental and disease pathways. Here, the established biological functions of aggrecan, its cardiovascular associations, and potential roles in cardiovascular development and disease are discussed.
Collapse
Affiliation(s)
- Christopher D Koch
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut.,Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.,Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Chan Mi Lee
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| |
Collapse
|
34
|
Wise CA, Sepich D, Ushiki A, Khanshour AM, Kidane YH, Makki N, Gurnett CA, Gray RS, Rios JJ, Ahituv N, Solnica-Krezel L. The cartilage matrisome in adolescent idiopathic scoliosis. Bone Res 2020; 8:13. [PMID: 32195011 PMCID: PMC7062733 DOI: 10.1038/s41413-020-0089-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
The human spinal column is a dynamic, segmented, bony, and cartilaginous structure that protects the neurologic system and simultaneously provides balance and flexibility. Children with developmental disorders that affect the patterning or shape of the spine can be at risk of neurologic and other physiologic dysfunctions. The most common developmental disorder of the spine is scoliosis, a lateral deformity in the shape of the spinal column. Scoliosis may be part of the clinical spectrum that is observed in many developmental disorders, but typically presents as an isolated symptom in otherwise healthy adolescent children. Adolescent idiopathic scoliosis (AIS) has defied understanding in part due to its genetic complexity. Breakthroughs have come from recent genome-wide association studies (GWAS) and next generation sequencing (NGS) of human AIS cohorts, as well as investigations of animal models. These studies have identified genetic associations with determinants of cartilage biogenesis and development of the intervertebral disc (IVD). Current evidence suggests that a fraction of AIS cases may arise from variation in factors involved in the structural integrity and homeostasis of the cartilaginous extracellular matrix (ECM). Here, we review the development of the spine and spinal cartilages, the composition of the cartilage ECM, the so-called "matrisome" and its functions, and the players involved in the genetic architecture of AIS. We also propose a molecular model by which the cartilage matrisome of the IVD contributes to AIS susceptibility.
Collapse
Affiliation(s)
- Carol A. Wise
- Center for Pediatric Bone Biology and Translational Research, Texas Scottish Rite Hospital for Children, 2222 Welborn St., Dallas, TX 75219 USA
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
- Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
- Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
| | - Diane Sepich
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158 USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158 USA
| | - Anas M. Khanshour
- Center for Pediatric Bone Biology and Translational Research, Texas Scottish Rite Hospital for Children, 2222 Welborn St., Dallas, TX 75219 USA
| | - Yared H. Kidane
- Center for Pediatric Bone Biology and Translational Research, Texas Scottish Rite Hospital for Children, 2222 Welborn St., Dallas, TX 75219 USA
| | - Nadja Makki
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, FL 32610 USA
| | - Christina A. Gurnett
- Departments of Neurology, Washington University School of Medicine, St Louis, MO 63110 USA
- Pediatrics, Washington University School of Medicine, St Louis, MO 63110 USA
- Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO 63110 USA
| | - Ryan S. Gray
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, TX 78723 USA
| | - Jonathan J. Rios
- Center for Pediatric Bone Biology and Translational Research, Texas Scottish Rite Hospital for Children, 2222 Welborn St., Dallas, TX 75219 USA
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
- Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
- Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158 USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158 USA
| | - Lila Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
35
|
Stavber L, Hovnik T, Kotnik P, Lovrečić L, Kovač J, Tesovnik T, Bertok S, Dovč K, Debeljak M, Battelino T, Avbelj Stefanija M. High frequency of pathogenic ACAN variants including an intragenic deletion in selected individuals with short stature. Eur J Endocrinol 2020; 182:243-253. [PMID: 31841439 PMCID: PMC7087498 DOI: 10.1530/eje-19-0771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/13/2019] [Indexed: 12/30/2022]
Abstract
CONTEXT Defining the underlying etiology of idiopathic short stature (ISS) improves the overall management of an individual. OBJECTIVE To assess the frequency of pathogenic ACAN variants in selected individuals. DESIGN The single-center cohort study was conducted at a tertiary university children's hospital. From 51 unrelated patients with ISS, the 16 probands aged between 3 and 18 years (12 females) with advanced bone age and/or autosomal dominant inheritance pattern of short stature were selected for the study. Fifteen family members of ACAN-positive probands were included. Exome sequencing was performed in all probands, and additional copy number variation (CNV) detection was applied in selected probands with a distinct ACAN-associated phenotype. RESULTS Systematic phenotyping of the study cohort yielded 37.5% (6/16) ACAN-positive probands, with all novel pathogenic variants, including a 6.082 kb large intragenic deletion, detected by array comparative genomic hybridization (array CGH) and exome data analysis. All variants were co-segregated with short stature phenotype, except in one family member with the intragenic deletion who had an unexpected growth pattern within the normal range (-0.5 SDS). One patient presented with otosclerosis, a sign not previously associated with aggrecanopathy. CONCLUSIONS ACAN pathogenic variants presented a common cause of familial ISS. The selection criteria used in our study were suggested for a personalized approach to genetic testing of the ACAN gene in clinical practice. Our results expanded the number of pathogenic ACAN variants, including the first intragenic deletion, and suggested CNV evaluation in patients with typical clinical features of aggrecanopathy as reasonable. Intra-familial phenotypic variability in growth patterns should be considered.
Collapse
Affiliation(s)
- L Stavber
- Unit for Special Laboratory Diagnostics, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - T Hovnik
- Unit for Special Laboratory Diagnostics, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - P Kotnik
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - L Lovrečić
- Clinical Institute of Medical Genetics, University Medical Centre, Ljubljana, Slovenia
| | - J Kovač
- Unit for Special Laboratory Diagnostics, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - T Tesovnik
- Unit for Special Laboratory Diagnostics, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - S Bertok
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - K Dovč
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - M Debeljak
- Unit for Special Laboratory Diagnostics, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - T Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - M Avbelj Stefanija
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
- Correspondence should be addressed to M Avbelj Stefanija;
| |
Collapse
|
36
|
Giraldo LJM, Arturo-Terranova D, Soto JMS. Otorhinolaryngological Findings in Patients from Southwestern Colombia with Clinical, Enzymatic and Molecular Diagnosis of Mucopolysaccharidosis II, IV-A and VI. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2020. [DOI: 10.1590/2326-4594-jiems-2019-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Lina Johanna Moreno Giraldo
- Universidad del Valle, Colombia; Universidad Santiago de Cali, Colombia; Universidad Libre, Colombia; Universidad del Valle, Colombia
| | | | - José María Satizábal Soto
- Universidad del Valle, Colombia; Universidad Santiago de Cali, Colombia; Universidad del Valle, Colombia
| |
Collapse
|
37
|
Wang CS, Xie R, Liu S, Giasson S. Tribological Behavior of Surface-Immobilized Novel Biomimicking Multihierarchical Polymers: The Role of Structure and Surface Attachment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15592-15604. [PMID: 31550893 DOI: 10.1021/acs.langmuir.9b02018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The tribological properties of two novel biomimetic multihierarchical polymers, synthesized by covalently linking single bottlebrush polymers onto a hyaluronic acid (HA) backbone, were investigated in the boundary lubrication regime using the surface forces apparatus. The polymers were immobilized on flat substrates, and their lubrication properties and wear resistance were investigated in aqueous media in the absence of a polymer reservoir (i.e., no free polymer chains in the surrounding medium) in order to better reveal the underlying mechanism of surface-attached biomimetic polymers. The effects of composition, structure, and, more particularly, surface attachment (physisorbed vs chemisorbed) on the tribological properties were investigated and compared with other biomimicking systems reported in the literature. The covalently surface attached bottlebrushes allowed wear resistance between sliding surfaces to be significantly improved, compared to physisorbed bottlebrushes, with a constant coefficient of friction (10-1) of up to few tens of MPa. The results confirm that surface-attached bottlebrushes on their own are not responsible for the extremely low friction often reported in the literature or found in articular joints. Moreover, the study confirmed that the irreversible attachment of bottlebrushes, or multihierarchical polymer layers, to surfaces is crucial to improving wear resistance between sliding surfaces in aqueous media.
Collapse
|
38
|
Hsueh MF, Önnerfjord P, Bolognesi MP, Easley ME, Kraus VB. Analysis of "old" proteins unmasks dynamic gradient of cartilage turnover in human limbs. SCIENCE ADVANCES 2019; 5:eaax3203. [PMID: 31633025 PMCID: PMC6785252 DOI: 10.1126/sciadv.aax3203] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/10/2019] [Indexed: 05/23/2023]
Abstract
Unlike highly regenerative animals, such as axolotls, humans are believed to be unable to counteract cumulative damage, such as repetitive joint use and injury that lead to the breakdown of cartilage and the development of osteoarthritis. Turnover of insoluble collagen has been suggested to be very limited in human adult cartilage. The goal of this study was to explore protein turnover in articular cartilage from human lower limb joints. Analyzing molecular clocks in the form of nonenzymatically deamidated proteins, we unmasked a position-dependent gradient (distal high, proximal low) of protein turnover, indicative of a gradient of tissue anabolism reflecting innate tissue repair capacity in human lower limb cartilages that is associated with expression of limb-regenerative microRNAs. This association shows a potential link to a capacity, albeit limited, for regeneration that might be exploited to enhance joint repair and establish a basis for human limb regeneration.
Collapse
Affiliation(s)
- Ming-Feng Hsueh
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
| | | | - Michael P. Bolognesi
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Mark E. Easley
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Virginia B. Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Division of Rheumatology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
39
|
Jiang EY, Sloan SR, Wipplinger C, Kirnaz S, Härtl R, Bonassar LJ. Proteoglycan removal by chondroitinase ABC improves injectable collagen gel adhesion to annulus fibrosus. Acta Biomater 2019; 97:428-436. [PMID: 31425894 DOI: 10.1016/j.actbio.2019.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Intervertebral disc (IVD) herniations are currently treated with interventions that leave the IVD with persistent lesions prone to further herniations. Annulus fibrosus (AF) repair has become of interest as a method to seal defects in the IVD and prevent reherniation, but this requires strong adhesion of the implanted biomaterial to the native AF tissue. Our group has previously developed a high-density collagen (HDC) gel for AF repair and tested its efficacy in vivo, but its adhesion to the AF could be improved. Increased cell adhesion to cartilage has previously been reported through chondroitinase ABC (ChABC) digestion, which removes proteoglycans and increases access to cell binding motifs. Such approaches could also increase biomaterial adhesion to tissue, but the effects of ChABC digestion on AF have yet to be investigated. In this study, ovine AF tissue was digested with either 10 U/mL ChABC or saline for up to 10 min and the effect of this treatment on collagen adhesion between AF tissue samples was investigated by histology and mechanical testing in a lap-shear configuration. ChABC digestion removed proteoglycans within the AF in a time-dependent fashion and enhanced adhesion of the HDC gel to the AF. ChABC digestion increased the elastic toughness and total shear energy of the HDC gel-AF interface by 88% and 46% respectively. ChABC treatment enhanced the adhesion of the HDC gel to the AF without significantly decreasing native AF cell viability. Thus, ChABC digestion is a viable method to improve adhesion of biomaterials for AF repair. STATEMENT OF SIGNIFICANCE: Intervertebral disc herniations are currently treated with interventions that leave persistent lesions in the annulus fibrosus that are prone to further herniations. Annular repair is a promising method to seal lesions and prevent reherniation, but requires strong adhesion of the implanted biomaterial to native annulus fibrosus. Since large proteoglycans like aggrecan occupy regions of the extracellular matrix between collagen fibers in the annulus fibrosus, we hypothesized that removing proteoglycans via chondroitinase digestion would increase the adhesion of annular repair hydrogels. This investigation demonstrated that chondroitinase removed proteoglycans within annulus fibrosus tissue, enhanced the interaction of an injected collagen gel with the native tissue, and mechanically improved adhesion between the collagen gel and annulus fibrosus. This is the first study of its kind to evaluate the biochemical and mechanical effects of short-term chondroitinase digestion on annulus fibrosus tissue.
Collapse
|
40
|
Yang S, Li L, Zhu L, Zhang C, Li Z, Guo Y, Nie Y, Luo Z. Bu‐Shen‐Huo‐Xue‐Fang modulates nucleus pulposus cell proliferation and extracellular matrix remodeling in intervertebral disk degeneration through miR‐483 regulation of Wnt pathway. J Cell Biochem 2019; 120:19318-19329. [PMID: 29393545 DOI: 10.1002/jcb.26760] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Shaofeng Yang
- Department of Spine The First Hospital of Hunan University of Chinese Medicine Changsha China
| | - Linghui Li
- Department of General Orthopedics Wangjing Hospital, China Academy of Chinese Medical Sciences Beijing China
| | - Liguo Zhu
- Department of General Orthopedics Wangjing Hospital, China Academy of Chinese Medical Sciences Beijing China
| | - Chao Zhang
- Department of Spine The First Hospital of Hunan University of Chinese Medicine Changsha China
| | - Zhaoyong Li
- Department of Spine The First Hospital of Hunan University of Chinese Medicine Changsha China
| | - Yantao Guo
- Department of Spine The First Hospital of Hunan University of Chinese Medicine Changsha China
| | - Ying Nie
- Department of Spine The First Hospital of Hunan University of Chinese Medicine Changsha China
| | - Zhenhua Luo
- Department of Spine The First Hospital of Hunan University of Chinese Medicine Changsha China
| |
Collapse
|
41
|
The second report on spondyloepimetaphyseal dysplasia, aggrecan type: a milder phenotype than originally reported. Clin Dysmorphol 2019; 28:26-29. [PMID: 30124491 PMCID: PMC6276860 DOI: 10.1097/mcd.0000000000000241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Wei Q, Zhang X, Zhou C, Ren Q, Zhang Y. Roles of large aggregating proteoglycans in human intervertebral disc degeneration. Connect Tissue Res 2019; 60:209-218. [PMID: 29992840 DOI: 10.1080/03008207.2018.1499731] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Degeneration of the intervertebral discs, a natural progression of the aging process, is strongly implicated as a cause of low back pain. Aggrecan is the major structural proteoglycan in the extracellular matrix of the intervertebral disc. It is large, possessing numerous glycosaminoglycan chains and the ability to form aggregates in association with hyaluronan. The negatively charged glycosaminoglycan side chains in aggrecan in the nucleus pulposus of the intervertebral discs can bind electrostatically to polar water molecules, which are crucial for maintaining the well-hydrated state that enables the discs to undergo reversible deformation under compressive loading. A more in-depth understanding of the molecular basis of disc degeneration is essential to the design of therapeutic solutions to treat degenerative discs. Within this scope, we discuss the current knowledge concerning the structure and function of aggrecan in intervertebral disc degeneration. These data suggest that aggrecan plays a central role in the function and degeneration of the intervertebral disc, which may suggest potential aggrecan-based therapies for disc regeneration.
Collapse
Affiliation(s)
- Qingshen Wei
- a Department of Orthopedic Surgery , Rizhao Traditional Chinese Medicine Hospital , Rizhao , China
| | - Xiangwei Zhang
- a Department of Orthopedic Surgery , Rizhao Traditional Chinese Medicine Hospital , Rizhao , China
| | - Caiju Zhou
- b School of Pharmaceutical Science , Jining Medical University , Rizhao , China
| | - Qiang Ren
- b School of Pharmaceutical Science , Jining Medical University , Rizhao , China
| | - Yuntao Zhang
- b School of Pharmaceutical Science , Jining Medical University , Rizhao , China
| |
Collapse
|
43
|
Passi A, Vigetti D, Buraschi S, Iozzo RV. Dissecting the role of hyaluronan synthases in the tumor microenvironment. FEBS J 2019; 286:2937-2949. [PMID: 30974514 PMCID: PMC6716524 DOI: 10.1111/febs.14847] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/01/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment is becoming a crucial factor in determining the aggressiveness of neoplastic cells. The glycosaminoglycan hyaluronan is one of the principal constituents of both the tumor stroma and the cancer cell surfaces, and its accumulation can dramatically influence patient survival. Hyaluronan functions are dictated by its ability to interact with several signaling receptors that often activate pro-angiogenic and pro-tumorigenic intracellular pathways. Although hyaluronan is a linear, non-sulfated polysaccharide, and thus lacks the ability of the other sulfated glycosaminoglycans to bind and modulate growth factors, it compensates for this by the ability to form hyaluronan fragments characterized by a remarkable variability in length. Here, we will focus on the role of both high and low molecular weight hyaluronan in controlling the hallmarks of cancer cells, including cell proliferation, migration, metabolism, inflammation, and angiogenesis. We will critically assess the multilayered regulation of HAS2, the most critical hyaluronan synthase, and its role in cancer growth, metabolism, and therapy.
Collapse
Affiliation(s)
- Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Simone Buraschi
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
44
|
Alberton P, Dugonitsch HC, Hartmann B, Li P, Farkas Z, Saller MM, Clausen-Schaumann H, Aszodi A. Aggrecan Hypomorphism Compromises Articular Cartilage Biomechanical Properties and Is Associated with Increased Incidence of Spontaneous Osteoarthritis. Int J Mol Sci 2019; 20:ijms20051008. [PMID: 30813547 PMCID: PMC6429589 DOI: 10.3390/ijms20051008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 01/02/2023] Open
Abstract
The gene encoding the proteoglycan aggrecan (Agc1) is abundantly expressed in cartilage during development and adulthood, and the loss or diminished deposition of the protein results in a wide range of skeletal malformations. Furthermore, aggrecan degradation is a hallmark of cartilage degeneration occurring in osteoarthritis. In the present study, we investigated the consequences of a partial loss of aggrecan in the postnatal skeleton and in the articular cartilage of adult mice. We took advantage of the previously described Agc1tm(IRES-CreERT2) mouse line, which allows for conditional and timely-regulated deletion of floxed, cartilage-expressed genes. As previously reported, the introduction of the CreERT2 cassette in the 3’UTR causes a disruption of the normal expression of Agc1 resulting in a hypomorphic deposition of the protein. In homozygous mice, we observed a dwarf phenotype, which persisted throughout adulthood supporting the evidence that reduced aggrecan amount impairs skeletal growth. Homozygous mice exhibited reduced proteoglycan staining of the articular cartilage at 6 and 12 months of age, increased stiffening of the extracellular matrix at six months, and developed severe cartilage erosion by 12 months. The osteoarthritis in the hypomorph mice was not accompanied by increased expression of catabolic enzymes and matrix degradation neoepitopes. These findings suggest that the degeneration found in homozygous mice is likely due to the compromised mechanical properties of the cartilage tissue upon aggrecan reduction.
Collapse
Affiliation(s)
- Paolo Alberton
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany.
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, 80533 Munich, Germany.
| | - Hans Christian Dugonitsch
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany.
| | - Bastian Hartmann
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany.
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, 80533 Munich, Germany.
- Center for NanoScience, Ludwig-Maximilians University Munich, 80799 Munich, Germany.
| | - Ping Li
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany.
| | - Zsuzsanna Farkas
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany.
| | - Maximilian Michael Saller
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany.
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, 80533 Munich, Germany.
- Center for NanoScience, Ludwig-Maximilians University Munich, 80799 Munich, Germany.
| | - Attila Aszodi
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians University, 80336 Munich, Germany.
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, 80533 Munich, Germany.
| |
Collapse
|
45
|
Aggrecan-like biomimetic proteoglycans (BPGs) composed of natural chondroitin sulfate bristles grafted onto a poly(acrylic acid) core for molecular engineering of the extracellular matrix. Acta Biomater 2018; 75:93-104. [PMID: 29753911 DOI: 10.1016/j.actbio.2018.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
Biomimetic proteoglycans (BPGs) were designed to mimic the three-dimensional (3D) bottlebrush architecture of natural extracellular matrix (ECM) proteoglycans, such as aggrecan. BPGs were synthesized by grafting native chondroitin sulfate bristles onto a synthetic poly(acrylic acid) core to form BPGs at a molecular weight of approximately ∼1.6 MDa. The aggrecan mimics were characterized chemically, physically, and structurally, confirming the 3D bottlebrush architecture as well as a level of water uptake, which is greater than that of the natural proteoglycan, aggrecan. Aggrecan mimics were cytocompatible at physiological concentrations. Fluorescently labeled BPGs were injected into the nucleus pulposus of the intervertebral disc ex vivo and were retained in tissue before and after static loading and equilibrium conditioning. BPGs infiltrated the tissue, distributed and integrated with the ECM on a molecular scale, in the absence of a bolus, thus demonstrating a new molecular approach to tissue repair: molecular matrix engineering. Molecular matrix engineering may compliment or offer an acellular alternative to current regenerative medicine strategies. STATEMENT OF SIGNIFICANCE Aggrecan is a natural biomolecule that is essential for connective tissue hydration and mechanics. Aggrecan is composed of negatively charged chondroitin sulfate bristles attached to a protein core in a bottlebrush configuration. With age and degeneration, enzymatic degradation of aggrecan outpaces cellular synthesis resulting in a loss of this important molecule. We demonstrate a novel biomimetic molecule composed of natural chondroitin sulfate bristles grafted onto an enzymatically-resistant synthetic core. Our molecule mimics a 3D architecture and charge density of the natural aggrecan, can be delivered via a simple injection and is retained in tissue after equilibrium conditioning and loading. This novel material can serve as a platform for molecular repair, drug delivery and tissue engineering in regenerative medicine approaches.
Collapse
|
46
|
Yasmin, Maskari RA, McEniery CM, Cleary SE, Li Y, Siew K, Figg NL, Khir AW, Cockcroft JR, Wilkinson IB, O'Shaughnessy KM. The matrix proteins aggrecan and fibulin-1 play a key role in determining aortic stiffness. Sci Rep 2018; 8:8550. [PMID: 29867203 PMCID: PMC5986773 DOI: 10.1038/s41598-018-25851-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022] Open
Abstract
Stiffening of the aorta is an important independent risk factor for myocardial infarction and stroke. Yet its genetics is complex and little is known about its molecular drivers. We have identified for the first time, tagSNPs in the genes for extracellular matrix proteins, aggrecan and fibulin-1, that modulate stiffness in young healthy adults. We confirmed SNP associations with ex vivo stiffness measurements and expression studies in human donor aortic tissues. Both aggrecan and fibulin-1 were found in the aortic wall, but with marked differences in the distribution and glycosylation of aggrecan reflecting loss of chondroitin-sulphate binding domains. These differences were age-dependent but the striking finding was the acceleration of this process in stiff versus elastic young aortas. These findings suggest that aggrecan and fibulin-1 have critical roles in determining the biomechanics of the aorta and their modification with age could underpin age-related aortic stiffening.
Collapse
Affiliation(s)
- Yasmin
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Raya Al Maskari
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Carmel M McEniery
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Sarah E Cleary
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Ye Li
- Brunel Institute of Bioengineering, Brunel University, Uxbridge, Middlesex, UK
| | - Keith Siew
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Nichola L Figg
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Ashraf W Khir
- Brunel Institute of Bioengineering, Brunel University, Uxbridge, Middlesex, UK
| | - John R Cockcroft
- Division of Cardiology, New York-Presbyterian Hospital, Columbia University, New York, USA
| | - Ian B Wilkinson
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Kevin M O'Shaughnessy
- Division of Experimental Medicine & Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
47
|
Xu D, Sun C, Zhou Z, Wu B, Yang L, Chang Z, Zhang M, Xi L, Cheng R, Ni J, Luo F. Novel aggrecan variant, p. Gln2364Pro, causes severe familial nonsyndromic adult short stature and poor growth hormone response in Chinese children. BMC MEDICAL GENETICS 2018; 19:79. [PMID: 29769040 PMCID: PMC5956957 DOI: 10.1186/s12881-018-0591-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/23/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Mutations in the aggrecan (ACAN) gene can cause short stature (with heterogeneous clinical phenotypes), impaired bone maturation, and large variations in response to growth hormone (GH) treatment. For such cases, long-term longitudinal therapy data from China are still scarce. We report that a previously unknown ACAN gene variant reduces adult height and we analyze the GH response in children from an affected large Chinese family. METHODS Two children initially diagnosed with idiopathic short stature (ISS) and a third mildly short child from a large Chinese family presented with poor GH response. Genetic etiology was identified by whole exome sequencing and confirmed via Sanger sequencing. Adult heights were analyzed, and the responses to GH treatment of the proband and two affected relatives are summarized and compared to other cases reported in the literature. RESULTS A novel ACAN gene variant c.7465 T > C (p. Gln2364Pro), predicted to be disease causing, was discovered in the children, without evident syndromic short stature; mild bone abnormity was present in these children, including cervical-vertebral clefts and apophyses in the upper and lower thoracic vertebrae. Among the variant carriers, the average adult male and female heights were reduced by - 5.2 and - 3.9 standard deviation scores (SDS), respectively. After GH treatment of the three children, first-year heights increased from 0.23 to 0.33 SDS (cases in the literature: - 0.5 to 0.8 SDS), and the average yearly height improvement was 0.0 to 0.26 SDS (cases in the literature: - 0.5 to 0.9 SDS). CONCLUSIONS We report a novel pathogenic ACAN variant in a large Chinese family which can cause severe adult nonsyndromic short stature without evident family history of bone disease. The evaluated cases and the reports from the literature reveal a general trend of gradually diminishing yearly height growth (measured in SDS) over the course of GH treatment in variant-carrying children, highlighting the need to develop novel management regimens.
Collapse
Affiliation(s)
- Dandan Xu
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, 399 Wan Yuan Road, Minhang District, Shanghai, 201102, China
| | - Chengjun Sun
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, 399 Wan Yuan Road, Minhang District, Shanghai, 201102, China
| | - Zeyi Zhou
- College of Letters and Science, University of California, Berkeley, USA
| | - Bingbing Wu
- Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, 399 Wan Yuan Road, Minhang District, Shanghai, 201102, China
| | - Zhuo Chang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, 399 Wan Yuan Road, Minhang District, Shanghai, 201102, China
| | - Miaoying Zhang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, 399 Wan Yuan Road, Minhang District, Shanghai, 201102, China
| | - Li Xi
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, 399 Wan Yuan Road, Minhang District, Shanghai, 201102, China
| | - Ruoqian Cheng
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, 399 Wan Yuan Road, Minhang District, Shanghai, 201102, China
| | - Jinwen Ni
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, 399 Wan Yuan Road, Minhang District, Shanghai, 201102, China
| | - Feihong Luo
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, 399 Wan Yuan Road, Minhang District, Shanghai, 201102, China.
| |
Collapse
|
48
|
Mebarki S, Désert R, Sulpice L, Sicard M, Desille M, Canal F, Dubois-Pot Schneider H, Bergeat D, Turlin B, Bellaud P, Lavergne E, Le Guével R, Corlu A, Perret C, Coulouarn C, Clément B, Musso O. De novo HAPLN1 expression hallmarks Wnt-induced stem cell and fibrogenic networks leading to aggressive human hepatocellular carcinomas. Oncotarget 2018; 7:39026-39043. [PMID: 27191501 PMCID: PMC5129911 DOI: 10.18632/oncotarget.9346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/22/2016] [Indexed: 12/27/2022] Open
Abstract
About 20% hepatocellular carcinomas (HCCs) display wild-type β-catenin, enhanced Wnt signaling, hepatocyte dedifferentiation and bad outcome, suggesting a specific impact of Wnt signals on HCC stem/progenitor cells. To study Wnt-specific molecular pathways, cell fates and clinical outcome, we fine-tuned Wnt/β-catenin signaling in liver progenitor cells, using the prototypical Wnt ligand Wnt3a. Cell biology assays and transcriptomic profiling were performed in HepaRG hepatic progenitors exposed to Wnt3a after β-catenin knockdown or Wnt inhibition with FZD8_CRD. Gene expression network, molecular pathology and survival analyses were performed on HCCs and matching non-tumor livers from 70 patients by real-time PCR and tissue micro-array-based immunohistochemistry. Wnt3a reprogrammed liver progenitors to replicating fibrogenic myofibroblast-like cells displaying stem and invasive features. Invasion was inhibited by 30 nM FZD7 and FZD8 CRDs. Translation of these data to human HCCs revealed two tight gene networks associating cell surface Wnt signaling, stem/progenitor markers and mesenchymal commitment. Both networks were linked by Hyaluronan And Proteoglycan Link Protein 1 (HAPLN1), that appeared de novo in aggressive HCCs expressing cytoplasmic β-catenin and stem cell markers. HAPLN1 was independently associated with bad overall and disease-free outcome. In vitro, HAPLN1 was expressed de novo in EPCAM¯/NCAM+ mesoderm-committed progenitors, upon spontaneous epithelial-mesenchymal transition and de-differentiation of hepatocyte-like cells to liver progenitors. In these cells, HAPLN1 knockdown downregulated key markers of mesenchymal cells, such as Snail, LGR5, collagen IV and α-SMA. In conclusion, HAPLN1 reflects a signaling network leading to stemness, mesenchymal commitment and HCC progression.
Collapse
Affiliation(s)
- Sihem Mebarki
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France
| | - Romain Désert
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France
| | - Laurent Sulpice
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,CHU de Rennes, Department of Gastrointestinal and Hepatobiliary Surgery, Rennes, France
| | - Marie Sicard
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France
| | - Mireille Desille
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,CHU de Rennes, Centre de Ressources Biologiques Santé, Rennes, France
| | - Frédéric Canal
- Inserm, Institut Cochin, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Damien Bergeat
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,CHU de Rennes, Department of Gastrointestinal and Hepatobiliary Surgery, Rennes, France
| | - Bruno Turlin
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,CHU de Rennes, Centre de Ressources Biologiques Santé, Rennes, France
| | - Pascale Bellaud
- Université de Rennes 1, UMS 18 Biosit, Biogenouest, Rennes, France
| | - Elise Lavergne
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France
| | - Rémy Le Guével
- Université de Rennes 1, UMS 18 Biosit, Biogenouest, ImPACcellCore Facility, Rennes, France
| | - Anne Corlu
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,Université de Rennes 1, UMS 18 Biosit, Biogenouest, ImPACcellCore Facility, Rennes, France
| | - Christine Perret
- Inserm, Institut Cochin, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Cédric Coulouarn
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France
| | - Bruno Clément
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France
| | - Orlando Musso
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France.,Université de Rennes 1, Rennes, France
| |
Collapse
|
49
|
Lau D, Elezagic D, Hermes G, Mörgelin M, Wohl AP, Koch M, Hartmann U, Höllriegl S, Wagener R, Paulsson M, Streichert T, Klatt AR. The cartilage-specific lectin C-type lectin domain family 3 member A (CLEC3A) enhances tissue plasminogen activator-mediated plasminogen activation. J Biol Chem 2017; 293:203-214. [PMID: 29146595 DOI: 10.1074/jbc.m117.818930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/03/2017] [Indexed: 01/25/2023] Open
Abstract
C-type lectin domain family 3 member A (CLEC3A) is a poorly characterized protein belonging to the superfamily of C-type lectins. Its closest homologue tetranectin binds to the kringle 4 domain of plasminogen and enhances its association with tissue plasminogen activator (tPA) thereby enhancing plasmin production, but whether CLEC3A contributes to plasminogen activation is unknown. Here, we recombinantly expressed murine and human full-length CLEC3As as well as truncated forms of CLEC3A in HEK-293 Epstein-Barr nuclear antigen (EBNA) cells. We analyzed the structure of recombinant CLEC3A by SDS-PAGE and immunoblot, glycan analysis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, size-exclusion chromatography, circular dichroism spectroscopy, and electron microscopy; compared the properties of the recombinant protein with those of CLEC3A extracted from cartilage; and investigated its tissue distribution and extracellular assembly by immunohistochemistry and immunofluorescence microscopy. We found that CLEC3A mainly occurs as a monomer, but also forms dimers and trimers, potentially via a coiled-coil α-helix. We also noted that CLEC3A can be modified with chondroitin/dermatan sulfate side chains and tends to oligomerize to form higher aggregates. We show that CLEC3A is present in resting, proliferating, and hypertrophic growth-plate cartilage and assembles into an extended extracellular network in cultures of rat chondrosarcoma cells. Further, we found that CLEC3A specifically binds to plasminogen and enhances tPA-mediated plasminogen activation. In summary, we have determined the structure, tissue distribution, and molecular function of the cartilage-specific lectin CLEC3A and show that CLEC3A binds to plasminogen and participates in tPA-mediated plasminogen activation.
Collapse
Affiliation(s)
- Daniela Lau
- Institute for Clinical Chemistry, University of Cologne, D-50924 Cologne, Germany
| | - Dzemal Elezagic
- Institute for Clinical Chemistry, University of Cologne, D-50924 Cologne, Germany
| | - Gabriele Hermes
- Institute for Clinical Chemistry, University of Cologne, D-50924 Cologne, Germany
| | - Matthias Mörgelin
- Department of Clinical Sciences Lund, Division of Infection Medicine, Biomedical Center (BMC), Lund University, SE-221 00 Lund, Sweden
| | - Alexander P Wohl
- Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | - Manuel Koch
- Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Cologne, Germany; Institute for Dental Research and Oral Musculoskeletal Biology, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | | | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50931 Cologne, Germany
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-associated Diseases (CECAD), University of Cologne, D-50931 Cologne, Germany
| | - Thomas Streichert
- Institute for Clinical Chemistry, University of Cologne, D-50924 Cologne, Germany
| | - Andreas R Klatt
- Institute for Clinical Chemistry, University of Cologne, D-50924 Cologne, Germany.
| |
Collapse
|
50
|
Hauer NN, Sticht H, Boppudi S, Büttner C, Kraus C, Trautmann U, Zenker M, Zweier C, Wiesener A, Jamra RA, Wieczorek D, Kelkel J, Jung AM, Uebe S, Ekici AB, Rohrer T, Reis A, Dörr HG, Thiel CT. Genetic screening confirms heterozygous mutations in ACAN as a major cause of idiopathic short stature. Sci Rep 2017; 7:12225. [PMID: 28939912 PMCID: PMC5610314 DOI: 10.1038/s41598-017-12465-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Short stature is a common pediatric disorder affecting 3% of the population. However, the clinical variability and genetic heterogeneity prevents the identification of the underlying cause in about 80% of the patients. Recently, heterozygous mutations in the ACAN gene coding for the proteoglycan aggrecan, a main component of the cartilage matrix, were associated with idiopathic short stature. To ascertain the prevalence of ACAN mutations and broaden the phenotypic spectrum in patients with idiopathic short stature we performed sequence analyses in 428 families. We identified heterozygous nonsense mutations in four and potentially disease-causing missense variants in two families (1.4%). These patients presented with a mean of −3.2 SDS and some suggestive clinical characteristics. The results suggest heterozygous mutations in ACAN as a common cause of isolated as well as inherited idiopathic short stature.
Collapse
Affiliation(s)
- Nadine N Hauer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sangamitra Boppudi
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Christian Büttner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Udo Trautmann
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Antje Wiesener
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, University of Duisburg-Essen, Essen, Germany.,Institute of Human-Genetics, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Jaqueline Kelkel
- Division of Pediatric Endocrinology, Department of Pediatrics and Neonatology, Saarland University Hospital, Homburg/Saar, Germany
| | - Anna-Maria Jung
- Division of Pediatric Endocrinology, Department of Pediatrics and Neonatology, Saarland University Hospital, Homburg/Saar, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tilman Rohrer
- Division of Pediatric Endocrinology, Department of Pediatrics and Neonatology, Saarland University Hospital, Homburg/Saar, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Helmuth-Günther Dörr
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian T Thiel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|