1
|
Gusmao DO, de Sousa LMM, de Sousa ME, Rusew SJR, List EO, Kopchick JJ, Gomes AF, Campideli-Santana AC, Szawka RE, Donato J. Characterization and Regulation of the Neonatal Growth Hormone Surge. Endocrinology 2024; 165:bqae140. [PMID: 39446366 PMCID: PMC11544317 DOI: 10.1210/endocr/bqae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Indexed: 11/09/2024]
Abstract
High neonatal growth hormone (GH) secretion has been described in several species. However, the neuroendocrine mechanisms behind this surge remain unknown. Thus, the pattern of postnatal GH secretion was investigated in mice and rats. Blood GH levels were very high on postnatal day (P)1 and progressively decreased until near zero by P17 in C57BL/6 mice without sex differences. This pattern was similar to that observed in rats, except that female rats showed higher GH levels on P1 than males. In comparison, follicle-stimulating hormone exhibited higher secretion in females during the first 3 weeks of life. Hypothalamic Sst mRNA and somatostatin neuroendocrine terminals in the median eminence were higher in P20/P21 mice than in newborns. Knockout mice for GH-releasing hormone (GHRH) receptor showed no GH surge, whereas knockdown mice for the Sst gene displayed increased neonatal GH peak. Leptin deficiency caused only minor effects on early-life GH secretion. GH receptor ablation in neurons or the entire body did not affect neonatal GH secretion, but the subsequent reduction in blood GH levels was attenuated or prevented by these genetic manipulations, respectively. This phenotype was also observed in knockout mice for the insulin-like growth factor-1 (IGF-1) receptor in GHRH neurons. Moreover, glucose-induced hyperglycemia overstimulated GH secretion in neonatal mice. In conclusion, GH surge in the first days of life is not regulated by negative feedback loops. However, neonatal GH secretion requires GHRH receptor, and is modulated by somatostatin and blood glucose levels, suggesting that this surge is controlled by hypothalamic-pituitary communication.
Collapse
MESH Headings
- Animals
- Female
- Growth Hormone/metabolism
- Growth Hormone/blood
- Animals, Newborn
- Male
- Mice, Knockout
- Mice, Inbred C57BL
- Somatostatin/metabolism
- Somatostatin/genetics
- Mice
- Receptor, IGF Type 1/metabolism
- Receptor, IGF Type 1/genetics
- Rats
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Leptin/blood
- Leptin/metabolism
- Hypothalamus/metabolism
- Receptors, Pituitary Hormone-Regulating Hormone/genetics
- Receptors, Pituitary Hormone-Regulating Hormone/metabolism
- Growth Hormone-Releasing Hormone/metabolism
- Growth Hormone-Releasing Hormone/genetics
- Receptors, Somatotropin/genetics
- Receptors, Somatotropin/metabolism
- Follicle Stimulating Hormone/blood
- Follicle Stimulating Hormone/metabolism
- Insulin-Like Growth Factor I/metabolism
- Insulin-Like Growth Factor I/genetics
Collapse
Affiliation(s)
- Daniela O Gusmao
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Ligia M M de Sousa
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Maria E de Sousa
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Stephanie J R Rusew
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Andre F Gomes
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Ana C Campideli-Santana
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Raphael E Szawka
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
2
|
Matschinsky FM, Wilson DF. The Central Role of Glucokinase in Glucose Homeostasis: A Perspective 50 Years After Demonstrating the Presence of the Enzyme in Islets of Langerhans. Front Physiol 2019; 10:148. [PMID: 30949058 PMCID: PMC6435959 DOI: 10.3389/fphys.2019.00148] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/07/2019] [Indexed: 01/05/2023] Open
Abstract
It is hypothesized that glucokinase (GCK) is the glucose sensor not only for regulation of insulin release by pancreatic β-cells, but also for the rest of the cells that contribute to glucose homeostasis in mammals. This includes other cells in endocrine pancreas (α- and δ-cells), adrenal gland, glucose sensitive neurons, entero-endocrine cells, and cells in the anterior pituitary. Glucose transport is by facilitated diffusion and is not rate limiting. Once inside, glucose is phosphorylated to glucose-6-phosphate by GCK in a reaction that is dependent on glucose throughout the physiological range of concentrations, is irreversible, and not product inhibited. High glycerol phosphate shuttle, pyruvate dehydrogenase, and pyruvate carboxylase activities, combined with low pentose-P shunt, lactate dehydrogenase, plasma membrane monocarboxylate transport, and glycogen synthase activities constrain glucose-6-phosphate to being metabolized through glycolysis. Under these conditions, glycolysis produces mostly pyruvate and little lactate. Pyruvate either enters the citric acid cycle through pyruvate dehydrogenase or is carboxylated by pyruvate carboxylase. Reducing equivalents from glycolysis enter oxidative phosphorylation through both the glycerol phosphate shuttle and citric acid cycle. Raising glucose concentration increases intramitochondrial [NADH]/[NAD+] and thereby the energy state ([ATP]/[ADP][Pi]), decreasing [Mg2+ADP] and [AMP]. [Mg2+ADP] acts through control of KATP channel conductance, whereas [AMP] acts through regulation of AMP-dependent protein kinase. Specific roles of different cell types are determined by the diverse molecular mechanisms used to couple energy state to cell specific responses. Having a common glucose sensor couples complementary regulatory mechanisms into a tightly regulated and stable glucose homeostatic network.
Collapse
Affiliation(s)
- Franz M Matschinsky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
Steinbusch LKM, Picard A, Bonnet MS, Basco D, Labouèbe G, Thorens B. Sex-Specific Control of Fat Mass and Counterregulation by Hypothalamic Glucokinase. Diabetes 2016; 65:2920-31. [PMID: 27422385 DOI: 10.2337/db15-1514] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 07/07/2016] [Indexed: 11/13/2022]
Abstract
Glucokinase (Gck) is a critical regulator of glucose-induced insulin secretion by pancreatic β-cells. It has been suggested to also play an important role in glucose signaling in neurons of the ventromedial hypothalamic nucleus (VMN), a brain nucleus involved in the control of glucose homeostasis and feeding. To test the role of Gck in VMN glucose sensing and physiological regulation, we studied mice with genetic inactivation of the Gck gene in Sf1 neurons of the VMN (Sf1Gck(-/-) mice). Compared with control littermates, Sf1Gck(-/-) mice displayed increased white fat mass and adipocyte size, reduced lean mass, impaired hypoglycemia-induced glucagon secretion, and a lack of parasympathetic and sympathetic nerve activation by neuroglucopenia. However, these phenotypes were observed only in female mice. To determine whether Gck was required for glucose sensing by Sf1 neurons, we performed whole-cell patch clamp analysis of brain slices from control and Sf1Gck(-/-) mice. Absence of Gck expression did not prevent the glucose responsiveness of glucose-excited or glucose-inhibited Sf1 neurons in either sex. Thus Gck in the VMN plays a sex-specific role in the glucose-dependent control of autonomic nervous activity; this is, however, unrelated to the control of the firing activity of classical glucose-responsive neurons.
Collapse
Affiliation(s)
| | - Alexandre Picard
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Marion S Bonnet
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Davide Basco
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Gwenaël Labouèbe
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Akhter N, CarlLee T, Syed MM, Odle AK, Cozart MA, Haney AC, Allensworth-James ML, Beneš H, Childs GV. Selective deletion of leptin receptors in gonadotropes reveals activin and GnRH-binding sites as leptin targets in support of fertility. Endocrinology 2014; 155:4027-42. [PMID: 25057790 PMCID: PMC4164926 DOI: 10.1210/en.2014-1132] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adipokine, leptin (LEP), is a hormonal gateway, signaling energy stores to appetite-regulatory neurons, permitting reproduction when stores are sufficient. Dual-labeling for LEP receptors (LEPRs) and gonadotropins or GH revealed a 2-fold increase in LEPR during proestrus, some of which was seen in LH gonadotropes. We therefore investigated LEPR functions in gonadotropes with Cre-LoxP technology, deleting the signaling domain of the LEPR (Lepr-exon 17) with Cre-recombinase driven by the rat LH-β promoter (Lhβ-cre). Selectivity of the deletion was validated by organ genotyping and lack of LEPR and responses to LEP by mutant gonadotropes. The mutation had no impact on growth, body weight, the timing of puberty, or pregnancy. Mutant females took 36% longer to produce their first litter and had 50% fewer pups/litter. When the broad impact of the loss of gonadotrope LEPR on all pituitary hormones was studied, mutant diestrous females had reduced serum levels of LH (40%), FSH (70%), and GH (54%) and mRNA levels of Fshβ (59%) and inhibin/activin β A and β B (25%). Mutant males had reduced serum levels of GH (74%), TSH (31%), and prolactin (69%) and mRNA levels of Gh (31%), Ghrhr (30%), Fshβ (22%), and glycoprotein α-subunit (Cga) (22%). Serum levels of LEP and ACTH and mRNA levels of Gnrhr were unchanged. However, binding to GnRH receptors was reduced in LEPR-null LH or FSH gonadotropes by 82% or 89%, respectively, in females (P < .0001) and 27% or 53%, respectively, in males (P < .03). This correlated with reductions in GnRH receptor protein immunolabeling, suggesting that LEP's actions may be posttranscriptional. Collectively, these studies highlight the importance of LEP to gonadotropes with GnRH-binding sites and activin as potential targets. LEP may modulate population growth, adjusting the number of offspring to the availability of food supplies.
Collapse
Affiliation(s)
- Noor Akhter
- Department of Neurobiology and Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Majumdar SK, Inzucchi SE. Investigational anti-hyperglycemic agents: the future of type 2 diabetes therapy? Endocrine 2013; 44:47-58. [PMID: 23354728 DOI: 10.1007/s12020-013-9884-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/11/2013] [Indexed: 12/18/2022]
Abstract
As the pandemic of type 2 diabetes spreads globally, clinicians face many challenges in treating an increasingly diverse patient population varying in age, comorbidities, and socioeconomic status. Current therapies for type 2 diabetes are often unable to alter the natural course of the disease and provide durable glycemic control, and side effects in the context of individual patient characteristics often limit treatment choices. This often results in the progression to insulin use and complex regimens that are difficult to maintain. Therefore, a number of agents are being developed to better address the pathogenesis of type 2 diabetes and to overcome limitations of current therapies. The hope is to provide more options for glucose lowering and complication reduction with less risk for hypoglycemia and other adverse effects. These agents include newer incretin-based therapies and PPAR agonists, as well as new therapeutic classes such as sodium-coupled glucose cotransporter 2 inhibitors, free fatty acid receptor agonists, 11-β-hydroxysteroid dehydrogenase type 1 inhibitors, glucokinase activators, and several others that may enter clinical use over the next decade. Herein we review these agents that are advancing through clinical trials and describe the rationale behind their use, mechanisms of action, and potential for glucose lowering, as well as what is known of their limitations.
Collapse
Affiliation(s)
- Sachin K Majumdar
- Section of Endocrinology, Department of Medicine, Bridgeport Hospital, Yale New Haven Health, 267 Grant Street, Bridgeport, CT 06610-0120, USA.
| | | |
Collapse
|
6
|
Matschinsky FM. GKAs for diabetes therapy: why no clinically useful drug after two decades of trying? Trends Pharmacol Sci 2013; 34:90-9. [PMID: 23305809 DOI: 10.1016/j.tips.2012.11.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 12/17/2022]
Abstract
Results of basic biochemical and physiological research, strongly endorsed by findings in human pathophysiology and genetics, had characterized the glucose phosphorylating enzyme glucokinase as a critical player in normal glucose homeostasis, diabetes mellitus, and hyperinsulinemic hypoglycemia, and identified the enzyme as a promising new drug target. R&D initiated in the early 1990s and directed at this target discovered glucokinase activators (GKAs) as a new class of potentially antidiabetic drugs. GKAs were characterized as nonessential allosteric activators that increase glucose affinity and V(max) of the enzyme, thus stimulating glucose metabolism in glucokinase expressing tissue, of foremost functional significance in the insulin producing pancreatic beta cells and the liver. The results of preclinical testing of GKAs by many pharmaceutical companies demonstrated uniformly high hypoglycemic efficacy in normal and diabetic animals. GKAs were also highly effective in Phase I trials in patients with type 2 diabetes mellitus (T2DM). However, results of a recent Phase II trial were less encouraging because patients developed hyperlipidemia and vascular hypertension, and the drug lost efficacy within several months. This outcome is prompting a reappraisal of the GKA strategy. In this opinion article, the 'pros and cons' of the strategy to use these compounds in diabetes management are critically reexamined and suggestions are made that might facilitate progress of GKA R&D that could still result in a novel antidiabetic medicine.
Collapse
Affiliation(s)
- Franz M Matschinsky
- Department of Biochemistry and Biophysics, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5160, USA.
| |
Collapse
|
7
|
Larion M, Miller BG. Homotropic allosteric regulation in monomeric mammalian glucokinase. Arch Biochem Biophys 2012; 519:103-11. [PMID: 22107947 PMCID: PMC3294010 DOI: 10.1016/j.abb.2011.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 11/30/2022]
Abstract
Glucokinase catalyzes the ATP-dependent phosphorylation of glucose, a chemical transformation that represents the rate-limiting step of glycolytic metabolism in the liver and pancreas. Glucokinase is a central regulator of glucose homeostasis as evidenced by its association with two disease states, maturity onset diabetes of the young (MODY) and persistent hyperinsulinemia of infancy (PHHI). Mammalian glucokinase is subject to homotropic allosteric regulation by glucose-the steady-state velocity of glucose-6-phosphate production is not hyperbolic, but instead displays a sigmoidal response to increasing glucose concentrations. The positive cooperativity displayed by glucokinase is intriguing since the enzyme functions as a monomer under physiological conditions and contains only a single binding site for glucose. Despite the existence of several models of kinetic cooperativity in monomeric enzymes, a consensus has yet to be reached regarding the mechanism of allosteric regulation in glucokinase. Experimental evidence collected over the last 45 years by a number of investigators supports a link between cooperativity and slow conformational reorganizations of the glucokinase scaffold. In this review, we summarize advances in our understanding of glucokinase allosteric regulation resulting from recent X-ray crystallographic, pre-equilibrium kinetic and high-resolution nuclear magnetic resonance investigations. We conclude with a brief discussion of unanswered questions regarding the mechanistic basis of kinetic cooperativity in mammalian glucokinase.
Collapse
Affiliation(s)
- Mioara Larion
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | | |
Collapse
|
8
|
Abstract
GK (glucokinase) is activated by glucose binding to its substrate site, is inhibited by GKRP (GK regulatory protein) and stimulated by GKAs (GK activator drugs). To explore further the mechanisms of these processes we studied pure recombinant human GK (normal enzyme and a selection of 31 mutants) using steady-state kinetics of the enzyme and TF (tryptophan fluorescence). TF studies of the normal binary GK-glucose complex corroborate recent crystallography studies showing that it exists in a closed conformation greatly different from the open conformation of the ligand-free structure, but indistinguishable from the ternary GK-glucose-GKA complex. GKAs did activate and GKRP did inhibit normal GK, whereas its TF was doubled by glucose saturation. However, the enzyme kinetics, GKRP inhibition, TF enhancement by glucose and responsiveness to GKA of the selected mutants varied greatly. Two predominant response patterns were identified accounting for nearly all mutants: (i) GK mutants with a normal or close to normal response to GKA, normally low basal TF (indicating an open conformation), some variability of kinetic parameters (k(cat), glucose S(0.5), h and ATP K(m)), but usually strong GKRP inhibition (13/31); and (ii) GK mutants that are refractory to GKAs, exhibit relatively high basal TF (indicating structural compaction and partial closure), usually show strongly enhanced catalytic activity primarily due to lowering of the glucose S(0.5), but with reduced or no GKRP inhibition in most cases (14/31). These results and those of previous studies are best explained by envisioning a common allosteric regulator region with spatially non-overlapping GKRP- and GKA-binding sites.
Collapse
|
9
|
Doliba NM, Qin W, Najafi H, Liu C, Buettger CW, Sotiris J, Collins HW, Li C, Stanley CA, Wilson DF, Grimsby J, Sarabu R, Naji A, Matschinsky FM. Glucokinase activation repairs defective bioenergetics of islets of Langerhans isolated from type 2 diabetics. Am J Physiol Endocrinol Metab 2012; 302:E87-E102. [PMID: 21952036 PMCID: PMC3328091 DOI: 10.1152/ajpendo.00218.2011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 09/20/2011] [Indexed: 12/31/2022]
Abstract
It was reported previously that isolated human islets from individuals with type 2 diabetes mellitus (T2DM) show reduced glucose-stimulated insulin release. To assess the possibility that impaired bioenergetics may contribute to this defect, glucose-stimulated respiration (Vo(2)), glucose usage and oxidation, intracellular Ca(2+), and insulin secretion (IS) were measured in pancreatic islets isolated from three healthy and three type 2 diabetic organ donors. Isolated mouse and rat islets were studied for comparison. Islets were exposed to a "staircase" glucose stimulus, whereas IR and Vo(2) were measured. Vo(2) of human islets from normals and diabetics increased sigmoidally from equal baselines of 0.25 nmol/100 islets/min as a function of glucose concentration. Maximal Vo(2) of normal islets at 24 mM glucose was 0.40 ± 0.02 nmol·min(-1)·100 islets(-1), and the glucose S(0.5) was 4.39 ± 0.10 mM. The glucose stimulation of respiration of islets from diabetics was lower, V(max) of 0.32 ± 0.01 nmol·min(-1)·100 islets(-1), and the S(0.5) shifted to 5.43 ± 0.13 mM. Glucose-stimulated IS and the rise of intracellular Ca(2+) were also reduced in diabetic islets. A clinically effective glucokinase activator normalized the defective Vo(2), IR, and free calcium responses during glucose stimulation in islets from type 2 diabetics. The body of data shows that there is a clear relationship between the pancreatic islet energy (ATP) production rate and IS. This relationship was similar for normal human, mouse, and rat islets and the data for all species fitted a single sigmoidal curve. The shared threshold rate for IS was ∼13 pmol·min(-1)·islet(-1). Exendin-4, a GLP-1 analog, shifted the ATP production-IS curve to the left and greatly potentiated IS with an ATP production rate threshold of ∼10 pmol·min(-1)·islet(-1). Our data suggest that impaired β-cell bioenergetics resulting in greatly reduced ATP production is critical in the molecular pathogenesis of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Nicolai M Doliba
- Department of Biochemistry and Biophysics, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA 19104-6140, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cao J, Patisaul HB, Petersen SL. Aryl hydrocarbon receptor activation in lactotropes and gonadotropes interferes with estradiol-dependent and -independent preprolactin, glycoprotein alpha and luteinizing hormone beta gene expression. Mol Cell Endocrinol 2011; 333:151-9. [PMID: 21187122 PMCID: PMC3059512 DOI: 10.1016/j.mce.2010.12.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/15/2010] [Accepted: 12/20/2010] [Indexed: 01/13/2023]
Abstract
Arylhydrocarbon receptor (Ahr) activation by 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) interferes with female reproductive functions, but there is little information on the specific targets of TCDD in the hypothalamic-pituitary-gonadal (HPG) axis. In these studies, we found that TCDD upregulated known AhR target genes, cytochrome p450 1a1 (Cyp1a1), Cyp1a2 and Cyp1b1 in the rat pituitary gland. Moreover, 75% of pituitary lactotropes and 45% of gonadotropes contained Ahr mRNA, and most Ahr-containing cells were estrogen receptor 1 (Esr1)-positive. TCDD abrogated estradiol (E(2))-induced prolactin (Prl) expression in vivo and in vitro; conversely, E(2) blocked TCDD upregulation of luteinizing hormone beta (Lhb) and glycoprotein hormone alpha polypeptide (Cga) expression. TCDD had no effect on levels of Ahr mRNA, but upregulated Esr1 mRNA. E(2) independently repressed Ahr and Esr1 expression and blocked TCDD upregulation of Esr1. Thus, complex interactions between Ahr and Esr alter Prl and luteinizing hormone (LH) synthesis by direct actions in lactotropes and gonadotropes. These findings provide important insights into how TCDD disrupts female reproductive functions.
Collapse
Affiliation(s)
- JinYan Cao
- Molecular and Cellular Biology Graduate Program, 435 Morrill I North, University of Massachusetts Amherst, 637 North Pleasant Street, Amherst, MA 01003-9298
- Department of Biology, 127 David Clark Labs, North Carolina State University, Raleigh, NC 27695
| | - Heather B. Patisaul
- Department of Biology, 127 David Clark Labs, North Carolina State University, Raleigh, NC 27695
| | - Sandra L. Petersen
- Molecular and Cellular Biology Graduate Program, 435 Morrill I North, University of Massachusetts Amherst, 637 North Pleasant Street, Amherst, MA 01003-9298
- Department of Veterinary and Animal Sciences, 661 North Pleasant Street, University of Massachusetts, Amherst MA 01003
| |
Collapse
|
11
|
Matschinsky FM, Zelent B, Doliba NM, Kaestner KH, Vanderkooi JM, Grimsby J, Berthel SJ, Sarabu R. Research and development of glucokinase activators for diabetes therapy: theoretical and practical aspects. Handb Exp Pharmacol 2011:357-401. [PMID: 21484579 DOI: 10.1007/978-3-642-17214-4_15] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glucokinase Glucokinase (GK GK ; EC 2.7.1.1.) phosphorylates and regulates glucose metabolism in insulin-producing pancreatic beta-cells, hepatocytes, and certain cells of the endocrine and nervous systems allowing it to play a central role in glucose homeostasis glucose homeostasis . Most importantly, it serves as glucose sensor glucose sensor in pancreatic beta-cells mediating glucose-stimulated insulin biosynthesis and release and it governs the capacity of the liver to convert glucose to glycogen. Activating and inactivating mutations of the glucokinase gene cause autosomal dominant hyperinsulinemic hypoglycemia and hypoinsulinemic hyperglycemia in humans, respectively, illustrating the preeminent role of glucokinase in the regulation of blood glucose and also identifying the enzyme as a potential target for developing antidiabetic drugs antidiabetic drugs . Small molecules called glucokinase activators (GKAs) glucokinase activators (GKAs) which bind to an allosteric activator allosteric activator site of the enzyme have indeed been discovered and hold great promise as new antidiabetic agents. GKAs increase the enzyme's affinity for glucose and also its maximal catalytic rate. Consequently, they stimulate insulin biosynthesis and secretion, enhance hepatic glucose uptake, and augment glucose metabolism and related processes in other glucokinase-expressing cells. Manifestations of these effects, most prominently a lowering of blood glucose, are observed in normal laboratory animals and man but also in animal models of diabetes and patients with type 2 diabetes mellitus (T2DM T2DM ) type 2 diabetes mellitus (T2DM) . These compelling concepts and results sustain a strong R&D effort by many pharmaceutical companies to generate GKAs with characteristics allowing for a novel drug treatment of T2DM.
Collapse
Affiliation(s)
- Franz M Matschinsky
- Department of Biochemistry and Biophysics, University of Pennsylvania, Institute for Diabetes, Obesity and Metabolism, 415 Curie Blvd, 605 CRB, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Rideau N, Derouet M, Grimsby J, Simon J. Glucokinase activation induces potent hypoglycemia without recruiting insulin and inhibits food intake in chicken. Gen Comp Endocrinol 2010; 169:276-83. [PMID: 20850445 DOI: 10.1016/j.ygcen.2010.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 08/27/2010] [Accepted: 09/09/2010] [Indexed: 02/03/2023]
Abstract
Glucose homeostasis exhibits several peculiarities in chickens (in short, presence of high glycemia and resistance to high doses of exogenous insulin). Though the full chicken glucokinase gene sequence is still lacking, several results suggest its existence. The functionality of chicken glucokinase (GK) has been further investigated using an activator of mammalian GK (GKA). In vitro, GKA decreased GK's S0.5(a) in a glucose-dependent manner in liver homogenates from either fasted or fed chickens; it also increased GK Vmax(a) in homogenates from fed chickens. In vivo, acute oral GKA administration (10-100 mg/kg) induced a potent and dose dependent hypoglycemic effect in fed chickens (starting between 15 and 45 min with a maximum effect at 40 mg/kg, P<0.0001). At this dose, plasma insulin levels showed erratic and minor changes in the early times (an increase at 5 min and a decrease at 10 min, P<0.05). At 90 min, when hypoglycemia had developed plasma insulin levels decreased under controls and plasma pancreatic glucagon levels increased over controls. Also at 40 mg/kg, GKA transiently inhibited food intake at about 3h (P<0.0001). In conclusion, GKA is a potent activator of chicken GK evidencing that the structure and the activity of chicken GK are similar to those of mammalian GK. At variance with results obtained in mammals, the potent GKA hypoglycemic action appears to rely mostly on an effect on liver GK in chicken. This fits with previous results and further support the hypothesis of a "deficient coupling" between Β-cell metabolism and insulin release in this species.
Collapse
Affiliation(s)
- Nicole Rideau
- INRA, UR83 Recherches Avicoles, 37380 Nouzilly, France.
| | | | | | | |
Collapse
|
13
|
Ait-Lounis A, Bonal C, Seguín-Estévez Q, Schmid CD, Bucher P, Herrera PL, Durand B, Meda P, Reith W. The transcription factor Rfx3 regulates beta-cell differentiation, function, and glucokinase expression. Diabetes 2010; 59:1674-85. [PMID: 20413507 PMCID: PMC2889767 DOI: 10.2337/db09-0986] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Pancreatic islets of perinatal mice lacking the transcription factor Rfx3 exhibit a marked reduction in insulin-producing beta-cells. The objective of this work was to unravel the cellular and molecular mechanisms underlying this deficiency. RESEARCH DESIGN AND METHODS Immunofluorescence studies and quantitative RT-PCR experiments were used to study the emergence of insulin-positive cells, the expression of transcription factors implicated in the differentiation of beta-cells from endocrine progenitors, and the expression of mature beta-cell markers during development in Rfx3(-/-) and pancreas-specific Rfx3-knockout mice. RNA interference experiments were performed to document the consequences of downregulating Rfx3 expression in Min6 beta-cells. Quantitative chromatin immunoprecipitation (ChIP), ChIP sequencing, and bandshift experiments were used to identify Rfx3 target genes. RESULTS Reduced development of insulin-positive cells in Rfx3(-/-) mice was not due to deficiencies in endocrine progenitors or beta-lineage specification, but reflected the accumulation of insulin-positive beta-cell precursors and defective beta-cells exhibiting reduced insulin, Glut-2, and Gck expression. Similar incompletely differentiated beta-cells developed in pancreas-specific Rfx3-deficient embryos. Defective beta-cells lacking Glut-2 and Gck expression dominate in Rfx3-deficent adults, leading to glucose intolerance. Attenuated Glut-2 and glucokinase expression, and impaired glucose-stimulated insulin secretion, were also induced by RNA interference-mediated inhibition of Rfx3 expression in Min6 cells. Finally, Rfx3 was found to bind in Min6 cells and human islets to two well-known regulatory sequences, Pal-1 and Pal-2, in the neuroendocrine promoter of the glucokinase gene. CONCLUSIONS Our results show that Rfx3 is required for the differentiation and function of mature beta-cells and regulates the beta-cell promoter of the glucokinase gene.
Collapse
Affiliation(s)
- Aouatef Ait-Lounis
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Claire Bonal
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Queralt Seguín-Estévez
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Christoph D. Schmid
- Swiss Institute of Bioinformatics Ecole Polytechnique Fédeŕale de Lausanne, Institut Suisse de Recherche Expérimentale sur le Cancer, Lausanne, Switzerland
| | - Philipp Bucher
- Swiss Institute of Bioinformatics Ecole Polytechnique Fédeŕale de Lausanne, Institut Suisse de Recherche Expérimentale sur le Cancer, Lausanne, Switzerland
| | - Pedro L. Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Bénédicte Durand
- University of Lyon, Lyon, France, and Centre National de la Recherche Sciéntifique, Unité Mixte de Recherche 5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, France
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Corresponding author: Walter Reith,
| |
Collapse
|
14
|
Osbak KK, Colclough K, Saint-Martin C, Beer NL, Bellanné-Chantelot C, Ellard S, Gloyn AL. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat 2010; 30:1512-26. [PMID: 19790256 DOI: 10.1002/humu.21110] [Citation(s) in RCA: 339] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glucokinase is a key regulatory enzyme in the pancreatic beta-cell. It plays a crucial role in the regulation of insulin secretion and has been termed the glucose sensor in pancreatic beta-cells. Given its central role in the regulation of insulin release it is understandable that mutations in the gene encoding glucokinase (GCK) can cause both hyper- and hypoglycemia. Heterozygous inactivating mutations in GCK cause maturity-onset diabetes of the young (MODY) subtype glucokinase (GCK), characterized by mild fasting hyperglycemia, which is present at birth but often only detected later in life during screening for other purposes. Homozygous inactivating GCK mutations result in a more severe phenotype presenting at birth as permanent neonatal diabetes mellitus (PNDM). A growing number of heterozygous activating GCK mutations that cause hypoglycemia have also been reported. A total of 620 mutations in the GCK gene have been described in a total of 1,441 families. There are no common mutations, and the mutations are distributed throughout the gene. The majority of activating mutations cluster in a discrete region of the protein termed the allosteric activator site. The identification of a GCK mutation in patients with both hyper- and hypoglycemia has implications for the clinical course and clinical management of their disorder.
Collapse
Affiliation(s)
- Kara K Osbak
- Diabetes Research Laboratories, Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
15
|
Shearer KD, Goodman TH, Ross AW, Reilly L, Morgan PJ, McCaffery PJ. Photoperiodic regulation of retinoic acid signaling in the hypothalamus. J Neurochem 2010; 112:246-57. [PMID: 19860856 DOI: 10.1111/j.1471-4159.2009.06455.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Both retinoic acid (RA) and thyroid hormone (TH) regulate transcription via specific nuclear receptors. TH regulates hypothalamic homeostasis and active T3 is generated by deiodinase enzymes in tanycytes surrounding the third ventricle. However, RA has not been previously considered in such a role. Data presented here highlights novel parallels between the TH and RA synthetic pathways in the hypothalamus implying that RA also acts to regulate hypothalamic gene expression and function. Key elements of the RA cellular signaling pathway were shown to be regulated in the rodent hypothalamus. Retinoid synthetic enzymes and the retinol transport protein Stra6 were located in the cells lining the third ventricle allowing synthesis of RA from retinol present in the CNS to act via RA receptors and retinoid X receptors in the hypothalamus. Photoperiod manipulation was shown to alter the expression of synthetic enzymes and receptors with lengthening of photoperiod leading to enhanced RA signaling. In vitro RA can regulate the hypothalamic neuroendocrine peptide adrenocorticotrophic hormone. This work presents the new concept of controlled RA synthesis by hypothalamic tanycytes giving rise to possible involvement of this system in endocrine, and possibly vitamin A, homeostasis.
Collapse
Affiliation(s)
- Kirsty D Shearer
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Glucokinase, a unique isoform of the hexokinase enzymes, which are known to phosphorylate D-glucose and other hexoses, was identified during the past three to four decades as a new, promising drug target for type 2 diabetes. Glucokinase serves as a glucose sensor of the insulin-producing pancreatic islet beta-cells, controls the conversion of glucose to glycogen in the liver and regulates hepatic glucose production. Guided by this fundamental knowledge, several glucokinase activators are now being developed, and have so far been shown to lower blood glucose in several animal models of type 2 diabetes and in initial trials in humans with the disease. Here, the scientific basis and current status of this new approach to diabetes therapy are discussed.
Collapse
|
17
|
Rideau N, Berradi H, Skiba-Cassy S, Panserat S, Cailleau-Audouin E, Dupont J. Induction of glucokinase in chicken liver by dietary carbohydrates. Gen Comp Endocrinol 2008; 158:173-7. [PMID: 18662691 DOI: 10.1016/j.ygcen.2008.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 06/26/2008] [Accepted: 07/01/2008] [Indexed: 11/29/2022]
Abstract
We recently provided evidence of the presence of glucokinase (GCK) in the chicken liver [Berradi, H., Taouis, M., Cassy, S., Rideau, N., 2005. Glucokinase in chicken (Gallus gallus). Partial cDNA cloning, immunodetection and activity determination. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 141, 129-139]. In the present study we addressed the question of whether nutritional regulation of GCK occurs. Several nutritional conditions were compared in chickens (5 weeks old) previously trained to meal-feeding. One group was left in the fasted state (F: 24h) and one was tested at the end of the 2h meal (refed: RF). Two other 2h meal-refed groups received an acute oral saccharose load (6ml/kg BW) just before the 2h meal and were sacrificed either at the end of the meal (Saccharose refed, SRF) or 3h later (SRF+3). Liver GCK mRNA and protein levels did not differ between F, RF and SRF chickens but were significantly increased in SRF+3 chickens (2-fold, p<0.05). GCK activity did not differ between F and RF chickens but increased significantly in SRF and SRF+3 chickens (1.7-fold, p<0.05). Chicken liver GCK expression (mRNA and protein) and activity were therefore inducible in these chickens by feeding a meal with acute oral administration of carbohydrate. These and recent findings demonstrating insulin dependency of the liver GCK mRNA and protein strongly suggest that GCK may have an important role in carbohydrate metabolism, including that of the chicken. However, even in these highly stimulatory conditions, liver GCK activity remained relatively low in comparison with other species. The latter result may partly explain the high plasma glucose level in the chicken.
Collapse
Affiliation(s)
- Nicole Rideau
- INRA, UR83 Recherches Avicoles, F-37380 Nouzilly, France.
| | | | | | | | | | | |
Collapse
|
18
|
Sugar binding to recombinant wild-type and mutant glucokinase monitored by kinetic measurement and tryptophan fluorescence. Biochem J 2008; 413:269-80. [DOI: 10.1042/bj20071718] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tryptophan fluorescence was used to study GK (glucokinase), an enzyme that plays a prominent role in glucose homoeostasis which, when inactivated or activated by mutations, causes diabetes mellitus or hypoglycaemia in humans. GK has three tryptophan residues, and binding of D-glucose increases their fluorescence. To assess the contribution of individual tryptophan residues to this effect, we generated GST–GK [GK conjugated to GST (glutathione transferase)] and also pure GK with one, two or three of the tryptophan residues of GK replaced with other amino acids (i.e. W99C, W99R, W167A, W167F, W257F, W99R/W167F, W99R/W257F, W167F/W257F and W99R/W167F/W257F). Enzyme kinetics, binding constants for glucose and several other sugars and fluorescence quantum yields (ϕ) were determined and compared with those of wild-type GK retaining its three tryptophan residues. Replacement of all three tryptophan residues resulted in an enzyme that retained all characteristic features of GK, thereby demonstrating the unique usefulness of tryptophan fluorescence as an indicator of GK conformation. Curves of glucose binding to wild-type and mutant GK or GST–GK were hyperbolic, whereas catalysis of wild-type and most mutants exhibited co-operativity with D-glucose. Binding studies showed the following order of affinities for the enzyme variants: N-acetyl-D-glucosamine>D-glucose>D-mannose>D-mannoheptulose>2-deoxy-D-glucose≫L-glucose. GK activators increased sugar binding of most enzymes, but not of the mutants Y214A/V452A and C252Y. Contributions to the fluorescence increase from Trp99 and Trp167 were large compared with that from Trp257 and are probably based on distinct mechanisms. The average quantum efficiency of tryptophan fluorescence in the basal and glucose-bound state was modified by activating (Y214A/V452A) or inactivating (C213R and C252Y) mutations and was interpreted as a manifestation of distinct conformational states.
Collapse
|
19
|
Abstract
Type 2 diabetes is a chronic metabolic disease that adversely affects both the quality and longevity of life. The disease is characterised by elevated blood glucose (hyperglycaemia) that is associated with microvascular complications and increased macrovascular risk. Existing oral agents, either alone or in combination, do not exhibit adequate or sustained glucose lowering efficacy in Type 2 diabetics. Consequently, there is an unmet medical need for improved antidiabetic agents which are both more effective at lowering glucose and which display sustained efficacy over a number of years. Such agents would allow present glycaemic treatment targets to be achieved with greater success. Glucokinase activators (GKAs) represent a novel class of glucose-lowering agents. Preclinical data supports the notion that these agents act to lower blood glucose through effects in both the liver and pancreas. It is predicted that this dual compartment mechanism of action of GKAs will translate to robust glucose lowering in diabetic patients. The potential benefits and risks associated with the pharmacological activation of glucokinase are evaluated. The status of GKAs in preclinical and clinical development is assessed are the future prospects of these agents.
Collapse
Affiliation(s)
- Matthew Coghlan
- AstraZeneca Pharmaceuticals, Diabetes and Obesity Drug Discovery, Cardiovascular and Gastrointestinal Research Area, Mereside, Alderley Park, Macclesfi eld SK10 4TG, UK.
| | | |
Collapse
|
20
|
Crane C, Akhter N, Johnson BW, Iruthayanathan M, Syed F, Kudo A, Zhou YH, Childs GV. Fasting and glucose effects on pituitary leptin expression: is leptin a local signal for nutrient status? J Histochem Cytochem 2007; 55:1059-73. [PMID: 17595338 PMCID: PMC2085236 DOI: 10.1369/jhc.7a7214.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leptin, a potent anorexigenic hormone, is found in the anterior pituitary (AP). The aim of this study was to determine whether and how pituitary leptin-bearing cells are regulated by nutritional status. Male rats showed 64% reductions in pituitary leptin mRNA 24 hr after fasting, accompanied by significant (30-50%) reductions in growth hormone (GH), prolactin, and luteinizing hormone (LH), and 70-80% reductions in target cells for gonadotropin-releasing hormone or growth hormone-releasing hormone. There was a 2-fold increase in corticotropes. Subsets (22%) of pituitary cells coexpressed leptin and GH, and <5% coexpressed leptin and LH, prolactin, thyroid-stimulating hormone, or adrenocorticotropic hormone. Fasting resulted in significant (55-75%) losses in cells with leptin proteins or mRNA, and GH or LH. To determine whether restoration of serum glucose could rescue leptin, LH, and GH, additional fasted rats were given 10% glucose water for 24 hr. Restoring serum glucose in fasted rats resulted in pituitary cell populations with normal levels of leptin and GH and LH cells. Similarly, LH and GH cells were restored in vitro after populations from fasted rats were treated for as little as 1 hr in 10-100 pg/ml leptin. These correlative changes in pituitary leptin, LH, and GH, coupled with leptin's rapid restoration of GH and LH in vitro, suggest that pituitary leptin may signal nutritional changes. Collectively, the findings suggest that pituitary leptin expression could be coupled to glucose sensors like glucokinase to facilitate rapid responses by the neuroendocrine system to nutritional cues.
Collapse
Affiliation(s)
- Christopher Crane
- Department of Neurobiology and Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham St. Slot 510, Little Rock, AR 72205
| | - Noor Akhter
- Department of Neurobiology and Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham St. Slot 510, Little Rock, AR 72205
| | - Brandy W. Johnson
- Department of Neurobiology and Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham St. Slot 510, Little Rock, AR 72205
| | - Mary Iruthayanathan
- Division of Endocrinology, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa; Bldg 40 VA, Iowa City, Iowa 52242
| | - Farhan Syed
- Department of Neurobiology and Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham St. Slot 510, Little Rock, AR 72205
| | - Akihiko Kudo
- Department of Anatomy, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 1818611, Japan
| | - Yi-Hong Zhou
- Department of Neurological Surgery, University of California Irvine, 101 The City Drive, Building 36, Suite 400 Zot 5397, Orange, CA 92868
| | - Gwen V. Childs
- Department of Neurobiology and Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham St. Slot 510, Little Rock, AR 72205
| |
Collapse
|