1
|
Hope SF, Willgohs KR, Dittakul S, Plotnik JM. Do elephants really never forget? What we know about elephant memory and a call for further investigation. Learn Behav 2024:10.3758/s13420-024-00655-y. [PMID: 39438402 DOI: 10.3758/s13420-024-00655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Despite popular culture's promotion of the elephant's ability to "never forget," there is remarkably limited empirical research on the memory capacities of any living elephant species (Asian, Elephas maximus; African savanna, Loxodonta africana; African forest, Loxodonta cyclotis). A growing body of literature on elephant cognition and behavioral ecology has provided insight into the elephant's ability to behave flexibly in changing physical and social environments, but little direct evidence of how memory might relate to this flexibility exists. In this paper, we review and discuss the potential relationships between what we know about elephant cognition and behavior and the elephants' memory for the world around them as they navigate their physical, social, and spatial environments. We also discuss future directions for investigating elephant memory and implications for such research on elephant conservation and human-elephant conflict mitigation.
Collapse
Affiliation(s)
- Sydney F Hope
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA.
| | - Kaitlyn R Willgohs
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA
- Department of Psychology, The Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Sangpa Dittakul
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA
- Golden Triangle Asian Elephant Foundation, Chiang Saen, Chiang Rai, 57150, Thailand
| | - Joshua M Plotnik
- Department of Psychology, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA.
- Department of Psychology, The Graduate Center, City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
2
|
Modina SA, Kusliy MA, Malikov DG, Molodtseva AS. Phylogeography of the woolly mammoth (Mammuthus primigenius) in the Minusinsk Depression of southern Siberia in the Late Pleistocene. Vavilovskii Zhurnal Genet Selektsii 2024; 28:571-577. [PMID: 39280844 PMCID: PMC11393653 DOI: 10.18699/vjgb-24-63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/12/2024] [Accepted: 05/13/2024] [Indexed: 09/18/2024] Open
Abstract
To date, a number of studies have been published on the phylogenetics of woolly mammoths (Mammuthus primigenius), ranging from analyses of parts of the mitochondrial genome to studies of complete nuclear genomes. However, until recently nothing was known about the genetic diversity of woolly mammoths in southern Siberia, in the Minusinsk Depression in particular. Within the framework of this effort, libraries for high-throughput sequencing of seven bone samples of woolly mammoths were obtained, two-round enrichment using biotinylated probes of modern mtDNA of Elephas maximus immobilised on magnetic microspheres and sequencing with subsequent bioinformatic analysis were carried out. Phylogenetic reconstructions showed the presence of all studied mammoths in clade I, which expanded its range. The assignment of mammoth mitotypes in the Minusinsk Depression to different clusters within clade I may indicate a sufficiently high diversity of their gene pool. Phylogeographic reconstructions revealed a genetic proximity of mitochondrial lineages of Late Pleistocene mammoths of the Minusinsk Depression and other regions of eastern Siberia and estimated their divergence time in the range of 100-150 thousand years ago, which indicates active migrations of woolly mammoths over vast territories of eastern Siberia in the late Middle Pleistoceneearly Late Pleistocene.
Collapse
Affiliation(s)
- S A Modina
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - M A Kusliy
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D G Malikov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia V.S. Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A S Molodtseva
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Archaeology and Ethnography, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Kouakou JL, Gonedelé-Bi S. Population genetic structure and historical demography of the population of forest elephants in Côte d'Ivoire. PLoS One 2024; 19:e0300468. [PMID: 39186735 PMCID: PMC11346955 DOI: 10.1371/journal.pone.0300468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/27/2024] [Indexed: 08/28/2024] Open
Abstract
The population of forest elephant (Loxodonta cyclotis) has continuously declined in Côte d'Ivoire and, the remaining population largely consists of subpopulations that are fragmented and isolated. No data actually exist on the level of genetic diversity and population genetic structure of current forest elephant populations in Côte d'Ivoire. In this sense, determining genetic diversity and the underlying mechanisms of population differentiation is crucial for the initiation of effective conservation management. A total of 158 dung samples of forest elephants were collected at stage 1 of decompositions (dung pile intact, very fresh) in three Classified Forests (CF) (Bossématié, Dassioko and Port-Gauthier) in Côte d'Ivoire. A total of 101 sequences of the mitochondrial DNA control region measuring 600 base pair and 26 haplotypes were obtained. A haplotypic diversity ranging from 0.655 ± 0.050 at Bossématié and 0.859 ± 0.088 at Port Gauthier was obtained. Fifteen (15) out of 26 haplotypes observed were singletons and only the Dassioko and Port Gauthier CFs shared the same haplotypes. The strong genetic connectivity between forest elephant populations of the Dassioko and Port Gauthier CFs is supported by the grouping of these populations into a single cluster by Bayesian analysis. Although populations of L. cyclotis exhibit relatively high genetic diversity, habitat fragmentation could affect the genetic variability of current populations. Urgent measures including the reinforcement/establishment of genetic corridors and the strengthening of protection measures need to be undertaken to save the remaining populations of forest elephants in Côte d'Ivoire.
Collapse
Affiliation(s)
- Jean-Louis Kouakou
- Laboratoire de Génomique Fonctionnelle et Amélioration Génétique, Université Nangui Abrogoua, Abidjan, Côte d’Ivoire
| | - Sery Gonedelé-Bi
- Laboratoire de Biotechnologie, Agriculture et Valorisation des Ressources Biologiques, Université Félix Houphouët Boigny, Abidjan-Cocody, Côte d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Adiopodoumé, Côte d’Ivoire
| |
Collapse
|
4
|
Sandoval-Velasco M, Dudchenko O, Rodríguez JA, Pérez Estrada C, Dehasque M, Fontsere C, Mak SST, Khan R, Contessoto VG, Oliveira Junior AB, Kalluchi A, Zubillaga Herrera BJ, Jeong J, Roy RP, Christopher I, Weisz D, Omer AD, Batra SS, Shamim MS, Durand NC, O'Connell B, Roca AL, Plikus MV, Kusliy MA, Romanenko SA, Lemskaya NA, Serdyukova NA, Modina SA, Perelman PL, Kizilova EA, Baiborodin SI, Rubtsov NB, Machol G, Rath K, Mahajan R, Kaur P, Gnirke A, Garcia-Treviño I, Coke R, Flanagan JP, Pletch K, Ruiz-Herrera A, Plotnikov V, Pavlov IS, Pavlova NI, Protopopov AV, Di Pierro M, Graphodatsky AS, Lander ES, Rowley MJ, Wolynes PG, Onuchic JN, Dalén L, Marti-Renom MA, Gilbert MTP, Aiden EL. Three-dimensional genome architecture persists in a 52,000-year-old woolly mammoth skin sample. Cell 2024; 187:3541-3562.e51. [PMID: 38996487 DOI: 10.1016/j.cell.2024.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/07/2024] [Accepted: 06/03/2024] [Indexed: 07/14/2024]
Abstract
Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.
Collapse
Affiliation(s)
| | - Olga Dudchenko
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA.
| | - Juan Antonio Rodríguez
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark; Centre Nacional d'Anàlisi Genòmica, CNAG, 08028 Barcelona, Spain
| | - Cynthia Pérez Estrada
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Marianne Dehasque
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Claudia Fontsere
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | - Sarah S T Mak
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | - Ruqayya Khan
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Achyuth Kalluchi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bernardo J Zubillaga Herrera
- Department of Physics, Northeastern University, Boston, MA 02115, USA; Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02215, USA
| | - Jiyun Jeong
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Renata P Roy
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Departments of Biology and Physics, Texas Southern University, Houston, TX 77004, USA
| | - Ishawnia Christopher
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Weisz
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arina D Omer
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sanjit S Batra
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muhammad S Shamim
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neva C Durand
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brendan O'Connell
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alfred L Roca
- Department of Animal Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Mariya A Kusliy
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | | | - Natalya A Lemskaya
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | | | - Svetlana A Modina
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | - Elena A Kizilova
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | | | - Nikolai B Rubtsov
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Gur Machol
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Krisha Rath
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ragini Mahajan
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, University of Western Australia, Perth, WA 6009, Australia
| | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Rob Coke
- San Antonio Zoo, San Antonio, TX 78212, USA
| | | | | | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia and Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | | | - Naryya I Pavlova
- Institute of Biological Problems of Cryolitezone SB RAS, Yakutsk 677000, Russia
| | - Albert V Protopopov
- Academy of Sciences of Sakha Republic, Yakutsk 677000, Russia; North-Eastern Federal University, Yakutsk 677027, Russia
| | - Michele Di Pierro
- Department of Physics, Northeastern University, Boston, MA 02115, USA; Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02215, USA
| | | | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA; Departments of Physics, Astronomy, & Chemistry, Rice University, Houston, TX 77005, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA; Departments of Physics, Astronomy, & Chemistry, Rice University, Houston, TX 77005, USA
| | - Love Dalén
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Marc A Marti-Renom
- Centre Nacional d'Anàlisi Genòmica, CNAG, 08028 Barcelona, Spain; Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Universitat Pompeu Fabra, 08002 Barcelona, Spain.
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, University of Copenhagen, DK-1353 Copenhagen, Denmark; University Museum NTNU, 7012 Trondheim, Norway.
| | - Erez Lieberman Aiden
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
Iverson ENK. Conservation Mitonuclear Replacement: Facilitated mitochondrial adaptation for a changing world. Evol Appl 2024; 17:e13642. [PMID: 38468713 PMCID: PMC10925831 DOI: 10.1111/eva.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 03/13/2024] Open
Abstract
Most species will not be able to migrate fast enough to cope with climate change, nor evolve quickly enough with current levels of genetic variation. Exacerbating the problem are anthropogenic influences on adaptive potential, including the prevention of gene flow through habitat fragmentation and the erosion of genetic diversity in small, bottlenecked populations. Facilitated adaptation, or assisted evolution, offers a way to augment adaptive genetic variation via artificial selection, induced hybridization, or genetic engineering. One key source of genetic variation, particularly for climatic adaptation, are the core metabolic genes encoded by the mitochondrial genome. These genes influence environmental tolerance to heat, drought, and hypoxia, but must interact intimately and co-evolve with a suite of important nuclear genes. These coadapted mitonuclear genes form some of the important reproductive barriers between species. Mitochondrial genomes can and do introgress between species in an adaptive manner, and they may co-introgress with nuclear genes important for maintaining mitonuclear compatibility. Managers should consider the relevance of mitonuclear genetic variability in conservation decision-making, including as a tool for facilitating adaptation. I propose a novel technique dubbed Conservation Mitonuclear Replacement (CmNR), which entails replacing the core metabolic machinery of a threatened species-the mitochondrial genome and key nuclear loci-with those from a closely related species or a divergent population, which may be better-adapted to climatic changes or carry a lower genetic load. The most feasible route to CmNR is to combine CRISPR-based nuclear genetic editing with mitochondrial replacement and assisted reproductive technologies. This method preserves much of an organism's phenotype and could allow populations to persist in the wild when no other suitable conservation options exist. The technique could be particularly important on mountaintops, where rising temperatures threaten an alarming number of species with almost certain extinction in the next century.
Collapse
Affiliation(s)
- Erik N. K. Iverson
- Department of Integrative BiologyThe University of Texas at AustinAustinTexasUSA
| |
Collapse
|
6
|
Bowman J, Enard D, Lynch VJ. Phylogenomics reveals an almost perfect polytomy among the almost ungulates ( Paenungulata). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570590. [PMID: 38106080 PMCID: PMC10723481 DOI: 10.1101/2023.12.07.570590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Phylogenetic studies have resolved most relationships among Eutherian Orders. However, the branching order of elephants (Proboscidea), hyraxes (Hyracoidea), and sea cows (Sirenia) (i.e., the Paenungulata) has remained uncertain since at least 1758, when Linnaeus grouped elephants and manatees into a single Order (Bruta) to the exclusion of hyraxes. Subsequent morphological, molecular, and large-scale phylogenomic datasets have reached conflicting conclusions on the branching order within Paenungulates. We use a phylogenomic dataset of alignments from 13,388 protein-coding genes across 261 Eutherian mammals to infer phylogenetic relationships within Paenungulates. We find that gene trees almost equally support the three alternative resolutions of Paenungulate relationships and that despite strong support for a Proboscidea+Hyracoidea split in the multispecies coalescent (MSC) tree, there is significant evidence for gene tree uncertainty, incomplete lineage sorting, and introgression among Proboscidea, Hyracoidea, and Sirenia. Indeed, only 8-10% of genes have statistically significant phylogenetic signal to reject the hypothesis of a Paenungulate polytomy. These data indicate little support for any resolution for the branching order Proboscidea, Hyracoidea, and Sirenia within Paenungulata and suggest that Paenungulata may be as close to a real, or at least unresolvable, polytomy as possible.
Collapse
Affiliation(s)
- Jacob Bowman
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| | - David Enard
- Department of Ecology and Evolutionary Biology. University of Arizona, Tucson, AZ, USA
| | - Vincent J. Lynch
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| |
Collapse
|
7
|
Prado NA, Armstrong EE, Brown JL, Goldenberg SZ, Leimgruber P, Pearson VR, Maldonado JE, Campana MG. Genomic resources for Asian (Elephas maximus) and African savannah elephant (Loxodonta africana) conservation and health research. J Hered 2023; 114:529-538. [PMID: 37246890 DOI: 10.1093/jhered/esad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023] Open
Abstract
We provide novel genomic resources to help understand the genomic traits involved in elephant health and to aid conservation efforts. We sequence 11 elephant genomes (5 African savannah, 6 Asian) from North American zoos, including 9 de novo assemblies. We estimate elephant germline mutation rates and reconstruct demographic histories. Finally, we provide an in-solution capture assay to genotype Asian elephants. This assay is suitable for analyzing degraded museum and noninvasive samples, such as feces and hair. The elephant genomic resources we present here should allow for more detailed and uniform studies in the future to aid elephant conservation efforts and disease research.
Collapse
Affiliation(s)
- Natalia A Prado
- Biology Department, College of Arts and Sciences, Adelphi University, Garden City, NY, United States
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
- Endocrinology Research Laboratory, Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, United States
| | - Ellie E Armstrong
- Department of Biology, Stanford University, Stanford, CA, United States
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| | - Janine L Brown
- Endocrinology Research Laboratory, Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, United States
| | - Shifra Z Goldenberg
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
- Conservation Science and Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, CA, United States
| | - Peter Leimgruber
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Virginia R Pearson
- Glenn Rall Laboratory, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Jesús E Maldonado
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Michael G Campana
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| |
Collapse
|
8
|
Sooriyabandara MGC, Bandaranayake AU, Hathurusinghe HABM, Jayasundara SM, Marasinghe MSRRP, Prasad GAT, Abeywardana VPMK, Pinidiya MA, Nilanthi RMR, Bandaranayake PCG. A unique single nucleotide polymorphism in Agouti Signalling Protein (ASIP) gene changes coat colour of Sri Lankan leopard (Panthera pardus kotiya) to dark black. PLoS One 2023; 18:e0269967. [PMID: 37440497 PMCID: PMC10343082 DOI: 10.1371/journal.pone.0269967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The Sri Lankan leopard (Panthera pardus kotiya) is an endangered subspecies restricted to isolated and fragmented populations in Sri Lanka. Among them, melanistic leopards have been recorded on a few occasions. Literature suggests the evolution of melanism several times in the Felidae family, with three species having distinct mutations. Nevertheless, the mutations or other variations in the remaining species, including Sri Lankan melanistic leopard, are unknown. We used reference-based assembled nuclear genomes of Sri Lankan wild type and melanistic leopards and de novo assembled mitogenomes of the same to investigate the genetic basis, adaptive significance, and evolutionary history of the Sri Lankan melanistic leopard. Interestingly, we identified a single nucleotide polymorphism in exon-4 Sri Lankan melanistic leopard, which may completely ablate Agouti Signalling Protein (ASIP) function. The wild type leopards in Sri Lanka did not carry this mutation, suggesting the cause for the occurrence of melanistic leopords in the population. Comparative analysis of existing genomic data in the literature suggests it as a P. p. kotiya specific mutation and a novel mutation in the ASIP-gene of the Felidae family, contributing to naturally occurring colour polymorphism. Our data suggested the coalescence time of Sri Lankan leopards at ~0.5 million years, sisters to the Panthera pardus lineage. The genetic diversity was low in Sri Lankan leopards. Further, the P. p. kotiya melanistic leopard is a different morphotype of the P. p. kotiya wildtype leopard resulting from the mutation in the ASIP-gene. The ability of black leopards to camouflage, along with the likelihood of recurrence and transfer to future generations, suggests that this rare mutation could be environment-adaptable.
Collapse
Affiliation(s)
| | - A. U. Bandaranayake
- Department of Computer Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, Sri Lanka
| | - H. A. B. M. Hathurusinghe
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - S. M. Jayasundara
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - G. A. T. Prasad
- Department of Wildlife Conservation, Battaramulla, Sri Lanka
| | | | - M. A. Pinidiya
- Department of Wildlife Conservation, Battaramulla, Sri Lanka
| | | | - P. C. G. Bandaranayake
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
9
|
Sooriyabandara MGC, Jayasundara JMSM, Marasinghe MSLRP, Hathurusinghe HABM, Bandaranayake AU, Jayawardane KANC, Nilanthi RMR, Rajapakse RC, Bandaranayake PCG. Genetic features of Sri Lankan elephant, Elephas maximus maximus Linnaeus revealed by high throughput sequencing of mitogenome and ddRAD-seq. PLoS One 2023; 18:e0285572. [PMID: 37310948 DOI: 10.1371/journal.pone.0285572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/26/2023] [Indexed: 06/15/2023] Open
Abstract
Elephas maximus maximus Linnaeus, the Sri Lankan subspecies is the largest and the darkest among Asian elephants. Patches of depigmented areas with no skin color on the ears, face, trunk, and belly morphologically differentiate it from the others. The elephant population in Sri Lanka is now limited to smaller areas and protected under Sri Lankan law. Despite its ecological and evolutionary importance, the relationship between Sri Lankan elephants and their phylogenetic position among Asian elephants remains controversial. While identifying genetic diversity is the key to any conservation and management strategies, limited data is currently available. To address such issues, we analyzed 24 elephants with known parental lineages with high throughput ddRAD-seq. The mitogenome suggested the coalescence time of the Sri Lankan elephant at ~0.2 million years, and sister to Myanmar elephants supporting the hypothesis of the movement of elephants in Eurasia. The ddRAD-seq approach identified 50,490 genome-wide SNPs among Sri Lankan elephants. The genetic diversity within Sri Lankan elephants assessed with identified SNPs suggests a geographical differentiation resulting in three main clusters; north-eastern, mid-latitude, and southern regions. Interestingly, though it was believed that elephants from the Sinharaja rainforest are of an isolated population, the ddRAD-based genetic analysis clustered it with the north-eastern elephants. The effect of habitat fragmentation on genetic diversity could be further assessed with more samples with specific SNPs identified in the current study.
Collapse
Affiliation(s)
| | - J M S M Jayasundara
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - H A B M Hathurusinghe
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - A U Bandaranayake
- Department of Computer Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - R M R Nilanthi
- Department of Wildlife Conservation, Battaramulla, Sri Lanka
| | - R C Rajapakse
- Department of National Zoological Gardens, Anagarika Dharmapala Mawatha, Dehiwala, Sri Lanka
| | - P C G Bandaranayake
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
10
|
Andreeva TV, Malyarchuk AB, Soshkina AD, Dudko NA, Plotnikova MY, Rogaev EI. Methodologies for Ancient DNA Extraction from Bones for Genomic Analysis: Approaches and Guidelines. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422090034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Song MH, Yan C, Li JT. MEANGS: an efficient seed-free tool for de novo assembling animal mitochondrial genome using whole genome NGS data. Brief Bioinform 2021; 23:6481918. [PMID: 34941991 DOI: 10.1093/bib/bbab538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/23/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Advances in next-generation sequencing (NGS) technologies have led to an exponential increase in the number of whole genome sequences (WGS) in databases. This wealth of WGS data has greatly facilitated the recovery of full mitochondrial genomes (mitogenomes), which are vital for phylogenetic, evolutionary and ecological studies. Unfortunately, most existing software cannot easily assemble mitogenome reference sequences conveniently or efficiently. Therefore, we developed a seed-free de novo assembly tool, MEANGS, which applies the trie-search method to extend contigs from self-discovery seeds and assemble a mitogenome from animal WGS data. We then used data from 16 species with different qualities to compare the performance of MEANGS with three other available programs. MEANGS exhibited the best overall performance since it was the only one that completed all tests, and it assembled full or partial mitogenomes for all of the tested samples while the others failed. Furthermore, MEANGS selects superior assembly sequences and annotates protein-coding genes. Thus, MEANGS can be one of the most efficient software for generating high-quality mitogenomes so far, the further use of it will benefit the study on mitogenome based on whole genome NGS data. MEANGS is available at https://github.com/YanCCscu/meangs.
Collapse
Affiliation(s)
- Meng-Huan Song
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| | - Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| |
Collapse
|
12
|
Baleka S, Herridge VL, Catalano G, Lister AM, Dickinson MR, Di Patti C, Barlow A, Penkman KEH, Hofreiter M, Paijmans JLA. Estimating the dwarfing rate of an extinct Sicilian elephant. Curr Biol 2021; 31:3606-3612.e7. [PMID: 34146486 DOI: 10.1016/j.cub.2021.05.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 11/18/2022]
Abstract
Evolution on islands, together with the often extreme phenotypic changes associated with it, has attracted much interest from evolutionary biologists. However, measuring the rate of change of phenotypic traits of extinct animals can be challenging, in part due to the incompleteness of the fossil record. Here, we use combined molecular and fossil evidence to define the minimum and maximum rate of dwarfing in an extinct Mediterranean dwarf elephant from Puntali Cave (Sicily).1 Despite the challenges associated with recovering ancient DNA from warm climates,2 we successfully retrieved a mitogenome from a sample with an estimated age between 175,500 and 50,000 years. Our results suggest that this specific Sicilian elephant lineage evolved from one of the largest terrestrial mammals that ever lived3 to an island species weighing less than 20% of its original mass with an estimated mass reduction between 0.74 and 200.95 kg and height reduction between 0.15 and 41.49 mm per generation. We show that combining ancient DNA with paleontological and geochronological evidence can constrain the timing of phenotypic changes with greater accuracy than could be achieved using any source of evidence in isolation.
Collapse
Affiliation(s)
- Sina Baleka
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany; Faculty of Life and Environmental Sciences, University of Iceland, Sæmundargata 2, 101 Reykjavik, Iceland.
| | - Victoria L Herridge
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Giulio Catalano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Laboratory of Anthropology, Università degli Studi di Palermo, 90128 Palermo, Italy
| | - Adrian M Lister
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Marc R Dickinson
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Carolina Di Patti
- Museo Geologico "G.G. Gemmellaro" - Università degli Studi di Palermo, Corso Tukory 131, 90133 Palermo, Italy
| | - Axel Barlow
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Kirsty E H Penkman
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Johanna L A Paijmans
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
13
|
Feuerborn TR, Palkopoulou E, van der Valk T, von Seth J, Munters AR, Pečnerová P, Dehasque M, Ureña I, Ersmark E, Lagerholm VK, Krzewińska M, Rodríguez-Varela R, Götherström A, Dalén L, Díez-Del-Molino D. Competitive mapping allows for the identification and exclusion of human DNA contamination in ancient faunal genomic datasets. BMC Genomics 2020; 21:844. [PMID: 33256612 PMCID: PMC7708127 DOI: 10.1186/s12864-020-07229-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/16/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND After over a decade of developments in field collection, laboratory methods and advances in high-throughput sequencing, contamination remains a key issue in ancient DNA research. Currently, human and microbial contaminant DNA still impose challenges on cost-effective sequencing and accurate interpretation of ancient DNA data. RESULTS Here we investigate whether human contaminating DNA can be found in ancient faunal sequencing datasets. We identify variable levels of human contamination, which persists even after the sequence reads have been mapped to the faunal reference genomes. This contamination has the potential to affect a range of downstream analyses. CONCLUSIONS We propose a fast and simple method, based on competitive mapping, which allows identifying and removing human contamination from ancient faunal DNA datasets with limited losses of true ancient data. This method could represent an important tool for the ancient DNA field.
Collapse
Affiliation(s)
- Tatiana R Feuerborn
- Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.
- Centre for Palaeogenetics, Stockholm, Sweden.
| | - Eleftheria Palkopoulou
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Tom van der Valk
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Johanna von Seth
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Arielle R Munters
- Department of Organismal Biology, Human Evolution, Uppsala University, Uppsala, Sweden
| | | | - Marianne Dehasque
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Irene Ureña
- Department of Animal Breeding, INIA, Madrid, Spain
| | - Erik Ersmark
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Vendela Kempe Lagerholm
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Maja Krzewińska
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Ricardo Rodríguez-Varela
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Anders Götherström
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - David Díez-Del-Molino
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.
- Centre for Palaeogenetics, Stockholm, Sweden.
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
14
|
Sheremetyeva IN. Comparison of Ancient Haplotypes with Modern Island Reed Vole Populations. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420070145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Ngatia JN, Lan TM, Ma Y, Dinh TD, Wang Z, Dahmer TD, Chun Xu Y. Distinguishing extant elephants ivory from mammoth ivory using a short sequence of cytochrome b gene. Sci Rep 2019; 9:18863. [PMID: 31827140 PMCID: PMC6906310 DOI: 10.1038/s41598-019-55094-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/14/2019] [Indexed: 11/08/2022] Open
Abstract
Trade in ivory from extant elephant species namely Asian elephant (Elephas maximus), African savanna elephant (Loxodonta africana) and African forest elephant (Loxodonta cyclotis) is regulated internationally, while the trade in ivory from extinct species of Elephantidae, including woolly mammoth, is unregulated. This distinction creates opportunity for laundering and trading elephant ivory as mammoth ivory. The existing morphological and molecular genetics methods do not reliably distinguish the source of ivory items that lack clear identification characteristics or for which the quality of extracted DNA cannot support amplification of large gene fragments. We present a PCR-sequencing method based on 116 bp target sequence of the cytochrome b gene to specifically amplify elephantid DNA while simultaneously excluding non-elephantid species and ivory substitutes, and while avoiding contamination by human DNA. The partial Cytochrome b gene sequence enabled accurate association of ivory samples with their species of origin for all three extant elephants and from mammoth. The detection limit of the PCR system was as low as 10 copy numbers of target DNA. The amplification and sequencing success reached 96.7% for woolly mammoth ivory and 100% for African savanna elephant and African forest elephant ivory. This is the first validated method for distinguishing elephant from mammoth ivory and it provides forensic support for investigation of ivory laundering cases.
Collapse
Affiliation(s)
- Jacob Njaramba Ngatia
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, 150040, China
| | - Tian Ming Lan
- BGI - Shenzhen, Shenzhen, 518083, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, DK-2100, Denmark
- China National GeneBank, BGI - Shenzhen, Shenzhen, 518083, China
| | - Yue Ma
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, 150040, China
- State Forestry and Grassland Administration Detecting Center of Wildlife, Harbin, 150040, China
| | - Thi Dao Dinh
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, 150040, China
| | - Zhen Wang
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, 150040, China
- State Forestry and Grassland Administration Detecting Center of Wildlife, Harbin, 150040, China
| | - Thomas D Dahmer
- Ecosystems Ltd, No. 40 Shek Pai Wan Road, Aberdeen, Hong Kong, China
| | - Yan Chun Xu
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, 150040, China.
- State Forestry and Grassland Administration Detecting Center of Wildlife, Harbin, 150040, China.
- State Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization of China, Harbin, 150040, China.
| |
Collapse
|
16
|
Kornienko IV, Faleeva TG, Oreshkova NV, Grigoriev SE, Grigorieva LV, Putintseva YA, Krutovsky KV. Structural and Functional Organization of the Mitochondrial DNA Control Region in the Woolly Mammoth (Mammuthus primigenius). Mol Biol 2019. [DOI: 10.1134/s002689331904006x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Ngatia JN, Lan TM, Dinh TD, Zhang L, Ahmed AK, Xu YC. Signals of positive selection in mitochondrial protein-coding genes of woolly mammoth: Adaptation to extreme environments? Ecol Evol 2019; 9:6821-6832. [PMID: 31380018 PMCID: PMC6662336 DOI: 10.1002/ece3.5250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 11/25/2022] Open
Abstract
The mammoths originated in warm and equatorial Africa and later colonized cold and high-latitude environments. Studies on nuclear genes suggest that woolly mammoth had evolved genetic variations involved in processes relevant to cold tolerance, including lipid metabolism and thermogenesis, and adaptation to extremely varied light and darkness cycles. The mitochondria is a major regulator of cellular energy metabolism, thus the mitogenome of mammoths may also exhibit adaptive evolution. However, little is yet known in this regard. In this study, we analyzed mitochondrial protein-coding genes (MPCGs) sequences of 75 broadly distributed woolly mammoths (Mammuthus primigenius) to test for signatures of positive selection. Results showed that a total of eleven amino acid sites in six genes, namely ND1, ND4, ND5, ND6, CYTB, and ATP6, displayed strong evidence of positive selection. Two sites were located in close proximity to proton-translocation channels in mitochondrial complex I. Biochemical and homology protein structure modeling analyses demonstrated that five amino acid substitutions in ND1, ND5, and ND6 might have influenced the performance of protein-protein interaction among subunits of complex I, and three substitutions in CYTB and ATP6 might have influenced the performance of metabolic regulatory chain. These findings suggest metabolic adaptations in the mitogenome of woolly mammoths in relation to extreme environments and provide a basis for further tests on the significance of the variations on other systems.
Collapse
Affiliation(s)
| | - Tian Ming Lan
- BGI‐ShenzhenShenzhenChina
- Laboratory of Genomics and Molecular Biomedicine, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- China National Genebank, BGI‐ShenzhenShenzhenChina
| | - Thi Dao Dinh
- College of Wildlife ResourcesNortheast Forestry UniversityHarbinChina
| | - Le Zhang
- College of Wildlife ResourcesNortheast Forestry UniversityHarbinChina
| | | | - Yan Chun Xu
- College of Wildlife ResourcesNortheast Forestry UniversityHarbinChina
- State Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and UtilizationHarbinChina
- State Forestry and Grassland Administration Detecting Centre of WildlifeHarbinChina
| |
Collapse
|
18
|
Hahn C. Assembly of Ancient Mitochondrial Genomes Without a Closely Related Reference Sequence. Methods Mol Biol 2019; 1963:195-213. [PMID: 30875055 DOI: 10.1007/978-1-4939-9176-1_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent methodological advances have transformed the field of ancient DNA (aDNA). Basic bioinformatics skills are becoming essential requirements to process and analyze the sheer amounts of data generated by current aDNA studies and in biomedical research in general. This chapter is intended as a practical guide to the assembly of ancient mitochondrial genomes, directly from genomic DNA-derived next-generation sequencing (NGS) data, specifically in the absence of closely related reference genomes. In a hands-on tutorial suitable for readers with little to no prior bioinformatics experience, we reconstruct the mitochondrial genome of a woolly mammoth deposited ~45,000 years ago. We introduce key software tools and outline general strategies for mitogenome assembly, including the critical quality assessment of assembly results without a reference genome.
Collapse
Affiliation(s)
- Christoph Hahn
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria.
| |
Collapse
|
19
|
Kornienko IV, Faleeva TG, Oreshkova NV, Grigoriev SE, Grigoreva LV, Simonov EP, Kolesnikova AI, Putintseva YA, Krutovsky KV. Complete mitochondrial genome of a woolly mammoth ( Mammuthus primigenius) from Maly Lyakhovsky Island (New Siberian Islands, Russia) and its phylogenetic assessment. MITOCHONDRIAL DNA PART B-RESOURCES 2018; 3:596-598. [PMID: 33474257 PMCID: PMC7800944 DOI: 10.1080/23802359.2018.1473721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
We present a complete sequence and an annotation of the mitochondrial genome of the woolly mammoth (Mammuthus primigenius) found in 2012 on Maly Lyakhovsky Island (North-Eastern Siberia, Russia). The genome was 16,851 bp long and contained 13 protein-coding, 22 tRNA, and 2 rRNA genes. It was AT reach (61.3%) with A = 32.9%, T = 28.4%, C = 25.3%, and G = 13.4%.
Collapse
Affiliation(s)
- Igor V Kornienko
- Department of Strategic Research, Southern Scientific Centre, Russian Academy of Sciences, Rostov-on-Don, Russian Federation.,Laboratory of Biological Objects Identification, Southern Federal University, Rostov-on-Don, Russian Federation
| | - Tatiana G Faleeva
- Department of Forensic Medicine, Mechnikov North-Western State Medical University, Russian Federation
| | - Natalia V Oreshkova
- Laboratory of Forest Genetics and Selection, V. N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation.,Laboratory of Forest Genomics, Genome Research and Education Center, Siberian Federal University, Krasnoyarsk, Russian Federation
| | - Semyon E Grigoriev
- Institute of Applied Ecology of the North, North-Eastern Federal University, Yakutsk, Russian Federation
| | - Lena V Grigoreva
- Institute of Applied Ecology of the North, North-Eastern Federal University, Yakutsk, Russian Federation
| | - Evgeniy P Simonov
- Laboratory of Forest Genomics, Genome Research and Education Center, Siberian Federal University, Krasnoyarsk, Russian Federation
| | - Anna I Kolesnikova
- Laboratory of Forest Genomics, Genome Research and Education Center, Siberian Federal University, Krasnoyarsk, Russian Federation
| | - Yuliya A Putintseva
- Laboratory of Forest Genomics, Genome Research and Education Center, Siberian Federal University, Krasnoyarsk, Russian Federation
| | - Konstantin V Krutovsky
- Laboratory of Forest Genomics, Genome Research and Education Center, Siberian Federal University, Krasnoyarsk, Russian Federation.,Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Göttingen, Germany.,Laboratory of Population Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation.,Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, USA
| |
Collapse
|
20
|
Smith FA, Elliott Smith RE, Lyons SK, Payne JL. Body size downgrading of mammals over the late Quaternary. Science 2018; 360:310-313. [PMID: 29674591 DOI: 10.1126/science.aao5987] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 03/07/2018] [Indexed: 12/30/2022]
Abstract
Since the late Pleistocene, large-bodied mammals have been extirpated from much of Earth. Although all habitable continents once harbored giant mammals, the few remaining species are largely confined to Africa. This decline is coincident with the global expansion of hominins over the late Quaternary. Here, we quantify mammalian extinction selectivity, continental body size distributions, and taxonomic diversity over five time periods spanning the past 125,000 years and stretching approximately 200 years into the future. We demonstrate that size-selective extinction was already under way in the oldest interval and occurred on all continents, within all trophic modes, and across all time intervals. Moreover, the degree of selectivity was unprecedented in 65 million years of mammalian evolution. The distinctive selectivity signature implicates hominin activity as a primary driver of taxonomic losses and ecosystem homogenization. Because megafauna have a disproportionate influence on ecosystem structure and function, past and present body size downgrading is reshaping Earth's biosphere.
Collapse
Affiliation(s)
- Felisa A Smith
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | - S Kathleen Lyons
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jonathan L Payne
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Advances in Using Non-invasive, Archival, and Environmental Samples for Population Genomic Studies. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_45] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Central European Woolly Mammoth Population Dynamics: Insights from Late Pleistocene Mitochondrial Genomes. Sci Rep 2017; 7:17714. [PMID: 29255197 PMCID: PMC5735091 DOI: 10.1038/s41598-017-17723-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/21/2017] [Indexed: 01/13/2023] Open
Abstract
The population dynamics of the Pleistocene woolly mammoth (Mammuthus primigenius) has been the subject of intensive palaeogenetic research. Although a large number of mitochondrial genomes across Eurasia have been reconstructed, the available data remains geographically sparse and mostly focused on eastern Eurasia. Thus, population dynamics in other regions have not been extensively investigated. Here, we use a multi-method approach utilising proteomic, stable isotope and genetic techniques to identify and generate twenty woolly mammoth mitochondrial genomes, and associated dietary stable isotopic data, from highly fragmentary Late Pleistocene material from central Europe. We begin to address region-specific questions regarding central European woolly mammoth populations, highlighting parallels with a previous replacement event in eastern Eurasia ten thousand years earlier. A high number of shared derived mutations between woolly mammoth mitochondrial clades are identified, questioning previous phylogenetic analysis and thus emphasizing the need for nuclear DNA studies to explicate the increasingly complex genetic history of the woolly mammoth.
Collapse
|
23
|
Pečnerová P, Palkopoulou E, Wheat CW, Skoglund P, Vartanyan S, Tikhonov A, Nikolskiy P, van der Plicht J, Díez-Del-Molino D, Dalén L. Mitogenome evolution in the last surviving woolly mammoth population reveals neutral and functional consequences of small population size. Evol Lett 2017; 1:292-303. [PMID: 30283657 PMCID: PMC6121868 DOI: 10.1002/evl3.33] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/06/2017] [Indexed: 01/25/2023] Open
Abstract
The onset of the Holocene was associated with a global temperature increase, which led to a rise in sea levels and isolation of the last surviving population of woolly mammoths on Wrangel Island. Understanding what happened with the population's genetic diversity at the time of the isolation and during the ensuing 6000 years can help clarify the effects of bottlenecks and subsequent limited population sizes in species approaching extinction. Previous genetic studies have highlighted questions about how the Holocene Wrangel population was established and how the isolation event affected genetic diversity. Here, we generated high‐quality mitogenomes from 21 radiocarbon‐dated woolly mammoths to compare the ancestral large and genetically diverse Late Pleistocene Siberian population and the small Holocene Wrangel population. Our results indicate that mitogenome diversity was reduced to one single haplotype at the time of the isolation, and thus that the Holocene Wrangel Island population was established by a single maternal lineage. Moreover, we show that the ensuing small effective population size coincided with fixation of a nonsynonymous mutation, and a comparative analysis of mutation rates suggests that the evolutionary rate was accelerated in the Holocene population. These results suggest that isolation on Wrangel Island led to an increase in the frequency of deleterious genetic variation, and thus are consistent with the hypothesis that strong genetic drift in small populations leads to purifying selection being less effective in removing deleterious mutations.
Collapse
Affiliation(s)
- Patrícia Pečnerová
- Department of Bioinformatics and Genetics Swedish Museum of Natural History Stockholm Sweden.,Department of Zoology Stockholm University Stockholm Sweden
| | - Eleftheria Palkopoulou
- Department of Bioinformatics and Genetics Swedish Museum of Natural History Stockholm Sweden.,Department of Zoology Stockholm University Stockholm Sweden.,Department of Genetics Harvard Medical School Boston Massachusetts 02115
| | | | - Pontus Skoglund
- Department of Genetics Harvard Medical School Boston Massachusetts 02115.,Broad Institute of Harvard and MIT Cambridge Massachusetts 02142
| | - Sergey Vartanyan
- North-East Interdisciplinary Scientific Research Institute N.A.N.A. Shilo Far East Branch, Russian Academy of Sciences (NEISRI FEB RAS) Magadan Russia
| | - Alexei Tikhonov
- Zoological Institute of Russian Academy of Sciences Saint-Petersburg Russia.,Institute of Applied Ecology of the North North-Eastern Federal University Yakutsk Russia
| | - Pavel Nikolskiy
- Geological Institute of the Russian Academy of Sciences Moscow Russia
| | - Johannes van der Plicht
- Centre for Isotope Research Groningen University Groningen The Netherlands.,Faculty of Archaeology Leiden University Leiden The Netherlands
| | - David Díez-Del-Molino
- Department of Bioinformatics and Genetics Swedish Museum of Natural History Stockholm Sweden
| | - Love Dalén
- Department of Bioinformatics and Genetics Swedish Museum of Natural History Stockholm Sweden
| |
Collapse
|
24
|
Orlando L, Hänni C, Douady CJ. Mammoth and Elephant Phylogenetic Relationships: Mammut Americanum, the Missing Outgroup. Evol Bioinform Online 2017. [DOI: 10.1177/117693430700300019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
At the morphological level, the woolly mammoth has most often been considered as the sister-species of Asian elephants, but at the DNA level, different studies have found support for proximity with African elephants. Recent reports have increased the available sequence data and apparently solved the discrepancy, finding mammoths to be most closely related to Asian elephants. However, we demonstrate here that the three competing topologies have similar likelihood, bayesian and parsimony supports. The analysis further suggests the inadequacy of using Sirenia or Hyracoidea as outgroups. We therefore argue that orthologous sequences from the extinct American mastodon will be required to definitively solve this long-standing question.
Collapse
Affiliation(s)
- Ludovic Orlando
- Paleogenetics and Molecular Evolution; IFR 128, Lyon, F-69007, France; Université Lyon 1, Lyon, F-69007, France; CNRS UMR 5242, INRA, Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, F-69364 Cédex 07, France
| | - Catherine Hänni
- Paleogenetics and Molecular Evolution; IFR 128, Lyon, F-69007, France; Université Lyon 1, Lyon, F-69007, France; CNRS UMR 5242, INRA, Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, F-69364 Cédex 07, France
| | - Christophe J. Douady
- CNRS UMR 5023, Laboratoire d'Ecologie des Hydrosystèmes Fluviaux, Université Claude Bernard Lyon 1, 6 rue R. Dubois, Bat. Darwin-C, F-69622 Villeurbanne Cédex, France
| |
Collapse
|
25
|
Origin and phylogeography of African savannah elephants (Loxodonta africana) in Kruger and nearby parks in southern Africa. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-1005-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Chang D, Knapp M, Enk J, Lippold S, Kircher M, Lister A, MacPhee RDE, Widga C, Czechowski P, Sommer R, Hodges E, Stümpel N, Barnes I, Dalén L, Derevianko A, Germonpré M, Hillebrand-Voiculescu A, Constantin S, Kuznetsova T, Mol D, Rathgeber T, Rosendahl W, Tikhonov AN, Willerslev E, Hannon G, Lalueza-Fox C, Joger U, Poinar H, Hofreiter M, Shapiro B. The evolutionary and phylogeographic history of woolly mammoths: a comprehensive mitogenomic analysis. Sci Rep 2017; 7:44585. [PMID: 28327635 PMCID: PMC5361112 DOI: 10.1038/srep44585] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/10/2017] [Indexed: 11/09/2022] Open
Abstract
Near the end of the Pleistocene epoch, populations of the woolly mammoth (Mammuthus primigenius) were distributed across parts of three continents, from western Europe and northern Asia through Beringia to the Atlantic seaboard of North America. Nonetheless, questions about the connectivity and temporal continuity of mammoth populations and species remain unanswered. We use a combination of targeted enrichment and high-throughput sequencing to assemble and interpret a data set of 143 mammoth mitochondrial genomes, sampled from fossils recovered from across their Holarctic range. Our dataset includes 54 previously unpublished mitochondrial genomes and significantly increases the coverage of the Eurasian range of the species. The resulting global phylogeny confirms that the Late Pleistocene mammoth population comprised three distinct mitochondrial lineages that began to diverge ~1.0-2.0 million years ago (Ma). We also find that mammoth mitochondrial lineages were strongly geographically partitioned throughout the Pleistocene. In combination, our genetic results and the pattern of morphological variation in time and space suggest that male-mediated gene flow, rather than large-scale dispersals, was important in the Pleistocene evolutionary history of mammoths.
Collapse
Affiliation(s)
- Dan Chang
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Michael Knapp
- Department of Anatomy, University of Otago, 270 Great King Street, Dunedin 9016, New Zealand
| | - Jacob Enk
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L9, Canada
| | - Sebastian Lippold
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig D04103, Germany
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, 3720 15 Ave NE, Seattle, WA 98195-5065, USA
| | - Adrian Lister
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Ross D. E. MacPhee
- Department of Mammalogy, American Museum of Natural History, 200 Central Park West, New York NY, 10024, USA
| | - Christopher Widga
- Center of Excellence in Paleontology, East Tennessee State University, 1212 Sunset Dr., Gray, TN 37615, USA
| | - Paul Czechowski
- Antarctic Biological Research Initiative, 31 Jobson Road, SA 5110, Australia
| | - Robert Sommer
- Department of Zoology, Institute of Biosciences, University of Rostock, Universitätsplatz 2, Rostock D-18055, Germany
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Ave, Nashville, TN 37232, USA
| | - Nikolaus Stümpel
- Staatliches Naturhistorisches Museum Braunschweig, Pockelstrasse 10, Braunschweig 38106, Germany
| | - Ian Barnes
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Love Dalén
- Swedish Museum of Natural History, Department of Bioinformatics and Genetics, S-104 05 Stockholm, P.O. Box 50007, Sweden
| | - Anatoly Derevianko
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, 17, Novosibirsk, Akademia Lavrentieva, 630090, Russia
| | - Mietje Germonpré
- Operational Directorate “Earth and History of Life”, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, Brussels 1000, Belgium
| | | | - Silviu Constantin
- “Emil Racoviţă” Institute of Speleology, Frumoasă 31, Bucharest, 01906, Romania
| | - Tatyana Kuznetsova
- Department of Palaeontology, Faculty of Geology, Moscow State University, ul. Leninskiye Gory, 1, Moscow, 119991, Russia
| | - Dick Mol
- Mammuthus Club International, Gudumholm 41, Hoofddorp, HG 2133, Netherlands
| | - Thomas Rathgeber
- Staatliches Museum für Naturkunde Stuttgart Rosenstein, Gewann 1, Stuttgart 70191, Germany
| | - Wilfried Rosendahl
- Department “World Cultures and Environment”, Reiss-Engelhorn-Museen, C 5, Zeughaus, Mannheim, 68159, Germany
| | - Alexey N. Tikhonov
- Zoological Institute Russian Academy of Sciences, Universitetskaya nab., 1 Saint-Petersburg 199034, Russia
- Institute of Applied Ecology of the North, North-Eastern Federal University, Lenina 1, Yakutsk, Russia
| | - Eske Willerslev
- Centre for GeoGenetics, Copenhagen University, Nørregade ‘10, Copenhagen, 1165, Denmark
- Department of Zoology, University of Cambridge, Downing St. Cambridge, CB2 3EJ, UK
- Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
| | - Greg Hannon
- CRUK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology (CSIC-UPF), Doctor Aiguader, 88, Barcelona, 08003, Spain
| | - Ulrich Joger
- Staatliches Naturhistorisches Museum Braunschweig, Pockelstrasse 10, Braunschweig 38106, Germany
| | - Hendrik Poinar
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L9, Canada
| | - Michael Hofreiter
- Department of Mathematics and Natural Sciences, Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
27
|
Enk J, Devault A, Widga C, Saunders J, Szpak P, Southon J, Rouillard JM, Shapiro B, Golding GB, Zazula G, Froese D, Fisher DC, MacPhee RDE, Poinar H. Mammuthus Population Dynamics in Late Pleistocene North America: Divergence, Phylogeography, and Introgression. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00042] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
28
|
Wu YP, Huo JH, Guan WJ, Xie JF, Ma YH. Sequence analysis of four caprine mitochondria DNA lineages. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2012.e69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Comparison of genetic and morphological characters in fossil teeth of grey voles from the Russian Far East (Rodentia: Cricetidae: Alexandromys). Mamm Biol 2015. [DOI: 10.1016/j.mambio.2015.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Raghanti MA, Todd N, Hof PR. Probing the proboscidea: Lessons from the past. J Comp Neurol 2015; 523:2321-5. [PMID: 26184071 DOI: 10.1002/cne.23824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio, 44242
| | - Nancy Todd
- Biology and Environmental Studies, Manhattanville College, Purchase, New York, 10577
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029.,New York Consortium in Evolutionary Primatology, New York, New York, 10029
| |
Collapse
|
31
|
Hawkins MTR, Hofman CA, Callicrate T, McDonough MM, Tsuchiya MTN, Gutiérrez EE, Helgen KM, Maldonado JE. In-solution hybridization for mammalian mitogenome enrichment: pros, cons and challenges associated with multiplexing degraded DNA. Mol Ecol Resour 2015. [PMID: 26220248 DOI: 10.1111/1755-0998.12448] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we present a set of RNA-based probes for whole mitochondrial genome in-solution enrichment, targeting a diversity of mammalian mitogenomes. This probes set was designed from seven mammalian orders and tested to determine the utility for enriching degraded DNA. We generated 63 mitogenomes representing five orders and 22 genera of mammals that yielded varying coverage ranging from 0 to >5400X. Based on a threshold of 70% mitogenome recovery and at least 10× average coverage, 32 individuals or 51% of samples were considered successful. The estimated sequence divergence of samples from the probe sequences used to construct the array ranged up to nearly 20%. Sample type was more predictive of mitogenome recovery than sample age. The proportion of reads from each individual in multiplexed enrichments was highly skewed, with each pool having one sample that yielded a majority of the reads. Recovery across each mitochondrial gene varied with most samples exhibiting regions with gaps or ambiguous sites. We estimated the ability of the probes to capture mitogenomes from a diversity of mammalian taxa not included here by performing a clustering analysis of published sequences for 100 taxa representing most mammalian orders. Our study demonstrates that a general array can be cost and time effective when there is a need to screen a modest number of individuals from a variety of taxa. We also address the practical concerns for using such a tool, with regard to pooling samples, generating high quality mitogenomes and detail a pipeline to remove chimeric molecules.
Collapse
Affiliation(s)
- Melissa T R Hawkins
- Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, USA.,Division of Mammals, National Museum of Natural History, MRC 108, Smithsonian Institution, PO Box 37012, Washington, DC, 20013-7012, USA.,Department of Environmental Science & Policy, George Mason University, Fairfax, VA, 22030, USA
| | - Courtney A Hofman
- Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, USA.,Program in Human Ecology and Archaeobiology, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC, 20013-7012, USA.,Department of Anthropology, University of Maryland, College Park, MD, 20742, USA
| | - Taylor Callicrate
- Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, USA.,Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Molly M McDonough
- Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, USA.,Division of Mammals, National Museum of Natural History, MRC 108, Smithsonian Institution, PO Box 37012, Washington, DC, 20013-7012, USA
| | - Mirian T N Tsuchiya
- Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, USA.,Division of Mammals, National Museum of Natural History, MRC 108, Smithsonian Institution, PO Box 37012, Washington, DC, 20013-7012, USA.,Department of Environmental Science & Policy, George Mason University, Fairfax, VA, 22030, USA
| | - Eliécer E Gutiérrez
- Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, USA.,Division of Mammals, National Museum of Natural History, MRC 108, Smithsonian Institution, PO Box 37012, Washington, DC, 20013-7012, USA
| | - Kristofer M Helgen
- Division of Mammals, National Museum of Natural History, MRC 108, Smithsonian Institution, PO Box 37012, Washington, DC, 20013-7012, USA
| | - Jesus E Maldonado
- Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, USA.,Division of Mammals, National Museum of Natural History, MRC 108, Smithsonian Institution, PO Box 37012, Washington, DC, 20013-7012, USA
| |
Collapse
|
32
|
Seguin-Orlando A, Gamba C, Sarkissian CD, Ermini L, Louvel G, Boulygina E, Sokolov A, Nedoluzhko A, Lorenzen ED, Lopez P, McDonald HG, Scott E, Tikhonov A, Stafford TW, Alfarhan AH, Alquraishi SA, Al-Rasheid KAS, Shapiro B, Willerslev E, Prokhortchouk E, Orlando L. Pros and cons of methylation-based enrichment methods for ancient DNA. Sci Rep 2015; 5:11826. [PMID: 26134828 PMCID: PMC4488743 DOI: 10.1038/srep11826] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/02/2015] [Indexed: 11/25/2022] Open
Abstract
The recent discovery that DNA methylation survives in fossil material provides an opportunity for novel molecular approaches in palaeogenomics. Here, we apply to ancient DNA extracts the probe-independent Methylated Binding Domains (MBD)-based enrichment method, which targets DNA molecules containing methylated CpGs. Using remains of a Palaeo-Eskimo Saqqaq individual, woolly mammoths, polar bears and two equine species, we confirm that DNA methylation survives in a variety of tissues, environmental contexts and over a large temporal range (4,000 to over 45,000 years before present). MBD enrichment, however, appears principally biased towards the recovery of CpG-rich and long DNA templates and is limited by the fast post-mortem cytosine deamination rates of methylated epialleles. This method, thus, appears only appropriate for the analysis of ancient methylomes from very well preserved samples, where both DNA fragmentation and deamination have been limited. This work represents an essential step toward the characterization of ancient methylation signatures, which will help understanding the role of epigenetic changes in past environmental and cultural transitions.
Collapse
Affiliation(s)
- Andaine Seguin-Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark.,National High-throughput DNA Sequencing Centre, Øster Farimagsgade 2D, 1353K Copenhagen, Denmark
| | - Cristina Gamba
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
| | - Clio Der Sarkissian
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
| | - Luca Ermini
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
| | - Guillaume Louvel
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
| | - Eugenia Boulygina
- National Research Centre Kurchatov Institute, 1, Akademika Kurchatova, Moscow, 123182, Russian Federation
| | - Alexey Sokolov
- Centre Bioengineering, Russian Academy of Sciences, Prospekt 60-Letiya Oktyabrya 7/1, Moscow, 117312, Russian Federation
| | - Artem Nedoluzhko
- National Research Centre Kurchatov Institute, 1, Akademika Kurchatova, Moscow, 123182, Russian Federation
| | - Eline D Lorenzen
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark.,Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Patricio Lopez
- Department of Anthropology, Universidad de Chile, Ignacio Carrera Pinto 1045, Ñuñoa, Santiago, Chile
| | - H Gregory McDonald
- Park Museum Management Program, National Park Service, 1201 Oakridge Drive, Suite 150, Fort Collins, Colorado 80525, USA
| | - Eric Scott
- San Bernardino County Museum, Division of Geological Sciences, 2024 Orange Tree Lane, Redlands, California 92374, USA
| | - Alexei Tikhonov
- Zoological Institute of Russian Academy of Sciences, 199034 St. Petersburg, Russian Federation.,Institute of Applied Ecology of the North, North-Eastern Federal University, 677980 Yakutsk, Russian Federation
| | - Thomas W Stafford
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
| | - Ahmed H Alfarhan
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Alquraishi
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khaled A S Al-Rasheid
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
| | - Egor Prokhortchouk
- National Research Centre Kurchatov Institute, 1, Akademika Kurchatova, Moscow, 123182, Russian Federation
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark.,Université de Toulouse, University Paul Sabatier (UPS), Laboratoire AMIS, CNRS UMR 5288, 37 allées Jules Guesde, 31000 Toulouse, France
| |
Collapse
|
33
|
Roca AL, Ishida Y, Brandt AL, Benjamin NR, Zhao K, Georgiadis NJ. Elephant Natural History: A Genomic Perspective. Annu Rev Anim Biosci 2015; 3:139-67. [DOI: 10.1146/annurev-animal-022114-110838] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alfred L. Roca
- Department of Animal Sciences,
- Institute for Genomic Biology, and
| | | | | | - Neal R. Benjamin
- Department of Animal Sciences,
- College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; , , , , ,
| | | | | |
Collapse
|
34
|
Hagelberg E, Hofreiter M, Keyser C. Introduction. Ancient DNA: the first three decades. Philos Trans R Soc Lond B Biol Sci 2015; 370:20130371. [PMID: 25487324 PMCID: PMC4275880 DOI: 10.1098/rstb.2013.0371] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Erika Hagelberg
- Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Christine Keyser
- Institut de Médecine Légale, Laboratoire AMIS, Université de Strasbourg, CNRS UMR 5288, Strasbourg, France
| |
Collapse
|
35
|
Der Sarkissian C, Allentoft ME, Ávila-Arcos MC, Barnett R, Campos PF, Cappellini E, Ermini L, Fernández R, da Fonseca R, Ginolhac A, Hansen AJ, Jónsson H, Korneliussen T, Margaryan A, Martin MD, Moreno-Mayar JV, Raghavan M, Rasmussen M, Velasco MS, Schroeder H, Schubert M, Seguin-Orlando A, Wales N, Gilbert MTP, Willerslev E, Orlando L. Ancient genomics. Philos Trans R Soc Lond B Biol Sci 2015; 370:20130387. [PMID: 25487338 PMCID: PMC4275894 DOI: 10.1098/rstb.2013.0387] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past.
Collapse
Affiliation(s)
- Clio Der Sarkissian
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Morten E Allentoft
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - María C Ávila-Arcos
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ross Barnett
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Paula F Campos
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Enrico Cappellini
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Luca Ermini
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Fernández
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Rute da Fonseca
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Aurélien Ginolhac
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Anders J Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Hákon Jónsson
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Thorfinn Korneliussen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ashot Margaryan
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Michael D Martin
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - J Víctor Moreno-Mayar
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Maanasa Raghavan
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Morten Rasmussen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Marcela Sandoval Velasco
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Hannes Schroeder
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Schubert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Andaine Seguin-Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Nathan Wales
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Pozzi L, Hodgson JA, Burrell AS, Sterner KN, Raaum RL, Disotell TR. Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes. Mol Phylogenet Evol 2014; 75:165-83. [PMID: 24583291 PMCID: PMC4059600 DOI: 10.1016/j.ympev.2014.02.023] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 01/23/2023]
Abstract
The origins and the divergence times of the most basal lineages within primates have been difficult to resolve mainly due to the incomplete sampling of early fossil taxa. The main source of contention is related to the discordance between molecular and fossil estimates: while there are no crown primate fossils older than 56Ma, most molecule-based estimates extend the origins of crown primates into the Cretaceous. Here we present a comprehensive mitogenomic study of primates. We assembled 87 mammalian mitochondrial genomes, including 62 primate species representing all the families of the order. We newly sequenced eleven mitochondrial genomes, including eight Old World monkeys and three strepsirrhines. Phylogenetic analyses support a strong topology, confirming the monophyly for all the major primate clades. In contrast to previous mitogenomic studies, the positions of tarsiers and colugos relative to strepsirrhines and anthropoids are well resolved. In order to improve our understanding of how fossil calibrations affect age estimates within primates, we explore the effect of seventeen fossil calibrations across primates and other mammalian groups and we select a subset of calibrations to date our mitogenomic tree. The divergence date estimates of the Strepsirrhine/Haplorhine split support an origin of crown primates in the Late Cretaceous, at around 74Ma. This result supports a short-fuse model of primate origins, whereby relatively little time passed between the origin of the order and the diversification of its major clades. It also suggests that the early primate fossil record is likely poorly sampled.
Collapse
Affiliation(s)
- Luca Pozzi
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States; New York Consortium in Evolutionary Primatology, United States; Behavioral Ecology and Sociobiology Unit, German Primate Center, Göttingen, Germany.
| | - Jason A Hodgson
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States; New York Consortium in Evolutionary Primatology, United States; Department of Life Sciences, Imperial College London, London, United Kingdom.
| | - Andrew S Burrell
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States.
| | - Kirstin N Sterner
- Department of Anthropology, University of Oregon, Eugene, OR, United States.
| | - Ryan L Raaum
- New York Consortium in Evolutionary Primatology, United States; Department of Anthropology, Lehman College & The Graduate Center, City University of New York, Bronx, NY, United States.
| | - Todd R Disotell
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States; New York Consortium in Evolutionary Primatology, United States.
| |
Collapse
|
37
|
Gold DA, Robinson J, Farrell AB, Harris JM, Thalmann O, Jacobs DK. Attempted DNA extraction from a Rancho La Brea Columbian mammoth (Mammuthus columbi): prospects for ancient DNA from asphalt deposits. Ecol Evol 2014; 4:329-36. [PMID: 24634719 PMCID: PMC3936381 DOI: 10.1002/ece3.928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/01/2013] [Indexed: 11/30/2022] Open
Abstract
Fossil-bearing asphalt deposits are an understudied and potentially significant source of ancient DNA. Previous attempts to extract DNA from skeletons preserved at the Rancho La Brea tar pits in Los Angeles, California, have proven unsuccessful, but it is unclear whether this is due to a lack of endogenous DNA, or if the problem is caused by asphalt-mediated inhibition. In an attempt to test these hypotheses, a recently recovered Columbian mammoth (Mammuthus columbi) skeleton with an unusual pattern of asphalt impregnation was studied. Ultimately, none of the bone samples tested successfully amplified M. columbi DNA. Our work suggests that reagents typically used to remove asphalt from ancient samples also inhibit DNA extraction. Ultimately, we conclude that the probability of recovering ancient DNA from fossils in asphalt deposits is strongly (perhaps fatally) hindered by the organic compounds that permeate the bones and that at the Rancho La Brea tar pits, environmental conditions might not have been ideal for the general preservation of genetic material.
Collapse
Affiliation(s)
- David A Gold
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, California 90095
| | - Jacqueline Robinson
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, California 90095
| | - Aisling B Farrell
- The George C. Page Museum of La Brea Discoveries 5801 Wilshire Boulevard, Los Angeles, California 90036
| | - John M Harris
- The George C. Page Museum of La Brea Discoveries 5801 Wilshire Boulevard, Los Angeles, California 90036
| | - Olaf Thalmann
- Department of Biology, Division of Genetics and Physiology, University of Turku Itäinen Pitkäkatu 4, Turku 20014, Finland
| | - David K Jacobs
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, California 90095
| |
Collapse
|
38
|
Paijmans JL, Gilbert MTP, Hofreiter M. Mitogenomic analyses from ancient DNA. Mol Phylogenet Evol 2013; 69:404-16. [DOI: 10.1016/j.ympev.2012.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 05/27/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
|
39
|
Construction of an integrated barcode database for the molecular identification of species. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Palkopoulou E, Dalén L, Lister AM, Vartanyan S, Sablin M, Sher A, Edmark VN, Brandström MD, Germonpré M, Barnes I, Thomas JA. Holarctic genetic structure and range dynamics in the woolly mammoth. Proc Biol Sci 2013; 280:20131910. [PMID: 24026825 PMCID: PMC3779339 DOI: 10.1098/rspb.2013.1910] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Ancient DNA analyses have provided enhanced resolution of population histories in many Pleistocene taxa. However, most studies are spatially restricted, making inference of species-level biogeographic histories difficult. Here, we analyse mitochondrial DNA (mtDNA) variation in the woolly mammoth from across its Holarctic range to reconstruct its history over the last 200 thousand years (kyr). We identify a previously undocumented major mtDNA lineage in Europe, which was replaced by another major mtDNA lineage 32–34 kyr before present (BP). Coalescent simulations provide support for demographic expansions at approximately 121 kyr BP, suggesting that the previous interglacial was an important driver for demography and intraspecific genetic divergence. Furthermore, our results suggest an expansion into Eurasia from America around 66 kyr BP, coinciding with the first exposure of the Bering Land Bridge during the Late Pleistocene. Bayesian inference indicates Late Pleistocene demographic stability until 20–15 kyr BP, when a severe population size decline occurred.
Collapse
Affiliation(s)
- Eleftheria Palkopoulou
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, , 10405 Stockholm, Sweden, Department of Zoology, Stockholm University, , Stockholm 10691, Sweden, Department of Earth Sciences, Natural History Museum, , London SW7 5BD, UK, Northeast Interdisciplinary Research Institute, Far East Branch, Russian Academy of Sciences, , Magadan 685000, Russia, Zoological Institute of Russian Academy of Sciences, Saint-Petersburg 199034, Russia, Institute of Ecology and Evolution, Russian Academy of Sciences, , Moscow 119071, Russia, Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, , 10691 Uppsala, Sweden, Operational Direction 'Earth and History of Life', Royal Belgian Institute of Natural Sciences, , Vautierstraat 29, 1000 Brussels, Belgium, School of Biological Sciences, Royal Holloway University of London, , Egham, Surrey TW20 0EX, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hahn C, Bachmann L, Chevreux B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads--a baiting and iterative mapping approach. Nucleic Acids Res 2013; 41:e129. [PMID: 23661685 PMCID: PMC3711436 DOI: 10.1093/nar/gkt371] [Citation(s) in RCA: 1446] [Impact Index Per Article: 131.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We present an in silico approach for the reconstruction of complete mitochondrial genomes of non-model organisms directly from next-generation sequencing (NGS) data—mitochondrial baiting and iterative mapping (MITObim). The method is straightforward even if only (i) distantly related mitochondrial genomes or (ii) mitochondrial barcode sequences are available as starting-reference sequences or seeds, respectively. We demonstrate the efficiency of the approach in case studies using real NGS data sets of the two monogenean ectoparasites species Gyrodactylus thymalli and Gyrodactylus derjavinoides including their respective teleost hosts European grayling (Thymallus thymallus) and Rainbow trout (Oncorhynchus mykiss). MITObim appeared superior to existing tools in terms of accuracy, runtime and memory requirements and fully automatically recovered mitochondrial genomes exceeding 99.5% accuracy from total genomic DNA derived NGS data sets in <24 h using a standard desktop computer. The approach overcomes the limitations of traditional strategies for obtaining mitochondrial genomes for species with little or no mitochondrial sequence information at hand and represents a fast and highly efficient in silico alternative to laborious conventional strategies relying on initial long-range PCR. We furthermore demonstrate the applicability of MITObim for metagenomic/pooled data sets using simulated data. MITObim is an easy to use tool even for biologists with modest bioinformatics experience. The software is made available as open source pipeline under the MIT license at https://github.com/chrishah/MITObim.
Collapse
Affiliation(s)
- Christoph Hahn
- Natural History Museum, University of Oslo, Oslo N-0318, Norway.
| | | | | |
Collapse
|
42
|
Zhang H, Luo Q, Sun J, Liu F, Wu G, Yu J, Wang W. Mitochondrial genome sequences of Artemia tibetiana and Artemia urmiana: assessing molecular changes for high plateau adaptation. SCIENCE CHINA-LIFE SCIENCES 2013; 56:440-52. [PMID: 23633076 DOI: 10.1007/s11427-013-4474-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/19/2013] [Indexed: 12/26/2022]
Abstract
Brine shrimps, Artemia (Crustacea, Anostraca), inhabit hypersaline environments and have a broad geographical distribution from sea level to high plateaus. Artemia therefore possess significant genetic diversity, which gives them their outstanding adaptability. To understand this remarkable plasticity, we sequenced the mitochondrial genomes of two Artemia tibetiana isolates from the Tibetan Plateau in China and one Artemia urmiana isolate from Lake Urmia in Iran and compared them with the genome of a low-altitude Artemia, A. franciscana. We compared the ratio of the rate of nonsynonymous (Ka) and synonymous (Ks) substitutions (Ka/Ks ratio) in the mitochondrial protein-coding gene sequences and found that atp8 had the highest Ka/Ks ratios in comparisons of A. franciscana with either A. tibetiana or A. urmiana and that atp6 had the highest Ka/Ks ratio between A. tibetiana and A. urmiana. Atp6 may have experienced strong selective pressure for high-altitude adaptation because although A. tibetiana and A. urmiana are closely related they live at different altitudes. We identified two extended termination-associated sequences and three conserved sequence blocks in the D-loop region of the mitochondrial genomes. We propose that sequence variations in the D-loop region and in the subunits of the respiratory chain complexes independently or collectively contribute to the adaptation of Artemia to different altitudes.
Collapse
Affiliation(s)
- Hangxiao Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Weisrock DW. Concordance analysis in mitogenomic phylogenetics. Mol Phylogenet Evol 2012; 65:194-202. [DOI: 10.1016/j.ympev.2012.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/22/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
|
44
|
Ho SYW. Phylogenetic analysis of ancient DNA using BEAST. Methods Mol Biol 2012; 840:229-41. [PMID: 22237538 DOI: 10.1007/978-1-61779-516-9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Under exceptional circumstances, it is possible to obtain DNA sequences from samples that are up to hundreds of thousands of years old. These data provide an opportunity to look directly at past genetic diversity, to trace the evolutionary process through time, and to infer demographic and phylogeographic trends. Ancient DNA (aDNA) data sets have some degree of intrinsic temporal structure because the sequences have been obtained from samples of different ages. When analyzing these data sets, it is usually necessary to take the sampling times into account. A number of phylogenetic methods have been designed with this purpose in mind. Here I describe the steps involved in Bayesian phylogenetic analysis of aDNA data. I outline a procedure that can be used to co-estimate the genealogical relationships, mutation rate, evolutionary timescale, and demographic history of the study species in a single analytical framework. A number of modifications to the methodology can be made in order to deal with complicating factors such as postmortem damage, sequences from undated samples, and data sets with low information content.
Collapse
Affiliation(s)
- Simon Y W Ho
- School of Biological Sciences, University of Sydney, Sydney, 2006, NSW, Australia.
| |
Collapse
|
45
|
Brandt AL, Ishida Y, Georgiadis NJ, Roca AL. Forest elephant mitochondrial genomes reveal that elephantid diversification in Africa tracked climate transitions. Mol Ecol 2012; 21:1175-89. [PMID: 22260276 DOI: 10.1111/j.1365-294x.2012.05461.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among elephants, the phylogeographic patterns of mitochondrial (mt) and nuclear markers are often incongruent. One hypothesis attributes this to sex differences in dispersal and in the variance of reproductive success. We tested this hypothesis by examining the coalescent dates of genetic markers within elephantid lineages, predicting that lower dispersal and lower variance in reproductive success among females would have increased mtDNA relative to nuclear coalescent dates. We sequenced the mitochondrial genomes of two forest elephants, aligning them to mitogenomes of African savanna and Asian elephants, and of woolly mammoths, including the most divergent mitogenomes within each lineage. Using fossil calibrations, the divergence between African elephant F and S clade mitochondrial genomes (originating in forest and savanna elephant lineages, respectively) was estimated as 5.5 Ma. We estimated that the (African) ancestor of the mammoth and Asian elephant lineages diverged 6.0 Ma, indicating that four elephantid lineages had differentiated in Africa by the Miocene-Pliocene transition, concurrent with drier climates. The coalescent date for forest elephant mtDNAs was c. 2.4 Ma, suggesting that the decrease in tropical forest cover during the Pleistocene isolated distinct African forest elephant lineages. For all elephantid lineages, the ratio of mtDNA to nuclear coalescent dates was much greater than 0.25. This is consistent with the expectation that sex differences in dispersal and in variance of reproductive success would have increased the effective population size of mtDNA relative to nuclear markers in elephantids, contributing to the persistence of incongruent mtDNA phylogeographic patterns.
Collapse
Affiliation(s)
- Adam L Brandt
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
46
|
Enk J, Devault A, Debruyne R, King CE, Treangen T, O'Rourke D, Salzberg SL, Fisher D, MacPhee R, Poinar H. Complete Columbian mammoth mitogenome suggests interbreeding with woolly mammoths. Genome Biol 2011; 12:R51. [PMID: 21627792 PMCID: PMC3219973 DOI: 10.1186/gb-2011-12-5-r51] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/09/2011] [Accepted: 05/31/2011] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Late Pleistocene North America hosted at least two divergent and ecologically distinct species of mammoth: the periglacial woolly mammoth (Mammuthus primigenius) and the subglacial Columbian mammoth (Mammuthus columbi). To date, mammoth genetic research has been entirely restricted to woolly mammoths, rendering their genetic evolution difficult to contextualize within broader Pleistocene paleoecology and biogeography. Here, we take an interspecific approach to clarifying mammoth phylogeny by targeting Columbian mammoth remains for mitogenomic sequencing. RESULTS We sequenced the first complete mitochondrial genome of a classic Columbian mammoth, as well as the first complete mitochondrial genome of a North American woolly mammoth. Somewhat contrary to conventional paleontological models, which posit that the two species were highly divergent, the M. columbi mitogenome we obtained falls securely within a subclade of endemic North American M. primigenius. CONCLUSIONS Though limited, our data suggest that the two species interbred at some point in their evolutionary histories. One potential explanation is that woolly mammoth haplotypes entered Columbian mammoth populations via introgression at subglacial ecotones, a scenario with compelling parallels in extant elephants and consistent with certain regional paleontological observations. This highlights the need for multi-genomic data to sufficiently characterize mammoth evolutionary history. Our results demonstrate that the use of next-generation sequencing technologies holds promise in obtaining such data, even from non-cave, non-permafrost Pleistocene depositional contexts.
Collapse
Affiliation(s)
- Jacob Enk
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L9, Canada
| | - Alison Devault
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L9, Canada
| | - Regis Debruyne
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L9, Canada
- Muséum national d'Histoire naturelle, UMR 7206 Eco-anthropologie, Equipe "génétique des populations humaines," 57 rue Cuvier, CP139, 75231 Paris Cedex 05, France
| | - Christine E King
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L9, Canada
| | - Todd Treangen
- Center for Bioinformatics and Computational Biology, 3115 Biomolecular Sciences Bldg #296, University of Maryland, College Park, MD 20742, USA
| | - Dennis O'Rourke
- Department of Anthropology, University of Utah, 270 S. 1400 East Room 102, Salt Lake City, UT 84112-0060, USA
| | - Steven L Salzberg
- Center for Bioinformatics and Computational Biology, 3115 Biomolecular Sciences Bldg #296, University of Maryland, College Park, MD 20742, USA
| | - Daniel Fisher
- Museum of Paleontology and Department of Geological Sciences, University of Michigan, 1109 Geddes Ave, Ann Arbor, MI 48109-1079, USA
| | - Ross MacPhee
- Division of Vertebrate Zoology, American Museum of Natural History, Central Park West @ 79th St, New York, NY 10024, USA
| | - Hendrik Poinar
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L9, Canada
| |
Collapse
|
47
|
The complete mitochondrial genome of an 11,450-year-old aurochsen (Bos primigenius) from Central Italy. BMC Evol Biol 2011; 11:32. [PMID: 21281509 PMCID: PMC3039592 DOI: 10.1186/1471-2148-11-32] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 01/31/2011] [Indexed: 01/17/2023] Open
Abstract
Background Bos primigenius, the aurochs, is the wild ancestor of modern cattle breeds and was formerly widespread across Eurasia and northern Africa. After a progressive decline, the species became extinct in 1627. The origin of modern taurine breeds in Europe is debated. Archaeological and early genetic evidence point to a single Near Eastern origin and a subsequent spread during the diffusion of herding and farming. More recent genetic data are instead compatible with local domestication events or at least some level of local introgression from the aurochs. Here we present the analysis of the complete mitochondrial genome of a pre-Neolithic Italian aurochs. Results In this study, we applied a combined strategy employing both multiplex PCR amplifications and 454 pyrosequencing technology to sequence the complete mitochondrial genome of an 11,450-year-old aurochs specimen from Central Italy. Phylogenetic analysis of the aurochs mtDNA genome supports the conclusions from previous studies of short mtDNA fragments - namely that Italian aurochsen were genetically very similar to modern cattle breeds, but highly divergent from the North-Central European aurochsen. Conclusions Complete mitochondrial genome sequences are now available for several modern cattle and two pre-Neolithic mtDNA genomes from very different geographic areas. These data suggest that previously identified sub-groups within the widespread modern cattle mitochondrial T clade are polyphyletic, and they support the hypothesis that modern European breeds have multiple geographic origins.
Collapse
|
48
|
Rohland N, Reich D, Mallick S, Meyer M, Green RE, Georgiadis NJ, Roca AL, Hofreiter M. Genomic DNA sequences from mastodon and woolly mammoth reveal deep speciation of forest and savanna elephants. PLoS Biol 2010; 8:e1000564. [PMID: 21203580 PMCID: PMC3006346 DOI: 10.1371/journal.pbio.1000564] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 11/03/2010] [Indexed: 11/19/2022] Open
Abstract
To elucidate the history of living and extinct elephantids, we generated 39,763 bp of aligned nuclear DNA sequence across 375 loci for African savanna elephant, African forest elephant, Asian elephant, the extinct American mastodon, and the woolly mammoth. Our data establish that the Asian elephant is the closest living relative of the extinct mammoth in the nuclear genome, extending previous findings from mitochondrial DNA analyses. We also find that savanna and forest elephants, which some have argued are the same species, are as or more divergent in the nuclear genome as mammoths and Asian elephants, which are considered to be distinct genera, thus resolving a long-standing debate about the appropriate taxonomic classification of the African elephants. Finally, we document a much larger effective population size in forest elephants compared with the other elephantid taxa, likely reflecting species differences in ancient geographic structure and range and differences in life history traits such as variance in male reproductive success.
Collapse
Affiliation(s)
- Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Matthias Meyer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Richard E. Green
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Biomolecular Engineering, University of California, Santa Cruz, United States of America
| | | | - Alfred L. Roca
- Department of Animal Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Michael Hofreiter
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
49
|
FERRETTI MARCOP, DEBRUYNE REGIS. Anatomy and phylogenetic value of the mandibular and coronoid canals and their associated foramina in proboscideans (Mammalia). Zool J Linn Soc 2010. [DOI: 10.1111/j.1096-3642.2010.00637.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Kuntner M, May-Collado LJ, Agnarsson I. Phylogeny and conservation priorities of afrotherian mammals (Afrotheria, Mammalia). ZOOL SCR 2010. [DOI: 10.1111/j.1463-6409.2010.00452.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|