1
|
Mostoufi SL, Singh ND. Pathogen infection alters the gene expression landscape of transposable elements in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae171. [PMID: 39129654 PMCID: PMC11373657 DOI: 10.1093/g3journal/jkae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/09/2024] [Indexed: 08/13/2024]
Abstract
Transposable elements make up substantial proportions of eukaryotic genomes and many are thought to be remnants of ancient viral infections. Current research has begun to highlight the role transposable elements can play in the immune system response to infections. However, most of our knowledge about transposable element expression during infection is limited by the specific host and pathogen factors from each study, making it difficult to compare studies and develop broader patterns regarding the role of transposable elements during infection. Here, we use the tools and resources available in the model, Drosophila melanogaster, to analyze multiple gene expression datasets of flies subject to bacterial, fungal, and viral infections. We analyzed differences in pathogen species, host genotype, host tissue, and sex to understand how these factors impact transposable element expression during infection. Our results highlight both shared and unique transposable element expression patterns between pathogens and suggest a larger effect of pathogen factors over host factors for influencing transposable element expression.
Collapse
Affiliation(s)
- Sabrina L Mostoufi
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Nadia D Singh
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
2
|
Mayekar HV, Rajpurohit S. No single rescue recipe: genome complexities modulate insect response to climate change. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101220. [PMID: 38848812 DOI: 10.1016/j.cois.2024.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/08/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
Declines in insect populations have gained formidable attention. Given their crucial role in the ecosystem, the causes of declining insect populations must be investigated. However, the insect clade has been associated with low extinction and high diversification rates. It is unlikely that insects underwent mass extinctions in the past. However, the pace of current climate change could make insect populations vulnerable to extinction. We propose genome size (GS) and transposable elements (TEs) to be rough estimates to assess extinction risk. Larger GS and/or proliferating TEs have been associated with adaptation in rapid climate change scenarios. We speculate that unstable, stressful environmental conditions are strongly associated with GS and TE expansion, which could be further correlated with adaptations. Alternately, stressful conditions trigger TE bursts that are not purged in smaller populations. GS and TE loads could be indicators of small effective populations in the wild, likely experiencing bottlenecks or drastic climatic perturbations, which calls for an urgent assessment of extinction risk.
Collapse
Affiliation(s)
- Harshad Vijay Mayekar
- Biological and Life Sciences, School of Arts of Sciences, Ahmedabad University, Ahmedabad 380009, India.
| | - Subhash Rajpurohit
- Biological and Life Sciences, School of Arts of Sciences, Ahmedabad University, Ahmedabad 380009, India.
| |
Collapse
|
3
|
Lebherz MK, Fouks B, Schmidt J, Bornberg-Bauer E, Grandchamp A. DNA Transposons Favor De Novo Transcript Emergence Through Enrichment of Transcription Factor Binding Motifs. Genome Biol Evol 2024; 16:evae134. [PMID: 38934893 PMCID: PMC11264136 DOI: 10.1093/gbe/evae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
De novo genes emerge from noncoding regions of genomes via succession of mutations. Among others, such mutations activate transcription and create a new open reading frame (ORF). Although the mechanisms underlying ORF emergence are well documented, relatively little is known about the mechanisms enabling new transcription events. Yet, in many species a continuum between absent and very prominent transcription has been reported for essentially all regions of the genome. In this study, we searched for de novo transcripts by using newly assembled genomes and transcriptomes of seven inbred lines of Drosophila melanogaster, originating from six European and one African population. This setup allowed us to detect sample specific de novo transcripts, and compare them to their homologous nontranscribed regions in other samples, as well as genic and intergenic control sequences. We studied the association with transposable elements (TEs) and the enrichment of transcription factor motifs upstream of de novo emerged transcripts and compared them with regulatory elements. We found that de novo transcripts overlap with TEs more often than expected by chance. The emergence of new transcripts correlates with regions of high guanine-cytosine content and TE expression. Moreover, upstream regions of de novo transcripts are highly enriched with regulatory motifs. Such motifs are more enriched in new transcripts overlapping with TEs, particularly DNA TEs, and are more conserved upstream de novo transcripts than upstream their 'nontranscribed homologs'. Overall, our study demonstrates that TE insertion is important for transcript emergence, partly by introducing new regulatory motifs from DNA TE families.
Collapse
Affiliation(s)
| | - Bertrand Fouks
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
- CIRAD, UMR AGAP Institut, F-34398, Montpellier, France
| | - Julian Schmidt
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Anna Grandchamp
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Selvaraju D, Wierzbicki F, Kofler R. Experimentally evolving Drosophila erecta populations may fail to establish an effective piRNA-based host defense against invading P-elements. Genome Res 2024; 34:410-425. [PMID: 38490738 PMCID: PMC11067887 DOI: 10.1101/gr.278706.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
To prevent the spread of transposable elements (TEs), hosts have developed sophisticated defense mechanisms. In mammals and invertebrates, a major defense mechanism operates through PIWI-interacting RNAs (piRNAs). To investigate the establishment of the host defense, we introduced the P-element, one of the most widely studied eukaryotic transposons, into naive lines of Drosophila erecta We monitored the invasion in three replicates for more than 50 generations by sequencing the genomic DNA (using short and long reads), the small RNAs, and the transcriptome at regular intervals. A piRNA-based host defense was rapidly established in two replicates (R1, R4) but not in a third (R2), in which P-element copy numbers kept increasing for over 50 generations. We found that the ping-pong cycle could not be activated in R2, although the ping-pong cycle is fully functional against other TEs. Furthermore, R2 had both insertions in piRNA clusters and siRNAs, suggesting that neither of them is sufficient to trigger the host defense. Our work shows that control of an invading TE requires activation of the ping-pong cycle and that this activation is a stochastic event that may fail in some populations, leading to a proliferation of TEs that ultimately threaten the integrity of the host genome.
Collapse
Affiliation(s)
- Divya Selvaraju
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, 1210 Vienna, Austria
| | - Filip Wierzbicki
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, 1210 Vienna, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria;
| |
Collapse
|
5
|
Scarpa A, Pianezza R, Wierzbicki F, Kofler R. Genomes of historical specimens reveal multiple invasions of LTR retrotransposons in Drosophila melanogaster during the 19th century. Proc Natl Acad Sci U S A 2024; 121:e2313866121. [PMID: 38564639 PMCID: PMC11009621 DOI: 10.1073/pnas.2313866121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/05/2024] [Indexed: 04/04/2024] Open
Abstract
Transposable element invasions have a profound impact on the evolution of genomes and phenotypes. It is thus an important open question how often such TE invasions occur. To address this question, we utilize the genomes of historical specimens, sampled about 200 y ago. We found that the LTR retrotransposons Blood, Opus, and 412 spread in Drosophila melanogaster in the 19th century. These invasions constitute second waves, as degraded fragments were found for all three TEs. The composition of Opus and 412, but not of Blood, shows a pronounced geographic heterogeneity, likely due to founder effects during the invasions. Finally, we identified species from the Drosophila simulans complex as the likely origin of the TEs. We show that in total, seven TE families invaded D. melanogaster during the last 200y, thereby increasing the genome size by up to 1.2Mbp. We suggest that this high rate of TE invasions was likely triggered by human activity. Based on the analysis of strains and specimens sampled at different times, we provide a detailed timeline of TE invasions, making D. melanogaster the first organism where the invasion history of TEs during the last two centuries could be inferred.
Collapse
Affiliation(s)
- Almorò Scarpa
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien1210, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna1210, Austria
| | - Riccardo Pianezza
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien1210, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna1210, Austria
| | - Filip Wierzbicki
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien1210, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna1210, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien1210, Austria
| |
Collapse
|
6
|
Vasquez YM, Li Z, Xue AZ, Bennett GM. Chromosome-level genome assembly of the aster leafhopper (Macrosteles quadrilineatus) reveals the role of environment and microbial symbiosis in shaping pest insect genome evolution. Mol Ecol Resour 2024; 24:e13919. [PMID: 38146900 DOI: 10.1111/1755-0998.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Leafhoppers comprise over 20,000 plant-sap feeding species, many of which are important agricultural pests. Most species rely on two ancestral bacterial symbionts, Sulcia and Nasuia, for essential nutrition lacking in their phloem and xylem plant sap diets. To understand how pest leafhopper genomes evolve and are shaped by microbial symbioses, we completed a chromosomal-level assembly of the aster leafhopper's genome (ALF; Macrosteles quadrilineatus). We compared ALF's genome to three other pest leafhoppers, Nephotettix cincticeps, Homalodisca vitripennis, and Empoasca onukii, which have distinct ecologies and symbiotic relationships. Despite diverging ~155 million years ago, leafhoppers have high levels of chromosomal synteny and gene family conservation. Conserved genes include those involved in plant chemical detoxification, resistance to various insecticides, and defence against environmental stress. Positive selection acting upon these genes further points to ongoing adaptive evolution in response to agricultural environments. In relation to leafhoppers' general dependence on symbionts, species that retain the ancestral symbiont, Sulcia, displayed gene enrichment of metabolic processes in their genomes. Leafhoppers with both Sulcia and its ancient partner, Nasuia, showed genomic enrichment in genes related to microbial population regulation and immune responses. Finally, horizontally transferred genes (HTGs) associated with symbiont support of Sulcia and Nasuia are only observed in leafhoppers that maintain symbionts. In contrast, HTGs involved in non-symbiotic functions are conserved across all species. The high-quality ALF genome provides deep insights into how host ecology and symbioses shape genome evolution and a wealth of genetic resources for pest control targets.
Collapse
Affiliation(s)
- Yumary M Vasquez
- Department of Life and Environmental Sciences, University of California, Merced, Merced, California, USA
| | - Zheng Li
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Allen Z Xue
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, Merced, California, USA
| |
Collapse
|
7
|
Jiang J, Xu YC, Zhang ZQ, Chen JF, Niu XM, Hou XH, Li XT, Wang L, Zhang YE, Ge S, Guo YL. Forces driving transposable element load variation during Arabidopsis range expansion. THE PLANT CELL 2024; 36:840-862. [PMID: 38036296 PMCID: PMC10980350 DOI: 10.1093/plcell/koad296] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Genetic load refers to the accumulated and potentially life-threatening deleterious mutations in populations. Understanding the mechanisms underlying genetic load variation of transposable element (TE) insertion, a major large-effect mutation, during range expansion is an intriguing question in biology. Here, we used 1,115 global natural accessions of Arabidopsis (Arabidopsis thaliana) to study the driving forces of TE load variation during its range expansion. TE load increased with range expansion, especially in the recently established Yangtze River basin population. Effective population size, which explains 62.0% of the variance in TE load, high transposition rate, and selective sweeps contributed to TE accumulation in the expanded populations. We genetically mapped and identified multiple candidate causal genes and TEs, and revealed the genetic architecture of TE load variation. Overall, this study reveals the variation in TE genetic load during Arabidopsis expansion and highlights the causes of TE load variation from the perspectives of both population genetics and quantitative genetics.
Collapse
Affiliation(s)
- Juan Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhi-Qin Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Fu Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Min Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xing-Hui Hou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xin-Tong Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wang
- Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yong E Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Cang FA, Welles SR, Wong J, Ziaee M, Dlugosch KM. Genome size variation and evolution during invasive range expansion in an introduced plant. Evol Appl 2024; 17:e13624. [PMID: 38283607 PMCID: PMC10810172 DOI: 10.1111/eva.13624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024] Open
Abstract
Plants demonstrate exceptional variation in genome size across species, and their genome sizes can also vary dramatically across individuals and populations within species. This aspect of genetic variation can have consequences for traits and fitness, but few studies attributed genome size differentiation to ecological and evolutionary processes. Biological invasions present particularly useful natural laboratories to infer selective agents that might drive genome size shifts across environments and population histories. Here, we test hypotheses for the evolutionary causes of genome size variation across 14 invading populations of yellow starthistle, Centaurea solstitialis, in California, United States. We use a survey of genome sizes and trait variation to ask: (1) Is variation in genome size associated with developmental trait variation? (2) Are genome sizes smaller toward the leading edge of the expansion, consistent with selection for "colonizer" traits? Or alternatively, does genome size increase toward the leading edge of the expansion, consistent with predicted consequences of founder effects and drift? (3) Finally, are genome sizes smaller at higher elevations, consistent with selection for shorter development times? We found that 2C DNA content varied 1.21-fold among all samples, and was associated with flowering time variation, such that plants with larger genomes reproduced later, with lower lifetime capitula production. Genome sizes increased toward the leading edge of the invasion, but tended to decrease at higher elevations, consistent with genetic drift during range expansion but potentially strong selection for smaller genomes and faster development time at higher elevations. These results demonstrate how genome size variation can contribute to traits directly tied to reproductive success, and how selection and drift can shape that variation. We highlight the influence of genome size on dynamics underlying a rapid range expansion in a highly problematic invasive plant.
Collapse
Affiliation(s)
- F. Alice Cang
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | - Shana R. Welles
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
- Utah Valley UniversityOremUtahUSA
| | - Jenny Wong
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | - Maia Ziaee
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
- Mills CollegeOaklandCaliforniaUSA
| | - Katrina M. Dlugosch
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
9
|
Scarpa A, Kofler R. The impact of paramutations on the invasion dynamics of transposable elements. Genetics 2023; 225:iyad181. [PMID: 37819004 PMCID: PMC10697812 DOI: 10.1093/genetics/iyad181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
According to the prevailing view, the trap model, the activity of invading transposable elements (TEs) is greatly reduced when a TE copy jumps into a piRNA cluster, which triggers the emergence of piRNAs that silence the TE. One crucial component in the host defence are paramutations. Mediated by maternally deposited piRNAs, paramutations convert TE insertions into piRNA producing loci, thereby transforming selfish TEs into agents of the host defence. Despite this significant effect, the impact of paramutations on the dynamics of TE invasions remains unknown. To address this issue, we performed extensive forward simulations of TE invasions with piRNA clusters and paramutations. We found that paramutations significantly affect TE dynamics, by accelerating the silencing of TE invasions, reducing the number of insertions accumulating during the invasions and mitigating the fitness cost of TEs. We also demonstrate that piRNA production induced by paramutations, an epigenetically inherited trait, may be positively selected. Finally, we show that paramutations may account for three important open problems with the trap model. Firstly, paramutated TE insertions may compensate for the insufficient number of insertions in piRNA clusters observed in previous studies. Secondly, paramutations may explain the discrepancy between the observed and the expected abundance of different TE families in Drosophila melanogaster. Thirdly, piRNA clusters may be crucial to trigger the host defence, but paramutations render the clusters dispensable once the defence has been established. This could account for the lack of TE activation when three major piRNA clusters were deleted in a previous study.
Collapse
Affiliation(s)
- Almorò Scarpa
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Wien 1210, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Wien 1210, Austria
| |
Collapse
|
10
|
Sun C, Zhang A, Chen J, Schaack S. 'Junk' that matters: the role of transposable elements in bumblebee genome evolution. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101103. [PMID: 37604302 DOI: 10.1016/j.cois.2023.101103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Transposable elements (TEs) are mobile DNA sequences that are widely distributed in eukaryotic genomes, where they are known to serve as a major force in genome evolution. The phenotypic impacts of TEs, while less well-studied, have also been discovered. Bumblebees are globally important pollinators in natural ecosystems and agriculture. Although TEs comprise a small fraction of bumblebee genomes, emerging evidence suggests that TEs are the major contributor of genome size variation across species and are involved in the formation of new coding and regulatory sequences. We review recent discoveries related to TEs in bumblebees, as well as outlining three key questions for the future of the field. In the future, we argue long-read sequencing technologies and genome editing techniques will help us identify TEs in bumblebees, unveil mechanisms that could account for their silencing and limited abundance, and uncover their contributions to phenotypic diversification, ecological adaptation, and speciation.
Collapse
Affiliation(s)
- Cheng Sun
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Aibing Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jinfeng Chen
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, OR 97202, USA
| |
Collapse
|
11
|
Sproul JS, Hotaling S, Heckenhauer J, Powell A, Marshall D, Larracuente AM, Kelley JL, Pauls SU, Frandsen PB. Analyses of 600+ insect genomes reveal repetitive element dynamics and highlight biodiversity-scale repeat annotation challenges. Genome Res 2023; 33:1708-1717. [PMID: 37739812 PMCID: PMC10691545 DOI: 10.1101/gr.277387.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Repetitive elements (REs) are integral to the composition, structure, and function of eukaryotic genomes, yet remain understudied in most taxonomic groups. We investigated REs across 601 insect species and report wide variation in RE dynamics across groups. Analysis of associations between REs and protein-coding genes revealed dynamic evolution at the interface between REs and coding regions across insects, including notably elevated RE-gene associations in lineages with abundant long interspersed nuclear elements (LINEs). We leveraged this large, empirical data set to quantify impacts of long-read technology on RE detection and investigate fundamental challenges to RE annotation in diverse groups. In long-read assemblies, we detected ∼36% more REs than short-read assemblies, with long terminal repeats (LTRs) showing 162% increased detection, whereas DNA transposons and LINEs showed less respective technology-related bias. In most insect lineages, 25%-85% of repetitive sequences were "unclassified" following automated annotation, compared with only ∼13% in Drosophila species. Although the diversity of available insect genomes has rapidly expanded, we show the rate of community contributions to RE databases has not kept pace, preventing efficient annotation and high-resolution study of REs in most groups. We highlight the tremendous opportunity and need for the biodiversity genomics field to embrace REs and suggest collective steps for making progress toward this goal.
Collapse
Affiliation(s)
- John S Sproul
- Department of Biology, Brigham Young University, Provo, Utah 84602, USA;
- Department of Biology, University of Nebraska Omaha, Omaha, Nebraska 68182, USA
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, Washington 99163, USA
- Department of Watershed Sciences, Utah State University, Logan, Utah 84322, USA
| | - Jacqueline Heckenhauer
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Senckenberg Research Institute and Natural History Museum Frankfurt, 60325 Frankfurt, Germany
| | - Ashlyn Powell
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah 84602, USA
| | - Dez Marshall
- Department of Biology, University of Nebraska Omaha, Omaha, Nebraska 68182, USA
| | | | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, Washington 99163, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Steffen U Pauls
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Senckenberg Research Institute and Natural History Museum Frankfurt, 60325 Frankfurt, Germany
- Department of Insect Biotechnology, Justus-Liebig-University Gießen, 35392 Gießen, Germany
| | - Paul B Frandsen
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah 84602, USA
- Data Science Lab, Smithsonian Institution, Washington, District of Columbia 20560, USA
| |
Collapse
|
12
|
Liao X, Zhu W, Zhou J, Li H, Xu X, Zhang B, Gao X. Repetitive DNA sequence detection and its role in the human genome. Commun Biol 2023; 6:954. [PMID: 37726397 PMCID: PMC10509279 DOI: 10.1038/s42003-023-05322-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
Repetitive DNA sequences playing critical roles in driving evolution, inducing variation, and regulating gene expression. In this review, we summarized the definition, arrangement, and structural characteristics of repeats. Besides, we introduced diverse biological functions of repeats and reviewed existing methods for automatic repeat detection, classification, and masking. Finally, we analyzed the type, structure, and regulation of repeats in the human genome and their role in the induction of complex diseases. We believe that this review will facilitate a comprehensive understanding of repeats and provide guidance for repeat annotation and in-depth exploration of its association with human diseases.
Collapse
Affiliation(s)
- Xingyu Liao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Wufei Zhu
- Department of Endocrinology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, 443000, Yichang, P.R. China
| | - Juexiao Zhou
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Haoyang Li
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Xiaopeng Xu
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Bin Zhang
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
13
|
Bologa AM, Stoica I, Constantin ND, Ecovoiu AA. The Landscape of the DNA Transposons in the Genome of the Horezu_LaPeri Strain of Drosophila melanogaster. INSECTS 2023; 14:494. [PMID: 37367310 DOI: 10.3390/insects14060494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
Natural transposons (NTs) represent mobile DNA sequences found in both prokaryotic and eukaryotic genomes. Drosophila melanogaster (the fruit fly) is a eukaryotic model organism with NTs standing for about 20% of its genome and has contributed significantly to the understanding of various aspects of transposon biology. Our study describes an accurate approach designed to map class II transposons (DNA transposons) in the genome of the Horezu_LaPeri fruit fly strain, consecutive to Oxford Nanopore Technology sequencing. A whole genome bioinformatics analysis was conducted using Genome ARTIST_v2, LoRTE and RepeatMasker tools to identify DNA transposons insertions. Then, a gene ontology enrichment analysis was performed in order to evaluate the potential adaptive role of some DNA transposons insertions. Herein, we describe DNA transposon insertions specific for the Horezu_LaPeri genome and a predictive functional analysis of some insertional alleles. The PCR validation of P-element insertions specific for this fruit fly strain, along with a putative consensus sequence for the KP element, is also reported. Overall, the genome of the Horezu_LaPeri strain contains several insertions of DNA transposons associated with genes known to be involved in adaptive processes. For some of these genes, insertional alleles obtained via mobilization of the artificial transposons were previously reported. This is a very alluring aspect, as it suggests that insertional mutagenesis experiments conducting adaptive predictions for laboratory strains may be confirmed by mirroring insertions which are expected to be found at least in some natural fruit fly strains.
Collapse
Affiliation(s)
- Alexandru Marian Bologa
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Ileana Stoica
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | | | - Alexandru Al Ecovoiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| |
Collapse
|
14
|
Wierzbicki F, Kofler R, Signor S. Evolutionary dynamics of piRNA clusters in Drosophila. Mol Ecol 2023; 32:1306-1322. [PMID: 34878692 DOI: 10.1111/mec.16311] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022]
Abstract
Small RNAs produced from transposable element (TE)-rich sections of the genome, termed piRNA clusters, are a crucial component in the genomic defence against selfish DNA. In animals, it is thought the invasion of a TE is stopped when a copy of the TE inserts into a piRNA cluster, triggering the production of cognate small RNAs that silence the TE. Despite this importance for TE control, little is known about the evolutionary dynamics of piRNA clusters, mostly because these repeat-rich regions are difficult to assemble and compare. Here, we establish a framework for studying the evolution of piRNA clusters quantitatively. Previously introduced quality metrics and a newly developed software for multiple alignments of repeat annotations (Manna) allow us to estimate the level of polymorphism segregating in piRNA clusters and the divergence among homologous piRNA clusters. By studying 20 conserved piRNA clusters in multiple assemblies of four Drosophila species, we show that piRNA clusters are evolving rapidly. While 70%-80% of the clusters are conserved within species, the clusters share almost no similarity between species as closely related as D. melanogaster and D. simulans. Furthermore, abundant insertions and deletions are segregating within the Drosophila species. We show that the evolution of clusters is mainly driven by large insertions of recently active TEs and smaller deletions mostly in older TEs. The effect of these forces is so rapid that homologous clusters often do not contain insertions from the same TE families.
Collapse
Affiliation(s)
- Filip Wierzbicki
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Sarah Signor
- Biological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
15
|
Oggenfuss U, Croll D. Recent transposable element bursts are associated with the proximity to genes in a fungal plant pathogen. PLoS Pathog 2023; 19:e1011130. [PMID: 36787337 PMCID: PMC9970103 DOI: 10.1371/journal.ppat.1011130] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/27/2023] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
The activity of transposable elements (TEs) contributes significantly to pathogen genome evolution. TEs often destabilize genome integrity but may also confer adaptive variation in pathogenicity or resistance traits. De-repression of epigenetically silenced TEs often initiates bursts of transposition activity that may be counteracted by purifying selection and genome defenses. However, how these forces interact to determine the expansion routes of TEs within a pathogen species remains largely unknown. Here, we analyzed a set of 19 telomere-to-telomere genomes of the fungal wheat pathogen Zymoseptoria tritici. Phylogenetic reconstruction and ancestral state estimates of individual TE families revealed that TEs have undergone distinct activation and repression periods resulting in highly uneven copy numbers between genomes of the same species. Most TEs are clustered in gene poor niches, indicating strong purifying selection against insertions near coding sequences, or as a consequence of insertion site preferences. TE families with high copy numbers have low sequence divergence and strong signatures of defense mechanisms (i.e., RIP). In contrast, small non-autonomous TEs (i.e., MITEs) are less impacted by defense mechanisms and are often located in close proximity to genes. Individual TE families have experienced multiple distinct burst events that generated many nearly identical copies. We found that a Copia element burst was initiated from recent copies inserted substantially closer to genes compared to older copies. Overall, TE bursts tended to initiate from copies in GC-rich niches that escaped inactivation by genomic defenses. Our work shows how specific genomic environments features provide triggers for TE proliferation in pathogen genomes.
Collapse
Affiliation(s)
- Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- * E-mail:
| |
Collapse
|
16
|
Heckenhauer J, Frandsen PB, Sproul JS, Li Z, Paule J, Larracuente AM, Maughan PJ, Barker MS, Schneider JV, Stewart RJ, Pauls SU. Genome size evolution in the diverse insect order Trichoptera. Gigascience 2022; 11:giac011. [PMID: 35217860 PMCID: PMC8881205 DOI: 10.1093/gigascience/giac011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/25/2021] [Accepted: 01/21/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genome size is implicated in the form, function, and ecological success of a species. Two principally different mechanisms are proposed as major drivers of eukaryotic genome evolution and diversity: polyploidy (i.e., whole-genome duplication) or smaller duplication events and bursts in the activity of repetitive elements. Here, we generated de novo genome assemblies of 17 caddisflies covering all major lineages of Trichoptera. Using these and previously sequenced genomes, we use caddisflies as a model for understanding genome size evolution in diverse insect lineages. RESULTS We detect a ∼14-fold variation in genome size across the order Trichoptera. We find strong evidence that repetitive element expansions, particularly those of transposable elements (TEs), are important drivers of large caddisfly genome sizes. Using an innovative method to examine TEs associated with universal single-copy orthologs (i.e., BUSCO genes), we find that TE expansions have a major impact on protein-coding gene regions, with TE-gene associations showing a linear relationship with increasing genome size. Intriguingly, we find that expanded genomes preferentially evolved in caddisfly clades with a higher ecological diversity (i.e., various feeding modes, diversification in variable, less stable environments). CONCLUSION Our findings provide a platform to test hypotheses about the potential evolutionary roles of TE activity and TE-gene associations, particularly in groups with high species, ecological, and functional diversities.
Collapse
Affiliation(s)
- Jacqueline Heckenhauer
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt 60325, Germany
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt 60325, Germany
| | - Paul B Frandsen
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt 60325, Germany
- Department of Plant & Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
- Data Science Lab, Smithsonian Institution, Washington, DC 20560, USA
| | - John S Sproul
- Department of Biology, University of Rochester, Rochester, NY 14620, USA
- Department of Biology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Juraj Paule
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt 60325, Germany
| | | | - Peter J Maughan
- Department of Plant & Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Julio V Schneider
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt 60325, Germany
| | - Russell J Stewart
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Steffen U Pauls
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt 60325, Germany
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt 60325, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University, Gießen 35390, Germany
| |
Collapse
|
17
|
Abstract
Recognition of the important role of transposable elements (TEs) in eukaryotic genomes quickly led to a burgeoning literature modeling and estimating the effects of selection on TEs. Much of the empirical work on selection has focused on analyzing the site frequency spectrum (SFS) of TEs. But TE evolution differs from standard models in a number of ways that can impact the power and interpretation of the SFS. For example, rather than mutating under a clock-like model, transposition often occurs in bursts which can inflate particular frequency categories compared with expectations under a standard neutral model. If a TE burst has been recent, the excess of low-frequency polymorphisms can mimic the effect of purifying selection. Here, we investigate how transposition bursts affect the frequency distribution of TEs and the correlation between age and allele frequency. Using information on the TE age distribution, we propose an age-adjusted SFS to compare TEs and neutral polymorphisms to more effectively evaluate whether TEs are under selective constraints. We show that our approach can minimize instances of false inference of selective constraint, remains robust to simple demographic changes, and allows for a correct identification of even weak selection affecting TEs which experienced a transposition burst. The results presented here will help researchers working on TEs to more reliably identify the effects of selection on TEs without having to rely on the assumption of a constant transposition rate.
Collapse
Affiliation(s)
- Robert Horvath
- Department of Evolution and Ecology, University of California, Davis, USA
- Corresponding authors: E-mails: ;
| | - Mitra Menon
- Department of Evolution and Ecology, University of California, Davis, USA
- Center for Population Biology, University of California, Davis, USA
| | - Michelle Stitzer
- Institute for Genomic Diversity and Department of Molecular Biology and Genetics, Cornell University, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, University of California, Davis, USA
- Center for Population Biology, University of California, Davis, USA
- Genome Center, University of California, Davis, USA
- Corresponding authors: E-mails: ;
| |
Collapse
|
18
|
Zidi M, Denis F, Klai K, Chénais B, Caruso A, Djebbi S, Mezghani M, Casse N. Genome-wide characterization of Mariner-like transposons and their derived MITEs in the Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). G3 (BETHESDA, MD.) 2021; 11:jkab287. [PMID: 34849769 PMCID: PMC8664452 DOI: 10.1093/g3journal/jkab287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/28/2021] [Indexed: 12/02/2022]
Abstract
The whitefly, Bemisia tabaci is a hemipteran pest of vegetable crops vectoring a broad category of viruses. Currently, this insect pest showed a high adaptability and resistance to almost all the chemical compounds commonly used for its control. In many cases, transposable elements (TEs) contributed to the evolution of host genomic plasticity. This study focuses on the annotation of Mariner-like elements (MLEs) and their derived Miniature Inverted repeat Transposable Elements (MITEs) in the genome of B. tabaci. Two full-length MLEs belonging to mauritiana and irritans subfamilies were detected and named Btmar1.1 and Btmar2.1, respectively. Additionally, 548 defective MLE sequences clustering mainly into 19 different Mariner lineages of mauritiana and irritans subfamilies were identified. Each subfamily showed a significant variation in MLE copy number and size. Furthermore, 71 MITEs were identified as MLEs derivatives that could be mobilized via the potentially active transposases encoded by Btmar 1.1 and Btmar2.1. The vast majority of sequences detected in the whitefly genome present unusual terminal inverted repeats (TIRs) of up to 400 bp in length. However, some exceptions are sequences without TIRs. This feature of the MLEs and their derived MITEs in B. tabaci genome that distinguishes them from all the other MLEs so far described in insects, which have TIRs size ranging from 20 to 40 bp. Overall, our study provides an overview of MLEs, especially those with large TIRs, and their related MITEs, as well as diversity of their families, which will provide a better understanding of the evolution and adaptation of the whitefly genome.
Collapse
Affiliation(s)
- Marwa Zidi
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| | - Françoise Denis
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
- Laboratoire BOREA MNHN, CNRS FRE 2030, SU, IRD 207, UCN, UA, 75231 Paris, France
| | - Khouloud Klai
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| | - Benoît Chénais
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| | - Aurore Caruso
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| | - Salma Djebbi
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Maha Mezghani
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Nathalie Casse
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| |
Collapse
|
19
|
Ben Amara W, Quesneville H, Khemakhem MM. A Genomic Survey of Mayetiola destructor Mobilome Provides New Insights into the Evolutionary History of Transposable Elements in the Cecidomyiid Midges. PLoS One 2021; 16:e0257996. [PMID: 34634072 PMCID: PMC8504770 DOI: 10.1371/journal.pone.0257996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 09/16/2021] [Indexed: 11/19/2022] Open
Abstract
The availability of the Whole-Genome Sequence of the wheat pest Mayetiola destructor offers the opportunity to investigate the Transposable Elements (TEs) content and their relationship with the genes involved in the insect virulence. In this study, de novo annotation carried out using REPET pipeline showed that TEs occupy approximately 16% of the genome and are represented by 1038 lineages. Class II elements were the most frequent and most TEs were inactive due to the deletions they have accumulated. The analyses of TEs ages revealed a first burst at 20% of divergence from present that mobilized many TE families including mostly Tc1/mariner and Gypsy superfamilies and a second burst at 2% of divergence, which involved mainly the class II elements suggesting new TEs invasions. Additionally, 86 TEs insertions involving recently transposed elements were identified. Among them, several MITEs and Gypsy retrotransposons were inserted in the vicinity of SSGP and chemosensory genes. The findings represent a valuable resource for more in-depth investigation of the TE impact onto M. destructor genome and their possible influence on the expression of the virulence and chemosensory genes and consequently the behavior of this pest towards its host plants.
Collapse
Affiliation(s)
- Wiem Ben Amara
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hadi Quesneville
- INRAE, URGI, Université Paris-Saclay, Versailles, France
- INRAE, BioinfOmics, Plant Bioinformatics Facility, Université Paris-Saclay, Versailles, France
| | - Maha Mezghani Khemakhem
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
- * E-mail:
| |
Collapse
|
20
|
Liu Z, Zhao H, Yan Y, Wei MX, Zheng YC, Yue EK, Alam MS, Smartt KO, Duan MH, Xu JH. Extensively Current Activity of Transposable Elements in Natural Rice Accessions Revealed by Singleton Insertions. FRONTIERS IN PLANT SCIENCE 2021; 12:745526. [PMID: 34650583 PMCID: PMC8505701 DOI: 10.3389/fpls.2021.745526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/08/2021] [Indexed: 06/01/2023]
Abstract
Active transposable elements (TEs) have drawn more attention as they continue to create new insertions and contribute to genetic diversity of the genome. However, only a few have been discovered in rice up to now, and their activities are mostly induced by artificial treatments (e.g., tissue culture, hybridization etc.) rather than under normal growth conditions. To systematically survey the current activity of TEs in natural rice accessions and identify rice accessions carrying highly active TEs, the transposon insertion polymorphisms (TIPs) profile was used to identify singleton insertions, which were unique to a single accession and represented the new insertion of TEs in the genome. As a result, 10,924 high-confidence singletons from 251 TE families were obtained, covering all investigated TE types. The number of singletons varied substantially among different superfamilies/families, perhaps reflecting distinct current activity. Particularly, eight TE families maintained potentially higher activity in 3,000 natural rice accessions. Sixty percent of rice accessions were detected to contain singletons, indicating the extensive activity of TEs in natural rice accessions. Thirty-five TE families exhibited potentially high activity in at least one rice accession, and the majority of them showed variable activity among different rice groups/subgroups. These naturally active TEs would be ideal candidates for elucidating the molecular mechanisms underlying the transposition and activation of TEs, as well as investigating the interactions between TEs and the host genome.
Collapse
Affiliation(s)
- Zhen Liu
- Hainan Institute, Zhejiang University, Sanya, China
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Han Zhao
- Jiangsu Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Yan
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Ming-Xiao Wei
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Yun-Chao Zheng
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Er-Kui Yue
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Mohammad Shah Alam
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Kwesi Odel Smartt
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Ming-Hua Duan
- Zhejiang Zhengjingyuan Pharmacy Chain Co., Ltd., Hangzhou, China
- Hangzhou Zhengcaiyuan Pharmaceutical Co., Ltd., Hangzhou, China
| | - Jian-Hong Xu
- Hainan Institute, Zhejiang University, Sanya, China
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Ullastres A, Merenciano M, González J. Regulatory regions in natural transposable element insertions drive interindividual differences in response to immune challenges in Drosophila. Genome Biol 2021; 22:265. [PMID: 34521452 PMCID: PMC8439047 DOI: 10.1186/s13059-021-02471-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Background Variation in gene expression underlies interindividual variability in relevant traits including immune response. However, the genetic variation responsible for these gene expression changes remains largely unknown. Among the non-coding variants that could be relevant, transposable element insertions are promising candidates as they have been shown to be a rich and diverse source of cis-regulatory elements. Results In this work, we use a population genetics approach to identify transposable element insertions likely to increase the tolerance of Drosophila melanogaster to bacterial infection by affecting the expression of immune-related genes. We identify 12 insertions associated with allele-specific expression changes in immune-related genes. We experimentally validate three of these insertions including one likely to be acting as a silencer, one as an enhancer, and one with a dual role as enhancer and promoter. The direction in the change of gene expression associated with the presence of several of these insertions is consistent with an increased survival to infection. Indeed, for one of the insertions, we show that this is the case by analyzing both natural populations and CRISPR/Cas9 mutants in which the insertion is deleted from its native genomic context. Conclusions We show that transposable elements contribute to gene expression variation in response to infection in D. melanogaster and that this variation is likely to affect their survival capacity. Because the role of transposable elements as regulatory elements is not restricted to Drosophila, transposable elements are likely to play a role in immune response in other organisms as well. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02471-3.
Collapse
Affiliation(s)
- Anna Ullastres
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Miriam Merenciano
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
22
|
Errbii M, Keilwagen J, Hoff KJ, Steffen R, Altmüller J, Oettler J, Schrader L. Transposable elements and introgression introduce genetic variation in the invasive ant Cardiocondyla obscurior. Mol Ecol 2021; 30:6211-6228. [PMID: 34324751 DOI: 10.1111/mec.16099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Introduced populations of invasive organisms have to cope with novel environmental challenges, while having reduced genetic variation caused by founder effects. The mechanisms associated with this "genetic paradox of invasive species" has received considerable attention, yet few studies have examined the genomic architecture of invasive species. Populations of the heart node ant Cardiocondyla obscurior belong to two distinct lineages, a New World lineage so far only found in Latin America and a more globally distributed Old World lineage. In the present study, we use population genomic approaches to compare populations of the two lineages with apparent divergent invasive potential. We find that the strong genetic differentiation of the two lineages began at least 40,000 generations ago and that activity of transposable elements (TEs) has contributed significantly to the divergence of both lineages, possibly linked to the very unusual genomic distribution of TEs in this species. Furthermore, we show that introgression from the Old World lineage is a dominant source of genetic diversity in the New World lineage, despite the lineages' strong genetic differentiation. Our study uncovers mechanisms underlying novel genetic variation in introduced populations of C. obscurior that could contribute to the species' adaptive potential.
Collapse
Affiliation(s)
- Mohammed Errbii
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Katharina J Hoff
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany.,Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Raphael Steffen
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, Institute of Human Genetics, University of Cologne, Cologne, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Genomics, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jan Oettler
- Lehrstuhl für Zoologie/Evolutionsbiologie, University Regensburg, Regensburg, Germany
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
23
|
Saint-Leandre B, Capy P, Hua-Van A, Filée J. piRNA and Transposon Dynamics in Drosophila: A Female Story. Genome Biol Evol 2021; 12:931-947. [PMID: 32396626 PMCID: PMC7337185 DOI: 10.1093/gbe/evaa094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
The germlines of metazoans contain transposable elements (TEs) causing genetic instability and affecting fitness. To protect the germline from TE activity, gonads of metazoans produce TE-derived PIWI-interacting RNAs (piRNAs) that silence TE expression. In Drosophila, our understanding of piRNA biogenesis is mainly based on studies of the Drosophila melanogaster female germline. However, it is not known whether piRNA functions are also important in the male germline or whether and how piRNAs are affected by the global genomic context. To address these questions, we compared genome sequences, transcriptomes, and small RNA libraries extracted from entire testes and ovaries of two sister species: D. melanogaster and Drosophila simulans. We found that most TE-derived piRNAs were produced in ovaries and that piRNA pathway genes were strongly overexpressed in ovaries compared with testes, indicating that the silencing of TEs by the piRNA pathway mainly took place in the female germline. To study the relationship between host piRNAs and TE landscape, we analyzed TE genomic features and how they correlate with piRNA production in the two species. In D. melanogaster, we found that TE-derived piRNAs target recently active TEs. In contrast, although Drosophila simulans TEs do not display any features of recent activity, the host still intensively produced silencing piRNAs targeting old TE relics. Together, our results show that the piRNA silencing response mainly takes place in Drosophila ovaries and indicate that the host piRNA response is implemented following a burst of TE activity and could persist long after the extinction of active TE families.
Collapse
Affiliation(s)
- Bastien Saint-Leandre
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Capy
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aurelie Hua-Van
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jonathan Filée
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
24
|
Abstract
Transposable elements (TEs) are an important cause of evolutionary change and functional diversity, yet they are routinely discarded in the first steps of many analyses. In this chapter we show how, given a reference genome, TEs can be incorporated fairly easily into functional and evolutionary studies. We offer a glimpse into a program which detects TE insertion polymorphisms and discuss practical issues arising from the diversity of TEs and genome architectures. Detecting TE polymorphisms relies on a series of ad hoc criteria because, in contrast to single nucleotide polymorphisms, there is no general way to model TE activity. Signatures of TE polymorphisms in reference-aligned reads depend on the type of TE as well as on the complexity of the genomic background. As a consequence, a basic understanding of the limitations imposed by the data and of what the algorithm is doing is important to obtain reliable results. Here, we hope to convey such a basic understanding and help researchers to avoid some of the common pitfalls of TE polymorphism detection.
Collapse
|
25
|
Mérel V, Gibert P, Buch I, Rada VR, Estoup A, Gautier M, Fablet M, Boulesteix M, Vieira C. The worldwide invasion of Drosophila suzukii is accompanied by a large increase of transposable element load and a small number of putatively adaptive insertions. Mol Biol Evol 2021; 38:4252-4267. [PMID: 34021759 PMCID: PMC8476158 DOI: 10.1093/molbev/msab155] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transposable Elements (TEs) are ubiquitous and mobile repeated sequences. They are major determinants of host fitness. Here, we characterized the TE content of the spotted wing fly Drosophila suzukii. Using a recently improved genome assembly, we reconstructed TE sequences de novo, and found that TEs occupy 47% of the genome and are mostly located in gene poor regions. The majority of TE insertions segregate at low frequencies, indicating a recent and probably ongoing TE activity. To explore TE dynamics in the context of biological invasions, we studied variation of TE abundance in genomic data from 16 invasive and six native populations of D. suzukii. We found a large increase of the TE load in invasive populations correlated with a reduced Watterson estimate of genetic diversity θ̂w a proxy of effective population size. We did not find any correlation between TE contents and bioclimatic variables, indicating a minor effect of environmentally induced TE activity. A genome-wide association study revealed that ca. 2,000 genomic regions are associated with TE abundance. We did not find, however, any evidence in such regions of an enrichment for genes known to interact with TE activity (e.g. transcription factor encoding genes or genes of the piRNA pathway). Finally, the study of TE insertion frequencies revealed 15 putatively adaptive TE insertions, six of them being likely associated with the recent invasion history of the species.
Collapse
Affiliation(s)
- Vincent Mérel
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Patricia Gibert
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Inessa Buch
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Valentina Rodriguez Rada
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Arnaud Estoup
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Mathieu Gautier
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Marie Fablet
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Matthieu Boulesteix
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Cristina Vieira
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| |
Collapse
|
26
|
Crava CM, Varghese FS, Pischedda E, Halbach R, Palatini U, Marconcini M, Gasmi L, Redmond S, Afrane Y, Ayala D, Paupy C, Carballar‐Lejarazu R, Miesen P, van Rij RP, Bonizzoni M. Population genomics in the arboviral vector Aedes aegypti reveals the genomic architecture and evolution of endogenous viral elements. Mol Ecol 2021; 30:1594-1611. [PMID: 33432714 PMCID: PMC8048955 DOI: 10.1111/mec.15798] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Horizontal gene transfer from viruses to eukaryotic cells is a pervasive phenomenon. Somatic viral integrations are linked to persistent viral infection whereas integrations into germline cells are maintained in host genomes by vertical transmission and may be co-opted for host functions. In the arboviral vector Aedes aegypti, an endogenous viral element from a nonretroviral RNA virus (nrEVE) was shown to produce PIWI-interacting RNAs (piRNAs) to limit infection with a cognate virus. Thus, nrEVEs may constitute a heritable, sequence-specific mechanism for antiviral immunity, analogous to piRNA-mediated silencing of transposable elements. Here, we combine population genomics and evolutionary approaches to analyse the genomic architecture of nrEVEs in A. aegypti. We conducted a genome-wide screen for adaptive nrEVEs and searched for novel population-specific nrEVEs in the genomes of 80 individual wild-caught mosquitoes from five geographical populations. We show a dynamic landscape of nrEVEs in mosquito genomes and identified five novel nrEVEs derived from two currently circulating viruses, providing evidence of the environmental-dependent modification of a piRNA cluster. Overall, our results show that virus endogenization events are complex with only a few nrEVEs contributing to adaptive evolution in A. aegypti.
Collapse
Affiliation(s)
- Cristina M. Crava
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
- Present address:
Institute of Biotechnology and BiomedicineUniversitat de ValènciaBurjassotSpain
| | - Finny S. Varghese
- Department of Medical MicrobiologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Elisa Pischedda
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Rebecca Halbach
- Department of Medical MicrobiologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Umberto Palatini
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | | | - Leila Gasmi
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Seth Redmond
- Institute of Vector Borne DiseaseMonash UniversityAustralia
| | - Yaw Afrane
- Department of Medical MicrobiologyUniversity of GhanaAccraGhana
| | - Diego Ayala
- MIVEGECUniv. MontpellierIRDCNRSMontpellierFrance
| | | | - Rebeca Carballar‐Lejarazu
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
- Present address:
Department of Molecular Biology and BiochemistryUniversity of California at IrvineIrvineCAUSA
| | - Pascal Miesen
- Department of Medical MicrobiologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Ronald P. van Rij
- Department of Medical MicrobiologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | | |
Collapse
|
27
|
Smukowski Heil C, Patterson K, Hickey ASM, Alcantara E, Dunham MJ. Transposable Element Mobilization in Interspecific Yeast Hybrids. Genome Biol Evol 2021; 13:6141023. [PMID: 33595639 PMCID: PMC7952228 DOI: 10.1093/gbe/evab033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Barbara McClintock first hypothesized that interspecific hybridization could provide a “genomic shock” that leads to the mobilization of transposable elements (TEs). This hypothesis is based on the idea that regulation of TE movement is potentially disrupted in hybrids. However, the handful of studies testing this hypothesis have yielded mixed results. Here, we set out to identify if hybridization can increase transposition rate and facilitate colonization of TEs in Saccharomyces cerevisiae × Saccharomyces uvarum interspecific yeast hybrids. Saccharomyces cerevisiae have a small number of active long terminal repeat retrotransposons (Ty elements), whereas their distant relative S. uvarum have lost the Ty elements active in S. cerevisiae. Although the regulation system of Ty elements is known in S. cerevisiae, it is unclear how Ty elements are regulated in other Saccharomyces species, and what mechanisms contributed to the loss of most classes of Ty elements in S. uvarum. Therefore, we first assessed whether TEs could insert in the S. uvarum sub-genome of a S. cerevisiae × S. uvarum hybrid. We induced transposition to occur in these hybrids and developed a sequencing technique to show that Ty elements insert readily and nonrandomly in the S. uvarum genome. We then used an in vivo reporter construct to directly measure transposition rate in hybrids, demonstrating that hybridization itself does not alter rate of mobilization. However, we surprisingly show that species-specific mitochondrial inheritance can change transposition rate by an order of magnitude. Overall, our results provide evidence that hybridization can potentially facilitate the introduction of TEs across species boundaries and alter transposition via mitochondrial transmission, but that this does not lead to unrestrained proliferation of TEs suggested by the genomic shock theory.
Collapse
Affiliation(s)
- Caiti Smukowski Heil
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Kira Patterson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | - Erica Alcantara
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
28
|
Pourrajab F, Hekmatimoghaddam S. Transposable elements, contributors in the evolution of organisms (from an arms race to a source of raw materials). Heliyon 2021; 7:e06029. [PMID: 33532648 PMCID: PMC7829209 DOI: 10.1016/j.heliyon.2021.e06029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
There is a concept proposing that the primitive lineages of prokaryotes, eukaryotes, and viruses emerged from the primordial pool of primitive genetic elements. In this genetic pool, transposable elements (TEs) became a source of raw material for primitive genomes, tools of genetic innovation, and ancestors of modern genes (e.g. ncRNAs, tRNAs, and rRNAs). TEs contributed directly to the genome evolution of three forms of life on the earth. TEs now appear as tools that were used to giving rise to sexual dimorphism and sex determination, lineage-specific expression of genes and tissue differentiation and finally genome stability and lifespan determination.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedhossein Hekmatimoghaddam
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
29
|
Bogaerts‐Márquez M, Guirao‐Rico S, Gautier M, González J. Temperature, rainfall and wind variables underlie environmental adaptation in natural populations of Drosophila melanogaster. Mol Ecol 2021; 30:938-954. [PMID: 33350518 PMCID: PMC7986194 DOI: 10.1111/mec.15783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
While several studies in a diverse set of species have shed light on the genes underlying adaptation, our knowledge on the selective pressures that explain the observed patterns lags behind. Drosophila melanogaster is a valuable organism to study environmental adaptation because this species originated in Southern Africa and has recently expanded worldwide, and also because it has a functionally well-annotated genome. In this study, we aimed to decipher which environmental variables are relevant for adaptation of D. melanogaster natural populations in Europe and North America. We analysed 36 whole-genome pool-seq samples of D. melanogaster natural populations collected in 20 European and 11 North American locations. We used the BayPass software to identify single nucleotide polymorphisms (SNPs) and transposable elements (TEs) showing signature of adaptive differentiation across populations, as well as significant associations with 59 environmental variables related to temperature, rainfall, evaporation, solar radiation, wind, daylight hours, and soil type. We found that in addition to temperature and rainfall, wind related variables are also relevant for D. melanogaster environmental adaptation. Interestingly, 23%-51% of the genes that showed significant associations with environmental variables were not found overly differentiated across populations. In addition to SNPs, we also identified 10 reference transposable element insertions associated with environmental variables. Our results showed that genome-environment association analysis can identify adaptive genetic variants that are undetected by population differentiation analysis while also allowing the identification of candidate environmental drivers of adaptation.
Collapse
Affiliation(s)
- María Bogaerts‐Márquez
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
- The European Drosophila Population Genomics Consortium (DrosEU)Université de MontpellierMontpellierFrance
| | - Sara Guirao‐Rico
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
- The European Drosophila Population Genomics Consortium (DrosEU)Université de MontpellierMontpellierFrance
| | - Mathieu Gautier
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgroUniversité de MontpellierMontpellierFrance
| | - Josefa González
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
- The European Drosophila Population Genomics Consortium (DrosEU)Université de MontpellierMontpellierFrance
| |
Collapse
|
30
|
Abstract
Drosophila melanogaster, a small dipteran of African origin, represents one of the best-studied model organisms. Early work in this system has uniquely shed light on the basic principles of genetics and resulted in a versatile collection of genetic tools that allow to uncover mechanistic links between genotype and phenotype. Moreover, given its worldwide distribution in diverse habitats and its moderate genome-size, Drosophila has proven very powerful for population genetics inference and was one of the first eukaryotes whose genome was fully sequenced. In this book chapter, we provide a brief historical overview of research in Drosophila and then focus on recent advances during the genomic era. After describing different types and sources of genomic data, we discuss mechanisms of neutral evolution including the demographic history of Drosophila and the effects of recombination and biased gene conversion. Then, we review recent advances in detecting genome-wide signals of selection, such as soft and hard selective sweeps. We further provide a brief introduction to background selection, selection of noncoding DNA and codon usage and focus on the role of structural variants, such as transposable elements and chromosomal inversions, during the adaptive process. Finally, we discuss how genomic data helps to dissect neutral and adaptive evolutionary mechanisms that shape genetic and phenotypic variation in natural populations along environmental gradients. In summary, this book chapter serves as a starting point to Drosophila population genomics and provides an introduction to the system and an overview to data sources, important population genetic concepts and recent advances in the field.
Collapse
|
31
|
Gilbert C, Peccoud J, Cordaux R. Transposable Elements and the Evolution of Insects. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:355-372. [PMID: 32931312 DOI: 10.1146/annurev-ento-070720-074650] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Insects are major contributors to our understanding of the interaction between transposable elements (TEs) and their hosts, owing to seminal discoveries, as well as to the growing number of sequenced insect genomes and population genomics and functional studies. Insect TE landscapes are highly variable both within and across insect orders, although phylogenetic relatedness appears to correlate with similarity in insect TE content. This correlation is unlikely to be solely due to inheritance of TEs from shared ancestors and may partly reflect preferential horizontal transfer of TEs between closely related species. The influence of insect traits on TE landscapes, however, remains unclear. Recent findings indicate that, in addition to being involved in insect adaptations and aging, TEs are seemingly at the cornerstone of insect antiviral immunity. Thus, TEs are emerging as essential insect symbionts that may have deleterious or beneficial consequences on their hosts, depending on context.
Collapse
Affiliation(s)
- Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France;
| | - Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, 86073 Poitiers CEDEX 9, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, 86073 Poitiers CEDEX 9, France
| |
Collapse
|
32
|
Liu Z, Wang T, Wang L, Zhao H, Yue E, Yan Y, Irshad F, Zhou L, Duan M, Xu J. RTRIP: a comprehensive profile of transposon insertion polymorphisms in rice. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2379-2381. [PMID: 32473053 PMCID: PMC7680536 DOI: 10.1111/pbi.13425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/02/2020] [Accepted: 05/19/2020] [Indexed: 05/31/2023]
Affiliation(s)
- Zhen Liu
- Institute of Crop ScienceZhejiang Key Laboratory of Crop GermplasmZhejiang UniversityHangzhouChina
| | | | - Lin Wang
- Systems Biology DivisionZhejiang‐California International Nanosystems Institute (ZCNI)Zhejiang UniversityHangzhouChina
| | - Han Zhao
- Institute of BiotechnologyJiangsu Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Erkui Yue
- Institute of Crop ScienceZhejiang Key Laboratory of Crop GermplasmZhejiang UniversityHangzhouChina
| | - Yan Yan
- Institute of Crop ScienceZhejiang Key Laboratory of Crop GermplasmZhejiang UniversityHangzhouChina
| | - Faiza Irshad
- Institute of Crop ScienceZhejiang Key Laboratory of Crop GermplasmZhejiang UniversityHangzhouChina
| | - Ling Zhou
- Institute of BiotechnologyJiangsu Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Ming‐Hua Duan
- Zhejiang Zhengjingyuan Pharmacy Chain Co., Ltd. & Hangzhou Zhengcaiyuan Pharmaceutical Co., LtdHangzhouChina
| | - Jian‐Hong Xu
- Institute of Crop ScienceZhejiang Key Laboratory of Crop GermplasmZhejiang UniversityHangzhouChina
| |
Collapse
|
33
|
Cohen ZP, Brevik K, Chen YH, Hawthorne DJ, Weibel BD, Schoville SD. Elevated rates of positive selection drive the evolution of pestiferousness in the Colorado potato beetle (Leptinotarsa decemlineata, Say). Mol Ecol 2020; 30:237-254. [PMID: 33095936 DOI: 10.1111/mec.15703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 09/28/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
Contextualizing evolutionary history and identifying genomic features of an insect that might contribute to its pest status is important in developing early detection and control tactics. In order to understand the evolution of pestiferousness, which we define as the accumulation of traits that contribute to an insect population's success in an agroecosystem, we tested the importance of known genomic properties associated with rapid adaptation in the Colorado potato beetle (CPB), Leptinotarsa decemlineata Say. Within the leaf beetle genus Leptinotarsa, only CPB, and a few populations therein, has risen to pest status on cultivated nightshades, Solanum. Using whole genomes from ten closely related Leptinotarsa species native to the United States, we reconstructed a high-quality species tree and used this phylogenetic framework to assess evolutionary patterns in four genomic features of rapid adaptation: standing genetic variation, gene family expansion and contraction, transposable element abundance and location, and positive selection at protein-coding genes. Throughout approximately 20 million years of history, Leptinotarsa species show little evidence of gene family turnover and transposable element variation. However, there is a clear pattern of CPB experiencing higher rates of positive selection on protein-coding genes. We determine that these rates are associated with greater standing genetic variation due to larger effective population size, which supports the theory that the demographic history contributes to rates of protein evolution. Furthermore, we identify a suite of coding genes under positive selection that are putatively associated with pestiferousness in the Colorado potato beetle lineage. They are involved in the biological processes of xenobiotic detoxification, chemosensation and hormone function.
Collapse
Affiliation(s)
- Zachary P Cohen
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Kristian Brevik
- Department of Plant and Soil Sciences, University of Vermont, Burlington, VT, USA
| | - Yolanda H Chen
- Department of Plant and Soil Sciences, University of Vermont, Burlington, VT, USA
| | - David J Hawthorne
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Benjamin D Weibel
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
34
|
Existence of Bov-B LINE Retrotransposons in Snake Lineages Reveals Recent Multiple Horizontal Gene Transfers with Copy Number Variation. Genes (Basel) 2020; 11:genes11111241. [PMID: 33105659 PMCID: PMC7716205 DOI: 10.3390/genes11111241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) are dynamic elements present in all eukaryotic genomes. They can “jump” and amplify within the genome and promote segmental genome rearrangements on both autosomes and sex chromosomes by disruption of gene structures. The Bovine-B long interspersed nuclear element (Bov-B LINE) is among the most abundant TE-retrotransposon families in vertebrates due to horizontal transfer (HT) among vertebrate lineages. Recent studies have shown multiple HTs or the presence of diverse Bov-B LINE groups in the snake lineage. It is hypothesized that Bov-B LINEs are highly dynamic and that the diversity reflects multiple HTs in snake lineages. Partial sequences of Bov-B LINE from 23 snake species were characterized. Phylogenetic analysis resolved at least two Bov-B LINE groups that might correspond to henophidian and caenophidian snakes; however, the tree topology differed from that based on functional nuclear and mitochondrial gene sequences. Several Bov-B LINEs of snakes showed greater than 80% similarity to sequences obtained from insects, whereas the two Bov-B LINE groups as well as sequences from the same snake species classified in different Bov-B LINE groups showed sequence similarities of less than 80%. Calculation of estimated divergence time and pairwise divergence between all individual Bov-B LINE copies suggest invasion times ranging from 79.19 to 98.8 million years ago in snakes. Accumulation of elements in a lineage-specific fashion ranged from 9 × 10−6% to 5.63 × 10−2% per genome. The genomic proportion of Bov-B LINEs varied among snake species but was not directly associated with genome size or invasion time. No differentiation in Bov-B LINE copy number between males and females was observed in any of the snake species examined. Incongruence in tree topology between Bov-B LINEs and other snake phylogenies may reflect past HT events. Sequence divergence of Bov-B LINEs between copies suggests that recent multiple HTs occurred within the same evolutionary timeframe in the snake lineage. The proportion of Bov-B LINEs varies among species, reflecting species specificity in TE invasion. The rapid speciation of snakes, coinciding with Bov-B LINE invasion in snake genomes, leads us to better understand the effect of Bov-B LINEs on snake genome evolution.
Collapse
|
35
|
Bourgeois Y, Ruggiero RP, Hariyani I, Boissinot S. Disentangling the determinants of transposable elements dynamics in vertebrate genomes using empirical evidences and simulations. PLoS Genet 2020; 16:e1009082. [PMID: 33017388 PMCID: PMC7561263 DOI: 10.1371/journal.pgen.1009082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/15/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
The interactions between transposable elements (TEs) and their hosts constitute one of the most profound co-evolutionary processes found in nature. The population dynamics of TEs depends on factors specific to each TE families, such as the rate of transposition and insertional preference, the demographic history of the host and the genomic landscape. How these factors interact has yet to be investigated holistically. Here we are addressing this question in the green anole (Anolis carolinensis) whose genome contains an extraordinary diversity of TEs (including non-LTR retrotransposons, SINEs, LTR-retrotransposons and DNA transposons). We observed a positive correlation between recombination rate and frequency of TEs and densities for LINEs, SINEs and DNA transposons. For these elements, there was a clear impact of demography on TE frequency and abundance, with a loss of polymorphic elements and skewed frequency spectra in recently expanded populations. On the other hand, some LTR-retrotransposons displayed patterns consistent with a very recent phase of intense amplification. To determine how demography, genomic features and intrinsic properties of TEs interact we ran simulations using SLiM3. We determined that i) short TE insertions are not strongly counter-selected, but long ones are, ii) neutral demographic processes, linked selection and preferential insertion may explain positive correlations between average TE frequency and recombination, iii) TE insertions are unlikely to have been massively recruited in recent adaptation. We demonstrate that deterministic and stochastic processes have different effects on categories of TEs and that a combination of empirical analyses and simulations can disentangle these mechanisms.
Collapse
Affiliation(s)
- Yann Bourgeois
- School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
- New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
- * E-mail: (YB); (SB)
| | - Robert P. Ruggiero
- New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO, United States of America
| | - Imtiyaz Hariyani
- New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Stéphane Boissinot
- New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
- * E-mail: (YB); (SB)
| |
Collapse
|
36
|
Liu Z, Fan M, Yue EK, Li Y, Tao RF, Xu HM, Duan MH, Xu JH. Natural variation and evolutionary dynamics of transposable elements in Brassica oleracea based on next-generation sequencing data. HORTICULTURE RESEARCH 2020; 7:145. [PMID: 32922817 PMCID: PMC7459127 DOI: 10.1038/s41438-020-00367-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/22/2020] [Accepted: 06/19/2020] [Indexed: 06/02/2023]
Abstract
Brassica oleracea comprises various economically important vegetables and presents extremely diverse morphological variations. They provide a rich source of nutrition for human health and have been used as a model system for studying polyploidization. Transposable elements (TEs) account for nearly 40% of the B. oleracea genome and contribute greatly to genetic diversity and genome evolution. Although the proliferation of TEs has led to a large expansion of the B. oleracea genome, little is known about the population dynamics and evolutionary activity of TEs. A comprehensive mobilome profile of 45,737 TE loci was obtained from resequencing data from 121 diverse accessions across nine B. oleracea morphotypes. Approximately 70% (32,195) of the loci showed insertion polymorphisms between or within morphotypes. In particular, up to 1221 loci were differentially fixed among morphotypes. Further analysis revealed that the distribution of the population frequency of TE loci was highly variable across different TE superfamilies and families, implying a diverse expansion history during host genome evolution. These findings provide better insight into the evolutionary dynamics and genetic diversity of B. oleracea genomes and will potentially serve as a valuable resource for molecular markers and association studies between TE-based genomic variations and morphotype-specific phenotypic differentiation.
Collapse
Affiliation(s)
- Zhen Liu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, 310058 Hangzhou, People’s Republic of China
| | - Miao Fan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, 310058 Hangzhou, People’s Republic of China
| | - Er-Kui Yue
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, 310058 Hangzhou, People’s Republic of China
| | - Yu Li
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, 310058 Hangzhou, People’s Republic of China
| | - Ruo-Fu Tao
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, 310058 Hangzhou, People’s Republic of China
| | - Hai-Ming Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, 310058 Hangzhou, People’s Republic of China
| | - Ming-Hua Duan
- Zhejiang Zhengjingyuan Pharmacy Chain Co., Ltd. & Hangzhou Zhengcaiyuan Pharmaceutical Co., Ltd., 310021 Hangzhou, People’s Republic of China
| | - Jian-Hong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, 310058 Hangzhou, People’s Republic of China
| |
Collapse
|
37
|
Kapun M, Barrón MG, Staubach F, Obbard DJ, Wiberg RAW, Vieira J, Goubert C, Rota-Stabelli O, Kankare M, Bogaerts-Márquez M, Haudry A, Waidele L, Kozeretska I, Pasyukova EG, Loeschcke V, Pascual M, Vieira CP, Serga S, Montchamp-Moreau C, Abbott J, Gibert P, Porcelli D, Posnien N, Sánchez-Gracia A, Grath S, Sucena É, Bergland AO, Guerreiro MPG, Onder BS, Argyridou E, Guio L, Schou MF, Deplancke B, Vieira C, Ritchie MG, Zwaan BJ, Tauber E, Orengo DJ, Puerma E, Aguadé M, Schmidt P, Parsch J, Betancourt AJ, Flatt T, González J. Genomic Analysis of European Drosophila melanogaster Populations Reveals Longitudinal Structure, Continent-Wide Selection, and Previously Unknown DNA Viruses. Mol Biol Evol 2020; 37:2661-2678. [PMID: 32413142 PMCID: PMC7475034 DOI: 10.1093/molbev/msaa120] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic variation is the fuel of evolution, with standing genetic variation especially important for short-term evolution and local adaptation. To date, studies of spatiotemporal patterns of genetic variation in natural populations have been challenging, as comprehensive sampling is logistically difficult, and sequencing of entire populations costly. Here, we address these issues using a collaborative approach, sequencing 48 pooled population samples from 32 locations, and perform the first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster. Our analyses uncover longitudinal population structure, provide evidence for continent-wide selective sweeps, identify candidate genes for local climate adaptation, and document clines in chromosomal inversion and transposable element frequencies. We also characterize variation among populations in the composition of the fly microbiome, and identify five new DNA viruses in our samples.
Collapse
Affiliation(s)
- Martin Kapun
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Evolutionary Biology and Environmental Sciences, University of Zürich, Zürich, Switzerland
- Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Maite G Barrón
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Fabian Staubach
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| | - Darren J Obbard
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - R Axel W Wiberg
- The European Drosophila Population Genomics Consortium (DrosEU)
- Centre for Biological Diversity, School of Biology, University of St. Andrews, St Andrews, Scotland
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Jorge Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| | - Clément Goubert
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | - Omar Rota-Stabelli
- The European Drosophila Population Genomics Consortium (DrosEU)
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’ Adige, Italy
| | - Maaria Kankare
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - María Bogaerts-Márquez
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Annabelle Haudry
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Lena Waidele
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| | - Iryna Kozeretska
- The European Drosophila Population Genomics Consortium (DrosEU)
- General and Medical Genetics Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- State Institution National Antarctic Scientific Center of Ministry of Education and Science of Ukraine, Kyiv, Ukraine
| | - Elena G Pasyukova
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratory of Genome Variation, Institute of Molecular Genetics of RAS, Moscow, Russia
| | - Volker Loeschcke
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Bioscience—Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
| | - Marta Pascual
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Cristina P Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| | - Svitlana Serga
- The European Drosophila Population Genomics Consortium (DrosEU)
- General and Medical Genetics Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Catherine Montchamp-Moreau
- The European Drosophila Population Genomics Consortium (DrosEU)
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Jessica Abbott
- The European Drosophila Population Genomics Consortium (DrosEU)
- Section for Evolutionary Ecology, Department of Biology, Lund University, Lund, Sweden
| | - Patricia Gibert
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Damiano Porcelli
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Animal and Plant Sciences, Sheffield, United Kingdom
| | - Nico Posnien
- The European Drosophila Population Genomics Consortium (DrosEU)
- Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Universität Göttingen, Göttingen, Germany
| | - Alejandro Sánchez-Gracia
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sonja Grath
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Élio Sucena
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Alan O Bergland
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Maria Pilar Garcia Guerreiro
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Banu Sebnem Onder
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Eliza Argyridou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Lain Guio
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Mads Fristrup Schou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Bioscience—Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
- Section for Evolutionary Ecology, Department of Biology, Lund University, Lund, Sweden
| | - Bart Deplancke
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Bio-engineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Cristina Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Michael G Ritchie
- The European Drosophila Population Genomics Consortium (DrosEU)
- Centre for Biological Diversity, School of Biology, University of St. Andrews, St Andrews, Scotland
| | - Bas J Zwaan
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Eran Tauber
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Dorcas J Orengo
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Eva Puerma
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Aguadé
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Paul Schmidt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - John Parsch
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Andrea J Betancourt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolution, Ecology, and Behaviour, University of Liverpool, Liverpool, United Kingdom
| | - Thomas Flatt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Josefa González
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
38
|
Tuo Y, Chu W, Zhang J, Cheng J, Chen L, Bao L, Xiao T. Analysis of Natural Selection of Immune Genes in Spinibarbus caldwelli by Transcriptome Sequencing. Front Genet 2020; 11:714. [PMID: 32793279 PMCID: PMC7393255 DOI: 10.3389/fgene.2020.00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 06/11/2020] [Indexed: 12/03/2022] Open
Abstract
Spinibarbus caldwelli is an omnivorous cyprinid fish that is distributed widely in China. To investigate the adaptive evolution of S. caldwelli, the muscle transcriptome was sequenced by Illumina HiSeq 4000 platform. A total of 80,447,367 reads were generated by next-generation sequencing. Also, 211,386 unigenes were obtained by de novo assembly. Additionally, we calculated that the divergence time between S. caldwelli and Sinocyclocheilus grahami is 23.14 million years ago (Mya). And both of them diverged from Ctenopharyngodon idellus 46.95 Mya. Furthermore, 38 positive genes were identified by calculating Ka/Ks ratios from 9225 orthologs. Among them, several immune-related genes were identified as positively selected, such as POLR3B, PIK3C3, TOPORS, FASTKD3, CYPLP1A1, and UACA. Our results throw light on the nature of the natural selection of S. caldwelli and contribute to future immunological and transcriptome studies.
Collapse
Affiliation(s)
- Yun Tuo
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China.,College of Life Science and Resources Environment, Yichun University, Yichun, China
| | - Wuying Chu
- Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jianshe Zhang
- Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jia Cheng
- Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Lin Chen
- Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Lingsheng Bao
- Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China
| |
Collapse
|
39
|
Van der Mude A. Structure encoding in DNA. J Theor Biol 2020; 492:110205. [PMID: 32070719 DOI: 10.1016/j.jtbi.2020.110205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/29/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022]
Abstract
It is proposed that transposons and related long non-coding RNA define the fine structure of body parts. Although morphogens have long been known to direct the formation of many gross structures in early embryonic development, they do not have the necessary precision to define a structure down to the individual cellular level. Using the distinction between procedural and declarative knowledge in information processing as an analogy, it is hypothesized that DNA encodes fine structure in a manner that is different from the genetic code for proteins. The hypothesis states that repeated or near-repeated sequences that are in transposons and non-coding RNA define body part structures. As the cells in a body part go through the epigenetic process of differentiation, the action of methylation serves to inactivate all but the relevant structure definitions and some associated cell type genes. The transposons left active will then physically modify the DNA sequence in the heterochromatin to establish the local context in the three-dimensional body part structure. This brings the encoded definition of the cell type to the histone. The histone code for that cell type starts the regulatory cascade that turns on the genes associated with that particular type of cell, transforming it from a multipotent cell to a fully differentiated cell. This mechanism creates structures in the musculoskeletal system, the organs of the body, the major parts of the brain, and other systems.
Collapse
|
40
|
Kofler R. piRNA Clusters Need a Minimum Size to Control Transposable Element Invasions. Genome Biol Evol 2020; 12:736-749. [PMID: 32219390 PMCID: PMC7259680 DOI: 10.1093/gbe/evaa064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
piRNA clusters are thought to repress transposable element (TE) activity in mammals and invertebrates. Here, we show that a simple population genetics model reveals a constraint on the size of piRNA clusters: The total size of the piRNA clusters of an organism must exceed 0.2% of a genome to repress TE invasions. Moreover, larger piRNA clusters accounting for up to 3% of the genome may be necessary when populations are small, transposition rates are high, and TE insertions are recessive. If piRNA clusters are too small, the load of deleterious TE insertions that accumulate during a TE invasion may drive populations extinct before an effective piRNA-based defense against the TE can be established. Our findings are solely based on three well-supported assumptions: 1) TEs multiply within genomes, 2) TEs are mostly deleterious, and 3) piRNA clusters act as transposon traps, where a single insertion in a cluster silences all TE copies in trans. Interestingly, the piRNA clusters of some species meet our observed minimum size requirements, whereas the clusters of other species do not. Species with small piRNA clusters, such as humans and mice, may experience severe fitness reductions during invasions of novel TEs, which is possibly even threatening the persistence of some populations. This work also raises the important question of how piRNA clusters evolve. We propose that the size of piRNA clusters may be at an equilibrium between evolutionary forces that act to expand and contract piRNA clusters.
Collapse
Affiliation(s)
- Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
| |
Collapse
|
41
|
Salces-Ortiz J, Vargas-Chavez C, Guio L, Rech GE, González J. Transposable elements contribute to the genomic response to insecticides in Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190341. [PMID: 32075557 PMCID: PMC7061994 DOI: 10.1098/rstb.2019.0341] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Most of the genotype–phenotype analyses to date have largely centred attention on single nucleotide polymorphisms. However, transposable element (TE) insertions have arisen as a plausible addition to the study of the genotypic–phenotypic link because of to their role in genome function and evolution. In this work, we investigate the contribution of TE insertions to the regulation of gene expression in response to insecticides. We exposed four Drosophila melanogaster strains to malathion, a commonly used organophosphate insecticide. By combining information from different approaches, including RNA-seq and ATAC-seq, we found that TEs can contribute to the regulation of gene expression under insecticide exposure by rewiring cis-regulatory networks. This article is part of a discussion meeting issue ‘Crossroads between transposons and gene regulation’.
Collapse
Affiliation(s)
- Judit Salces-Ortiz
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Carlos Vargas-Chavez
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Lain Guio
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Gabriel E Rech
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
42
|
Uzunović J, Josephs EB, Stinchcombe JR, Wright SI. Transposable Elements Are Important Contributors to Standing Variation in Gene Expression in Capsella Grandiflora. Mol Biol Evol 2020; 36:1734-1745. [PMID: 31028401 DOI: 10.1093/molbev/msz098] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs) make up a significant portion of eukaryotic genomes and are important drivers of genome evolution. However, the extent to which TEs affect gene expression variation on a genome-wide scale in comparison with other types of variants is still unclear. We characterized TE insertion polymorphisms and their association with gene expression in 124 whole-genome sequences from a single population of Capsella grandiflora, and contrasted this with the effects of single nucleotide polymorphisms (SNPs). Population frequency of insertions was negatively correlated with distance to genes, as well as density of conserved noncoding elements, suggesting that the negative effects of TEs on gene regulation are important in limiting their abundance. Rare TE variants strongly influence gene expression variation, predominantly through downregulation. In contrast, rare SNPs contribute equally to up- and down-regulation, but have a weaker individual effect than TEs. An expression quantitative trait loci (eQTL) analysis shows that a greater proportion of common TEs are eQTLs as opposed to common SNPs, and a third of the genes with TE eQTLs do not have SNP eQTLs. In contrast with rare TE insertions, common insertions are more likely to increase expression, consistent with recent models of cis-regulatory evolution favoring enhancer alleles. Taken together, these results imply that TEs are a significant contributor to gene expression variation and are individually more likely than rare SNPs to cause extreme changes in gene expression.
Collapse
Affiliation(s)
- Jasmina Uzunović
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Koffler Scientific Reserve, University of Toronto, Toronto, Ontario, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Moschetti R, Palazzo A, Lorusso P, Viggiano L, Massimiliano Marsano R. "What You Need, Baby, I Got It": Transposable Elements as Suppliers of Cis-Operating Sequences in Drosophila. BIOLOGY 2020; 9:E25. [PMID: 32028630 PMCID: PMC7168160 DOI: 10.3390/biology9020025] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has been widely assessed over the past years in a variety of model and non-model organisms. Drosophila is undoubtedly among the most powerful model organisms used for the purpose of studying the role of transposons and their effects on the stability and evolution of genes and genomes. Besides their most intuitive role as insertional mutagens, TEs can modify the transcriptional pattern of host genes by juxtaposing new cis-regulatory sequences. A key element of TE biology is that they carry transcriptional control elements that fine-tune the transcription of their own genes, but that can also perturb the transcriptional activity of neighboring host genes. From this perspective, the transposition-mediated modulation of gene expression is an important issue for the short-term adaptation of physiological functions to the environmental changes, and for long-term evolutionary changes. Here, we review the current literature concerning the regulatory and structural elements operating in cis provided by TEs in Drosophila. Furthermore, we highlight that, besides their influence on both TEs and host genes expression, they can affect the chromatin structure and epigenetic status as well as both the chromosome's structure and stability. It emerges that Drosophila is a good model organism to study the effect of TE-linked regulatory sequences, and it could help future studies on TE-host interactions in any complex eukaryotic genome.
Collapse
Affiliation(s)
- Roberta Moschetti
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| | - Antonio Palazzo
- Laboratory of Translational Nanotechnology, “Istituto Tumori Giovanni Paolo II” I.R.C.C.S, Viale Orazio Flacco 65, 70125 Bari, Italy;
| | - Patrizio Lorusso
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| | - Luigi Viggiano
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| | - René Massimiliano Marsano
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| |
Collapse
|
44
|
Luo S, Zhang H, Duan Y, Yao X, Clark AG, Lu J. The evolutionary arms race between transposable elements and piRNAs in Drosophila melanogaster. BMC Evol Biol 2020; 20:14. [PMID: 31992188 PMCID: PMC6988346 DOI: 10.1186/s12862-020-1580-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 01/13/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The piwi-interacting RNAs (piRNAs) are small non-coding RNAs that specifically repress transposable elements (TEs) in the germline of Drosophila. Despite our expanding understanding of TE:piRNA interaction, whether there is an evolutionary arms race between TEs and piRNAs was unclear. RESULTS Here, we studied the population genomics of TEs and piRNAs in the worldwide strains of D. melanogaster. By conducting a correlation analysis between TE contents and the abundance of piRNAs from ovaries of representative strains of D. melanogaster, we find positive correlations between TEs and piRNAs in six TE families. Our simulations further highlight that TE activities and the strength of purifying selection against TEs are important factors shaping the interactions between TEs and piRNAs. Our studies also suggest that the de novo generation of piRNAs is an important mechanism to repress the newly invaded TEs. CONCLUSIONS Our results revealed the existence of an evolutionary arms race between the copy numbers of TEs and the abundance of antisense piRNAs at the population level. Although the interactions between TEs and piRNAs are complex and many factors should be considered to impact their interaction dynamics, our results suggest the emergence, repression specificity and strength of piRNAs on TEs should be considered in studying the landscapes of TE insertions in Drosophila. These results deepen our understanding of the interactions between piRNAs and TEs, and also provide novel insights into the nature of genomic conflicts of other forms.
Collapse
Affiliation(s)
- Shiqi Luo
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, College of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- College of Plant Protection, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Hong Zhang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, College of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yuange Duan
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, College of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xinmin Yao
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, College of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, College of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
45
|
Liu D, Yang J, Tang W, Zhang X, Royster CM, Zhang M. SINE Retrotransposon variation drives Ecotypic disparity in natural populations of Coilia nasus. Mob DNA 2020; 11:4. [PMID: 31921363 PMCID: PMC6951006 DOI: 10.1186/s13100-019-0198-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 12/27/2019] [Indexed: 02/08/2023] Open
Abstract
Background SINEs are a type of nonautonomous retrotransposon that can transpose from one site to be integrated elsewhere in an organism genome. SINE insertion can give rise to genetic variants and regulate gene expression, allowing organisms to acquire new adaptive capacity. Studies on this subject have focused on the impacts of SINEs on genes. However, ecological disparities in fish have not yet been explained by SINEs. Results New SINEs were isolated from Coilia nasus, which has two ecotypes—migratory and resident—that differ in their spawning and migration behaviors. The SINEs possess two structures that resemble a tRNA gene and a LINE retrotransposon tail. Comparison of olfactory tissue transcriptomes, intact SINE transcript copies were detected in only the migratory fish at the initial retrotransposition stage. The SINE DNA copy numbers were higher in the resident type than in the migratory type, while the frequency of SINE insertion was higher in the migratory type than in the resident type. Furthermore, SINE insertions can lead to new repeats of short DNA fragments in the genome, along with target site duplications. SINEs in the resident type have undergone excision via a mechanism in which predicted cleavage sites are formed by mutations, resulting in gaps that are then filled by microsatellites via microhomology-induced replication. Conclusions Notably, SINEs in the resident type have undergone strong natural selection, causing genomic heteroplasmy and driving ecological diversity of C. nasus. Our results reveal possible evolutionary mechanisms underlying the ecological diversity at the interface between SINE mobilization and organism defense.
Collapse
Affiliation(s)
- Dong Liu
- 1Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Universities, Shanghai, 201306 China.,3Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306 China.,4National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306 China
| | - Jinquan Yang
- 1Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Universities, Shanghai, 201306 China
| | - Wenqiao Tang
- 1Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Universities, Shanghai, 201306 China.,3Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306 China.,4National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306 China
| | - Xing Zhang
- 2Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA 30602 USA
| | - Clay Matthew Royster
- 2Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA 30602 USA
| | - Ming Zhang
- 2Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
46
|
The SUMO Ligase Su(var)2-10 Controls Hetero- and Euchromatic Gene Expression via Establishing H3K9 Trimethylation and Negative Feedback Regulation. Mol Cell 2019; 77:571-585.e4. [PMID: 31901448 DOI: 10.1016/j.molcel.2019.09.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/11/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
Сhromatin is critical for genome compaction and gene expression. On a coarse scale, the genome is divided into euchromatin, which harbors the majority of genes and is enriched in active chromatin marks, and heterochromatin, which is gene-poor but repeat-rich. The conserved molecular hallmark of heterochromatin is the H3K9me3 modification, which is associated with gene silencing. We found that in Drosophila, deposition of most of the H3K9me3 mark depends on SUMO and the SUMO ligase Su(var)2-10, which recruits the histone methyltransferase complex SetDB1/Wde. In addition to repressing repeats, H3K9me3 influences expression of both hetero- and euchromatic host genes. High H3K9me3 levels in heterochromatin are required to suppress spurious transcription and ensure proper gene expression. In euchromatin, a set of conserved genes is repressed by Su(var)2-10/SetDB1-induced H3K9 trimethylation, ensuring tissue-specific gene expression. Several components of heterochromatin are themselves repressed by this pathway, providing a negative feedback mechanism to ensure chromatin homeostasis.
Collapse
|
47
|
Markova DN, Christensen SM, Betrán E. Telomere-Specialized Retroelements in Drosophila: Adaptive Symbionts of the Genome, Neutral, or in Conflict? Bioessays 2019; 42:e1900154. [PMID: 31815300 DOI: 10.1002/bies.201900154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Indexed: 12/17/2022]
Abstract
Linear chromosomes shorten in every round of replication. In Drosophila, telomere-specialized long interspersed retrotransposable elements (LINEs) belonging to the jockey clade offset this shortening by forming head-to-tail arrays at Drosophila telomere ends. As such, these telomeric LINEs have been considered adaptive symbionts of the genome, protecting it from premature decay, particularly as Drosophila lacks a conventional telomerase holoenzyme. However, as reviewed here, recent work reveals a high degree of variation and turnover in the telomere-specialized LINE lineages across Drosophila. There appears to be no absolute requirement for LINE activity to maintain telomeres in flies, hence the suggestion that the telomere-specialized LINEs may instead be neutral or in conflict with the host, rather than adaptive.
Collapse
Affiliation(s)
- Dragomira N Markova
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Shawn M Christensen
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
48
|
Choudhury RR, Rogivue A, Gugerli F, Parisod C. Impact of polymorphic transposable elements on linkage disequilibrium along chromosomes. Mol Ecol 2019; 28:1550-1562. [DOI: 10.1111/mec.15014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/26/2018] [Indexed: 01/03/2023]
Affiliation(s)
| | - Aude Rogivue
- WSL Swiss Federal Research Institute Birmensdorf Switzerland
| | - Felix Gugerli
- WSL Swiss Federal Research Institute Birmensdorf Switzerland
| | | |
Collapse
|
49
|
Abstract
In this perspective, we evaluate the explanatory power of the neutral theory of molecular evolution, 50 years after its introduction by Kimura. We argue that the neutral theory was supported by unreliable theoretical and empirical evidence from the beginning, and that in light of modern, genome-scale data, we can firmly reject its universality. The ubiquity of adaptive variation both within and between species means that a more comprehensive theory of molecular evolution must be sought.
Collapse
Affiliation(s)
- Andrew D Kern
- Department of Genetics, Rutgers University, Piscataway, NJ
| | - Matthew W Hahn
- Department of Biology and Department of Computer Science, Indiana University Bloomington, IN
| |
Collapse
|
50
|
Merenciano M, Iacometti C, González J. A unique cluster of roo insertions in the promoter region of a stress response gene in Drosophila melanogaster. Mob DNA 2019; 10:10. [PMID: 30911338 PMCID: PMC6415491 DOI: 10.1186/s13100-019-0152-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/28/2019] [Indexed: 01/19/2023] Open
Abstract
Transposable elements (TEs) are not randomly distributed in the genome. A genome-wide analysis of the D. melanogaster genome found that differences in TE density across 50 kb genomic regions was due both to transposition and duplication. At smaller genomic scales, promoter regions of hsp genes and the promoter region of CG18446 have been shown to accumulate TE insertions. In this work, we have further analyzed the promoter region of CG18446. We screened 218 strains collected in 15 natural populations, and we found that the CG18446 promoter region contains 20 independent roo insertions. Based on phylogenetic analysis, we suggest that the presence of multiple roo insertions in this region is likely to be the result of several bursts of transposition. Moreover, we found that the roo insertional cluster in the CG18446 promoter region is unique: no other promoter region in the genome contains a similar number of roo insertions. We found that, similar to hsp gene promoters, chromatin accessibility could be one of the factors explaining the recurrent insertions of roo elements in CG18446 promoter region.
Collapse
Affiliation(s)
- Miriam Merenciano
- 1Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta 37,49, 08003 Barcelona, Spain
| | - Camillo Iacometti
- 1Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta 37,49, 08003 Barcelona, Spain.,2Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Josefa González
- 1Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta 37,49, 08003 Barcelona, Spain
| |
Collapse
|