1
|
Beker S, Foxe JJ, Molholm S. Oscillatory entrainment mechanisms and anticipatory predictive processes in children with autism spectrum disorder. J Neurophysiol 2021; 126:1783-1798. [PMID: 34644178 PMCID: PMC8794059 DOI: 10.1152/jn.00329.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/22/2022] Open
Abstract
Anticipating near-future events is fundamental to adaptive behavior, whereby neural processing of predictable stimuli is significantly facilitated relative to nonpredictable events. Neural oscillations appear to be a key anticipatory mechanism by which processing of upcoming stimuli is modified, and they often entrain to rhythmic environmental sequences. Clinical and anecdotal observations have led to the hypothesis that people with autism spectrum disorder (ASD) may have deficits in generating predictions, and as such, a candidate neural mechanism may be failure to adequately entrain neural activity to repetitive environmental patterns, to facilitate temporal predictions. We tested this hypothesis by interrogating temporal predictions and rhythmic entrainment using behavioral and electrophysiological approaches. We recorded high-density electroencephalography in children with ASD and typically developing (TD) age- and IQ-matched controls, while they reacted to an auditory target as quickly as possible. This auditory event was either preceded by predictive rhythmic visual cues or was not preceded by any cue. Both ASD and control groups presented comparable behavioral facilitation in response to the Cue versus No-Cue condition, challenging the hypothesis that children with ASD have deficits in generating temporal predictions. Analyses of the electrophysiological data, in contrast, revealed significantly reduced neural entrainment to the visual cues and altered anticipatory processes in the ASD group. This was the case despite intact stimulus-evoked visual responses. These results support intact behavioral temporal prediction in response to a cue in ASD, in the face of altered neural entrainment and anticipatory processes.NEW & NOTEWORTHY We examined behavioral and EEG indices of predictive processing in children with ASD to rhythmically predictable stimuli. Although behavioral measures of predictive processing and evoked neural responses were intact in the ASD group, neurophysiological measures of preparatory activity and entrainment were impaired. When sensory events are presented in a predictable temporal pattern, performance and neuronal responses in ASD may be governed more by the occurrence of the events themselves and less by their anticipated timing.
Collapse
Affiliation(s)
- Shlomit Beker
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, New York
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - John J Foxe
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, New York
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
- Department of Neuroscience, The Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Sophie Molholm
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, New York
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
- Department of Neuroscience, The Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
2
|
Meirhaeghe N, Sohn H, Jazayeri M. A precise and adaptive neural mechanism for predictive temporal processing in the frontal cortex. Neuron 2021; 109:2995-3011.e5. [PMID: 34534456 PMCID: PMC9737059 DOI: 10.1016/j.neuron.2021.08.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/02/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022]
Abstract
The theory of predictive processing posits that the brain computes expectations to process information predictively. Empirical evidence in support of this theory, however, is scarce and largely limited to sensory areas. Here, we report a precise and adaptive mechanism in the frontal cortex of non-human primates consistent with predictive processing of temporal events. We found that the speed of neural dynamics is precisely adjusted according to the average time of an expected stimulus. This speed adjustment, in turn, enables neurons to encode stimuli in terms of deviations from expectation. This lawful relationship was evident across multiple experiments and held true during learning: when temporal statistics underwent covert changes, neural responses underwent predictable changes that reflected the new mean. Together, these results highlight a precise mathematical relationship between temporal statistics in the environment and neural activity in the frontal cortex that may serve as a mechanism for predictive temporal processing.
Collapse
Affiliation(s)
- Nicolas Meirhaeghe
- Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hansem Sohn
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mehrdad Jazayeri
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA,Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
3
|
Crowe EM, Los SA, Schindler L, Kent C. Transfer effects in auditory temporal preparation occur using an unfilled but not filled foreperiod. Q J Exp Psychol (Hove) 2021; 74:1432-1438. [PMID: 33535929 PMCID: PMC8261779 DOI: 10.1177/1747021821995452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
How quickly participants respond to a “go” after a “warning” signal is
partly determined by the time between the two signals (the foreperiod)
and the distribution of foreperiods. According to Multiple Trace
Theory of Temporal Preparation (MTP), participants use memory traces
of previous foreperiods to prepare for the upcoming go signal. If the
processes underlying temporal preparation reflect general encoding and
memory principles, transfer effects (the carryover effect of a
previous block’s distribution of foreperiods to the current block)
should be observed regardless of the sensory modality in which signals
are presented. Despite convincing evidence for transfer effects in the
visual domain, only weak evidence for transfer effects has been
documented in the auditory domain. Three experiments were conducted to
examine whether such differences in results are due to the modality of
the stimulus or other procedural factors. In each experiment, two
groups of participants were exposed to different foreperiod
distributions in the acquisition phase and to the same foreperiod
distribution in the transfer phase. Experiment 1 used a
choice-reaction time (RT) task, and the warning signal remained on
until the go signal, but there was no evidence for transfer effects.
Experiments 2 and 3 used a simple- and choice-RT task, respectively,
and there was silence between the warning and go signals. Both
experiments revealed evidence for transfer effects, which suggests
that transfer effects are most evident when there is no auditory
stimulation between the warning and go signals.
Collapse
Affiliation(s)
- Emily M Crowe
- Faculty of Behavioural and Movement Sciences, Institute for Brain and Behaviour, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,School of Psychological Science, University of Bristol, Bristol, UK
| | - Sander A Los
- Faculty of Behavioural and Movement Sciences, Institute for Brain and Behaviour, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Louise Schindler
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Christopher Kent
- School of Psychological Science, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Jaeger C, Glim S, Dimulescu C, Ries A, Sorg C, Wohlschläger A. Segregated Co-activation Patterns in the Emergence of Decision Confidence During Visual Perception. Front Syst Neurosci 2020; 14:557693. [PMID: 33240053 PMCID: PMC7683611 DOI: 10.3389/fnsys.2020.557693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/14/2020] [Indexed: 11/24/2022] Open
Abstract
Visual metacognition-the introspection and evaluation of one's own visual perceptual processes-is measured through both decision confidence and "metacognitive efficiency." Metacognitive efficiency refers to an individual's ability to accurately judge incorrect and correct decisions through confidence ratings given their task performance. Previous imaging studies in humans and nonhuman primates reported widely distributed brain regions being involved in decision confidence and metacognition. However, the neural correlates of metacognition are remarkably inconsistent across studies concerning spatial outline. Therefore, this study investigates the neural correlates of visual metacognition by examining co-activation across regions that scale with visual decision confidence. We hypothesized that interacting processes of perceptual and metacognitive performance contribute to the arising decision confidence in distributed, but segregable co-activating brain regions. To test this hypothesis, we performed task-fMRI in healthy humans during a visual backward masking task with four-scale, post-decision confidence ratings. We measured blood oxygenation covariation patterns, which served as a physiological proxy for co-activation across brain regions. Decision confidence ratings and an individual's metacognitive efficiency served as behavioral measures for metacognition. We found three distinct co-activation clusters involved in decision confidence: the first included right-centered fronto-temporal-parietal regions, the second included left temporal and parietal regions, and the left basal forebrain (BF), and the third included cerebellar regions. The right fronto-temporal-parietal cluster including the supplementary eye field and the right basal forebrain showed stronger co-activation in subjects with higher metacognitive efficiency. Our results provide novel evidence for co-activation of widely distributed fronto-parieto-temporal regions involved in visual confidence. The supplementary eye field was the only region that activated for both decision confidence and metacognitive efficiency, suggesting the supplementary eye field plays a key role in visual metacognition. Our results link findings in electrophysiology studies and human fMRI studies and provide evidence that confidence estimates arise from the integration of multiple information processing pathways.
Collapse
Affiliation(s)
- Cilia Jaeger
- Department of Neuroradiology, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Planegg-Martinsried, Germany
| | - Sarah Glim
- Department of Neuroradiology, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Planegg-Martinsried, Germany
| | - Cristiana Dimulescu
- Department of Neuroradiology, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Anja Ries
- Department of Neuroradiology, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
- Department of Psychiatry, Technical University of Munich, Munich, Germany
| | - Afra Wohlschläger
- Department of Neuroradiology, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
Pilacinski A, Höller-Wallscheid MS, Lindner A. Remember how to use it: Effector-dependent modulation of spatial working memory activity in posterior parietal cortex. PLoS One 2020; 15:e0238022. [PMID: 32845918 PMCID: PMC7449404 DOI: 10.1371/journal.pone.0238022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/12/2020] [Indexed: 11/19/2022] Open
Abstract
Working memory (WM) is the key process linking perception to action. Several lines of research have, accordingly, highlighted WM’s engagement in sensori-motor associations between retrospective stimuli and future behavior. Using human fMRI we investigated whether prior information about the effector used to respond in a WM task would have an impact on the way the same sensory stimulus is maintained in memory despite a behavioral response could not be readily planned. We focused on WM-related activity in posterior parietal cortex during the maintenance of spatial items for a subsequent match-to-sample comparison, which was reported either with a verbal or with a manual response. We expected WM activity to be higher for manual response trials, because of posterior parietal cortex’s engagement in both spatial WM and hand movement preparation. Increased fMRI activity for manual response trials in bilateral anterior intraparietal sulcus confirmed our expectations. These results imply that the maintenance of sensory material in WM is optimized for motor context, i.e. for the effector that will be relevant in the upcoming behavioral responses.
Collapse
Affiliation(s)
- Artur Pilacinski
- Department of Cognitive Neurology, Hertie-Institute for Clinical Brain Research, Tübingen, Germany
- Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- * E-mail: (AP); (AL)
| | | | - Axel Lindner
- Department of Cognitive Neurology, Hertie-Institute for Clinical Brain Research, Tübingen, Germany
- Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- * E-mail: (AP); (AL)
| |
Collapse
|
6
|
Oláh V, Knakker B, Trunk A, Lendvai B, Hernádi I. Dissociating cholinergic influence on alertness and temporal attention in primates in a simple reaction time paradigm. Eur J Neurosci 2020; 52:3776-3789. [PMID: 32516489 DOI: 10.1111/ejn.14852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 05/28/2020] [Indexed: 11/30/2022]
Abstract
The ability to promptly respond to behaviourally relevant events depends on both general alertness and phasic changes in attentional state driven by temporal expectations. Using a variable foreperiod simple reaction time (RT) task in four adult male rhesus macaques, we investigated the role of the cholinergic system in alertness and temporal expectation. Foreperiod effects on RT reflect temporal expectation, while alertness is quantified as overall response speed. We measured these RT parameters under vehicle treatment and systemic administration of the muscarinic receptor antagonist scopolamine. We also investigated whether and to what extent the effects of scopolamine were reversed by donepezil, a cholinesterase inhibitor widely used for the treatment of dementia. In the control condition, RT showed a continuous decrease as the foreperiod duration increased, which clearly indicated the effect of temporal expectation on RT. This foreperiod effect was mainly detectable on the faster tail of the RT distribution and was eliminated by scopolamine. Furthermore, scopolamine treatment slowed down the average RT. Donepezil treatment was efficient on the slower tail of the RT distribution and improved scopolamine-induced impairments only on the average RT reflecting a general beneficial effect on alertness without any improvement in temporal expectation. The present results highlight the role of the cholinergic system in temporal expectation and alertness in primates and help delineate the efficacy and scope of donepezil and other cholinomimetic agents as cognitive enhancers in present and future clinical practice.
Collapse
Affiliation(s)
- Vilmos Oláh
- Grastyán Translational Research Center, University of Pécs & Gedeon Richter Plc., Pécs, Hungary.,Department of Experimental Zoology and Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Balázs Knakker
- Grastyán Translational Research Center, University of Pécs & Gedeon Richter Plc., Pécs, Hungary
| | - Attila Trunk
- Grastyán Translational Research Center, University of Pécs & Gedeon Richter Plc., Pécs, Hungary
| | - Balázs Lendvai
- Grastyán Translational Research Center, University of Pécs & Gedeon Richter Plc., Pécs, Hungary.,Department of Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - István Hernádi
- Grastyán Translational Research Center, University of Pécs & Gedeon Richter Plc., Pécs, Hungary.,Department of Experimental Zoology and Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary.,Szentágothai Research Center, Center for Neuroscience, University of Pécs, Pécs, Hungary.,Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
7
|
Zalta A, Petkoski S, Morillon B. Natural rhythms of periodic temporal attention. Nat Commun 2020; 11:1051. [PMID: 32103014 PMCID: PMC7044316 DOI: 10.1038/s41467-020-14888-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/06/2020] [Indexed: 12/04/2022] Open
Abstract
That attention is a fundamentally rhythmic process has recently received abundant empirical evidence. The essence of temporal attention, however, is to flexibly focus in time. Whether this function is constrained by an underlying rhythmic neural mechanism is unknown. In six interrelated experiments, we behaviourally quantify the sampling capacities of periodic temporal attention during auditory or visual perception. We reveal the presence of limited attentional capacities, with an optimal sampling rate of ~1.4 Hz in audition and ~0.7 Hz in vision. Investigating the motor contribution to temporal attention, we show that it scales with motor rhythmic precision, maximal at ~1.7 Hz. Critically, motor modulation is beneficial to auditory but detrimental to visual temporal attention. These results are captured by a computational model of coupled oscillators, that reveals the underlying structural constraints governing the temporal alignment between motor and attention fluctuations.
Collapse
Affiliation(s)
- Arnaud Zalta
- Inserm, INS, Inst Neurosci Syst, Aix Marseille University, 13005, Marseille, France
- APHM, INSERM, Inst Neurosci Syst, Service de Pharmacologie Clinique et Pharmacovigilance, Aix Marseille University, 13005, Marseille, France
| | - Spase Petkoski
- Inserm, INS, Inst Neurosci Syst, Aix Marseille University, 13005, Marseille, France
| | - Benjamin Morillon
- Inserm, INS, Inst Neurosci Syst, Aix Marseille University, 13005, Marseille, France.
| |
Collapse
|
8
|
Grabenhorst M, Michalareas G, Maloney LT, Poeppel D. The anticipation of events in time. Nat Commun 2019; 10:5802. [PMID: 31862912 PMCID: PMC6925136 DOI: 10.1038/s41467-019-13849-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/25/2019] [Indexed: 11/09/2022] Open
Abstract
Humans anticipate events signaled by sensory cues. It is commonly assumed that two uncertainty parameters modulate the brain's capacity to predict: the hazard rate (HR) of event probability and the uncertainty in time estimation which increases with elapsed time. We investigate both assumptions by presenting event probability density functions (PDFs) in each of three sensory modalities. We show that perceptual systems use the reciprocal PDF and not the HR to model event probability density. We also demonstrate that temporal uncertainty does not necessarily grow with elapsed time but can also diminish, depending on the event PDF. Previous research identified neuronal activity related to event probability in multiple levels of the cortical hierarchy (sensory (V4), association (LIP), motor and other areas) proposing the HR as an elementary neuronal computation. Our results-consistent across vision, audition, and somatosensation-suggest that the neurobiological implementation of event anticipation is based on a different, simpler and more stable computation than HR: the reciprocal PDF of events in time.
Collapse
Affiliation(s)
- Matthias Grabenhorst
- Neuroscience Department, Max-Planck-Institute for Empirical Aesthetics, Grüneburgweg 14, 60322, Frankfurt, Germany.
| | - Georgios Michalareas
- Neuroscience Department, Max-Planck-Institute for Empirical Aesthetics, Grüneburgweg 14, 60322, Frankfurt, Germany
| | - Laurence T Maloney
- Department of Psychology, Center for Neural Science, 6 Washington Place, New York, NY, 10003, USA
| | - David Poeppel
- Neuroscience Department, Max-Planck-Institute for Empirical Aesthetics, Grüneburgweg 14, 60322, Frankfurt, Germany.,Department of Psychology, Center for Neural Science, 6 Washington Place, New York, NY, 10003, USA
| |
Collapse
|
9
|
Tavano A, Schröger E, Kotz SA. Beta power encodes contextual estimates of temporal event probability in the human brain. PLoS One 2019; 14:e0222420. [PMID: 31557168 PMCID: PMC6762064 DOI: 10.1371/journal.pone.0222420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 08/29/2019] [Indexed: 12/30/2022] Open
Abstract
To prepare for an impending event of unknown temporal distribution, humans internally increase the perceived probability of event onset as time elapses. This effect is termed the hazard rate of events. We tested how the neural encoding of hazard rate changes by providing human participants with prior information on temporal event probability. We recorded behavioral and electroencephalographic (EEG) data while participants listened to continuously repeating five-tone sequences, composed of four standard tones followed by a non-target deviant tone, delivered at slow (1.6 Hz) or fast (4 Hz) rates. The task was to detect a rare target tone, which equiprobably appeared at either position two, three or four of the repeating sequence. In this design, potential target position acts as a proxy for elapsed time. For participants uninformed about the target's distribution, elapsed time to uncertain target onset increased response speed, displaying a significant hazard rate effect at both slow and fast stimulus rates. However, only in fast sequences did prior information about the target's temporal distribution interact with elapsed time, suppressing the hazard rate. Importantly, in the fast, uninformed condition pre-stimulus power synchronization in the beta band (Beta 1, 15-19 Hz) predicted the hazard rate of response times. Prior information suppressed pre-stimulus power synchronization in the same band, while still significantly predicting response times. We conclude that Beta 1 power does not simply encode the hazard rate, but-more generally-internal estimates of temporal event probability based upon contextual information.
Collapse
Affiliation(s)
- Alessandro Tavano
- BioCog, Cognitive Incl. Biological Psychology, Institute of Psychology, University of Leipzig, Leipzig, Germany
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Erich Schröger
- BioCog, Cognitive Incl. Biological Psychology, Institute of Psychology, University of Leipzig, Leipzig, Germany
| | - Sonja A. Kotz
- Department of Neuropsychology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Psychology and Neuroscience, Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
10
|
Remington ED, Narain D, Hosseini EA, Jazayeri M. Flexible Sensorimotor Computations through Rapid Reconfiguration of Cortical Dynamics. Neuron 2019; 98:1005-1019.e5. [PMID: 29879384 DOI: 10.1016/j.neuron.2018.05.020] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/19/2018] [Accepted: 05/11/2018] [Indexed: 10/14/2022]
Abstract
Neural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by interactions among neurons, computations can be rapidly reconfigured by controlling the system's inputs and initial conditions. To investigate whether the brain employs such control mechanisms, we recorded from the dorsomedial frontal cortex of monkeys trained to measure and produce time intervals in two sensorimotor contexts. The geometry of neural trajectories during the production epoch was consistent with a mechanism wherein the measured interval and sensorimotor context exerted control over cortical dynamics by adjusting the system's initial condition and input, respectively. These adjustments, in turn, set the speed at which activity evolved in the production epoch, allowing the animal to flexibly produce different time intervals. These results provide evidence that the language of dynamical systems can be used to parsimoniously link brain activity to sensorimotor computations.
Collapse
Affiliation(s)
- Evan D Remington
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Devika Narain
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Erasmus Medical Center, Rotterdam, the Netherlands
| | - Eghbal A Hosseini
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mehrdad Jazayeri
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
11
|
Sohn H, Narain D, Meirhaeghe N, Jazayeri M. Bayesian Computation through Cortical Latent Dynamics. Neuron 2019; 103:934-947.e5. [PMID: 31320220 DOI: 10.1016/j.neuron.2019.06.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/15/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022]
Abstract
Statistical regularities in the environment create prior beliefs that we rely on to optimize our behavior when sensory information is uncertain. Bayesian theory formalizes how prior beliefs can be leveraged and has had a major impact on models of perception, sensorimotor function, and cognition. However, it is not known how recurrent interactions among neurons mediate Bayesian integration. By using a time-interval reproduction task in monkeys, we found that prior statistics warp neural representations in the frontal cortex, allowing the mapping of sensory inputs to motor outputs to incorporate prior statistics in accordance with Bayesian inference. Analysis of recurrent neural network models performing the task revealed that this warping was enabled by a low-dimensional curved manifold and allowed us to further probe the potential causal underpinnings of this computational strategy. These results uncover a simple and general principle whereby prior beliefs exert their influence on behavior by sculpting cortical latent dynamics.
Collapse
Affiliation(s)
- Hansem Sohn
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Devika Narain
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Erasmus Medical Center, Rotterdam 3015CN, the Netherlands
| | - Nicolas Meirhaeghe
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Mehrdad Jazayeri
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
Crowe EM, Kent C. Evidence for short-term, but not long-term, transfer effects in the temporal preparation of auditory stimuli. Q J Exp Psychol (Hove) 2019; 72:2672-2679. [PMID: 31096852 DOI: 10.1177/1747021819854044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Starting procedures in racing sports consist of a warning (e.g., "Set") followed by a target (e.g., "Go") signal. During this interval (the foreperiod), athletes engage in temporal preparation whereby they prepare to respond to the target as quickly as possible. Despite a long history, the cognitive mechanisms underlying this process are debated. Recently, it has been suggested that traces of previous temporal durations drive temporal preparation performance rather than the traditional explanation that performance is related to the currently perceived hazard function. Los and colleagues used visual stimuli for the warning and target signals. As racing sports typically rely upon auditory stimuli, we investigated the role of memory on temporal preparation in the auditory domain. Experiment 1 investigated long-term transfer effects. In an acquisition phase, two groups of participants were exposed to different foreperiod distributions. One week later, during a transfer phase, both groups received the same distribution of foreperiods. There was no evidence for transfer effects. Therefore, Experiment 2 examined short-term transfer effects in which acquisition and transfer phases were completed in the same testing session. There was some evidence for transfer effects, but this was limited, suggesting that there may be modality-specific memory differences.
Collapse
Affiliation(s)
- Emily M Crowe
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Christopher Kent
- School of Psychological Science, University of Bristol, Bristol, UK
| |
Collapse
|
13
|
Abstract
We often temporally prepare our attention for an upcoming event such as a starter pistol. In such cases, our attention should be properly allocated around the expected moment of the event to process relevant sensory input efficiently. In this study, we examined the dynamic changes of attention levels near the expected moment by measuring contrast sensitivity to a target that was temporally cued by a five-second countdown. We found that the overall attention level decreased rapidly after the expected moment, while it stayed relatively constant before it. Results were not consistent with the predictions of existing explanations of temporal attention such as the hazard rate or the stimulus-driven oscillations. A control experiment ruled out the possibility that the observed pattern was due to biased time perception. In a further experiment with a wider range of cue-stimulus-intervals, we observed that attention level increased until the last 500 ms of the interval range, and thereafter, started to decrease. Based on the performances of a generative computational model, we suggest that our results reflect the nature of temporal attention that takes into account the subjectively estimated hazard rate and the probability of relevant events occurring in the near future.
Collapse
|
14
|
Tracking Temporal Hazard in the Human Electroencephalogram Using a Forward Encoding Model. eNeuro 2018; 5:eN-NWR-0017-18. [PMID: 29740594 PMCID: PMC5938715 DOI: 10.1523/eneuro.0017-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/11/2018] [Accepted: 04/15/2018] [Indexed: 11/21/2022] Open
Abstract
Human observers automatically extract temporal contingencies from the environment and predict the onset of future events. Temporal predictions are modeled by the hazard function, which describes the instantaneous probability for an event to occur given it has not occurred yet. Here, we tackle the question of whether and how the human brain tracks continuous temporal hazard on a moment-to-moment basis, and how flexibly it adjusts to strictly implicit variations in the hazard function. We applied an encoding-model approach to human electroencephalographic data recorded during a pitch-discrimination task, in which we implicitly manipulated temporal predictability of the target tones by varying the interval between cue and target tone (i.e. the foreperiod). Critically, temporal predictability either was driven solely by the passage of time (resulting in a monotonic hazard function) or was modulated to increase at intermediate foreperiods (resulting in a modulated hazard function with a peak at the intermediate foreperiod). Forward-encoding models trained to predict the recorded EEG signal from different temporal hazard functions were able to distinguish between experimental conditions, showing that implicit variations of temporal hazard bear tractable signatures in the human electroencephalogram. Notably, this tracking signal was reconstructed best from the supplementary motor area, underlining this area’s link to cognitive processing of time. Our results underline the relevance of temporal hazard to cognitive processing and show that the predictive accuracy of the encoding-model approach can be utilized to track abstract time-resolved stimuli.
Collapse
|
15
|
Abstract
Existing theories suggest that reacting to dynamic stimuli is made possible by relying on internal estimates of kinematic variables. For example, to catch a bouncing ball the brain relies on the position and speed of the ball. However, when kinematic information is unreliable one may additionally rely on temporal cues. In the bouncing ball example, when visibility is low one may benefit from the temporal information provided by the sound of the bounces. Our work provides evidence that humans rely on such temporal cues and automatically integrate them with kinematic information to optimize their performance. This finding reveals a hitherto unappreciated role of the brain’s timing mechanisms in sensorimotor function. To coordinate movements with events in a dynamic environment the brain has to anticipate when those events occur. A classic example is the estimation of time to contact (TTC), that is, when an object reaches a target. It is thought that TTC is estimated from kinematic variables. For example, a tennis player might use an estimate of distance (d) and speed (v) to estimate TTC (TTC = d/v). However, the tennis player may instead estimate TTC as twice the time it takes for the ball to move from the serve line to the net line. This latter strategy does not rely on kinematics and instead computes TTC solely from temporal cues. Which of these two strategies do humans use to estimate TTC? Considering that both speed and time estimates are inherently uncertain and the ability of the human brain to combine different sources of information, we hypothesized that humans estimate TTC by integrating speed information with temporal cues. We evaluated this hypothesis systematically using psychophysics and Bayesian modeling. Results indicated that humans rely on both speed information and temporal cues and integrate them to optimize their TTC estimates when both cues are present. These findings suggest that the brain’s timing mechanisms are actively engaged when interacting with dynamic stimuli.
Collapse
|
16
|
Attention Shifts Recruit the Monkey Default Mode Network. J Neurosci 2017; 38:1202-1217. [PMID: 29263238 DOI: 10.1523/jneurosci.1111-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 11/06/2017] [Accepted: 12/08/2017] [Indexed: 11/21/2022] Open
Abstract
A unifying function associated with the default mode network (DMN), which is more active during rest than under active task conditions, has been difficult to define. The DMN is activated during monitoring the external world for unexpected events, as a sentinel, and when humans are engaged in high-level internally focused tasks. The existence of DMN correlates in other species, such as mice, challenge the idea that internally focused, high-level cognitive operations, such as introspection, autobiographical memory retrieval, planning the future, and predicting someone else's thoughts, are evolutionarily preserved defining properties of the DMN. A recent human study demonstrated that demanding cognitive shifts could recruit the DMN, yet it is unknown whether this holds for nonhuman species. Therefore, we tested whether large changes in cognitive context would recruit DMN regions in female and male nonhuman primates. Such changes were measured as displacements of spatial attentional weights based on internal rules of relevance (spatial shifts) compared with maintaining attentional weights at the same location (stay events). Using fMRI in macaques, we detected that a cortical network, activated during shifts, largely overlapped with the DMN. Moreover, fMRI time courses sampled from independently defined DMN foci showed significant shift selectivity during the demanding attention task. Finally, functional clustering based on independent resting state data revealed that DMN and shift regions clustered conjointly, whereas regions activated during the stay events clustered apart. We therefore propose that cognitive shifting in primates generally recruits DMN regions. This might explain a breakdown of the DMN in many neurological diseases characterized by declined cognitive flexibility.SIGNIFICANCE STATEMENT Activation of the human default mode network (DMN) can be measured with fMRI when subjects shift thoughts between high-level internally directed cognitive states, when thinking about the self, the perspective of others, when imagining future and past events, and during mind wandering. Furthermore, the DMN is activated as a sentinel, monitoring the environment for unexpected events. Arguably, these cognitive processes have in common fast and substantial changes in cognitive context. As DMN activity has also been reported in nonhuman species, we tested whether shifts in spatial attention activated the monkey DMN. Core monkey DMN and shift-selective regions shared several functional properties, indicating that cognitive shifting, in general, might constitute one of the evolutionarily preserved functions of the DMN.
Collapse
|
17
|
|
18
|
Breska A, Deouell LY. Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not rhythmic entrainment. PLoS Biol 2017; 15:e2001665. [PMID: 28187128 PMCID: PMC5302287 DOI: 10.1371/journal.pbio.2001665] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/13/2017] [Indexed: 11/18/2022] Open
Abstract
Predicting the timing of upcoming events enables efficient resource allocation and action preparation. Rhythmic streams, such as music, speech, and biological motion, constitute a pervasive source for temporal predictions. Widely accepted entrainment theories postulate that rhythm-based predictions are mediated by synchronizing low-frequency neural oscillations to the rhythm, as indicated by increased phase concentration (PC) of low-frequency neural activity for rhythmic compared to random streams. However, we show here that PC enhancement in scalp recordings is not specific to rhythms but is observed to the same extent in less periodic streams if they enable memory-based prediction. This is inconsistent with the predictions of a computational entrainment model of stronger PC for rhythmic streams. Anticipatory change in alpha activity and facilitation of electroencephalogram (EEG) manifestations of response selection are also comparable between rhythm- and memory-based predictions. However, rhythmic sequences uniquely result in obligatory depression of preparation-related premotor brain activity when an on-beat event is omitted, even when it is strategically beneficial to maintain preparation, leading to larger behavioral costs for violation of prediction. Thus, while our findings undermine the validity of PC as a sign of rhythmic entrainment, they constitute the first electrophysiological dissociation, to our knowledge, between mechanisms of rhythmic predictions and of memory-based predictions: the former obligatorily lead to resonance-like preparation patterns (that are in line with entrainment), while the latter allow flexible resource allocation in time regardless of periodicity in the input. Taken together, they delineate the neural mechanisms of three distinct modes of preparation: continuous vigilance, interval-timing-based prediction and rhythm-based prediction.
Collapse
Affiliation(s)
- Assaf Breska
- Department of Psychology, Hebrew University, Jerusalem, Israel
| | - Leon Y. Deouell
- Department of Psychology, Hebrew University, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem, Israel
| |
Collapse
|
19
|
How serially organized working memory information interacts with timing. PSYCHOLOGICAL RESEARCH 2016; 81:1255-1263. [DOI: 10.1007/s00426-016-0816-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/08/2016] [Indexed: 10/20/2022]
|
20
|
Neural Correlates of the Time Marker for the Perception of Event Timing. eNeuro 2016; 3:eN-NWR-0144-16. [PMID: 27679810 PMCID: PMC5030839 DOI: 10.1523/eneuro.0144-16.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/01/2016] [Accepted: 08/19/2016] [Indexed: 11/21/2022] Open
Abstract
While sensory processing latency, inferred from the manual reaction time (RT), is substantially affected by diverse stimulus parameters, subjective temporal judgments are relatively accurate. The neural mechanisms underlying this timing perception remain obscure. Here, we measured human neural activity by magnetoencephalography while participants performed a simultaneity judgment task between the onset of random-dot coherent motion and a beep. In a separate session, participants performed an RT task for the same stimuli. We analyzed the relationship between neural activity evoked by motion onset and point of subjective simultaneity (PSS) or RT. The effect of motion coherence was smaller for PSS than RT, but changes in RT and PSS could both be predicted by the time at which an integrated sensory response crossed a threshold. The task differences could be ascribed to the lower threshold for PSS than for RT. In agreement with the psychophysical threshold difference, the participants reported longer delays in their motor response from the subjective motion onset for weaker stimuli. However, they could not judge the timing of stimuli weaker than the detection threshold. A possible interpretation of the present findings is that the brain assigns the time marker for timing perception prior to stimulus detection, but the time marker is available only after stimulus detection.
Collapse
|
21
|
Abstract
Predicting not only what will happen, but also when it will happen is extremely helpful for optimizing perception and action. Temporal predictions driven by periodic stimulation increase perceptual sensitivity and reduce response latencies. At the neurophysiological level, a single mechanism has been proposed to mediate this twofold behavioral improvement: the rhythmic entrainment of slow cortical oscillations to the stimulation rate. However, temporal regularities can occur in aperiodic contexts, suggesting that temporal predictions per se may be dissociable from entrainment to periodic sensory streams. We investigated this possibility in two behavioral experiments, asking human participants to detect near-threshold auditory tones embedded in streams whose temporal and spectral properties were manipulated. While our findings confirm that periodic stimulation reduces response latencies, in agreement with the hypothesis of a stimulus-driven entrainment of neural excitability, they further reveal that this motor facilitation can be dissociated from the enhancement of auditory sensitivity. Perceptual sensitivity improvement is unaffected by the nature of temporal regularities (periodic vs aperiodic), but contingent on the co-occurrence of a fulfilled spectral prediction. Altogether, the dissociation between predictability and periodicity demonstrates that distinct mechanisms flexibly and synergistically operate to facilitate perception and action.
Collapse
|
22
|
Wiener M, Michaelis K, Thompson JC. Functional correlates of likelihood and prior representations in a virtual distance task. Hum Brain Mapp 2016; 37:3172-87. [PMID: 27167875 DOI: 10.1002/hbm.23232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/18/2016] [Indexed: 12/11/2022] Open
Abstract
Spatial navigation is an imperative cognitive function, in which individuals must interact with their environment in order to accurately reach a destination. Previous research has demonstrated that, when traveling a predetermined distance, humans must balance between noise in the measurement process and the prior history of traveled distances. This tradeoff has recently been formally described using Bayesian estimation; however, the neural correlates of Bayesian estimation during distance reproduction have yet to be investigated. Here, human subjects performed a virtual reality distance reproduction task during functional Magnetic Resonance Imaging (fMRI), in which they were required to reproduce various traveled distances in the absence of overt navigational cues. As previously demonstrated, subjects exhibited a central tendency effect, wherein reproduced distances gravitated to the mean of the stimulus set. fMRI activity during this task revealed distance-sensitive activity in a network of regions, including prefrontal and hippocampal regions. Using a computational index of central tendency, we found that activity in the retrosplenial cortex, a region highly implicated in spatial navigation, negatively covaried between subjects with the degree of central tendency observed; conversely, we found that activity in the anterior hippocampus/amygdala complex was positively correlated with the central tendency effect of gravitating to the average reproduced distance. These findings suggest dissociable roles for the retrosplenial cortex and hippocampal complex during distance reproduction, with both regions coordinating with the prefrontal cortex the influence of prior history of the environment with present experience. Hum Brain Mapp 37:3172-3187, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Martin Wiener
- Department of Psychology, George Mason University, Fairfax, Virginia
| | - Kelly Michaelis
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia
| | - James C Thompson
- Department of Psychology, George Mason University, Fairfax, Virginia
| |
Collapse
|
23
|
Koppe G, Heidel A, Sammer G, Bohus M, Gallhofer B, Kirsch P, Lis S. Temporal unpredictability of a stimulus sequence and the processing of neutral and emotional stimuli. Neuroimage 2015; 120:214-24. [DOI: 10.1016/j.neuroimage.2015.06.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/24/2015] [Accepted: 06/28/2015] [Indexed: 10/23/2022] Open
|
24
|
Abstract
In the awake state, shifts of spatial attention alternate with periods of sustained attention at a fixed location or object. Human fMRI experiments revealed the critical role of the superior parietal lobule (SPL) in shifting spatial attention, a finding not predicted by human lesion studies and monkey electrophysiology. To investigate whether a potential homolog of the human SPL shifting region exists in monkeys (Macaca mulatta), we adopted an event-related fMRI paradigm that closely resembled a human experiment (Molenberghs et al., 2007). In this paradigm, a pair of relevant and irrelevant shapes was continuously present on the horizontal meridian. Subjects had to covertly detect a dimming of the relevant shape while ignoring the irrelevant dimmings. The events of interest consisted of the replacement of one stimulus pair by the next. During shift but not stay events, the relevant shape of the new pair appeared at the contralateral position relative to the previous one. Spatial shifting events activated parietal areas V6/V6A and medial intraparietal area, caudo-dorsal visual areas, the most posterior portion of the superior temporal sulcus, and several smaller frontal areas. These areas were not activated during passive stimulation with the same sensory stimuli. During stay events, strong direction-sensitive attention signals were observed in a distributed set of contralateral visual, temporal, parietal, and lateral prefrontal areas, the vast majority overlapping with the sensory stimulus representation. We suggest medial intraparietal area and V6/V6A as functional counterparts of human SPL because they contained the most widespread shift signals in the absence of contralateral stay activity, resembling the functional characteristics of the human SPL shifting area.
Collapse
|
25
|
Kong D, Asplund CL, Ling A, Chee MWL. Increased Automaticity and Altered Temporal Preparation Following Sleep Deprivation. Sleep 2015; 38:1219-27. [PMID: 25845689 DOI: 10.5665/sleep.4896] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 03/04/2015] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Temporal expectation enables us to focus limited processing resources, thereby optimizing perceptual and motor processing for critical upcoming events. We investigated the effects of total sleep deprivation (TSD) on temporal expectation by evaluating the foreperiod and sequential effects during a psychomotor vigilance task (PVT). We also examined how these two measures were modulated by vulnerability to TSD. DESIGN Three 10-min visual PVT sessions using uniformly distributed foreperiods were conducted in the wake-maintenance zone the evening before sleep deprivation (ESD) and three more in the morning following approximately 22 h of TSD. TSD vulnerable and nonvulnerable groups were determined by a tertile split of participants based on the change in the number of behavioral lapses recorded during ESD and TSD. A subset of participants performed six additional 10-min modified auditory PVTs with exponentially distributed foreperiods during rested wakefulness (RW) and TSD to test the effect of temporal distribution on foreperiod and sequential effects. SETTING Sleep laboratory. PARTICIPANTS There were 172 young healthy participants (90 males) with regular sleep patterns. Nineteen of these participants performed the modified auditory PVT. MEASUREMENTS AND RESULTS Despite behavioral lapses and slower response times, sleep deprived participants could still perceive the conditional probability of temporal events and modify their level of preparation accordingly. Both foreperiod and sequential effects were magnified following sleep deprivation in vulnerable individuals. Only the foreperiod effect increased in nonvulnerable individuals. CONCLUSIONS The preservation of foreperiod and sequential effects suggests that implicit time perception and temporal preparedness are intact during total sleep deprivation. Individuals appear to reallocate their depleted preparatory resources to more probable event timings in ongoing trials, whereas vulnerable participants also rely more on automatic processes.
Collapse
Affiliation(s)
- Danyang Kong
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Christopher L Asplund
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore.,Division of Social Sciences, Yale-NUS College, Singapore
| | - Aiqing Ling
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Michael W L Chee
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
26
|
Kononowicz TW, Sander T, van Rijn H. Neuroelectromagnetic signatures of the reproduction of supra-second durations. Neuropsychologia 2015; 75:201-13. [DOI: 10.1016/j.neuropsychologia.2015.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/06/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
|
27
|
Massar SAA, Chee MWL. Preserved calibration of persistence based on delay-timing distribution during sleep deprivation. J Sleep Res 2015; 24:673-9. [DOI: 10.1111/jsr.12325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/06/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Stijn A. A. Massar
- Center for Cognitive Neuroscience; Duke-NUS Medical School; Singapore Singapore
| | - Michael W. L. Chee
- Center for Cognitive Neuroscience; Duke-NUS Medical School; Singapore Singapore
| |
Collapse
|
28
|
McGuire JT, Kable JW. Medial prefrontal cortical activity reflects dynamic re-evaluation during voluntary persistence. Nat Neurosci 2015; 18:760-6. [PMID: 25849988 PMCID: PMC4437670 DOI: 10.1038/nn.3994] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/10/2015] [Indexed: 12/14/2022]
Abstract
Deciding how long to keep waiting for future rewards is a nontrivial problem, especially when the timing of rewards is uncertain. We carried out an experiment in which human decision makers waited for rewards in two environments in which reward-timing statistics favored either a greater or lesser degree of behavioral persistence. We found that decision makers adaptively calibrated their level of persistence for each environment. Functional neuroimaging revealed signals that evolved differently during physically identical delays in the two environments, consistent with a dynamic and context-sensitive reappraisal of subjective value. This effect was observed in a region of ventromedial prefrontal cortex that is sensitive to subjective value in other contexts, demonstrating continuity between valuation mechanisms involved in discrete choice and in temporally extended decisions analogous to foraging. Our findings support a model in which voluntary persistence emerges from dynamic cost/benefit evaluation rather than from a control process that overrides valuation mechanisms.
Collapse
Affiliation(s)
- Joseph T. McGuire
- Department of Psychology, University of Pennsylvania, 3720 Walnut St., Philadelphia, PA 19104, USA
| | - Joseph W. Kable
- Department of Psychology, University of Pennsylvania, 3720 Walnut St., Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Berchicci M, Lucci G, Spinelli D, Di Russo F. Stimulus onset predictability modulates proactive action control in a Go/No-go task. Front Behav Neurosci 2015; 9:101. [PMID: 25964751 PMCID: PMC4410600 DOI: 10.3389/fnbeh.2015.00101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/06/2015] [Indexed: 01/30/2023] Open
Abstract
The aim of the study was to evaluate whether the presence/absence of visual cues specifying the onset of an upcoming, action-related stimulus modulates pre-stimulus brain activity, associated with the proactive control of goal-directed actions. To this aim we asked 12 subjects to perform an equal probability Go/No-go task with four stimulus configurations in two conditions: (1) uncued, i.e., without any external information about the timing of stimulus onset; and (2) cued, i.e., with external visual cues providing precise information about the timing of stimulus onset. During task both behavioral performance and event-related potentials (ERPs) were recorded. Behavioral results showed faster response times in the cued than uncued condition, confirming existing literature. ERPs showed novel results in the proactive control stage, that started about 1 s before the motor response. We observed a slow rising prefrontal positive activity, more pronounced in the cued than the uncued condition. Further, also pre-stimulus activity of premotor areas was larger in cued than uncued condition. In the post-stimulus period, the P3 amplitude was enhanced when the time of stimulus onset was externally driven, confirming that external cueing enhances processing of stimulus evaluation and response monitoring. Our results suggest that different pre-stimulus processing come into play in the two conditions. We hypothesize that the large prefrontal and premotor activities recorded with external visual cues index the monitoring of the external stimuli in order to finely regulate the action.
Collapse
Affiliation(s)
- Marika Berchicci
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico" Rome, Italy
| | - Giuliana Lucci
- IRCCS Santa Lucia Foundation Rome, Italy ; Department of Psychology, University of Rome 'La Sapienza' Rome, Italy
| | - Donatella Spinelli
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico" Rome, Italy ; IRCCS Santa Lucia Foundation Rome, Italy
| | - Francesco Di Russo
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico" Rome, Italy ; IRCCS Santa Lucia Foundation Rome, Italy
| |
Collapse
|
30
|
Wiener M, Thompson JC. Repetition enhancement and memory effects for duration. Neuroimage 2015; 113:268-78. [PMID: 25818689 DOI: 10.1016/j.neuroimage.2015.03.054] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022] Open
Abstract
A remarkable aspect of conscious perception is that moments carryover from one to the next, also known as temporal continuity. This ability is thus crucial for detecting regularities, such as in speech and music, and may rely on an accurate perception of time. Investigations of human time perception have detailed two electroencephalographic (EEG) components associated with timing, the contingent negative variation (CNV) and late positive component of timing (LPCt); however, the precise roles of these components in timing remain elusive. Recently, we demonstrated that the perception of duration is influenced by durations presented on prior trials, which we explained by the creation of an implicit memory standard that adapts to local changes in sequence presentation. Here, we turn to the neural basis of this effect. Human participants performed a temporal bisection task in which they were required to classify the duration of auditory stimuli into short and long duration categories; crucially, the presentation order was first-order counterbalanced, allowing us to measure the effect of each presented duration on the next. EEG recordings revealed that the CNV and LPCt signals both covaried with the duration presented on the current trial, with CNV predicting reaction time and LPCt predicting choice. Additionally, both signals covaried with the duration presented in the prior trial but in different ways, with the CNV amplitude reflecting the change in the memory standard and the LPCt reflecting decision uncertainty. Furthermore, we observed a repetition enhancement effect of duration only for the CNV, suggesting that this signal additionally indexes the similarity of successive durations. These findings demonstrate dissociable roles for the CNV and LPCt, and demonstrate that both signals are continuously updated on a trial-by-trial basis that reflects shifts in temporal decisions.
Collapse
|
31
|
Abstract
The neural mechanism of leader emergence is not well understood. This study investigated (i) whether interpersonal neural synchronization (INS) plays an important role in leader emergence, and (ii) whether INS and leader emergence are associated with the frequency or the quality of communications. Eleven three-member groups were asked to perform a leaderless group discussion (LGD) task, and their brain activities were recorded via functional near infrared spectroscopy (fNIRS)-based hyperscanning. Video recordings of the discussions were coded for leadership and communication. Results showed that the INS for the leader-follower (LF) pairs was higher than that for the follower-follower (FF) pairs in the left temporo-parietal junction (TPJ), an area important for social mentalizing. Although communication frequency was higher for the LF pairs than for the FF pairs, the frequency of leader-initiated and follower-initiated communication did not differ significantly. Moreover, INS for the LF pairs was significantly higher during leader-initiated communication than during follower-initiated communications. In addition, INS for the LF pairs during leader-initiated communication was significantly correlated with the leaders' communication skills and competence, but not their communication frequency. Finally, leadership could be successfully predicted based on INS as well as communication frequency early during the LGD (before half a minute into the task). In sum, this study found that leader emergence was characterized by high-level neural synchronization between the leader and followers and that the quality, rather than the frequency, of communications was associated with synchronization. These results suggest that leaders emerge because they are able to say the right things at the right time.
Collapse
|
32
|
Mento G, Tarantino V, Vallesi A, Bisiacchi PS. Spatiotemporal Neurodynamics Underlying Internally and Externally Driven Temporal Prediction: A High Spatial Resolution ERP Study. J Cogn Neurosci 2015; 27:425-39. [DOI: 10.1162/jocn_a_00715] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Temporal prediction (TP) is a flexible and dynamic cognitive ability. Depending on the internal or external nature of information exploited to generate TP, distinct cognitive and brain mechanisms are engaged with the same final goal of reducing uncertainty about the future. In this study, we investigated the specific brain mechanisms involved in internally and externally driven TP. To this end, we employed an experimental paradigm purposely designed to elicit and compare externally and internally driven TP and a combined approach based on the application of a distributed source reconstruction modeling on a high spatial resolution electrophysiological data array. Specific spatiotemporal ERP signatures were identified, with significant modulation of contingent negative variation and frontal late sustained positivity in external and internal TP contexts, respectively. These different electrophysiological patterns were supported by the engagement of distinct neural networks, including a left sensorimotor and a prefrontal circuit for externally and internally driven TP, respectively.
Collapse
|
33
|
Timing the events of directional cueing. PSYCHOLOGICAL RESEARCH 2014; 79:1009-21. [DOI: 10.1007/s00426-014-0635-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
|
34
|
Koppe G, Gruppe H, Sammer G, Gallhofer B, Kirsch P, Lis S. Temporal unpredictability of a stimulus sequence affects brain activation differently depending on cognitive task demands. Neuroimage 2014; 101:236-44. [DOI: 10.1016/j.neuroimage.2014.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 05/12/2014] [Accepted: 07/07/2014] [Indexed: 02/05/2023] Open
|
35
|
Muller T, Nobre AC. Perceiving the passage of time: neural possibilities. Ann N Y Acad Sci 2014; 1326:60-71. [PMID: 25257798 PMCID: PMC4336553 DOI: 10.1111/nyas.12545] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 11/26/2022]
Abstract
Although the study of time has been central to physics and philosophy for millennia, questions of how time is represented in the brain and how this representation is related to time perception have only recently started to be addressed. Emerging evidence subtly yet profoundly challenges our intuitive notions of time over short scales, offering insight into the nature of the brain's representation of time. Numerous different models, specified at the neural level, of how the brain may keep track of time have been proposed. These models differ in various ways, such as whether time is represented by a centralized or distributed neural system, or whether there are neural systems dedicated to the problem of timing. This paper reviews the insight offered by behavioral experiments and how these experiments refute and guide some of the various models of the brain's representation of time.
Collapse
Affiliation(s)
- Timothy Muller
- Department of Experimental Psychology, Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
36
|
Los SA, Kruijne W, Meeter M. Outlines of a multiple trace theory of temporal preparation. Front Psychol 2014; 5:1058. [PMID: 25285088 PMCID: PMC4168672 DOI: 10.3389/fpsyg.2014.01058] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 09/03/2014] [Indexed: 11/16/2022] Open
Abstract
We outline a new multiple trace theory of temporal preparation (MTP), which accounts for behavior in reaction time (RT) tasks in which the participant is presented with a warning stimulus (S1) followed by a target stimulus (S2) that requires a speeded response. The theory assumes that during the foreperiod (FP; the S1–S2 interval) inhibition is applied to prevent premature response, while a wave of activation occurs upon the presentation of S2. On each trial, these actions are stored in a separate memory trace, which, jointly with earlier formed memory traces, starts contributing to preparation on subsequent trials. We show that MTP accounts for classic effects in temporal preparation, including mean RT–FP functions observed under a variety of FP distributions and asymmetric sequential effects. We discuss the advantages of MTP over other accounts of these effects (trace-conditioning and hazard-based explanations) and suggest a critical experiment to empirically distinguish among them.
Collapse
Affiliation(s)
- Sander A Los
- Department of Cognitive Psychology, VU University Amsterdam Amsterdam, Netherlands
| | - Wouter Kruijne
- Department of Cognitive Psychology, VU University Amsterdam Amsterdam, Netherlands
| | - Martijn Meeter
- Department of Cognitive Psychology, VU University Amsterdam Amsterdam, Netherlands
| |
Collapse
|
37
|
Rohenkohl G, Gould IC, Pessoa J, Nobre AC. Combining spatial and temporal expectations to improve visual perception. J Vis 2014; 14:8. [PMID: 24722562 PMCID: PMC3983934 DOI: 10.1167/14.4.8] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 02/26/2014] [Indexed: 11/24/2022] Open
Abstract
The importance of temporal expectations in modulating perceptual functions is increasingly recognized. However, the means through which temporal expectations can bias perceptual information processing remains ill understood. Recent theories propose that modulatory effects of temporal expectations rely on the co-existence of other biases based on receptive-field properties, such as spatial location. We tested whether perceptual benefits of temporal expectations in a perceptually demanding psychophysical task depended on the presence of spatial expectations. Foveally presented symbolic arrow cues indicated simultaneously where (location) and when (time) target events were more likely to occur. The direction of the arrow indicated target location (80% validity), while its color (pink or blue) indicated the interval (80% validity) for target appearance. Our results confirmed a strong synergistic interaction between temporal and spatial expectations in enhancing visual discrimination. Temporal expectation significantly boosted the effectiveness of spatial expectation in sharpening perception. However, benefits for temporal expectation disappeared when targets occurred at unattended locations. Our findings suggest that anticipated receptive-field properties of targets provide a natural template upon which temporal expectations can operate in order to help prioritize goal-relevant events from early perceptual stages.
Collapse
Affiliation(s)
- Gustavo Rohenkohl
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford, UK
| | - Ian C. Gould
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford, UK
| | - Jéssica Pessoa
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Anna C. Nobre
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
The role of response inhibition in temporal preparation: evidence from a go/no-go task. Cognition 2013; 129:328-44. [PMID: 23969298 DOI: 10.1016/j.cognition.2013.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 11/22/2022]
Abstract
During the foreperiod (FP) of a warned reaction task, participants engage in a process of temporal preparation to speed response to the impending target stimulus. Previous neurophysiological studies have shown that inhibition is applied during FP to prevent premature response. Previous behavioral studies have shown that the duration of FP on both the current and the preceding trial codetermine response time to the target. Integrating these findings, the present study tested the hypothesis that the behavioral effects find their origin in response inhibition on the preceding trial. In two experiments the variable-FP paradigm was combined with a go/no-go task, in which no-go stimuli required explicit response inhibition. The resulting data pattern revealed sequential effects of both FP (long or short) and response requirement (go or no-go), which could be jointly understood as expressions of response inhibition, consistent with the hypothesis.
Collapse
|
39
|
Neely KA, Coombes SA, Planetta PJ, Vaillancourt DE. Segregated and overlapping neural circuits exist for the production of static and dynamic precision grip force. Hum Brain Mapp 2013; 34:698-712. [PMID: 22109998 PMCID: PMC3292669 DOI: 10.1002/hbm.21467] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 11/10/2022] Open
Abstract
A central topic in sensorimotor neuroscience is the static-dynamic dichotomy that exists throughout the nervous system. Previous work examining motor unit synchronization reports that the activation strategy and timing of motor units differ for static and dynamic tasks. However, it remains unclear whether segregated or overlapping blood-oxygen-level-dependent (BOLD) activity exists in the brain for static and dynamic motor control. This study compared the neural circuits associated with the production of static force to those associated with the production of dynamic force pulses. To that end, healthy young adults (n = 17) completed static and dynamic precision grip force tasks during functional magnetic resonance imaging (fMRI). Both tasks activated core regions within the visuomotor network, including primary and sensory motor cortices, premotor cortices, multiple visual areas, putamen, and cerebellum. Static force was associated with unique activity in a right-lateralized cortical network including inferior parietal lobe, ventral premotor cortex, and dorsolateral prefrontal cortex. In contrast, dynamic force was associated with unique activity in left-lateralized and midline cortical regions, including supplementary motor area, superior parietal lobe, fusiform gyrus, and visual area V3. These findings provide the first neuroimaging evidence supporting a lateralized pattern of brain activity for the production of static and dynamic precision grip force.
Collapse
Affiliation(s)
- Kristina A. Neely
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| | - Stephen A. Coombes
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, Florida
| | - Peggy J. Planetta
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| | - David E. Vaillancourt
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, Florida
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
40
|
Wittmann M. The inner sense of time: how the brain creates a representation of duration. Nat Rev Neurosci 2013; 14:217-23. [PMID: 23403747 DOI: 10.1038/nrn3452] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A large number of competing models exist for how the brain creates a representation of time. However, several human and animal studies point to 'climbing neural activation' as a potential neural mechanism for the representation of duration. Neurophysiological recordings in animals have revealed how climbing neural activation that peaks at the end of a timed interval underlies the processing of duration, and, in humans, climbing neural activity in the insular cortex, which is associated with feeling states of the body and emotions, may be related to the cumulative representation of time.
Collapse
Affiliation(s)
- Marc Wittmann
- Institute for Frontier Areas of Psychology and Mental Health, Department of Empirical and Analytical Psychophysics, Wilhelmstr. 3a, 79098 Freiburg, Germany.
| |
Collapse
|
41
|
Vallesi A, Lozano VN, Correa A. Dissociating temporal preparation processes as a function of the inter-trial interval duration. Cognition 2013; 127:22-30. [PMID: 23318351 DOI: 10.1016/j.cognition.2012.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/29/2012] [Accepted: 11/28/2012] [Indexed: 11/27/2022]
Abstract
Preparation over time is a ubiquitous capacity which implies decreasing uncertainty about when critical events will occur. This capacity is usually studied with the variable foreperiod paradigm, which consists in the random variation of the time interval (foreperiod) between a warning stimulus and a target. With this paradigm, response time (RT) effects of the current and preceding foreperiods are usually observed (respectively called "foreperiod effect" and "sequential effects"). Both single-process trace conditioning mechanisms and dual-process accounts have been proposed to explain these behavioral effects. This study aimed at understanding how manipulations of the inter-trial interval (ITI: 1s vs. 20s) and the task context (simple vs. choice RT task) affects the two behavioral effects. Results show that, regardless of the type of RT task, attenuated sequential effects were observed with the longer ITI, contrary to predictions derived from the trace conditioning literature. However, the influence that the ITI duration exerted on the FP effect critically depended on the task context, since the FP effect increased as a function of ITI with a choice RT task but decreased with a simple RT task. These findings support a dissociation between foreperiod and sequential effects, consistent with a dual-process account.
Collapse
|
42
|
Girardi G, Antonucci G, Nico D. Cueing spatial attention through timing and probability. Cortex 2013; 49:211-21. [DOI: 10.1016/j.cortex.2011.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/12/2011] [Accepted: 08/24/2011] [Indexed: 11/26/2022]
|
43
|
Pariyadath V, Eagleman DM. Subjective duration distortions mirror neural repetition suppression. PLoS One 2012; 7:e49362. [PMID: 23251340 PMCID: PMC3521010 DOI: 10.1371/journal.pone.0049362] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 10/11/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Subjective duration is strongly influenced by repetition and novelty, such that an oddball stimulus in a stream of repeated stimuli appears to last longer in duration in comparison. We hypothesize that this duration illusion, called the temporal oddball effect, is a result of the difference in expectation between the oddball and the repeated stimuli. Specifically, we conjecture that the repeated stimuli contract in duration as a result of increased predictability; these duration contractions, we suggest, result from decreased neural response amplitude with repetition, known as repetition suppression. METHODOLOGY/PRINCIPAL FINDINGS Participants viewed trials consisting of lines presented at a particular orientation (standard stimuli) followed by a line presented at a different orientation (oddball stimulus). We found that the size of the oddball effect correlates with the number of repetitions of the standard stimulus as well as the amount of deviance from the oddball stimulus; both of these results are consistent with a repetition suppression hypothesis. Further, we find that the temporal oddball effect is sensitive to experimental context--that is, the size of the oddball effect for a particular experimental trial is influenced by the range of duration distortions seen in preceding trials. CONCLUSIONS/SIGNIFICANCE Our data suggest that the repetition-related duration contractions causing the oddball effect are a result of neural repetition suppression. More generally, subjective duration may reflect the prediction error associated with a stimulus and, consequently, the efficiency of encoding that stimulus. Additionally, we emphasize that experimental context effects need to be taken into consideration when designing duration-related tasks.
Collapse
Affiliation(s)
- Vani Pariyadath
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - David M. Eagleman
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Psychiatry, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
44
|
Langner R, Eickhoff SB. Sustaining attention to simple tasks: a meta-analytic review of the neural mechanisms of vigilant attention. Psychol Bull 2012; 139:870-900. [PMID: 23163491 DOI: 10.1037/a0030694] [Citation(s) in RCA: 403] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Maintaining attention for more than a few seconds is essential for mastering everyday life. Yet, our ability to stay focused on a particular task is limited, resulting in well-known performance decrements with increasing time on task. Intriguingly, such decrements are even more likely if the task is cognitively simple and repetitive. The attentional function that enables our prolonged engagement in intellectually unchallenging, uninteresting activities has been termed vigilant attention. Here we synthesized what we have learned from functional neuroimaging about the mechanisms of this essential mental faculty. To this end, a quantitative meta-analysis of pertinent neuroimaging studies was performed, including supplementary analyses of moderating factors. Furthermore, we reviewed the available evidence on neural time-on-task effects, additionally considering information obtained from patients with focal brain damage. Integrating the results of both meta-analysis and review, we identified a set of mainly right-lateralized brain regions that may form the core network subserving vigilant attention in humans, including dorsomedial, mid- and ventrolateral prefrontal cortex, anterior insula, parietal areas (intraparietal sulcus, temporoparietal junction), and subcortical structures (cerebellar vermis, thalamus, putamen, midbrain). We discuss the potential functional roles of different nodes of this network as well as implications of our findings for a theoretical account of vigilant attention. It is conjectured that sustaining attention is a multicomponent, nonunitary mental faculty, involving a mixture of (a) sustained/recurrent processes subserving task-set/arousal maintenance and (b) transient processes subserving the target-driven reorienting of attention. Finally, limitations of previous studies are considered and suggestions for future research are provided.
Collapse
Affiliation(s)
- Robert Langner
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | | |
Collapse
|
45
|
Gilaie-Dotan S, Kanai R, Rees G. Anatomy of human sensory cortices reflects inter-individual variability in time estimation. Front Integr Neurosci 2011; 5:76. [PMID: 22125515 PMCID: PMC3221284 DOI: 10.3389/fnint.2011.00076] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 11/02/2011] [Indexed: 12/02/2022] Open
Abstract
The ability to estimate duration is essential to human behavior, yet people vary greatly in their ability to estimate time and the brain structures mediating this inter-individual variability remain poorly understood. Here, we showed that inter-individual variability in duration estimation was highly correlated across visual and auditory modalities but depended on the scale of temporal duration. We further examined whether this inter-individual variability in estimating durations of different supra-second time scales (2 or 12 s) was reflected in variability in human brain anatomy. We found that the gray matter volume in both the right posterior lateral sulcus encompassing primary auditory and secondary somatosensory cortex, plus parahippocampal gyrus strongly predicted an individual’s ability to discriminate longer durations of 12 s (but not shorter ones of 2 s) regardless of whether they were presented in auditory or visual modalities. Our findings suggest that these brain areas may play a common role in modality-independent time discrimination. We propose that an individual’s ability to discriminate longer durations is linked to self-initiated rhythm maintenance mechanisms relying on the neural structure of these modality-specific sensory and parahippocampal cortices.
Collapse
|
46
|
Abstract
The macaque lateral intraparietal area (LIP) has been implicated in many cognitive processes, ranging from saccade planning and spatial attention to timing and categorization. Importantly, different research groups have used different criteria for including LIP neurons in their studies. While some research groups have selected LIP neurons based on the presence of memory-delay activity, other research groups have used other criteria such as visual, presaccadic, and/or memory activity. We recorded from LIP neurons that were selected based on spatially selective saccadic activity but regardless of memory-delay activity in macaque monkeys. To test anticipatory climbing activity, we used a delayed visually guided saccade task with a unimodal schedule of go-times, for which the conditional probability that the go-signal will occur rises monotonically as a function of time. A subpopulation of LIP neurons showed anticipatory activity that mimicked the subjective hazard rate of the go-signal when the animal was planning a saccade toward the receptive field. A large subgroup of LIP neurons, however, did not modulate their firing rates according to the subjective hazard function. These non-anticipatory neurons were strongly influenced by salient visual stimuli appearing in their receptive field, but less so by the direction of the impending saccade. Thus, LIP contains a heterogeneous population of neurons related to saccade planning or visual salience, and these neurons are spatially intermixed. Our results suggest that between-study differences in neuronal selection may have contributed significantly to the findings of different research groups with respect to the functional role of area LIP.
Collapse
|
47
|
Gorea A. Ticks per thought or thoughts per tick? A selective review of time perception with hints on future research. ACTA ACUST UNITED AC 2011; 105:153-63. [PMID: 21963529 DOI: 10.1016/j.jphysparis.2011.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The last decade underwent a revival of interest in the perception of time and duration. The present short essay does not compete with the many other recent reviews and books on this topic. Instead, it is meant to emphasize the notion that humans (and most likely other animals) have at their disposal more than one time measuring device and to propose that they use these devices jointly to appraise the passage of time. One possible consequence of this conjecture is that the same physical duration can be judged differently depending on the reference 'clock' used in any such judgment. As this view has not yet been tested empirically, several experimental manipulations susceptible to directly test it are suggested. Before, are summarized a number of its latent precursors, namely the relativity of perceived duration, current trends in modeling time perception and its neural and pharmacological substrate, the experimental literature supporting the existence of multiple 'clocks' and a selected number of experimental manipulations known to induce time perception illusions which together with many others are putatively accountable in terms of alternative clock readings.
Collapse
Affiliation(s)
- Andrei Gorea
- Laboratoire Psychologie de la Perception, Université Paris Descartes-Sorbonne Paris Cité and CNRS, 45 rue des Saints Pères, 75006 Paris, France.
| |
Collapse
|
48
|
Kononowicz TW, van Rijn H. Slow potentials in time estimation: the role of temporal accumulation and habituation. Front Integr Neurosci 2011; 5:48. [PMID: 21949505 PMCID: PMC3171873 DOI: 10.3389/fnint.2011.00048] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 08/17/2011] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have shown that contingent negative variation (CNV) measured at fronto-central and parietal-central areas is closely related to interval timing. However, the exact nature of the relation between CNV and the underlying timing mechanisms is still a topic of discussion. On the one hand, it has been proposed that the CNV measured at supplementary motor area (SMA) is a direct reflection of the unfolding of time since a perceived onset, whereas other work has suggested that the increased amplitude reflects decision processes involved in interval timing. Strong evidence for the first view has been reported by Macar et al. (1999), who showed that variations in temporal performance were reflected in the measured CNV amplitude. If the CNV measured at SMA is a direct function of the passing of time, habituation effects are not expected. Here we report two replication studies, which both failed to replicate the expected performance-dependent variations. Even more powerful linear-mixed effect analyses failed to find any performance related effects on the CNV amplitude, whereas habituation effects were found. These studies therefore suggest that the CNV amplitude does not directly reflect the unfolding of time.
Collapse
Affiliation(s)
| | - Hedderik van Rijn
- Experimental Psychology, University of GroningenGroningen, Netherlands
| |
Collapse
|
49
|
Anticipation of future events improves the ability to estimate elapsed time. Exp Brain Res 2011; 214:323-34. [PMID: 21901454 DOI: 10.1007/s00221-011-2821-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
An accurate estimate of elapsed time is essential for anticipating the timing of future events. Here, we show that the ability to estimate elapsed time on a reaction time (RT) task improved with training during which human participants learned to anticipate the onset of a "Go" signal. In each trial, a warning signal preceded the Go signal by a temporal interval (i.e., foreperiod). The duration of the foreperiod was randomly drawn from a rectangular distribution (1-2 s). Participants were required to initiate a response immediately after the Go signal and performed the task for 480 trials/day for 12 days. Anticipation should have been governed by the probability that the Go signal would occur (hazard rate), which increased for longer foreperiods. Indeed, RTs decreased for longer foreperiods and were inversely related to the hazard rate. The pattern of RT decrease was well explained by the subjective hazard rate, which was formalized based on the assumption that the uncertainty of estimates of elapsed time scales with time (Weber's law). Notably, RTs demonstrated a more linear decrease as a function of foreperiod in LATE compared with EARLY training sessions. This involved a decrease in the Weber fraction used in the subjective hazard rate. The results indicate that the uncertainty associated with estimating elapsed time was reduced as participants learned and used the hazard rate to anticipate the onset of the Go signal. This finding suggests that the ability to estimate elapsed time improves with training on behavioral tasks that implicitly engage timing mechanisms.
Collapse
|
50
|
Cravo AM, Rohenkohl G, Wyart V, Nobre AC. Endogenous modulation of low frequency oscillations by temporal expectations. J Neurophysiol 2011; 106:2964-72. [PMID: 21900508 PMCID: PMC3234094 DOI: 10.1152/jn.00157.2011] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have associated increasing temporal expectations with synchronization of higher frequency oscillations and suppression of lower frequencies. In this experiment, we explore a proposal that low-frequency oscillations provide a mechanism for regulating temporal expectations. We used a speeded Go/No-go task and manipulated temporal expectations by changing the probability of target presentation after certain intervals. Across two conditions, the temporal conditional probability of target events differed substantially at the first of three possible intervals. We found that reactions times differed significantly at this first interval across conditions, decreasing with higher temporal expectations. Interestingly, the power of theta activity (4–8 Hz), distributed over central midline sites, also differed significantly across conditions at this first interval. Furthermore, we found a transient coupling between theta phase and beta power after the first interval in the condition with high temporal expectation for targets at this time point. Our results suggest that the adjustments in theta power and the phase-power coupling between theta and beta contribute to a central mechanism for controlling neural excitability according to temporal expectations.
Collapse
Affiliation(s)
- Andre M Cravo
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|