1
|
Gil-Gil T, Berryhill BA, Manuel JA, Smith AP, McCall IC, Baquero F, Levin BR. The evolution of heteroresistance via small colony variants in Escherichia coli following long term exposure to bacteriostatic antibiotics. Nat Commun 2024; 15:7936. [PMID: 39261449 PMCID: PMC11391013 DOI: 10.1038/s41467-024-52166-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Traditionally, bacteriostatic antibiotics are agents able to arrest bacterial growth. Despite being traditionally viewed as unable to kill bacterial cells, when they are used clinically the outcome of these drugs is frequently as effective as when a bactericidal drug is used. We explore the dynamics of Escherichia coli after exposure to two ribosome-targeting bacteriostatic antibiotics, chloramphenicol and azithromycin, for thirty days. The results of our experiments provide evidence that bacteria exposed to these drugs replicate, evolve, and generate a sub-population of small colony variants (SCVs) which are resistant to multiple drugs. These SCVs contribute to the evolution of heteroresistance and rapidly revert to a susceptible state once the antibiotic is removed. Stated another way, exposure to bacteriostatic drugs selects for the evolution of heteroresistance in populations previously lacking this trait. More generally, our results question the definition of bacteriostasis as populations exposed to bacteriostatic drugs are replicating despite the lack of net growth.
Collapse
Affiliation(s)
- Teresa Gil-Gil
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Brandon A Berryhill
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
- Program in Microbiology and Molecular Genetics, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, 30322, USA
| | - Joshua A Manuel
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Andrew P Smith
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Ingrid C McCall
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Fernando Baquero
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, and Centro de Investigación Médica en Red, Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Bruce R Levin
- Department of Biology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
2
|
Geng Y, Nguyen TVP, Homaee E, Golding I. Using bacterial population dynamics to count phages and their lysogens. Nat Commun 2024; 15:7814. [PMID: 39242585 PMCID: PMC11379933 DOI: 10.1038/s41467-024-51913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
Traditional assays for counting bacteriophages and their lysogens are labor-intensive and perturbative to the host cells. Here, we present a high-throughput infection method in a microplate reader, where the growth dynamics of the infected culture is measured using the optical density (OD). We find that the OD at which the culture lyses scales linearly with the logarithm of the initial phage concentration, providing a way of measuring phage numbers over nine orders of magnitude and down to single-phage sensitivity. Interpreting the measured dynamics using a mathematical model allows us to infer the phage growth rate, which is a function of the phage-cell encounter rate, latent period, and burst size. Adding antibiotic selection provides the ability to measure the rate of host lysogenization. Using this method, we found that when E. coli growth slows down, the lytic growth rate of lambda phages decreases, and the propensity for lysogeny increases, demonstrating how host physiology influences the viral developmental program.
Collapse
Affiliation(s)
- Yuncong Geng
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Thu Vu Phuc Nguyen
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Ehsan Homaee
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ido Golding
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
3
|
Berryhill BA, Burke KB, Fontaine J, Brink CE, Harvill MG, Goldberg DA, Konstantinidis KT, Levin BR, Woodworth MH. Enteric Populations of Escherichia coli are Likely to be Resistant to Phages Due to O Antigen Expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.08.566299. [PMID: 37986824 PMCID: PMC10659284 DOI: 10.1101/2023.11.08.566299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
There is a surfeit of bioinformatic data showing that bacteriophages abound in the enteric microbiomes of humans. What is the contribution of these viruses in shaping the bacterial strain and species composition of the gut microbiome and how are these phages maintained over time? To address these questions, we performed experiments with Escherichia coli and phages isolated from four fecal microbiota transplantation (FMT) doses as representative samples of non-dysbiotic enteric microbiota and develop and analyze the properties of a mathematical model of the population and evolutionary dynamics of bacteria and phage. Our models predict and experiments confirm that due to production of the O antigen, E. coli in the enteric microbiome are likely to be resistant to infection with co-occurring phages. Furthermore, our modeling suggests that the phages can be maintained in the population due to the high rates of host transition between resistant and sensitive states, which we call leaky resistance. Based on our observations and model predictions, we postulate that the phages found in the human gut are likely to play little role in shaping the composition of E. coli at the strain level in the enteric microbiome in healthy individuals. How general this is for other species of bacteria in the enteric flora is not yet clear, although O antigen expression is common across many taxa.
Collapse
Affiliation(s)
- Brandon A. Berryhill
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
- Program in Microbiology and Molecular Genetics (MMG), Graduate Division of Biological and Biomedical Sciences (GDBBS), Laney Graduate School, Emory University; Atlanta, Georgia, 30322, USA
| | - Kylie B. Burke
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - Jake Fontaine
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | - Catherine E. Brink
- Ocean Science & Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mason G. Harvill
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | - David A. Goldberg
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | - Konstantinos T. Konstantinidis
- Ocean Science & Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bruce R. Levin
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | - Michael H. Woodworth
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| |
Collapse
|
4
|
Horwitz EK, Strobel HM, Haiso J, Meyer JR. More evolvable bacteriophages better suppress their host. Evol Appl 2024; 17:e13742. [PMID: 38975285 PMCID: PMC11224127 DOI: 10.1111/eva.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/09/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
The number of multidrug-resistant strains of bacteria is increasing rapidly, while the number of new antibiotic discoveries has stagnated. This trend has caused a surge in interest in bacteriophages as anti-bacterial therapeutics, in part because there is near limitless diversity of phages to harness. While this diversity provides an opportunity, it also creates the dilemma of having to decide which criteria to use to select phages. Here we test whether a phage's ability to coevolve with its host (evolvability) should be considered and how this property compares to two previously proposed criteria: fast reproduction and thermostability. To do this, we compared the suppressiveness of three phages that vary by a single amino acid yet differ in these traits such that each strain maximized two of three characteristics. Our studies revealed that both evolvability and reproductive rate are independently important. The phage most able to suppress bacterial populations was the strain with high evolvability and reproductive rate, yet this phage was unstable. Phages varied due to differences in the types of resistance evolved against them and their ability to counteract resistance. When conditions were shifted to exaggerate the importance of thermostability, one of the stable phages was most suppressive in the short-term, but not over the long-term. Our results demonstrate the utility of biological therapeutics' capacities to evolve and adjust in action to resolve complications like resistance evolution. Furthermore, evolvability is a property that can be engineered into phage therapeutics to enhance their effectiveness.
Collapse
Affiliation(s)
- Elijah K. Horwitz
- Department of Ecology, Behavior and EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Hannah M. Strobel
- Department of Ecology, Behavior and EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Jason Haiso
- Department of Ecology, Behavior and EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Justin R. Meyer
- Department of Ecology, Behavior and EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
5
|
Rabiey M, Grace ER, Pawlos P, Bihi M, Ahmed H, Hampson GE, Al Riyami A, Alharbi L, Sanchez‐Lucas R, Korotania N, Ciusa ML, Mosley O, Hulin MT, Baxter L, Dhaouadi S, Vinchira‐Villarraga D, Jackson RW. Coevolutionary analysis of Pseudomonas syringae-phage interactions to help with rational design of phage treatments. Microb Biotechnol 2024; 17:e14489. [PMID: 38864499 PMCID: PMC11167607 DOI: 10.1111/1751-7915.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
Treating plant bacterial diseases is notoriously difficult because of the lack of available antimicrobials. Pseudomonas syringae pathovar syringae (Pss) is a major pathogen of cherry (Prunus avium) causing bacterial canker of the stem, leaf and fruit, impacting productivity and leading to a loss of trees. In an attempt to find a treatment for this disease, naturally occurring bacteriophage (phage) that specifically target Pss is being investigated as a biocontrol strategy. However, before using them as a biocontrol treatment, it is important to both understand their efficacy in reducing the bacterial population and determine if the bacterial pathogens can evolve resistance to evade phage infection. To investigate this, killing curve assays of five MR phages targeting Pss showed that phage resistance rapidly emerges in vitro, even when using a cocktail of the five phages together. To gain insight to the changes occurring, Pss colonies were collected three times during a 66-h killing curve assay and separately, Pss and phage were also coevolved over 10 generations, enabling the measurement of genomic and fitness changes in bacterial populations. Pss evolved resistance to phages through modifications in lipopolysaccharide (LPS) synthesis pathways. Bacterial fitness (growth) and virulence were affected in only a few mutants. Deletion of LPS-associated genes suggested that LPS was the main target receptor for all five MR phages. Later generations of coevolved phages from the coevolution experiment were more potent at reducing the bacterial density and when used with wild-type phages could reduce the emergence of phage-resistant mutants. This study shows that understanding the genetic mechanisms of bacterial pathogen resistance to phages is important for helping to design a more effective approach to kill the bacteria while minimizing the opportunity for phage resistance to manifest.
Collapse
Affiliation(s)
- Mojgan Rabiey
- School of Life Sciences, Gibbet Hill CampusUniversity of WarwickCoventryUK
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Emily R. Grace
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Paulina Pawlos
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Muscab Bihi
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Haleem Ahmed
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Georgina E. Hampson
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Amna Al Riyami
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Leena Alharbi
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Rosa Sanchez‐Lucas
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Naina Korotania
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Maria Laura Ciusa
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Olivia Mosley
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Michelle T. Hulin
- Department of Plant Soil & Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Laura Baxter
- Bioinformatics Research Technology PlatformUniversity of WarwickCoventryUK
| | - Sabrine Dhaouadi
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Diana Vinchira‐Villarraga
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Robert W. Jackson
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| |
Collapse
|
6
|
Strobel HM, Labador SD, Basu D, Sane M, Corbett KD, Meyer JR. Viral Receptor-Binding Protein Evolves New Function through Mutations That Cause Trimer Instability and Functional Heterogeneity. Mol Biol Evol 2024; 41:msae056. [PMID: 38586942 PMCID: PMC10999833 DOI: 10.1093/molbev/msae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
When proteins evolve new activity, a concomitant decrease in stability is often observed because the mutations that confer new activity can destabilize the native fold. In the conventional model of protein evolution, reduced stability is considered a purely deleterious cost of molecular innovation because unstable proteins are prone to aggregation and are sensitive to environmental stressors. However, recent work has revealed that nonnative, often unstable protein conformations play an important role in mediating evolutionary transitions, raising the question of whether instability can itself potentiate the evolution of new activity. We explored this question in a bacteriophage receptor-binding protein during host-range evolution. We studied the properties of the receptor-binding protein of bacteriophage λ before and after host-range evolution and demonstrated that the evolved protein is relatively unstable and may exist in multiple conformations with unique receptor preferences. Through a combination of structural modeling and in vitro oligomeric state analysis, we found that the instability arises from mutations that interfere with trimer formation. This study raises the intriguing possibility that protein instability might play a previously unrecognized role in mediating host-range expansions in viruses.
Collapse
Affiliation(s)
- Hannah M Strobel
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Sweetzel D Labador
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Dwaipayan Basu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mrudula Sane
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kevin D Corbett
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Justin R Meyer
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Rodríguez-Román E, Manuel JA, Goldberg D, Levin BR. The contribution of abortive infection to preventing populations of Lactococcus lactis from succumbing to infections with bacteriophage. PLoS One 2024; 19:e0298680. [PMID: 38557757 PMCID: PMC10984412 DOI: 10.1371/journal.pone.0298680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/30/2024] [Indexed: 04/04/2024] Open
Abstract
In the dairy industry bacteriophage (phage) contamination significantly impairs the production and quality of products like yogurt and cheese. To combat this issue, the strains of bacteria used as starter cultures possess mechanisms that make them resistant to phage infection, such as envelope resistance, or processes that render them immune to phage infection, such as restriction-modification and CRISPR-Cas. Lactococcus lactis, used to manufacture cheese and other dairy products, can also block the reproduction of infecting phages by abortive infection (Abi), a process in which phage-infected cells die before the phage replicate. We employ mathematical-computer simulation models and experiments with two Lactococcus lactis strains and two lytic phages to investigate the conditions under which Abi can limit the proliferation of phages in L. lactis populations and prevent the extinction of their populations by these viruses. According to our model, if Abi is almost perfect and there are no other populations of bacteria capable of supporting the replication of the L. lactis phages, Abi can protect bacterial populations from succumbing to infections with these viruses. This prediction is supported by the results of our experiment, which indicate that Abi can help protect L. lactis populations from extinction by lytic phage infections. However, our results also predict abortive infection is only one element of L. lactis defenses against phage infection. Mutant phages that can circumvent the Abi systems of these bacteria emerge. The survival of L. lactis populations then depends on the evolution of envelope mutants that are resistant to the evolved host-range phage.
Collapse
Affiliation(s)
| | - Joshua A. Manuel
- Department of Biology, Emory University, Atlanta, GA, United States of America
| | - David Goldberg
- Department of Biology, Emory University, Atlanta, GA, United States of America
| | - Bruce R. Levin
- Department of Biology, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
8
|
Joffe N, Kuhlisch C, Schleyer G, Ahlers NS, Shemi A, Vardi A. Cell-to-cell heterogeneity drives host-virus coexistence in a bloom-forming alga. THE ISME JOURNAL 2024; 18:wrae038. [PMID: 38452203 PMCID: PMC10980834 DOI: 10.1093/ismejo/wrae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Algal blooms drive global biogeochemical cycles of key nutrients and serve as hotspots for biological interactions in the ocean. The massive blooms of the cosmopolitan coccolithophore Emiliania huxleyi are often infected by the lytic E. huxleyi virus, which is a major mortality agent triggering bloom demise. This multi-annual "boom and bust" pattern of E. huxleyi blooms suggests that coexistence is essential for these host-virus dynamics. To investigate host-virus coexistence, we developed a new model system from an E. huxleyi culture that recovered from viral infection. The recovered population coexists with the virus, as host cells continue to divide in parallel to viral production. By applying single-molecule fluorescence in situ hybridization (smFISH) to quantify the fraction of infected cells, and assessing infection-specific lipid biomarkers, we identified a small subpopulation of cells that were infected and produced new virions, whereas most of the host population could resist infection. To further assess population heterogeneity, we generated clonal strain collections using single-cell sorting and subsequently phenotyped their susceptibility to E. huxleyi virus infection. This unraveled substantial cell-to-cell heterogeneity across a continuum of susceptibility to resistance, highlighting that infection outcome may vary depending on the individual cell. These results add a new dimension to our understanding of the complexity of host-virus interactions that are commonly assessed in bulk and described by binary definitions of resistance or susceptibility. We propose that phenotypic heterogeneity drives the host-virus coexistence and demonstrate how the coexistence with a lytic virus provides an ecological advantage for the host by killing competing strains.
Collapse
Affiliation(s)
- Nir Joffe
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Guy Schleyer
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Nadia S Ahlers
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
9
|
Elliott JFK, McLeod DV, Taylor TB, Westra ER, Gandon S, Watson BNJ. Conditions for the spread of CRISPR-Cas immune systems into bacterial populations. THE ISME JOURNAL 2024; 18:wrae108. [PMID: 38896653 DOI: 10.1093/ismejo/wrae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/29/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Bacteria contain a wide variety of innate and adaptive immune systems which provide protection to the host against invading genetic material, including bacteriophages (phages). It is becoming increasingly clear that bacterial immune systems are frequently lost and gained through horizontal gene transfer. However, how and when new immune systems can become established in a bacterial population have remained largely unstudied. We developed a joint epidemiological and evolutionary model that predicts the conditions necessary for the spread of a CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) immune system into a bacterial population lacking this system. We found that whether bacteria carrying CRISPR-Cas will spread (increase in frequency) into a bacterial population depends on the abundance of phages and the difference in the frequency of phage resistance mechanisms between bacteria carrying a CRISPR-Cas immune system and those not (denoted as ${f}_{\Delta }$). Specifically, the abundance of cells carrying CRISPR-Cas will increase if there is a higher proportion of phage resistance (either via CRISPR-Cas immunity or surface modification) in the CRISPR-Cas-possessing population than in the cells lacking CRISPR-Cas. We experimentally validated these predictions in a model using Pseudomonas aeruginosa PA14 and phage DMS3vir. Specifically, by varying the initial ratios of different strains of bacteria that carry alternative forms of phage resistance, we confirmed that the spread of cells carrying CRISPR-Cas through a population can be predicted based on phage density and the relative frequency of resistance phenotypes. Understanding which conditions promote the spread of CRISPR-Cas systems helps to predict when and where these defences can become established in bacterial populations after a horizontal gene transfer event, both in ecological and clinical contexts.
Collapse
Affiliation(s)
- Josie F K Elliott
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- ESI, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9FE, United Kingdom
| | - David V McLeod
- Département de mathématiques et statistique, Université de Montréal, Montréal, Canada
- Institute of Ecology and Evolution, Universität Bern, Bern, Switzerland
| | - Tiffany B Taylor
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Edze R Westra
- ESI, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9FE, United Kingdom
| | - Sylvain Gandon
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | - Bridget N J Watson
- ESI, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9FE, United Kingdom
| |
Collapse
|
10
|
Berryhill BA, Manuel JA, Garcia R, Levin BR. The ecological consequences and evolution of retron-mediated suicide as a way to protect Escherichia coli from being killed by phage. PLoS One 2023; 18:e0285274. [PMID: 37145987 PMCID: PMC10162544 DOI: 10.1371/journal.pone.0285274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023] Open
Abstract
Retrons were described in 1984 as DNA sequences that code for a reverse transcriptase and a unique single-stranded DNA/RNA hybrid called multicopy single-stranded DNA (msDNA). It would not be until 2020 that a function was shown for retrons, when compelling evidence was presented that retrons activate an abortive infection pathway in response to bacteriophage (phage) infection. When infected with the virulent mutant of the phage lambda, λVIR, and to a lesser extent, other phages, a retron designated Ec48 is activated, the Escherichia coli bearing this retron element dies, and the infecting phage is lost. With the aid of a mathematical model, we explore the a priori conditions under which retrons will protect bacterial populations from predation by phage and the conditions under which retron-bearing bacteria will evolve in populations without this element. Using isogenic E. coli with and without Ec48 and λVIR, we estimated the parameters of our model and tested the hypotheses generated from our analysis of its properties. Our models and experiments demonstrate that cells expressing a retron-mediated abortive infection system can protect bacterial populations. Our results demonstrate that retron bearing bacteria only have a competitive advantage under a limited set of conditions.
Collapse
Affiliation(s)
- Brandon A Berryhill
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Program in Microbiology and Molecular Genetics (MMG), Graduate Division of Biological and Biomedical Sciences (GDBBS), Laney Graduate School, Emory University, Atlanta, Georgia, United States of America
| | - Joshua A Manuel
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Rodrigo Garcia
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Bruce R Levin
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
11
|
Shaer Tamar E, Kishony R. Multistep diversification in spatiotemporal bacterial-phage coevolution. Nat Commun 2022; 13:7971. [PMID: 36577749 PMCID: PMC9797572 DOI: 10.1038/s41467-022-35351-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022] Open
Abstract
The evolutionary arms race between phages and bacteria, where bacteria evolve resistance to phages and phages retaliate with resistance-countering mutations, is a major driving force of molecular innovation and genetic diversification. Yet attempting to reproduce such ongoing retaliation dynamics in the lab has been challenging; laboratory coevolution experiments of phage and bacteria are typically performed in well-mixed environments and often lead to rapid stagnation with little genetic variability. Here, co-culturing motile E. coli with the lytic bacteriophage T7 on swimming plates, we observe complex spatiotemporal dynamics with multiple genetically diversifying adaptive cycles. Systematically quantifying over 10,000 resistance-infectivity phenotypes between evolved bacteria and phage isolates, we observe diversification into multiple coexisting ecotypes showing a complex interaction network with both host-range expansion and host-switch tradeoffs. Whole-genome sequencing of these evolved phage and bacterial isolates revealed a rich set of adaptive mutations in multiple genetic pathways including in genes not previously linked with phage-bacteria interactions. Synthetically reconstructing these new mutations, we discover phage-general and phage-specific resistance phenotypes as well as a strong synergy with the more classically known phage-resistance mutations. These results highlight the importance of spatial structure and migration for driving phage-bacteria coevolution, providing a concrete system for revealing new molecular mechanisms across diverse phage-bacterial systems.
Collapse
Affiliation(s)
- Einat Shaer Tamar
- grid.6451.60000000121102151Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Roy Kishony
- grid.6451.60000000121102151Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel ,grid.6451.60000000121102151Faculty of Computer Science, Technion–Israel Institute of Technology, Haifa, Israel ,grid.6451.60000000121102151Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
12
|
Nilsson AS. Cocktail, a Computer Program for Modelling Bacteriophage Infection Kinetics. Viruses 2022; 14:v14112483. [PMID: 36366581 PMCID: PMC9695944 DOI: 10.3390/v14112483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Cocktail is an easy-to-use computer program for mathematical modelling of bacteriophage (phage) infection kinetics in a chemostat. The infection of bacteria by phages results in complicated dynamic processes as both have the ability to multiply and change during the course of an infection. There is a need for a simple way to visualise these processes, not least due to the increased interest in phage therapy. Cocktail is completely self-contained and runs on a Windows 64-bit operating system. By changing the publicly available source code, the program can be developed in the directions that users see fit. Cocktail's models consist of coupled differential equations that describe the infection of a bacterium in a vessel by one or two (interfering) phages. In the models, the bacterial population can be controlled by sixteen parameters, for example, through different growth rates, phage resistance, metabolically inactive cells or biofilm formation. The phages can be controlled by eight parameters each, such as different adsorption rates or latency periods. As the models in Cocktail describe the infection kinetics of phages in vitro, the program is primarily intended to generate hypotheses, but the results can however be indicative in the application of phage therapy.
Collapse
Affiliation(s)
- Anders S Nilsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
13
|
Plunder S, Burkard M, Lauer UM, Venturelli S, Marongiu L. Determination of phage load and administration time in simulated occurrences of antibacterial treatments. Front Med (Lausanne) 2022; 9:1040457. [PMID: 36388928 PMCID: PMC9650209 DOI: 10.3389/fmed.2022.1040457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/13/2022] [Indexed: 03/19/2024] Open
Abstract
The use of phages as antibacterials is becoming more and more common in Western countries. However, a successful phage-derived antibacterial treatment needs to account for additional features such as the loss of infective virions and the multiplication of the hosts. The parameters critical inoculation size (V F ) and failure threshold time (T F ) have been introduced to assure that the viral dose (V ϕ) and administration time (T ϕ) would lead to the extinction of the targeted bacteria. The problem with the definition of V F and T F is that they are non-linear equations with two unknowns; thus, obtaining their explicit values is cumbersome and not unique. The current study used machine learning to determine V F and T F for an effective antibacterial treatment. Within these ranges, a Pareto optimal solution of a multi-criterial optimization problem (MCOP) provided a pair of V ϕ and T ϕ to facilitate the user's work. The algorithm was tested on a series of in silico microbial consortia that described the outgrowth of a species at high cell density by another species initially present at low concentration. The results demonstrated that the MCOP-derived pairs of V ϕ and T ϕ could effectively wipe out the bacterial target within the context of the simulation. The present study also introduced the concept of mediated phage therapy, where targeting booster bacteria might decrease the virulence of a pathogen immune to phagial infection and highlighted the importance of microbial competition in attaining a successful antibacterial treatment. In summary, the present work developed a novel method for investigating phage/bacteria interactions that can help increase the effectiveness of the application of phages as antibacterials and ease the work of microbiologists.
Collapse
Affiliation(s)
- Steffen Plunder
- Department of Mathematics, University of Vienna, Vienna, Austria
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Ulrich M. Lauer
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University Hospital Tübingen, Tübingen, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Igler C. Phenotypic flux: The role of physiology in explaining the conundrum of bacterial persistence amid phage attack. Virus Evol 2022; 8:veac086. [PMID: 36225237 PMCID: PMC9547521 DOI: 10.1093/ve/veac086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages, the viruses of bacteria, have been studied for over a century. They were not only instrumental in laying the foundations of molecular biology, but they are also likely to play crucial roles in shaping our biosphere and may offer a solution to the control of drug-resistant bacterial infections. However, it remains challenging to predict the conditions for bacterial eradication by phage predation, sometimes even under well-defined laboratory conditions, and, most curiously, if the majority of surviving cells are genetically phage-susceptible. Here, I propose that even clonal phage and bacterial populations are generally in a state of continuous 'phenotypic flux', which is caused by transient and nongenetic variation in phage and bacterial physiology. Phenotypic flux can shape phage infection dynamics by reducing the force of infection to an extent that allows for coexistence between phages and susceptible bacteria. Understanding the mechanisms and impact of phenotypic flux may be key to providing a complete picture of phage-bacteria coexistence. I review the empirical evidence for phenotypic variation in phage and bacterial physiology together with the ways they have been modeled and discuss the potential implications of phenotypic flux for ecological and evolutionary dynamics between phages and bacteria, as well as for phage therapy.
Collapse
Affiliation(s)
- Claudia Igler
- Department of Environmental Systems Science, ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, Zurich 8092, Switzerland
| |
Collapse
|
15
|
Debray R, De Luna N, Koskella B. Historical contingency drives compensatory evolution and rare reversal of phage resistance. Mol Biol Evol 2022; 39:6673247. [PMID: 35994371 PMCID: PMC9447851 DOI: 10.1093/molbev/msac182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacteria and lytic viruses (phages) engage in highly dynamic coevolutionary interactions over time, yet we have little idea of how transient selection by phages might shape the future evolutionary trajectories of their host populations. To explore this question, we generated genetically diverse phage-resistant mutants of the bacterium Pseudomonas syringae. We subjected the panel of mutants to prolonged experimental evolution in the absence of phages. Some populations re-evolved phage sensitivity, whereas others acquired compensatory mutations that reduced the costs of resistance without altering resistance levels. To ask whether these outcomes were driven by the initial genetic mechanisms of resistance, we next evolved independent replicates of each individual mutant in the absence of phages. We found a strong signature of historical contingency: some mutations were highly reversible across replicate populations, whereas others were highly entrenched. Through whole-genome sequencing of bacteria over time, we also found that populations with the same resistance gene acquired more parallel sets of mutations than populations with different resistance genes, suggesting that compensatory adaptation is also contingent on how resistance initially evolved. Our study identifies an evolutionary ratchet in bacteria–phage coevolution and may explain previous observations that resistance persists over time in some bacterial populations but is lost in others. We add to a growing body of work describing the key role of phages in the ecological and evolutionary dynamics of their host communities. Beyond this specific trait, our study provides a new insight into the genetic architecture of historical contingency, a crucial component of interpreting and predicting evolution.
Collapse
Affiliation(s)
- Reena Debray
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Nina De Luna
- Department of Immunology, Pennsylvania State University, State College, PA, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA.,Chan Zuckerberg BioHub, San Francisco, CA, USA
| |
Collapse
|
16
|
Gupta A, Zaman L, Strobel HM, Gallie J, Burmeister AR, Kerr B, Tamar ES, Kishony R, Meyer JR. Host-parasite coevolution promotes innovation through deformations in fitness landscapes. eLife 2022; 11:e76162. [PMID: 35793223 PMCID: PMC9259030 DOI: 10.7554/elife.76162] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/20/2022] [Indexed: 01/14/2023] Open
Abstract
During the struggle for survival, populations occasionally evolve new functions that give them access to untapped ecological opportunities. Theory suggests that coevolution between species can promote the evolution of such innovations by deforming fitness landscapes in ways that open new adaptive pathways. We directly tested this idea by using high-throughput gene editing-phenotyping technology (MAGE-Seq) to measure the fitness landscape of a virus, bacteriophage λ, as it coevolved with its host, the bacterium Escherichia coli. An analysis of the empirical fitness landscape revealed mutation-by-mutation-by-host-genotype interactions that demonstrate coevolution modified the contours of λ's landscape. Computer simulations of λ's evolution on a static versus shifting fitness landscape showed that the changes in contours increased λ's chances of evolving the ability to use a new host receptor. By coupling sequencing and pairwise competition experiments, we demonstrated that the first mutation λ evolved en route to the innovation would only evolve in the presence of the ancestral host, whereas later steps in λ's evolution required the shift to a resistant host. When time-shift replays of the coevolution experiment were run where host evolution was artificially accelerated, λ did not innovate to use the new receptor. This study provides direct evidence for the role of coevolution in driving evolutionary novelty and provides a quantitative framework for predicting evolution in coevolving ecological communities.
Collapse
Affiliation(s)
- Animesh Gupta
- Department of Physics, University of California San DiegoLa JollaUnited States
| | - Luis Zaman
- Department of Ecology and Evolutionary Biology, University of MichiganAnn ArborUnited States
| | - Hannah M Strobel
- Department of Ecology, Behavior and Evolution, University of California San DiegoLa JollaUnited States
| | - Jenna Gallie
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Alita R Burmeister
- Department of Ecology and Evolutionary Biology, Yale UniversityNew HavenUnited States
| | - Benjamin Kerr
- Department of Biology, University of WashingtonSeattleUnited States
| | - Einat S Tamar
- Department of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Roy Kishony
- Department of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Justin R Meyer
- Department of Ecology, Behavior and Evolution, University of California San DiegoLa JollaUnited States
| |
Collapse
|
17
|
Barron-Montenegro R, Rivera D, Serrano MJ, García R, Álvarez DM, Benavides J, Arredondo F, Álvarez FP, Bastías R, Ruiz S, Hamilton-West C, Castro-Nallar E, Moreno-Switt AI. Long-Term Interactions of Salmonella Enteritidis With a Lytic Phage for 21 Days in High Nutrients Media. Front Cell Infect Microbiol 2022; 12:897171. [PMID: 35711664 PMCID: PMC9196899 DOI: 10.3389/fcimb.2022.897171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Salmonella spp. is a relevant foodborne pathogen with worldwide distribution. To mitigate Salmonella infections, bacteriophages represent an alternative to antimicrobials and chemicals in food animals and food in general. Bacteriophages (phages) are viruses that infect bacteria, which interact constantly with their host. Importantly, the study of these interactions is crucial for the use of phages as a mitigation strategy. In this study, experimental coevolution of Salmonella Enteritidis (S. Enteritidis) and a lytic phage was conducted in tryptic soy broth for 21 days. Transfer to fresh media was conducted daily and every 24 hours, 2 mL of the sample was collected to quantify Salmonella OD600 and phage titter. Additionally, time-shift experiments were conducted on 20 colonies selected on days 1, 12, and 21 to evaluate the evolution of resistance to past (day 1), present (day 12), and future (day 21) phage populations. The behavior of the dynamics was modeled and simulated with mathematical mass-action models. Bacteria and phage from days 1 and 21 were sequenced to determine the emergence of mutations. We found that S. Enteritidis grew for 21 days in the presence and absence of the phage and developed resistance to the phage from day 1. Also, the phage was also able to survive in the media for 21 days, however, the phage titer decreased in approx. 3 logs PFU/mL. The stability of the lytic phage population was consistent with the leaky resistance model. The time-shift experiments showed resistance to phages from day 1 of at least 85% to the past, present, and future phages. Sequencing of S. Enteritidis showed mutations in genes involved in lipopolysaccharide biosynthesis genes rfbP and rfbN at day 21. The phage showed mutations in the tail phage proteins responsible for recognizing the cell surface receptors. These results suggest that interactions between bacteria and phage in a rich resource media generate a rapid resistance to the infective phage but a fraction of the population remains susceptible. Interactions between Salmonella and lytic phages are an important component for the rational use of phages to control this important foodborne pathogen.
Collapse
Affiliation(s)
- Rocio Barron-Montenegro
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dácil Rivera
- Escuela de Medicina Veterinaria, Universidad Andres Bello, Santiago, Chile
| | - María Jesus Serrano
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Rodrigo García
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Department of Biology, Emory University, Atlanta, GA, United States
| | - Diana M. Álvarez
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julio Benavides
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- MIVEGEC, MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Fernanda Arredondo
- Centro de Bioinformática y Biología Integrativa, Universidad Andres Bello, Santiago, Chile
| | - Francisca P. Álvarez
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto Bastías
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Soledad Ruiz
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Christopher Hamilton-West
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Eduardo Castro-Nallar
- Instituto de Investigaciones Interdisciplinarias, Universidad de Talca, Talca, Chile
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Andrea I. Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Koskella B, Hernandez CA, Wheatley RM. Understanding the Impacts of Bacteriophage Viruses: From Laboratory Evolution to Natural Ecosystems. Annu Rev Virol 2022; 9:57-78. [PMID: 35584889 DOI: 10.1146/annurev-virology-091919-075914] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses of bacteriophages (phages) have broad effects on bacterial ecology and evolution in nature that mediate microbial interactions, shape bacterial diversity, and influence nutrient cycling and ecosystem function. The unrelenting impact of phages within the microbial realm is the result, in large part, of their ability to rapidly evolve in response to bacterial host dynamics. The knowledge gained from laboratory systems, typically using pairwise interactions between single-host and single-phage systems, has made clear that phages coevolve with their bacterial hosts rapidly, somewhat predictably, and primarily by counteradapting to host resistance. Recent advancement in metagenomics approaches, as well as a shifting focus toward natural microbial communities and host-associated microbiomes, is beginning to uncover the full picture of phage evolution and ecology within more complex settings. As these data reach their full potential, it will be critical to ask when and how insights gained from studies of phage evolution in vitro can be meaningfully applied to understanding bacteria-phage interactions in nature. In this review, we explore the myriad ways that phages shape and are themselves shaped by bacterial host populations and communities, with a particular focus on observed and predicted differences between the laboratory and complex microbial communities. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, California, USA;
| | - Catherine A Hernandez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
19
|
Staes I, Bäcker LE, Simoens K, De Winter K, Marolt G, Cenens W, Wolput S, Vazquez AR, Goos P, Lavigne R, Bernaerts K, Aertsen A. Superinfection exclusion factors drive a history-dependent switch from vertical to horizontal phage transmission. Cell Rep 2022; 39:110804. [PMID: 35545039 DOI: 10.1016/j.celrep.2022.110804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022] Open
Abstract
Temperate bacterial viruses are commonly thought to favor vertical (lysogenic) transmission over horizontal (lytic) transmission when the virion-to-host-cell ratio is high and available host cells become scarce. In P22-infected Salmonella Typhimurium populations, however, we find that host subpopulations become lytically consumed despite high phage-to-host ratios that would normally favor lysogeny. These subpopulations originate from the proliferation of P22-free siblings that spawn off from P22-carrier cells from which they cytoplasmically inherit P22-borne superinfection exclusion factors (SEFs). In fact, we demonstrate that the gradual dilution of these SEFs in the growing subpopulation of P22-free siblings restricts the number of incoming phages, thereby imposing the perception of a low phage-to-host ratio that favors lytic development. Although their role has so far been neglected, our data indicate that phage-borne SEFs can spur complex infection dynamics and a history-dependent switch from vertical to horizontal transmission in the face of host-cell scarcity.
Collapse
Affiliation(s)
- Ines Staes
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium
| | - Leonard E Bäcker
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium
| | - Kenneth Simoens
- Department of Chemical Engineering- (Bio)chemical Reactor Engineering and Safety, Faculty of Engineering, KU Leuven, Leuven, Belgium
| | - Kjerstin De Winter
- Department of Chemical Engineering- (Bio)chemical Reactor Engineering and Safety, Faculty of Engineering, KU Leuven, Leuven, Belgium
| | - Gasper Marolt
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium; Department of Chemical Engineering- (Bio)chemical Reactor Engineering and Safety, Faculty of Engineering, KU Leuven, Leuven, Belgium
| | - William Cenens
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium
| | - Sanne Wolput
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium
| | - Alan R Vazquez
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Peter Goos
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium; Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| | - Rob Lavigne
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Kristel Bernaerts
- Department of Chemical Engineering- (Bio)chemical Reactor Engineering and Safety, Faculty of Engineering, KU Leuven, Leuven, Belgium
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium.
| |
Collapse
|
20
|
Lourenço M, Chaffringeon L, Lamy-Besnier Q, Titécat M, Pédron T, Sismeiro O, Legendre R, Varet H, Coppée JY, Bérard M, De Sordi L, Debarbieux L. The gut environment regulates bacterial gene expression which modulates susceptibility to bacteriophage infection. Cell Host Microbe 2022; 30:556-569.e5. [PMID: 35421351 DOI: 10.1016/j.chom.2022.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/14/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022]
Abstract
Abundance and diversity of bacteria and their viral predators, bacteriophages (phages), in the digestive tract are associated with human health. Particularly intriguing is the long-term coexistence of these two antagonistic populations. We performed genome-wide RNA sequencing on a human enteroaggregative Escherichia coli isolate to identify genes differentially expressed between in vitro conditions and in murine intestines. We experimentally demonstrated that four of these differentially expressed genes modified the interactions between E. coli and three virulent phages by either increasing or decreasing its susceptibility/resistance pattern and also by interfering with biofilm formation. Therefore, the regulation of bacterial genes expression during the colonization of the digestive tract influences the coexistence of phages and bacteria, highlighting the intricacy of tripartite relationships between phages, bacteria, and the animal host in intestinal homeostasis.
Collapse
Affiliation(s)
- Marta Lourenço
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Lorenzo Chaffringeon
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Sorbonne Université, INSERM, Centre de Recherche St Antoine, UMRS_938, Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - Quentin Lamy-Besnier
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Marie Titécat
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Université de Lille, INSERM, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, 59000 Lille, France
| | - Thierry Pédron
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Odile Sismeiro
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Rachel Legendre
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France; Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Hugo Varet
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France; Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Jean-Yves Coppée
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Marion Bérard
- Institut Pasteur, Université Paris Cité, DT, Animalerie Centrale, Centre de Gnotobiologie, 75724 Paris, France
| | - Luisa De Sordi
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Sorbonne Université, INSERM, Centre de Recherche St Antoine, UMRS_938, Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France.
| |
Collapse
|
21
|
Koonjan S, Cardoso Palacios C, Nilsson AS. Population Dynamics of a Two Phages-One Host Infection System Using Escherichia coli Strain ECOR57 and Phages vB_EcoP_SU10 and vB_EcoD_SU57. Pharmaceuticals (Basel) 2022; 15:268. [PMID: 35337066 PMCID: PMC8953519 DOI: 10.3390/ph15030268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, we looked at the population dynamics of a two phages-one host system using phages vB_EcoP_SU10 (SU10) and vB_EcoD_SU57 (SU57) and the bacteria Escherichia coli, strain ECOR57. Phage-specific growth curves were observed where infections by SU10 resulted in a moderate production of phages and infections by SU57 resulted in a fast and extensive production of phage progeny. Sequentially adding SU10 followed by SU57 did not produce a significant change in growth rates, whereas adding SU57 followed by SU10 resulted in a decrease in SU10 titer The efficiency of the plating assays showed that ECOR57 exhibited a resistance spectrum after infection by both the single and combined phages. Phage-resistant bacteria exhibited four different morphotypes (i.e., normal, slimy, edgy, and pointy). The normal and edgy morphotypes had a high frequency of developing resistance. Bacterial growth and biofilm assays indicated that the edgy and pointy morphotypes reached a stationary phase faster and produced more biofilm compared to the wild type. These findings suggest that the dynamic structure of phage-bacteria communities dictate resistance evolution and development. Understanding when and how resistances arise and phage(s)-hosts interactions could aid in the design of phage therapy treatments.
Collapse
Affiliation(s)
- Shazeeda Koonjan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Carlos Cardoso Palacios
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, SE-739 93 Riddarhyttan, Sweden
| | - Anders S. Nilsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
| |
Collapse
|
22
|
Strobel HM, Horwitz EK, Meyer JR. Viral protein instability enhances host-range evolvability. PLoS Genet 2022; 18:e1010030. [PMID: 35176040 PMCID: PMC8890733 DOI: 10.1371/journal.pgen.1010030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/02/2022] [Accepted: 01/11/2022] [Indexed: 12/29/2022] Open
Abstract
Viruses are highly evolvable, but what traits endow this property? The high mutation rates of viruses certainly play a role, but factors that act above the genetic code, like protein thermostability, are also expected to contribute. We studied how the thermostability of a model virus, bacteriophage λ, affects its ability to evolve to use a new receptor, a key evolutionary transition that can cause host-range evolution. Using directed evolution and synthetic biology techniques we generated a library of host-recognition protein variants with altered stabilities and then tested their capacity to evolve to use a new receptor. Variants fell within three stability classes: stable, unstable, and catastrophically unstable. The most evolvable were the two unstable variants, whereas seven of eight stable variants were significantly less evolvable, and the two catastrophically unstable variants could not grow. The slowly evolving stable variants were delayed because they required an additional destabilizing mutation. These results are particularly noteworthy because they contradict a widely supported contention that thermostabilizing mutations enhance evolvability of proteins by increasing mutational robustness. Our work suggests that the relationship between thermostability and evolvability is more complex than previously thought, provides evidence for a new molecular model of host-range expansion evolution, and identifies instability as a potential predictor of viral host-range evolution.
Collapse
Affiliation(s)
- Hannah M. Strobel
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Elijah K. Horwitz
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Justin R. Meyer
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
23
|
Gupta A, Peng S, Leung CY, Borin JM, Medina S, Weitz JS, Meyer JR. Leapfrog dynamics in phage‐bacteria coevolution revealed by joint analysis of cross‐infection phenotypes and whole genome sequencing. Ecol Lett 2022; 25:876-888. [PMID: 35092147 PMCID: PMC10167754 DOI: 10.1111/ele.13965] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 11/10/2021] [Indexed: 01/21/2023]
Abstract
Viruses and their hosts can undergo coevolutionary arms races where hosts evolve increased resistance and viruses evolve counter-resistance. Given these arms race dynamics (ARD), both players are predicted to evolve along a single trajectory as more recently evolved genotypes replace their predecessors. By coupling phenotypic and genomic analyses of coevolving populations of bacteriophage λ and Escherichia coli, we find conflicting evidence for ARD. Virus-host infection phenotypes fit the ARD model, yet genomic analyses revealed fluctuating selection dynamics. Rather than coevolution unfolding along a single trajectory, cryptic genetic variation emerges and is maintained at low frequency for generations until it eventually supplants dominant lineages. These observations suggest a hybrid 'leapfrog' dynamic, revealing weaknesses in the predictive power of standard coevolutionary models. The findings shed light on the mechanisms that structure coevolving ecological networks and reveal the limits of using phenotypic or genomic data alone to differentiate coevolutionary dynamics.
Collapse
Affiliation(s)
- Animesh Gupta
- Department of Physics University of California San Diego La Jolla California USA
| | - Shengyun Peng
- School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Chung Yin Leung
- School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Joshua M. Borin
- Division of Biological Science University of California San Diego La Jolla California USA
| | - Sarah J. Medina
- Division of Biological Science University of California San Diego La Jolla California USA
| | - Joshua S. Weitz
- School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA
- School of Physics Georgia Institute of Technology Atlanta Georgia USA
| | - Justin R. Meyer
- Division of Biological Science University of California San Diego La Jolla California USA
| |
Collapse
|
24
|
Skanata A, Kussell E. Ecological memory preserves phage resistance mechanisms in bacteria. Nat Commun 2021; 12:6817. [PMID: 34819498 PMCID: PMC8613279 DOI: 10.1038/s41467-021-26609-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023] Open
Abstract
Bacterial defenses against phage, which include CRISPR-mediated immunity and other mechanisms, can carry substantial growth rate costs and can be rapidly lost when pathogens are eliminated. How bacteria preserve their molecular defenses despite their costs, in the face of variable pathogen levels and inter-strain competition, remains a major unsolved problem in evolutionary biology. Here, we present a multilevel model that incorporates biophysics of molecular binding, host-pathogen population dynamics, and ecological dynamics across a large number of independent territories. Using techniques of game theory and non-linear dynamical systems, we show that by maintaining a non-zero failure rate of defenses, hosts sustain sufficient levels of pathogen within an ecology to select against loss of the defense. This resistance switching strategy is evolutionarily stable, and provides a powerful evolutionary mechanism that maintains host-pathogen interactions, selects against cheater strains that avoid the costs of immunity, and enables co-evolutionary dynamics in a wide range of systems.
Collapse
Affiliation(s)
- Antun Skanata
- Department of Biology & Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Edo Kussell
- Department of Biology & Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
- Department of Physics, New York University, New York, NY, 10003, USA.
| |
Collapse
|
25
|
Evaluating the potential efficacy and limitations of a phage for joint antibiotic and phage therapy of Staphylococcus aureus infections. Proc Natl Acad Sci U S A 2021; 118:2008007118. [PMID: 33649203 PMCID: PMC7958385 DOI: 10.1073/pnas.2008007118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This study explores the potential of a phage, PYOSa, for treating Staphylococcus aureus infections in combination with antibiotics. Population dynamic and genomic analysis identified a limitation and potential liability of using PYOSa for therapy. Due to the production of potentially pathogenic atypical small colony variants, PYOSa alone cannot eliminate S. aureus populations. However, we demonstrate that by following the administration of PYOSa with bactericidal antibiotics, this limitation and potential liability can be addressed. The methods used in this investigation to explore the efficacy of combinations of PYOSa and antibiotics for treating S. aureus infections can be employed to evaluate the clinical potential and facilitate the design of treatment protocols for any bacteria and phage that can be cultured in vitro. In response to increasing frequencies of antibiotic-resistant pathogens, there has been a resurrection of interest in the use of bacteriophage to treat bacterial infections: phage therapy. Here we explore the potential of a seemingly ideal phage, PYOSa, for combination phage and antibiotic treatment of Staphylococcus aureus infections. This K-like phage has a broad host range; all 83 tested clinical isolates of S.aureus tested were susceptible to PYOSa. Because of the mode of action of PYOSa, S. aureus is unlikely to generate classical receptor-site mutants resistant to PYOSa; none were observed in the 13 clinical isolates tested. PYOSa kills S. aureus at high rates. On the downside, the results of our experiments and tests of the joint action of PYOSa and antibiotics raise issues that must be addressed before PYOSa is employed clinically. Despite the maintenance of the phage, PYOSa does not clear populations of S. aureus. Due to the ascent of a phenotyically diverse array of small-colony variants following an initial demise, the bacterial populations return to densities similar to that of phage-free controls. Using a combination of mathematical modeling and in vitro experiments, we postulate and present evidence for a mechanism to account for the demise–resurrection dynamics of PYOSa and S. aureus. Critically for phage therapy, our experimental results suggest that treatment with PYOSa followed by bactericidal antibiotics can clear populations of S. aureus more effectively than the antibiotics alone.
Collapse
|
26
|
Bond MC, Vidakovic L, Singh PK, Drescher K, Nadell CD. Matrix-trapped viruses can prevent invasion of bacterial biofilms by colonizing cells. eLife 2021; 10:65355. [PMID: 34240700 PMCID: PMC8346279 DOI: 10.7554/elife.65355] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteriophages can be trapped in the matrix of bacterial biofilms, such that the cells inside them are protected. It is not known whether these phages are still infectious and whether they pose a threat to newly arriving bacteria. Here, we address these questions using Escherichia coli and its lytic phage T7. Prior work has demonstrated that T7 phages are bound in the outermost curli polymer layers of the E. coli biofilm matrix. We show that these phages do remain viable and can kill colonizing cells that are T7-susceptible. If cells colonize a resident biofilm before phages do, we find that they can still be killed by phage exposure if it occurs soon thereafter. However, if colonizing cells are present on the biofilm long enough before phage exposure, they gain phage protection via envelopment within curli-producing clusters of the resident biofilm cells.
Collapse
Affiliation(s)
- Matthew C Bond
- Department of Biological Sciences, Dartmouth College, Hanover, United States
| | - Lucia Vidakovic
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Praveen K Singh
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,Department of Physics, Philipps University Marburg, Marburg, Germany.,Biozentrum, University of Basel, Basel, Switzerland
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, United States
| |
Collapse
|
27
|
Borin JM, Avrani S, Barrick JE, Petrie KL, Meyer JR. Coevolutionary phage training leads to greater bacterial suppression and delays the evolution of phage resistance. Proc Natl Acad Sci U S A 2021; 118:e2104592118. [PMID: 34083444 PMCID: PMC8201913 DOI: 10.1073/pnas.2104592118] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The evolution of antibiotic-resistant bacteria threatens to become the leading cause of worldwide mortality. This crisis has renewed interest in the practice of phage therapy. Yet, bacteria's capacity to evolve resistance may debilitate this therapy as well. To combat the evolution of phage resistance and improve treatment outcomes, many suggest leveraging phages' ability to counter resistance by evolving phages on target hosts before using them in therapy (phage training). We found that in vitro, λtrn, a phage trained for 28 d, suppressed bacteria ∼1,000-fold for three to eight times longer than its untrained ancestor. Prolonged suppression was due to a delay in the evolution of resistance caused by several factors. Mutations that confer resistance to λtrn are ∼100× less common, and while the target bacterium can evolve complete resistance to the untrained phage in a single step, multiple mutations are required to evolve complete resistance to λtrn. Mutations that confer resistance to λtrn are more costly than mutations for untrained phage resistance. Furthermore, when resistance does evolve, λtrn is better able to suppress these forms of resistance. One way that λtrn improved was through recombination with a gene in a defunct prophage in the host genome, which doubled phage fitness. This transfer of information from the host genome is an unexpected but highly efficient mode of training phage. Lastly, we found that many other independently trained λ phages were able to suppress bacterial populations, supporting the important role training could play during phage therapeutic development.
Collapse
Affiliation(s)
- Joshua M Borin
- Division of Biological Sciences, University of California San Diego, San Diego, CA 92093
| | - Sarit Avrani
- Department of Evolutionary and Environmental Biology and The Institute of Evolution, University of Haifa, 3498838 Haifa, Israel
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Katherine L Petrie
- Division of Biological Sciences, University of California San Diego, San Diego, CA 92093
- Earth-Life Science Institute, Tokyo Institute of Technology, 145-0061 Tokyo, Japan
| | - Justin R Meyer
- Division of Biological Sciences, University of California San Diego, San Diego, CA 92093;
| |
Collapse
|
28
|
Burmeister AR, Sullivan RM, Gallie J, Lenski RE. Sustained coevolution of phage Lambda and Escherichia coli involves inner- as well as outer-membrane defences and counter-defences. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001063. [PMID: 34032565 PMCID: PMC8290101 DOI: 10.1099/mic.0.001063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Bacteria often evolve resistance to phage through the loss or modification of cell surface receptors. In Escherichia coli and phage λ, such resistance can catalyze a coevolutionary arms race focused on host and phage structures that interact at the outer membrane. Here, we analyse another facet of this arms race involving interactions at the inner membrane, whereby E. coli evolves mutations in mannose permease-encoding genes manY and manZ that impair λ's ability to eject its DNA into the cytoplasm. We show that these man mutants arose concurrently with the arms race at the outer membrane. We tested the hypothesis that λ evolved an additional counter-defence that allowed them to infect bacteria with deleted man genes. The deletions severely impaired the ancestral λ, but some evolved phage grew well on the deletion mutants, indicating that they regained infectivity by evolving the ability to infect hosts independently of the mannose permease. This coevolutionary arms race fulfils the model of an inverse gene-for-gene infection network. Taken together, the interactions at both the outer and inner membranes reveal that coevolutionary arms races can be richer and more complex than is often appreciated.
Collapse
Affiliation(s)
- Alita R. Burmeister
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
- Present address: Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Rachel M. Sullivan
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
- Present address: Waisman Center, University of Wisconsin, Madison, WI, USA
| | - Jenna Gallie
- Department of Biology, University of Washington, Seattle, WA, USA
- Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Present address: Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Richard E. Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
29
|
João J, Lampreia J, Prazeres DMF, Azevedo AM. Manufacturing of bacteriophages for therapeutic applications. Biotechnol Adv 2021; 49:107758. [PMID: 33895333 DOI: 10.1016/j.biotechadv.2021.107758] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/14/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022]
Abstract
Bacteriophages, or simply phages, are the most abundant biological entities on Earth. One of the most interesting characteristics of these viruses, which infect and use bacteria as their host organisms, is their high level of specificity. Since their discovery, phages became a tool for the comprehension of basic molecular biology and originated applications in a variety of areas such as agriculture, biotechnology, food safety, veterinary, pollution remediation and wastewater treatment. In particular, phages offer a solution to one of the major problems in public health nowadays, i.e. the emergence of multidrug-resistant bacteria. In these situations, the use of virulent phages as therapeutic agents offers an alternative to the classic, antibiotic-based strategies. The development of phage therapies should be accompanied by the improvement of phage biomanufacturing processes, both at laboratory and industrial scales. In this review, we first present some historical and general aspects related with the discovery, usage and biology of phages and provide a brief overview of the most relevant phage therapy applications. Then, we showcase current processes used for the production and purification of phages and future alternatives in development. On the production side, key factors such as the bacterial physiological state, the conditions of phage infection and the operation parameters are described alongside with the different operation modes, from batch to semi-continuous and continuous. Traditional purification methods used in the initial phage isolation steps are then described followed by the presentation of current state-of-the-art purification approaches. Continuous purification of phages is finally presented as a future biomanufacturing trend.
Collapse
Affiliation(s)
- Jorge João
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - João Lampreia
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - Duarte Miguel F Prazeres
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - Ana M Azevedo
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| |
Collapse
|
30
|
Chaudhry W, Lee E, Worthy A, Weiss Z, Grabowicz M, Vega N, Levin B. Mucoidy, a general mechanism for maintaining lytic phage in populations of bacteria. FEMS Microbiol Ecol 2021; 96:5897354. [PMID: 32845324 PMCID: PMC7532286 DOI: 10.1093/femsec/fiaa162] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
We present evidence that phage resistance resulting from overproduction of exopolysaccharides, mucoidy, provides a general answer to the longstanding question of how lytic viruses are maintained in populations dominated by bacteria upon which they cannot replicate. In serial transfer culture, populations of mucoid Escherichia coli MG1655 that are resistant to lytic phages with different receptors, and thereby requiring independent mutations for surface resistance, are capable of maintaining these phages with little effect on their total density. Based on the results of our analysis of a mathematical model, we postulate that the maintenance of phage in populations dominated by mucoid cells can be attributed primarily to high rates of transition from the resistant mucoid states to susceptible non-mucoid states. Our tests with both population dynamic and single cell experiments as well as genomic analysis are consistent with this hypothesis. We discuss reasons for the generalized resistance of these mucoid E. coli, and the genetic and molecular mechanisms responsible for the high rate of transition from mucoid to sensitive states responsible for the maintenance of lytic phage in mucoid populations of E. coli.
Collapse
Affiliation(s)
- Waqas Chaudhry
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Esther Lee
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Andrew Worthy
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Zoe Weiss
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Marcin Grabowicz
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicole Vega
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Bruce Levin
- Department of Biology, Emory University, Atlanta, GA 30322, USA.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
31
|
Litt PK, Kakani R, Jadeja R, Saha J, Kountoupis T, Jaroni D. Effectiveness of Bacteriophages Against Biofilm-Forming Shiga-Toxigenic Escherichia coli on Leafy Greens and Cucumbers. PHAGE (NEW ROCHELLE, N.Y.) 2020; 1:213-222. [PMID: 36147291 PMCID: PMC9041472 DOI: 10.1089/phage.2020.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Background: Shiga-toxigenic Escherichia coli (STEC) have caused several produce-associated outbreaks, making it challenging to control these pathogens. Bacteriophages could serve as effective biocontrol. Materials and Methods: Spinach, lettuce, and cucumbers, inoculated with STEC (O157, O26, O45, O103, O111, O121, O145), were treated with lytic bacteriophages and stored at 4°C for 3 days. Surviving STEC were enumerated and observed under scanning electron microscope (SEM), and data analyzed using one-way analysis of variance (ANOVA) (p < 0.05). Results: Bacteriophage treatments significantly reduced STEC populations, compared with the control (p < 0.05). On spinach and romaine, STEC O26, O45, and O103 were reduced to undetectable levels and STEC O157, O111, O121, and O145 by ∼2 logs CFU/cm2. Multiserotype phage cocktail reduced STEC on leafy greens by 1.4 CFU/cm2 and on cucumbers by 1.7 logs CFU/cucumber. Clusters of STEC cells, surrounded by extracellular matrix, were observed under SEM of positive control, whereas phage-treated produce surface showed fewer cells, with cellular damage. Conclusions: Bacteriophages could be utilized as biocontrol against STEC on fresh produce.
Collapse
Affiliation(s)
- Pushpinder K. Litt
- Department of Animal and Food Sciences, Food and Agricultural Products Center, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Radhika Kakani
- Department of Animal and Food Sciences, Food and Agricultural Products Center, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Ravirajsinh Jadeja
- Department of Animal and Food Sciences, Food and Agricultural Products Center, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Joyjit Saha
- Department of Animal and Food Sciences, Food and Agricultural Products Center, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tony Kountoupis
- Department of Animal and Food Sciences, Food and Agricultural Products Center, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Divya Jaroni
- Department of Animal and Food Sciences, Food and Agricultural Products Center, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
32
|
Arya S, Todman H, Baker M, Hooton S, Millard A, Kreft JU, Hobman JL, Stekel DJ. A generalised model for generalised transduction: the importance of co-evolution and stochasticity in phage mediated antimicrobial resistance transfer. FEMS Microbiol Ecol 2020; 96:5850753. [PMID: 32490523 DOI: 10.1093/femsec/fiaa100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/02/2020] [Indexed: 01/21/2023] Open
Abstract
Antimicrobial resistance is a major global challenge. Of particular concern are mobilizable elements that can transfer resistance genes between bacteria, leading to pathogens with new combinations of resistance. To date, mathematical models have largely focussed on transfer of resistance by plasmids, with fewer studies on transfer by bacteriophages. We aim to understand how best to model transfer of resistance by transduction by lytic phages. We show that models of lytic bacteriophage infection with empirically derived realistic phage parameters lead to low numbers of bacteria, which, in low population or localised environments, lead to extinction of bacteria and phage. Models that include antagonistic co-evolution of phage and bacteria produce more realistic results. Furthermore, because of these low numbers, stochastic dynamics are shown to be important, especially to spread of resistance. When resistance is introduced, resistance can sometimes be fixed, and at other times die out, with the probability of each outcome sensitive to bacterial and phage parameters. Specifically, that outcome most strongly depends on the baseline death rate of bacteria, with phage-mediated spread favoured in benign environments with low mortality over more hostile environments. We conclude that larger-scale models should consider spatial compartmentalisation and heterogeneous microenviroments, while encompassing stochasticity and co-evolution.
Collapse
Affiliation(s)
- Sankalp Arya
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Henry Todman
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Michelle Baker
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.,School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Steven Hooton
- Division of Food Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Jan-Ulrich Kreft
- School of Biosciences & Institute of Microbiology and Infection & Centre for Computational Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jon L Hobman
- Division of Food Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Dov J Stekel
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
33
|
Lourenço M, Chaffringeon L, Lamy-Besnier Q, Pédron T, Campagne P, Eberl C, Bérard M, Stecher B, Debarbieux L, De Sordi L. The Spatial Heterogeneity of the Gut Limits Predation and Fosters Coexistence of Bacteria and Bacteriophages. Cell Host Microbe 2020; 28:390-401.e5. [DOI: 10.1016/j.chom.2020.06.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/30/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
|
34
|
Simmons EL, Bond MC, Koskella B, Drescher K, Bucci V, Nadell CD. Biofilm Structure Promotes Coexistence of Phage-Resistant and Phage-Susceptible Bacteria. mSystems 2020; 5:e00877-19. [PMID: 32576653 PMCID: PMC7311319 DOI: 10.1128/msystems.00877-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/29/2020] [Indexed: 01/21/2023] Open
Abstract
Encounters among bacteria and their viral predators (bacteriophages) are among the most common ecological interactions on Earth. These encounters are likely to occur with regularity inside surface-bound communities that microbes most often occupy in natural environments. Such communities, termed biofilms, are spatially constrained: interactions become limited to near neighbors, diffusion of solutes and particulates can be reduced, and there is pronounced heterogeneity in nutrient access and physiological state. It is appreciated from prior theoretical work that phage-bacteria interactions are fundamentally different in spatially structured contexts, as opposed to well-mixed liquid culture. Spatially structured communities are predicted to promote the protection of susceptible host cells from phage exposure, and thus weaken selection for phage resistance. The details and generality of this prediction in realistic biofilm environments, however, are not known. Here, we explore phage-host interactions using experiments and simulations that are tuned to represent the essential elements of biofilm communities. Our simulations show that in biofilms, phage-resistant cells-as their relative abundance increases-can protect clusters of susceptible cells from phage exposure, promoting the coexistence of susceptible and phage-resistant bacteria under a large array of conditions. We characterize the population dynamics underlying this coexistence, and we show that coexistence is recapitulated in an experimental model of biofilm growth measured with confocal microscopy. Our results provide a clear view into the dynamics of phage resistance in biofilms with single-cell resolution of the underlying cell-virion interactions, linking the predictions of canonical theory to realistic models and in vitro experiments of biofilm growth.IMPORTANCE In the natural environment, bacteria most often live in communities bound to one another by secreted adhesives. These communities, or biofilms, play a central role in biogeochemical cycling, microbiome functioning, wastewater treatment, and disease. Wherever there are bacteria, there are also viruses that attack them, called phages. Interactions between bacteria and phages are likely to occur ubiquitously in biofilms. We show here, using simulations and experiments, that biofilms will in most conditions allow phage-susceptible bacteria to be protected from phage exposure, if they are growing alongside other cells that are phage resistant. This result has implications for the fundamental ecology of phage-bacteria interactions, as well as the development of phage-based antimicrobial therapeutics.
Collapse
Affiliation(s)
- Emilia L Simmons
- Department of Biological Sciences, Dartmouth, Hanover, New Hampshire, USA
| | - Matthew C Bond
- Department of Biological Sciences, Dartmouth, Hanover, New Hampshire, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, USA
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Vanni Bucci
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
35
|
Yau S, Krasovec M, Benites LF, Rombauts S, Groussin M, Vancaester E, Aury JM, Derelle E, Desdevises Y, Escande ML, Grimsley N, Guy J, Moreau H, Sanchez-Brosseau S, van de Peer Y, Vandepoele K, Gourbiere S, Piganeau G. Virus-host coexistence in phytoplankton through the genomic lens. SCIENCE ADVANCES 2020; 6:eaay2587. [PMID: 32270031 PMCID: PMC7112755 DOI: 10.1126/sciadv.aay2587] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/09/2020] [Indexed: 05/02/2023]
Abstract
Virus-microbe interactions in the ocean are commonly described by "boom and bust" dynamics, whereby a numerically dominant microorganism is lysed and replaced by a virus-resistant one. Here, we isolated a microalga strain and its infective dsDNA virus whose dynamics are characterized instead by parallel growth of both the microalga and the virus. Experimental evolution of clonal lines revealed that this viral production originates from the lysis of a minority of virus-susceptible cells, which are regenerated from resistant cells. Whole-genome sequencing demonstrated that this resistant-susceptible switch involved a large deletion on one chromosome. Mathematical modeling explained how the switch maintains stable microalga-virus population dynamics consistent with their observed growth pattern. Comparative genomics confirmed an ancient origin of this "accordion" chromosome despite a lack of sequence conservation. Together, our results show how dynamic genomic rearrangements may account for a previously overlooked coexistence mechanism in microalgae-virus interactions.
Collapse
Affiliation(s)
- Sheree Yau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
- Corresponding author. (G.P.); (S.Y.)
| | - Marc Krasovec
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - L. Felipe Benites
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Stephane Rombauts
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Mathieu Groussin
- Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square NE47-378, Cambridge, MA 02139, USA
| | - Emmelien Vancaester
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Jean-Marc Aury
- Genoscope, Institut de biologie François Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Evelyne Derelle
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
- Univ. Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzane, France
| | - Yves Desdevises
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Marie-Line Escande
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Nigel Grimsley
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Julie Guy
- Genoscope, Institut de biologie François Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Hervé Moreau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Sophie Sanchez-Brosseau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Yves van de Peer
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Klaas Vandepoele
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Sebastien Gourbiere
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, UMR 5096, 52 Avenue Paul Alduy, 66860 Perpignan, France
| | - Gwenael Piganeau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
- Corresponding author. (G.P.); (S.Y.)
| |
Collapse
|
36
|
Gurney J, Pleška M, Levin BR. Why put up with immunity when there is resistance: an excursion into the population and evolutionary dynamics of restriction-modification and CRISPR-Cas. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180096. [PMID: 30905282 PMCID: PMC6452257 DOI: 10.1098/rstb.2018.0096] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacteria can readily generate mutations that prevent bacteriophage (phage) adsorption and thus make bacteria resistant to infections with these viruses. Nevertheless, the majority of bacteria carry complex innate and/or adaptive immune systems: restriction–modification (RM) and CRISPR-Cas, respectively. Both RM and CRISPR-Cas are commonly assumed to have evolved and be maintained to protect bacteria from succumbing to infections with lytic phage. Using mathematical models and computer simulations, we explore the conditions under which selection mediated by lytic phage will favour such complex innate and adaptive immune systems, as opposed to simple envelope resistance. The results of our analysis suggest that when populations of bacteria are confronted with lytic phage: (i) In the absence of immunity, resistance to even multiple bacteriophage species with independent receptors can evolve readily. (ii) RM immunity can benefit bacteria by preventing phage from invading established bacterial populations and particularly so when there are multiple bacteriophage species adsorbing to different receptors. (iii) Whether CRISPR-Cas immunity will prevail over envelope resistance depends critically on the number of steps in the coevolutionary arms race between the bacteria-acquiring spacers and the phage-generating CRISPR-escape mutants. We discuss the implications of these results in the context of the evolution and maintenance of RM and CRISPR-Cas and highlight fundamental questions that remain unanswered. This article is part of a discussion meeting issue ‘The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems’.
Collapse
Affiliation(s)
- James Gurney
- 1 School of Biological Sciences, Georgia Institute of Technology , Atlanta, GA 30314 , USA
| | - Maroš Pleška
- 2 The Rockefeller University , New York, NY 10065 , USA
| | | |
Collapse
|
37
|
Abstract
Clinical trial results of phage treatment of bacterial infections show a low to moderate efficacy, and the variation in infection clearance between subjects within studies is often large. Phage therapy is complicated and introduces many additional components of variance as compared to antibiotic treatment. A large part of the variation is due to in vivo pharmacokinetics and pharmacodynamics being virtually unknown, but also to a lack of standardisation. This is a consequence of the great variation of phages, bacteria, and infections, which results in different experiments or trials being impossible to compare, and difficulties in estimating important parameter values in a quantitative and reproducible way. The limitations of phage therapy will have to be recognised and future research focussed on optimising infection clearance rates by e.g. selecting phages, bacteria, and target bacterial infections where the prospects of high efficacy can be anticipated, and by combining information from new mathematical modelling of in vivo pharmacokinetic and pharmacodynamic processes and quantitatively assessed experiments.
Collapse
Affiliation(s)
- Anders S. Nilsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
38
|
Wright RCT, Friman VP, Smith MCM, Brockhurst MA. Resistance Evolution against Phage Combinations Depends on the Timing and Order of Exposure. mBio 2019; 10:e01652-19. [PMID: 31551330 PMCID: PMC6759759 DOI: 10.1128/mbio.01652-19] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/29/2019] [Indexed: 01/07/2023] Open
Abstract
Phage therapy is a promising alternative to chemotherapeutic antibiotics for the treatment of bacterial infections. However, despite recent clinical uses of combinations of phages to treat multidrug-resistant infections, a mechanistic understanding of how bacteria evolve resistance against multiple phages is lacking, limiting our ability to deploy phage combinations optimally. Here, we show, using Pseudomonas aeruginosa and pairs of phages targeting shared or distinct surface receptors, that the timing and order of phage exposure determine the strength, cost, and mutational basis of resistance. Whereas sequential exposure allowed bacteria to acquire multiple resistance mutations effective against both phages, this evolutionary trajectory was prevented by simultaneous exposure, resulting in quantitatively weaker resistance. The order of phage exposure determined the fitness costs of sequential resistance, such that certain sequential orders imposed much higher fitness costs than the same phage pair in the reverse order. Together, these data suggest that phage combinations can be optimized to limit the strength of evolved resistances while maximizing their associated fitness costs to promote the long-term efficacy of phage therapy.IMPORTANCE Globally rising rates of antibiotic resistance have renewed interest in phage therapy where combinations of phages have been successfully used to treat multidrug-resistant infections. To optimize phage therapy, we first need to understand how bacteria evolve resistance against combinations of multiple phages. Here, we use simple laboratory experiments and genome sequencing to show that the timing and order of phage exposure determine the strength, cost, and mutational basis of resistance evolution in the opportunistic pathogen Pseudomonas aeruginosa These findings suggest that phage combinations can be optimized to limit the emergence and persistence of resistance, thereby promoting the long-term usefulness of phage therapy.
Collapse
Affiliation(s)
- Rosanna C T Wright
- Department of Biology, University of York, York, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | | | | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
39
|
García R, Latz S, Romero J, Higuera G, García K, Bastías R. Bacteriophage Production Models: An Overview. Front Microbiol 2019; 10:1187. [PMID: 31214139 PMCID: PMC6558064 DOI: 10.3389/fmicb.2019.01187] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/09/2019] [Indexed: 11/13/2022] Open
Abstract
The use of bacteriophages has been proposed as an alternative method to control pathogenic bacteria. During recent years several reports have been published about the successful use of bacteriophages in different fields such as food safety, agriculture, aquaculture, and even human health. Several companies are now commercializing bacteriophages or bacteriophage-based products for therapeutic purposes. However, this technology is still in development and there are challenges to overcome before bacteriophages can be widely used to control pathogenic bacteria. One big hurdle is the development of efficient methods for bacteriophage production. To date, several models for bacteriophage production have been reported, some of them evaluated experimentally. This mini-review offers an overview of different models and methods for bacteriophage production, contrasting their principal differences.
Collapse
Affiliation(s)
- Rodrigo García
- Laboratorio de Microbiología, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Simone Latz
- Laboratorio de Microbiología, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jaime Romero
- Laboratorio de Biotecnología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Gastón Higuera
- Laboratorio de Biotecnología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Roberto Bastías
- Laboratorio de Microbiología, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
40
|
Common J, Morley D, Westra ER, van Houte S. CRISPR-Cas immunity leads to a coevolutionary arms race between Streptococcus thermophilus and lytic phage. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180098. [PMID: 30905285 PMCID: PMC6452269 DOI: 10.1098/rstb.2018.0098] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2018] [Indexed: 01/22/2023] Open
Abstract
CRISPR-Cas is an adaptive prokaryotic immune system that prevents phage infection. By incorporating phage-derived 'spacer' sequences into CRISPR loci on the host genome, future infections from the same phage genotype can be recognized and the phage genome cleaved. However, the phage can escape CRISPR degradation by mutating the sequence targeted by the spacer, allowing them to re-infect previously CRISPR-immune hosts, and theoretically leading to coevolution. Previous studies have shown that phage can persist over long periods in populations of Streptococcus thermophilus that can acquire CRISPR-Cas immunity, but it has remained less clear whether this coexistence was owing to coevolution, and if so, what type of coevolutionary dynamics were involved. In this study, we performed highly replicated serial transfer experiments over 30 days with S. thermophilus and a lytic phage. Using a combination of phenotypic and genotypic data, we show that CRISPR-mediated resistance and phage infectivity coevolved over time following an arms race dynamic, and that asymmetry between phage infectivity and host resistance within this system eventually causes phage extinction. This work provides further insight into the way CRISPR-Cas systems shape the population and coevolutionary dynamics of bacteria-phage interactions. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
| | | | | | - Stineke van Houte
- ESI and CEC, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
| |
Collapse
|
41
|
Common J, Westra ER. CRISPR evolution and bacteriophage persistence in the context of population bottlenecks. RNA Biol 2019; 16:588-594. [PMID: 30722720 DOI: 10.1080/15476286.2019.1578608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Population bottlenecks often cause strong reductions in genetic diversity and alter population structure. In the context of host-parasite interactions, bottlenecks could in theory benefit either the host or the pathogen. We predicted that bottlenecking of bacterial populations that evolve CRISPR immunity against bacteriophages (phage) would benefit the pathogen, because CRISPR spacer diversity can rapidly drive phages extinct. To test this, we bottlenecked populations of bacteria and phage, tracking phage persistence and the evolution of bacterial resistance mechanisms. Contrary to our prediction, bottlenecking worked in the advantage of the host. With some possible exceptions, this effect was not caused by CRISPR immunity. This host benefit is consistent with a dilution effect disproportionately affecting phage. This study provides further insight into how bottlenecking influences bacteria-phage dynamics, the role of dilution in bacteria-phage interactions, and the evolution of host immune systems.
Collapse
Affiliation(s)
- Jack Common
- a ESI, Biosciences , University of Exeter , Penryn , UK
| | - Edze R Westra
- a ESI, Biosciences , University of Exeter , Penryn , UK
| |
Collapse
|
42
|
Abstract
The use of ‘organ-on-chip' devices in microbiology research presents enormous opportunities for fundamental and translational research1–4. Yet these approaches have not been widely embraced by the microbiology field. This is particularly evident with bacteriophage (phage) research applications. Traditionally phage research has been an early adopter of experimental techniques and approaches5, having catalysed research in biotechnology, environmental biology, sequencing, and synthetic biology. Here we discuss some of the opportunities that organ-on-chip devices present to both phage and microbiology research, and provide a ‘how to' guide for researchers interested in utilising this approach.
Collapse
|
43
|
Koskella B. Resistance gained, resistance lost: An explanation for host-parasite coexistence. PLoS Biol 2018; 16:e3000013. [PMID: 30248103 PMCID: PMC6171958 DOI: 10.1371/journal.pbio.3000013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/04/2018] [Indexed: 01/21/2023] Open
Abstract
Host populations are under continual selection by parasites due to reduced fitness of infected individuals relative to uninfected individuals. This should select for host resistance against parasites, and ample evidence from the laboratory and natural populations demonstrates that hosts can respond rapidly to parasitism by evolving resistance. Why then do parasites still exist? In part, this is due to ongoing arms races as parasites evolve counteradaptations to overcome resistance and to the presence of spatial structure and refuges. However, host-parasite coexistence can also be explained through loss of resistance over time due either to selection against costly resistance mechanisms or constant loss of resistance via reversion mutations.
Collapse
Affiliation(s)
- Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|