1
|
Guo Z, Chen E, Xie X, Guo Y, Zhang M, Zhu Y, Wang Y, Fang F, Yan L, Liu X. Flll32, a curcumin analog, improves adipose tissue thermogenesis. Biochem Biophys Res Commun 2024; 737:150919. [PMID: 39486136 DOI: 10.1016/j.bbrc.2024.150919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/17/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Adipose tissue is a key regulator of systemic energy homeostasis and improving adipose tissue function provides a brand-new theoretical reference for the prevention and treatment of obesity. FLLL32, a curcumin analog, can hinder various carcinogenic processes, however, its role in adipose tissue has not been fully elucidated. In this study, we observed that FLLL32 treatment significantly improved cold intolerance and reduced white adipose tissue (WAT) adipocyte size in mice, but had no effect on body weight and adipose tissues weight. Furthermore, FLLL32 treatment upregulated the expression level of uncoupling protein 1 and downregulated the expression level of peroxisome proliferator-activated receptor gamma in adipose tissue. Additionally, FLLL32 promoted the mRNA level of transferrin receptor protein 1, a key iron transporter on the cell membrane, and the lipid peroxidation in inguinal WAT. Finally, FLLL32 significantly inhibited the differentiation and maturation of preadipocytes. In summary, our results demonstrated that FLLL32 plays a crucial role in regulating adipose tissue function.
Collapse
Affiliation(s)
- Zeyu Guo
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Enhui Chen
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xianghong Xie
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yanfang Guo
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Minglong Zhang
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yinghan Zhu
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yiting Wang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Fude Fang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Li Yan
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Xiaojun Liu
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
2
|
Arbee S, Himeno T, Miura-Yura E, Kato M, Islam S, Jahan N, Kamiya H, Watanabe H. Versican maintains the homeostasis of adipose tissues and regulates energy metabolism. Biochem Biophys Res Commun 2024; 727:150309. [PMID: 38936224 DOI: 10.1016/j.bbrc.2024.150309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Versican is a large chondroitin sulfate proteoglycan in the extracellular matrix. It plays a pivotal role in the formation of the provisional matrix. S100a4, previously known as fibroblast-specific protein, functions as a calcium channel-binding protein. To investigate the role of versican expressed in fibroblasts, we generated conditional knockout mice in which versican expression is deleted in cells expressing S100a4. We found that S100a4 is expressed in adipose tissues, and these mice exhibit obesity under a normal diet, which becomes apparent as early as five months. The white adipose tissues of these mice exhibited decreased expression levels of S100a4 and versican and hypertrophy of adipocytes. qRT-PCR showed a reduced level of UCP1 in their white adipose tissues, indicating that the basic energy metabolism is diminished. These results suggest that versican in adipose tissues maintains the homeostasis of adipose tissues and regulates energy metabolism.
Collapse
Affiliation(s)
- Shahida Arbee
- Insitute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Tatsuhito Himeno
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Emiri Miura-Yura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Makoto Kato
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Shamima Islam
- Insitute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Nushrat Jahan
- Insitute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Hideki Kamiya
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Hideto Watanabe
- Insitute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| |
Collapse
|
3
|
Zhang Z, Chang L, Wang B, Wei Y, Li X, Li X, Zhang Y, Wang K, Qiao R, Yang F, Yu T, Han X. Differential chromatin accessibility and Gene Expression Associated with Backfat Deposition in pigs. BMC Genomics 2024; 25:902. [PMID: 39349998 PMCID: PMC11441165 DOI: 10.1186/s12864-024-10805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Backfat serves as a vital fat reservoir in pigs, and its excessive accumulation will adversely impact pig growth performance, farming efficiency, and pork quality. The aim of this research is to integrate assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and RNA sequencing (RNA-seq) to explore the molecular mechanisms underlying porcine backfat deposition. RESULTS ATAC-seq analysis identified 568 genes originating from 698 regions exhibiting differential accessibility, which were significantly enriched in pathways pertinent to adipocyte differentiation and lipid metabolism. Besides, a total of 283 transcription factors (TFs) were identified by motif analysis. RNA-seq analysis revealed 978 differentially expressed genes (DEGs), which were enriched in pathways related to energy metabolism, cell cycle and signal transduction. The integration of ATAC-seq and RNA-seq data indicates that DEG expression levels are associated with chromatin accessibility. This comprehensive study highlights the involvement of critical pathways, including the Wnt signaling pathway, Jak-STAT signaling pathway, and fatty acid degradation, in the regulation of backfat deposition. Through rigorous analysis, we identified several candidate genes (LEP, CTBP2, EHHADH, OSMR, TCF7L2, BCL2, FGF1, UCP2, CCND1, TIMP1, and VDR) as potentially significant contributors to backfat deposition. Additionally, we constructed TF-TF and TF-target gene regulatory networks and identified a series of potential TFs related to backfat deposition (FOS, STAT3, SMAD3, and ESR1). CONCLUSIONS This study represents the first application of ATAC-seq and RNA-seq, affording a novel perspective into the mechanisms underlying backfat deposition and providing invaluable resources for the enhancement of pig breeding programs.
Collapse
Affiliation(s)
- Zhe Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lebin Chang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Bingjie Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yilin Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Sanya Institute, Hainan Academy of Agricultural Science, Sanya, 572025, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yongqian Zhang
- Henan Yifa Animal Husbandry Co., Ltd, Hebi, 458000, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Tong Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Boychenko S, Abdullina A, Laktyushkin VS, Brovin A, Egorov AD. Assessment of Adipocyte Transduction Using Different AAV Capsid Variants. Pharmaceuticals (Basel) 2024; 17:1227. [PMID: 39338389 PMCID: PMC11435061 DOI: 10.3390/ph17091227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Adeno-associated viruses (AAVs) are widely used as viral vectors for gene delivery in mammalian cells. We focused on the efficacy of the transduction of AAV2/5, 2/6, 2/8 and 2/9 expressing GFP in preadipocyte cells by live imaging microscopy using IncuCyte S3 and flow cytometry. METHODS Three transduction modes in 3T3-L1 preadipocyte cells assessed: AAV transduction in 3T3-L1 preadipocyte cells, transduction with further differentiation into mature adipocyte-like cells and the transduction of differentiated 3T3-L1 adipocytes. For the in vivo study, we injected AAV2/6, AAV2/8 and AAV2/9 in adipose tissue of C57BL6 mice, and the transduction capacity of AAV2/6, along with AAV2/8 and AAV2/9 was evaluated. RESULTS AAV2/6 demonstrated the highest transduction efficiency in 3T3-L1 preadipocytes, as it was 1.5-2-fold more effective than AAV2/5, and AAV2/8 in the range of viral concentrations from 2 × 104 to 1.6 × 105 VG/cell. AAV2/5 and AAV2/8 showed transduction efficiencies similar to each other. The expression of GFP under the CMV promoter remained stable for up to 20 days. The induction of 3T3-L1 differentiation in three days after AAV transduction did not alter the GFP expression level, and AAV2/6 showed the best transduction efficiency. AAV2/6 demonstrated the ability to transduce mature adipocytes. These results were confirmed by in vivo studies on C57BL6 mice. AAV2/6 had the highest transducing activity on both inguinal and interscapular adipose tissue. CONCLUSIONS Thus, AAV2/6 has demonstrated higher transduction efficacy compared to AAV2/5, AAV2/8 and AAV2/9 both in 3T3-L1 adipocytes and adipose tissue in vivo, which proves its usability along with AAV2/8 and AAV2/9 for gene delivery to adipocytes.
Collapse
Affiliation(s)
- Stanislav Boychenko
- Gene Therapy Department, Science Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (A.A.); (A.B.)
| | - Alina Abdullina
- Gene Therapy Department, Science Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (A.A.); (A.B.)
| | - Viktor S. Laktyushkin
- Resource Center for Cell Technologies, Laboratory Complex, Sirius University of Science and Technology, 354340 Sirius, Russia;
| | - Andrew Brovin
- Gene Therapy Department, Science Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (A.A.); (A.B.)
| | - Alexander D. Egorov
- Gene Therapy Department, Science Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (A.A.); (A.B.)
| |
Collapse
|
5
|
Lambert J, Kovilakath A, Jamil M, Valentine Y, Anderson A, Montefusco D, Cowart LA. Sphingosine kinase 1 is induced by glucocorticoids in adipose derived stem cells and enhances glucocorticoid mediated signaling in adipose expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612482. [PMID: 39314417 PMCID: PMC11419133 DOI: 10.1101/2024.09.13.612482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Sphingosine kinase 1 (SphK1) plays a crucial role in regulating metabolic pathways within adipocytes and is elevated in the adipose tissue of obese mice. While previous studies have reported both pro- and inhibitory effects of SphK1 and its product, sphingosine-1-phosphate (S1P), on adipogenesis, the precise mechanisms remain unclear. This study explores the timing and downstream effects of SphK1/S1P expression and activation during in vitro adipogenesis. We demonstrate that the synthetic glucocorticoid dexamethasone robustly induces SphK1 expression, suggesting its involvement in glucocorticoid-dependent signaling during adipogenesis. Notably, the activation of C/EBPδ, a key gene in early adipogenesis and a target of glucocorticoids, is diminished in SphK1-/- adipose-derived stem cells (ADSCs). Furthermore, glucocorticoid administration promotes adipose tissue expansion via SphK1 in a depot-specific manner. Although adipose expansion still occurs in SphK1-/- mice, it is significantly reduced. These findings indicate that while SphK1 is not essential for adipogenesis, it enhances early gene activation, thereby facilitating adipose tissue expansion.
Collapse
Affiliation(s)
- Johana Lambert
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Departments of Biochemistry and Molecular Biology Medical University of South Carolina, Charleston, SC, USA
| | - Anna Kovilakath
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Maryam Jamil
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Yolander Valentine
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrea Anderson
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Departments of Biochemistry and Molecular Biology Medical University of South Carolina, Charleston, SC, USA
| | - David Montefusco
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
6
|
da Rocha PDS, Orué SL, Ferreira IC, Espindola PPDT, Rodrigues MVB, de Carvalho JTG, Baldivia DDS, Leite DF, dos Santos HF, Oliveira AS, Campos JF, dos Santos EL, de Picoli Souza K. Lipid-Lowering and Anti-Inflammatory Effects of Campomanesia adamantium Leaves in Adipocytes and Caenorhabditis elegans. Pharmaceuticals (Basel) 2024; 17:1062. [PMID: 39204167 PMCID: PMC11359582 DOI: 10.3390/ph17081062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Obesity is a pandemic disease characterized by lipid accumulation, increased proinflammatory cytokines, and reactive oxygen species. It is associated with the development of comorbidities that lead to death. Additionally, drug treatments developed to control obesity are insufficient and have a variety of adverse effects. Thus, the search for new anti-obesity therapies is necessary. Campomanesia adamantium is a species from the Brazilian Cerrado that has the potential to treat obesity, as described by the antihyperlipidemic activity of its roots. Therefore, this study aimed to investigate the activity of the aqueous extract of C. adamantium leaves (AECa) on the control of reactive species in vitro, on lipid accumulation in adipocytes and Caenorhabditis elegans, and on the production of proinflammatory cytokines in adipocytes. The antioxidant capacity of AECa was observed by its action in scavenging DPPH• free radical, iron-reducing power, and inhibition of β-carotene bleaching. AECa reduced lipid accumulation in preadipocytes and in C. elegans. Moreover, AECa reduced the production of the proinflammatory cytokines MCP-1, TNF-α, and IL-6 in adipocytes. In summary, the antioxidant activity and the ability of AECa to reduce the accumulation of lipids and proinflammatory cytokines indicate, for the first time, the anti-obesity potential of C. adamantium leaves.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Dourados 79804-970, MS, Brazil; (P.d.S.d.R.); (S.L.O.); (I.C.F.); (P.P.d.T.E.); (M.V.B.R.); (J.T.G.d.C.); (D.d.S.B.); (D.F.L.); (H.F.d.S.); (A.S.O.); (J.F.C.); (E.L.d.S.)
| |
Collapse
|
7
|
Gutiérrez-Cuevas J, López-Cifuentes D, Sandoval-Rodriguez A, García-Bañuelos J, Armendariz-Borunda J. Medicinal Plant Extracts against Cardiometabolic Risk Factors Associated with Obesity: Molecular Mechanisms and Therapeutic Targets. Pharmaceuticals (Basel) 2024; 17:967. [PMID: 39065815 PMCID: PMC11280341 DOI: 10.3390/ph17070967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity has increasingly become a worldwide epidemic, as demonstrated by epidemiological and clinical studies. Obesity may lead to the development of a broad spectrum of cardiovascular diseases (CVDs), such as coronary heart disease, hypertension, heart failure, cerebrovascular disease, atrial fibrillation, ventricular arrhythmias, and sudden cardiac death. In addition to hypertension, there are other cardiometabolic risk factors (CRFs) such as visceral adiposity, dyslipidemia, insulin resistance, diabetes, elevated levels of fibrinogen and C-reactive protein, and others, all of which increase the risk of CVD events. The mechanisms involved between obesity and CVD mainly include insulin resistance, oxidative stress, inflammation, and adipokine dysregulation, which cause maladaptive structural and functional alterations of the heart, particularly left-ventricular remodeling and diastolic dysfunction. Natural products of plants provide a diversity of nutrients and different bioactive compounds, including phenolics, flavonoids, terpenoids, carotenoids, anthocyanins, vitamins, minerals, fibers, and others, which possess a wide range of biological activities including antihypertensive, antilipidemic, antidiabetic, and other activities, thus conferring cardiometabolic benefits. In this review, we discuss the main therapeutic interventions using extracts from herbs and plants in preclinical and clinical trials with protective properties targeting CRFs. Molecular mechanisms and therapeutic targets of herb and plant extracts for the prevention and treatment of CRFs are also reviewed.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
| | - Daniel López-Cifuentes
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
- Doctorate in Sciences in Molecular Biology in Medicine, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ana Sandoval-Rodriguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
| | - Jesús García-Bañuelos
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (D.L.-C.); (A.S.-R.); (J.A.-B.)
- Escuela de Medicina y Ciencias de la Salud (EMCS), Tecnologico de Monterrey, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| |
Collapse
|
8
|
Nowak-Ciołek M, Ciołek M, Tomaszewska A, Hildebrandt F, Kitzler T, Deutsch K, Lemberg K, Shril S, Szczepańska M, Zachurzok A. Collaborative effort: managing Bardet-Biedl syndrome in pediatric patients. Case series and a literature review. Front Endocrinol (Lausanne) 2024; 15:1424819. [PMID: 39092285 PMCID: PMC11291331 DOI: 10.3389/fendo.2024.1424819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Bardet-Biedl Syndrome (BBS) is an autosomal recessive non-motile ciliopathy, caused by mutations in more than twenty genes. Their expression leads to the production of BBSome-building proteins or chaperon-like proteins supporting its structure. The prevalence of the disease is estimated at 1: 140,000 - 160,000 of life births. Its main clinical features are retinal dystrophy, polydactyly, obesity, cognitive impairment, hypogonadism, genitourinary malformations, and kidney disease. BBS is characterized by heterogeneous clinical manifestation and the variable onset of signs and symptoms. We present a case series of eight pediatric patients with BBS (6 boys and 2 girls) observed in one clinical center including two pairs of siblings. The patients' age varies between 2 to 13 years (average age of diagnosis: 22 months). At presentation kidney disorders were observed in seven patients, polydactyly in six patients' obesity, and psychomotor development delay in two patients. In two patients with kidney disorders, the genetic tests were ordered at the age of 1 and 6 months due to the presence of symptoms suggesting BBS and having an older sibling with the diagnosis of the syndrome. The mutations in the following genes were confirmed: BBS10, MKKS, BBS7/BBS10, BBS7, BBS9. All described patients developed symptoms related to the urinary system and kidney-function impairment. Other most common symptoms are polydactyly and obesity. In one patient the obesity class 3 was diagnosed with multiple metabolic disorders. In six patients the developmental delay was diagnosed. The retinopathy was observed only in one, the oldest patient. Despite having the same mutations (siblings) or having mutations in the same gene, the phenotypes of the patients are different. We aimed to addresses gaps in understanding BBS by comparing our data and existing literature through a narrative review. This research includes longitudinal data and explores genotype-phenotype correlations of children with BBS. BBS exhibits diverse clinical features and genetic mutations, making diagnosis challenging despite defined criteria. Same mutations can result in different phenotypes. Children with constellations of polydactyly and/or kidney disorders and/or early-onset obesity should be managed towards BBS. Early diagnosis is crucial for effective monitoring and intervention to manage the multisystemic dysfunctions associated with BBS.
Collapse
Affiliation(s)
- Maria Nowak-Ciołek
- Students’ Scientific Association at the Department of Pediatrics, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Michał Ciołek
- Students’ Scientific Association at the Department of Psychiatry and Psychotherapy of Developmental Age, Medical University of Silesia in Katowice, Katowice, Poland
| | | | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas Kitzler
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Konstantin Deutsch
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Katharina Lemberg
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Shirlee Shril
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Maria Szczepańska
- Department of Pediatrics, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Agnieszka Zachurzok
- Department of Pediatrics, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Zabrze, Poland
| |
Collapse
|
9
|
Ho PY, Chou YC, Koh YC, Lin WS, Chen WJ, Tseng AL, Gung CL, Wei YS, Pan MH. Lactobacillus rhamnosus 069 and Lactobacillus brevis 031: Unraveling Strain-Specific Pathways for Modulating Lipid Metabolism and Attenuating High-Fat-Diet-Induced Obesity in Mice. ACS OMEGA 2024; 9:28520-28533. [PMID: 38973907 PMCID: PMC11223209 DOI: 10.1021/acsomega.4c02514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 07/09/2024]
Abstract
Obesity is a global health crisis, marked by excessive fat in tissues that function as immune organs, linked to microbiota dysregulation and adipose inflammation. Investigating the effects of Lactobacillus rhamnosus SG069 (LR069) and Lactobacillus brevis SG031 (LB031) on obesity and lipid metabolism, this research highlights adipose tissue's critical immune-metabolic role and the probiotics' potential against diet-induced obesity. Mice fed a high-fat diet were treated with either LR069 or LB031 for 12 weeks. Administration of LB031 boosted lipid metabolism, indicated by higher AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, and increased the M2/M1 macrophage ratio, indicating LB031's anti-inflammatory effect. Meanwhile, LR069 administration not only led to significant weight loss by enhancing lipolysis which evidenced by increased phosphorylation of hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) but also elevated Akkermansia and fecal acetic acid levels, showing the gut microbiota's pivotal role in its antiobesity effects. LR069 and LB031 exhibit distinct effects on lipid metabolism and obesity, underscoring their potential for precise interventions. This research elucidates the unique impacts of these strains on metabolic health and highlights the intricate relationship between gut microbiota and obesity, advancing our knowledge of probiotics' therapeutic potential.
Collapse
Affiliation(s)
- Pin-Yu Ho
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Ya-Chun Chou
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Yen-Chun Koh
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Wei-Sheng Lin
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
- Department
of Food Science, National Quemoy University, Quemoy County 89250, Taiwan, ROC
| | - Wei-Jen Chen
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Ai-Lun Tseng
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Chiau-Ling Gung
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Yu-Shan Wei
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
- Department
of Public Health, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan, ROC
- Department
of Food Nutrition and Health Biotechnology, Asia University, 500,
Lioufeng Rd., Wufeng, Taichung 41354, Taiwan, ROC
| |
Collapse
|
10
|
Kotańska M, Zadrożna M, Kubacka M, Mika K, Szczepańska K, Nowak B, Alesci A, Miller A, Lauriano ER, Kieć-Kononowicz K. The Effect of KSK-94, a Dual Histamine H 3 and Sigma-2 Receptor Ligand, on Adipose Tissue in a Rat Model of Developing Obesity. Pharmaceuticals (Basel) 2024; 17:858. [PMID: 39065709 PMCID: PMC11280160 DOI: 10.3390/ph17070858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Numerous studies highlight the critical role that neural histamine plays in feeding behavior, which is controlled by central histamine H3 and H1 receptors. This is the fundamental motivation for the increased interest in creating histamine H3 receptor antagonists as anti-obesity medications. On the other hand, multiple other neurotransmitter systems have been identified as pharmacotherapeutic targets for obesity, including sigma-2 receptor systems. Interestingly, in our previous studies in the rat excessive eating model, we demonstrated a significant reduction in the development of obesity using dual histamine H3/sigma-2 receptor ligands. Moreover, we showed that compound KSK-94 (structural analog of Abbott's A-331440) reduced the number of calories consumed, and thus acted as an anorectic compound. Therefore, in this study, we extended the previous research and studied the influence of KSK-94 on adipose tissue collected from animals from our previous experiment. METHODS Visceral adipose tissue was collected from four groups of rats (standard diet + vehicle, palatable diet + vehicle, palatable diet + KSK-94, and palatable diet + bupropion/naltrexone) and subjected to biochemical, histopathological, and immunohistochemical studies. RESULTS The obtained results clearly indicate that compound KSK-94 prevented the hypertrophy and inflammation of visceral adipose tissue, normalized the levels of leptin, resistin and saved the total reduction capacity of adipose tissue, being more effective than bupropion/naltrexon in these aspects. Moreover, KSK-94 may induce browning of visceral white adipose tissue. CONCLUSION Our study suggests that dual compounds with a receptor profile like KSK-94, i.e., targeting histamine H3 receptor and, to a lesser extent, sigma-2 receptor, could be attractive therapeutic options for patients at risk of developing obesity or with obesity and some metabolic disorders. However, more studies are required to determine its safety profile and the exact mechanism of action of KSK-94.
Collapse
Affiliation(s)
- Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland;
| | - Monika Zadrożna
- Department of Cytobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland; (M.Z.); (B.N.)
| | - Monika Kubacka
- Department of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland;
| | - Kamil Mika
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland;
| | - Katarzyna Szczepańska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland;
| | - Barbara Nowak
- Department of Cytobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland; (M.Z.); (B.N.)
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, I-98166 Messina, Italy; (A.A.); (E.R.L.)
| | - Anthea Miller
- Department of Veterinary Sciences, University of Messina, I-98168 Messina, Italy;
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, I-98166 Messina, Italy; (A.A.); (E.R.L.)
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland;
| |
Collapse
|
11
|
Reese-Petersen AL, Holm Nielsen S, Bülow Sand JM, Schattenberg JM, Bugianesi E, Karsdal MA. The sclerotic component of metabolic syndrome: Fibroblast activities may be the central common denominator driving organ function loss and death. Diabetes Obes Metab 2024; 26:2554-2566. [PMID: 38699780 DOI: 10.1111/dom.15615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
Fibrosis is a common feature of more than 50 different diseases and the cause of more than 35% of deaths worldwide, of which liver, kidney, skin, heart and, recently, lungs are receiving the most attention. Tissue changes, resulting in loss of organ function, are both a cause and consequence of disease and outcome. Fibrosis is caused by an excess deposition of extracellular matrix proteins, which over time results in impaired organ function and organ failure, and the pathways leading to increased fibroblast activation are many. This narrative review investigated the common denominator of fibrosis, fibroblasts, and the activation of fibroblasts, in response to excess energy consumption in liver, kidney, heart, skin and lung fibrosis. Fibroblasts are the main drivers of organ function loss in lung, liver, skin, heart and kidney disease. Fibroblast activation in response to excess energy consumption results in the overproduction of a range of collagens, of which types I, III and VI seem to be the essential drivers of disease progression. Fibroblast activation may be quantified in serum, enabling profiling and selection of patients. Activation of fibroblasts results in the overproduction of collagens, which deteriorates organ function. Patient profiling of fibroblast activities in serum, quantified as collagen production, may identify an organ death trajectory, better enabling identification of the right treatment for use in different metabolic interventions. As metabolically activated patients have highly elevated risk of kidney, liver and heart failure, it is essential to identify which organ to treat first and monitor organ status to correct treatment regimes. In direct alignment with this, it is essential to identify the right patients with the right organ deterioration trajectory for enrolment in clinical studies.
Collapse
Affiliation(s)
| | | | | | - Jörn M Schattenberg
- Saarland University Medical Center, Homburg, Germany
- University of the Saarland, Saarbrücken, Germany
| | | | | |
Collapse
|
12
|
Abstract
Obesity is a severe health problem worldwide due to its association with various adverse health consequences. The present study aims to evaluate the anti-obesity effects of resveratrol, as a natural polyphenol, on the 3T3-L1 adipocytes. PubMed, Scopus, ScienceDirect, Web of Sciences, and Google Scholar databases were searched up to March 2022 using relevant keywords. All original articles, written in English, evaluating the anti-obesity effects of resveratrol on the 3T3-L1 adipocytes were eligible for this review. Initially, 4361 records were found in the electronic search databases. After removing duplicates and irrelevant studies according to the title and abstract, the full text of the 51 articles was critically screened and 38 in vitro studies were included in this review. Except for one case, all of these studies reported that different doses (ranged 1-200 μM) of resveratrol treatment have anti-obesity effects on 3T3L1 adipocytes through various mechanisms such as induction of apoptosis, a decrease of fat accumulation and adipogenesis, promotion of white adipocytes browning, inhibition of preadipocyte proliferation and consequent differentiation, and up-regulation of miRNA that involved in the antiadipogenic and triacylglycerol metabolism in white adipose tissue. The findings indicate that resveratrol has anti-obesity effects. Therefore, resveratrol treatment could be used to prevent and treat obesity and its related disorders. Well-designed randomized clinical trials with different doses of resveratrol are recommended to be performed on obese subjects.
Collapse
Affiliation(s)
- Roghayeh Molani-Gol
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rafraf
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Vakayil M, Madani AY, Agha MV, Majeed Y, Hayat S, Yonuskunju S, Mohamoud YA, Malek J, Suhre K, Mazloum NA. The E3 ubiquitin-protein ligase UHRF1 promotes adipogenesis and limits fibrosis by suppressing GPNMB-mediated TGF-β signaling. Sci Rep 2024; 14:11886. [PMID: 38789534 PMCID: PMC11126700 DOI: 10.1038/s41598-024-62508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The E3 ubiquitin-ligase UHRF1 is an epigenetic regulator coordinating DNA methylation and histone modifications. However, little is known about how it regulates adipogenesis or metabolism. In this study, we discovered that UHRF1 is a key regulatory factor for adipogenesis, and we identified the altered molecular pathways that UHRF1 targets. Using CRISPR/Cas9-based knockout strategies, we discovered the whole transcriptomic changes upon UHRF1 deletion. Bioinformatics analyses revealed that key adipogenesis regulators such PPAR-γ and C/EBP-α were suppressed, whereas TGF-β signaling and fibrosis markers were upregulated in UHRF1-depleted differentiating adipocytes. Furthermore, UHRF1-depleted cells showed upregulated expression and secretion of TGF-β1, as well as the glycoprotein GPNMB. Treating differentiating preadipocytes with recombinant GPNMB led to an increase in TGF-β protein and secretion levels, which was accompanied by an increase in secretion of fibrosis markers such as MMP13 and a reduction in adipogenic conversion potential. Conversely, UHRF1 overexpression studies in human cells demonstrated downregulated levels of GPNMB and TGF-β, and enhanced adipogenic potential. In conclusion, our data show that UHRF1 positively regulates 3T3-L1 adipogenesis and limits fibrosis by suppressing GPNMB and TGF-β signaling cascade, highlighting the potential relevance of UHRF1 and its targets to the clinical management of obesity and linked metabolic disorders.
Collapse
Affiliation(s)
- Muneera Vakayil
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Aisha Y Madani
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Maha V Agha
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Yasser Majeed
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Shahina Hayat
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Shameem Yonuskunju
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Yasmin Ali Mohamoud
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Joel Malek
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Nayef A Mazloum
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar.
| |
Collapse
|
14
|
Touceda V, Fontana Estevez F, Cacciagiú L, Finocchietto P, Bustos R, Vidal A, Berg G, Morales C, González G, Miksztowicz V. Liraglutide improves adipose tissue remodeling and mitochondrial dynamics in a visceral obesity model induced by a high-fat diet. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100185. [PMID: 38846009 PMCID: PMC11153889 DOI: 10.1016/j.crphar.2024.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Central obesity is characterized by visceral adipose tissue (VAT) expansion, considered one of the main risk factors for metabolic complications. In recent years, new drugs have been studied for obesity treatment. Liraglutide (LGT), a GLP-1 agonist, decreases body weight, however, several mechanisms of action on VAT are still unknown. Aim to study the effect of LGT on factors associated with VAT remodeling and mitochondrial dynamics in mice fed a high-fat diet (HFD). Methods C57BL/6 mice were divided into Control (C) and HFD. After 15 weeks of feeding, each group was subdivided according to LGT administration for 5 weeks: C, C + LGT, HFD, and HFD + LGT. In epididymal AT (EAT) we evaluated histological and mitochondrial characteristics, vascularity, gelatinase activity (MMPs), and galectin-3 expression. Results HFD presented larger adipocytes (p < 0.05), and lower vascular density and MMP-9 activity (p < 0.01) than C, while a major number of smaller adipocytes (p < 0.05) and an increase in vascularity (p < 0.001) and MMP-9 activity (p < 0.01) was observed in HFD + LGT. Collagen content was higher (p < 0.05) in EAT from HFD and decreased in HFD + LGT. In C, C + LGT, and HFD + LGT, mitochondria were predominantly tubular-shaped while in HFD mitochondria were mostly spherical (p < 0.001). Conclusion LGT positively influences VAT behavior by modulating gelatinase activity, enhancing vascularization, and improving adipocyte histological characteristics. Additionally, LGT improves mitochondrial dynamics, a process that would favor VAT functionality.
Collapse
Affiliation(s)
- Vanessa Touceda
- Pontificia Universidad Católica Argentina. Facultad de Medicina, Instituto de Investigaciones Biomédicas (UCA-CONICET), Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Bioquímica General y Bucal, Buenos Aires, Argentina
| | - Florencia Fontana Estevez
- Pontificia Universidad Católica Argentina. Facultad de Medicina, Instituto de Investigaciones Biomédicas (UCA-CONICET), Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Buenos Aires, Argentina
| | - Leonardo Cacciagiú
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Bioquímica General y Bucal, Buenos Aires, Argentina
- Hospital General de Agudos Teodoro Álvarez, Laboratorio Central, Sección Bioquímica, Buenos Aires, Argentina
| | - Paola Finocchietto
- Universidad de Buenos Aires, Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo (INIGEM. UBA-CONICET), Laboratorio de Metabolismo del Oxígeno, Buenos Aires, Argentina
| | - Romina Bustos
- Pontificia Universidad Católica Argentina. Facultad de Medicina, Instituto de Investigaciones Biomédicas (UCA-CONICET), Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Buenos Aires, Argentina
| | - Agustina Vidal
- Pontificia Universidad Católica Argentina. Facultad de Medicina, Instituto de Investigaciones Biomédicas (UCA-CONICET), Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Buenos Aires, Argentina
| | - Gabriela Berg
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Laboratorio de Lípidos y Aterosclerosis, Buenos Aires, Argentina
| | - Celina Morales
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, Argentina
| | - Germán González
- Pontificia Universidad Católica Argentina. Facultad de Medicina, Instituto de Investigaciones Biomédicas (UCA-CONICET), Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Buenos Aires, Argentina
| | - Veronica Miksztowicz
- Pontificia Universidad Católica Argentina. Facultad de Medicina, Instituto de Investigaciones Biomédicas (UCA-CONICET), Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Bioquímica General y Bucal, Buenos Aires, Argentina
| |
Collapse
|
15
|
Abou Azar F, Mugabo Y, Yuen S, Del Veliz S, Paré F, Rial SA, Lavoie G, Roux PP, Lim GE. Plakoglobin regulates adipocyte differentiation independently of the Wnt/β-catenin signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119690. [PMID: 38367915 DOI: 10.1016/j.bbamcr.2024.119690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
The scaffold protein 14-3-3ζ is an established regulator of adipogenesis and postnatal adiposity. We and others have demonstrated the 14-3-3ζ interactome to be diverse and dynamic, and it can be examined to identify novel regulators of physiological processes, including adipogenesis. In the present study, we sought to determine if factors that influence adipogenesis during the development of obesity could be identified in the 14-3-3ζ interactome found in white adipose tissue of lean or obese TAP-tagged-14-3-3ζ overexpressing mice. Using mass spectrometry, differences in the abundance of novel, as well as established, adipogenic factors within the 14-3-3ζ interactome could be detected in adipose tissues. One novel candidate was revealed to be plakoglobin, the homolog of the known adipogenic inhibitor, β-catenin, and herein, we report that plakoglobin is involved in adipocyte differentiation. Plakoglobin is expressed in murine 3T3-L1 cells and is primarily localized to the nucleus, where its abundance decreases during adipogenesis. Depletion of plakoglobin by siRNA inhibited adipogenesis and reduced PPARγ2 expression, and similarly, plakoglobin depletion in human adipose-derived stem cells also impaired adipogenesis and reduced lipid accumulation post-differentiation. Transcriptional assays indicated that plakoglobin does not participate in Wnt/β-catenin signaling, as its depletion did not affect Wnt3a-mediated transcriptional activity. Taken together, our results establish plakoglobin as a novel regulator of adipogenesis in vitro and highlights the ability of using the 14-3-3ζ interactome to identify potential pro-obesogenic factors.
Collapse
Affiliation(s)
- F Abou Azar
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Y Mugabo
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - S Yuen
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - S Del Veliz
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - F Paré
- Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - S A Rial
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - G Lavoie
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - P P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - G E Lim
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.
| |
Collapse
|
16
|
Santinello M, Rampado N, Penasa M, Hocquette JF, Pethick D, De Marchi M. The Meat Standards Australia carcass grading site affects assessment of marbling and prediction of meat-eating quality in growing European beef cattle. Meat Sci 2024; 213:109501. [PMID: 38574653 DOI: 10.1016/j.meatsci.2024.109501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/03/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
The lack of consumer feedback on beef eating quality contributes to reduced beef consumption in Europe. The Meat Standards Australia (MSA) grading scheme can assess the palatability of beef carcasses usually graded at the 10th thoracic vertebrae. However, the European beef industry relies on late-maturing breeds usually cut at the 5th vertebrae due to commercial reasons. Data from 55 young bulls and heifers of late-maturing breeds were collected in an Italian slaughterhouse following the MSA guidelines at both carcass grading sites and sides. Intramuscular fat levels were assessed through two scores and used with other variables to feed the MSA model, which predicts the MSA index, the meat-eating quality scores (MQ4) for 5 muscles and for each carcass grading site × side combination. The scores were analyzed using a mixed linear model. A correlation analysis was conducted to predict the variables measured at the 10th site using their correspondent at the 5th carcass grading site. A stepwise regression was conducted to understand the weight of each measured variable on marbling and MQ4 scores measured both at 5th and 10th carcass grading sites. Results showed significantly higher value for the studied traits at the 5th carcass grading site, while carcass side had no significant impact. The equations had high predictive capability and MSA marbling score played a key role in explaining the variability across carcass grading sites. The differences in marbling and MQ4 scores between the carcass grading sites suggest considering this factor if the MSA grading system will be applied to Europe.
Collapse
Affiliation(s)
- Matteo Santinello
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Nicola Rampado
- Associazione Zootecnica Veneta (AZOVE), Via del Macello 9, 35013 Cittadella, PD, Italy
| | - Mauro Penasa
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Jean-François Hocquette
- INRAE, Clermont Auvergne University, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - David Pethick
- School of Agricultural Sciences, Centre for Animal Production and Health, Food Futures Institute, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Massimo De Marchi
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| |
Collapse
|
17
|
Giacobbi AS, Meyer L, Ribot M, Yvinec R, Soula H, Audebert C. Mathematical modeling of adipocyte size distributions: Identifiability and parameter estimation from rat data. J Theor Biol 2024; 581:111747. [PMID: 38278344 DOI: 10.1016/j.jtbi.2024.111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/05/2023] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
Fat cells, called adipocytes, are designed to regulate energy homeostasis by storing energy in the form of lipids. Adipocyte size distribution is assumed to play a role in the development of obesity-related diseases. These cells that do not have a characteristic size, indeed a bimodal size distribution is observed in adipose tissue. We propose a model based on a partial differential equation to describe adipocyte size distribution. The model includes a description of the lipid fluxes and the cell size fluctuations and using a formulation of a stationary solution fast computation of bimodal distribution is achieved. We investigate the parameter identifiability and estimate parameter values with CMA-ES algorithm. We first validate the procedure on synthetic data, then we estimate parameter values with experimental data of 32 rats. We discuss the estimated parameter values and their variability within the population, as well as the relation between estimated values and their biological significance. Finally, a sensitivity analysis is performed to specify the influence of parameters on cell size distribution and explain the differences between the model and the measurements. The proposed framework enables the characterization of adipocyte size distribution with four parameters and can be easily adapted to measurements of cell size distribution in different health conditions.
Collapse
Affiliation(s)
- Anne-Sophie Giacobbi
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratory of Computational and Quantitative Biology UMR 7238, 75005 Paris, France.
| | - Leo Meyer
- Institut Denis Poisson, Université d'Orléans, CNRS, Université de Tours, 45067 Orléans, France
| | - Magali Ribot
- Institut Denis Poisson, Université d'Orléans, CNRS, Université de Tours, 45067 Orléans, France
| | - Romain Yvinec
- PRC, INRAE, CNRS, Université de Tours, 37380 Nouzilly, France; Université Paris-Saclay, Inria, Centre Inria de Saclay, 91120 Palaiseau, France
| | - Hedi Soula
- Nutriomics, La Pitié-Salpétrière, Sorbonne Université, CNRS, 75013 Paris, France
| | - Chloe Audebert
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratory of Computational and Quantitative Biology UMR 7238, 75005 Paris, France; Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions UMR 7598, 75005 Paris, France.
| |
Collapse
|
18
|
Akman T, Arendt LM, Geisler J, Kristensen VN, Frigessi A, Köhn-Luque A. Modeling of Mouse Experiments Suggests that Optimal Anti-Hormonal Treatment for Breast Cancer is Diet-Dependent. Bull Math Biol 2024; 86:42. [PMID: 38498130 PMCID: PMC11310292 DOI: 10.1007/s11538-023-01253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/30/2023] [Indexed: 03/20/2024]
Abstract
Estrogen receptor positive breast cancer is frequently treated with anti-hormonal treatment such as aromatase inhibitors (AI). Interestingly, a high body mass index has been shown to have a negative impact on AI efficacy, most likely due to disturbances in steroid metabolism and adipokine production. Here, we propose a mathematical model based on a system of ordinary differential equations to investigate the effect of high-fat diet on tumor growth. We inform the model with data from mouse experiments, where the animals are fed with high-fat or control (normal) diet. By incorporating AI treatment with drug resistance into the model and by solving optimal control problems we found differential responses for control and high-fat diet. To the best of our knowledge, this is the first attempt to model optimal anti-hormonal treatment for breast cancer in the presence of drug resistance. Our results underline the importance of considering high-fat diet and obesity as factors influencing clinical outcomes during anti-hormonal therapies in breast cancer patients.
Collapse
Affiliation(s)
- Tuğba Akman
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0317, Oslo, Norway.
- Department of Computer Engineering, University of Turkish Aeronautical Association, 06790, Etimesgut, Ankara, Turkey.
| | - Lisa M Arendt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Campus AHUS, Oslo, Norway
| | - Vessela N Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Arnoldo Frigessi
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0317, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Alvaro Köhn-Luque
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0317, Oslo, Norway.
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
19
|
Cheng Y, Ferdousi F, Foronda BA, Linh TN, Ganbold M, Yada A, Arimura T, Isoda H. A comparative transcriptomics analysis reveals ethylene glycol derivatives of squalene ameliorate excessive lipogenesis and inflammatory response in 3T3-L1 preadipocytes. Heliyon 2024; 10:e26867. [PMID: 38463791 PMCID: PMC10923669 DOI: 10.1016/j.heliyon.2024.e26867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/27/2023] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Squalene (SQ) is a natural compound with anti-inflammatory, anti-cancer, and anti-oxidant effects, but due to its low solubility, its biological properties have been greatly underestimated. This study aims to explore the differences in gene expression patterns of four newly synthesized amphipathic ethylene glycol (EG) derivatives of SQ by whole-genome transcriptomics analysis using DNA microarray to examine the mRNA expression profile of adipocytes differentiated from 3T3-L1 cells treated with SQ and its EG derivatives. Enrichment analyses of the transcriptional data showed that compared with SQ, its EG derivatives exerted different, in most cases desirable, biological responses. EG derivatives showed increased enrichment of mitochondrial functions, lipid and glucose metabolism, and inflammatory response. Mono-, di-, and tetra-SQ showed higher enrichment of the cellular component-ribosome. Histological staining showed EG derivatives prevented excessive lipid accumulation. Additionally, mitochondrial transcription factors showed upregulation in tetra-SQ-treated cells. Notably, EG derivatives showed better anti-inflammatory effects. Further, gene-disease association analysis predicted substantial improvement in the bioactivities of SQ derivatives in metabolic diseases. Cluster analyses revealed di- and tetra-SQ had more functional similarities than others, reflected in their scanning electron microscopy images; both di- and tetra-SQ self-organized into similar sizes and shapes of vesicles, subsequently improving their cation binding activities. Protein-protein interaction networks further revealed that cation binding activity might explain a major part, if not all, of the differences observed in functional analyses. Altogether, the addition of EG derivatives may improve the biological responses of SQ and thus may enhance its health-promoting potential.
Collapse
Affiliation(s)
- Yu Cheng
- Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Farhana Ferdousi
- Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan
- Alliance of Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | | | - Tran Ngoc Linh
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| | - Munkhzul Ganbold
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| | - Akira Yada
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Takashi Arimura
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan
- Alliance of Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
20
|
Xu X, Charrier A, Congrove S, Buchner DA. Cell-state dependent regulation of PPAR γ signaling by ZBTB9 in adipocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583402. [PMID: 38496622 PMCID: PMC10942320 DOI: 10.1101/2024.03.04.583402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Adipocytes play a critical role in metabolic homeostasis. Peroxisome proliferator-activated receptor- γ (PPAR γ ) is a nuclear hormone receptor that is a master regulator of adipocyte differentiation and function. ZBTB9 was predicted to interact with PPAR γ based on large-scale protein interaction experiments. In addition, GWAS studies in the type 2 diabetes (T2D) Knowledge Portal revealed associations between Z btb9 and both BMI and T2D risk. Here we show that ZBTB9 positively regulates PPAR γ activity in mature adipocytes. Surprisingly Z btb9 knockdown (KD) also increased adipogenesis in 3T3-L1 cells and human preadipocytes. E2F activity was increased and E2F downstream target genes were upregulated in Zbtb9 -KD preadipocytes. Accordingly, RB phosphorylation, which regulates E2F activity, was enhanced in Zbtb9 -KD preadipocytes. Critically, an E2F1 inhibitor blocked the effects of Zbtb9 deficiency on adipogenic gene expression and lipid accumulation. Collectively, these results demonstrate that Zbtb9 inhibits adipogenesis as a negative regulator of Pparg expression via altered RB-E2F1 signaling. Our findings reveal complex cell-state dependent roles of ZBTB9 in adipocytes, identifying a new molecule that regulates adipogenesis and adipocyte biology as both a positive and negative regulator of PPAR γ signaling depending on the cellular context, and thus may be important in the pathogenesis and treatment of obesity and T2D.
Collapse
|
21
|
Conte C, Cipponeri E, Roden M. Diabetes Mellitus, Energy Metabolism, and COVID-19. Endocr Rev 2024; 45:281-308. [PMID: 37934800 PMCID: PMC10911957 DOI: 10.1210/endrev/bnad032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Obesity, diabetes mellitus (mostly type 2), and COVID-19 show mutual interactions because they are not only risk factors for both acute and chronic COVID-19 manifestations, but also because COVID-19 alters energy metabolism. Such metabolic alterations can lead to dysglycemia and long-lasting effects. Thus, the COVID-19 pandemic has the potential for a further rise of the diabetes pandemic. This review outlines how preexisting metabolic alterations spanning from excess visceral adipose tissue to hyperglycemia and overt diabetes may exacerbate COVID-19 severity. We also summarize the different effects of SARS-CoV-2 infection on the key organs and tissues orchestrating energy metabolism, including adipose tissue, liver, skeletal muscle, and pancreas. Last, we provide an integrative view of the metabolic derangements that occur during COVID-19. Altogether, this review allows for better understanding of the metabolic derangements occurring when a fire starts from a small flame, and thereby help reducing the impact of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome 00166, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Elisa Cipponeri
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg 85764, Germany
| |
Collapse
|
22
|
Ramirez Bustamante CE, Agarwal N, Cox AR, Hartig SM, Lake JE, Balasubramanyam A. Adipose Tissue Dysfunction and Energy Balance Paradigms in People Living With HIV. Endocr Rev 2024; 45:190-209. [PMID: 37556371 PMCID: PMC10911955 DOI: 10.1210/endrev/bnad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
Over the past 4 decades, the clinical care of people living with HIV (PLWH) evolved from treatment of acute opportunistic infections to the management of chronic, noncommunicable comorbidities. Concurrently, our understanding of adipose tissue function matured to acknowledge its important endocrine contributions to energy balance. PLWH experience changes in the mass and composition of adipose tissue depots before and after initiating antiretroviral therapy, including regional loss (lipoatrophy), gain (lipohypertrophy), or mixed lipodystrophy. These conditions may coexist with generalized obesity in PLWH and reflect disturbances of energy balance regulation caused by HIV persistence and antiretroviral therapy drugs. Adipocyte hypertrophy characterizes visceral and subcutaneous adipose tissue depot expansion, as well as ectopic lipid deposition that occurs diffusely in the liver, skeletal muscle, and heart. PLWH with excess visceral adipose tissue exhibit adipokine dysregulation coupled with increased insulin resistance, heightening their risk for cardiovascular disease above that of the HIV-negative population. However, conventional therapies are ineffective for the management of cardiometabolic risk in this patient population. Although the knowledge of complex cardiometabolic comorbidities in PLWH continues to expand, significant knowledge gaps remain. Ongoing studies aimed at understanding interorgan communication and energy balance provide insights into metabolic observations in PLWH and reveal potential therapeutic targets. Our review focuses on current knowledge and recent advances in HIV-associated adipose tissue dysfunction, highlights emerging adipokine paradigms, and describes critical mechanistic and clinical insights.
Collapse
Affiliation(s)
- Claudia E Ramirez Bustamante
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neeti Agarwal
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jordan E Lake
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School at UTHealth, Houston, TX 77030, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
23
|
Adhikary P, Banerjee S, Dey BK, Gargari P, Chatterjee S, Chakraborty D, Chowdhury S. Association of adipocyte size and SREBP-1c in visceral and subcutaneous adipose tissue in non-obese type 2 diabetes mellitus. Endocrine 2024; 83:615-623. [PMID: 37733180 DOI: 10.1007/s12020-023-03535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVE Non-obese type 2 diabetes seems to be common in India; hence the current study tried to understand the pathogenesis of diabetes in this group focusing on the role of adipocytes especially abdominal fat compartment. Comparison was made between non-obese subjects with newly detected diabetes and those without diabetes, in relation to levels of adipogenic factor and adipokines in pre-adipocytes and mature adipocytes respectively. RESEARCH DESIGN METHODS Non-obese subjects (BMI-18-25 Kg/m2) were consecutively selected of whom 15 had newly-detected, treatment naïve type 2 diabetes (HbA1% ≥6.5) while 25 were control (HbA1c% ≤5.6). We examined the expression of adipocyte differentiation factor - SREBP-1c from preadipocytes and adipocyte specific adipokines- HMW isoform and total adiponectin, leptin, FABP-4, TNF-α and IL-6 from adipocytesisolated from abdominal visceral and subcutaneous adipose tissues (VAT and SCAT) by RT-PCR and as well as from serum by ELISA. Size of cultured adipocytes was measured in a fully automated imaging system microscope. RESULT Both in SCAT and VAT, SREBP-1c and adiponectin had significantly lower expression along with increased mRNA level of inflammatory adipokinesdiabetes.Average adipocyte size and frequency of large(hypertrophied) adipocytes were comparatively higher in T2DM subjects and had significant negative correlation with SREBP-1c. HMW adiponectin level significantly reduced in the secretion from VAT and SCAT of T2DM subjects compared to control. CONCLUSION Reduced expression of SREBP-1c in preadipocytes may lead to increased number of hypertrophied adipocytes in T2DM. Therefore, these dysfunctional hypertrophied adipocytes could cause imbalanced expression of insulin resistant and insulin sensitive adipokines.
Collapse
Affiliation(s)
- Pieu Adhikary
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial Hospital, 244, A.J.C. Bose Road, Kolkata, West Bengal, 700020, India
| | - Sudipta Banerjee
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial Hospital, 244, A.J.C. Bose Road, Kolkata, West Bengal, 700020, India
| | - Bishal Kumar Dey
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial Hospital, 244, A.J.C. Bose Road, Kolkata, West Bengal, 700020, India
| | - Piyas Gargari
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial Hospital, 244, A.J.C. Bose Road, Kolkata, West Bengal, 700020, India
| | - Shamita Chatterjee
- Department of General Surgery, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial Hospital, 244, A.J.C. Bose Road, Kolkata, West Bengal, 700020, India
| | - Diya Chakraborty
- Department of Biochemistry, Ballygaunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Subhankar Chowdhury
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial Hospital, 244, A.J.C. Bose Road, Kolkata, West Bengal, 700020, India.
| |
Collapse
|
24
|
Lopez-Yus M, Hörndler C, Borlan S, Bernal-Monterde V, Arbones-Mainar JM. Unraveling Adipose Tissue Dysfunction: Molecular Mechanisms, Novel Biomarkers, and Therapeutic Targets for Liver Fat Deposition. Cells 2024; 13:380. [PMID: 38474344 DOI: 10.3390/cells13050380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Adipose tissue (AT), once considered a mere fat storage organ, is now recognized as a dynamic and complex entity crucial for regulating human physiology, including metabolic processes, energy balance, and immune responses. It comprises mainly two types: white adipose tissue (WAT) for energy storage and brown adipose tissue (BAT) for thermogenesis, with beige adipocytes demonstrating the plasticity of these cells. WAT, beyond lipid storage, is involved in various metabolic activities, notably lipogenesis and lipolysis, critical for maintaining energy homeostasis. It also functions as an endocrine organ, secreting adipokines that influence metabolic, inflammatory, and immune processes. However, dysfunction in WAT, especially related to obesity, leads to metabolic disturbances, including the inability to properly store excess lipids, resulting in ectopic fat deposition in organs like the liver, contributing to non-alcoholic fatty liver disease (NAFLD). This narrative review delves into the multifaceted roles of WAT, its composition, metabolic functions, and the pathophysiology of WAT dysfunction. It also explores diagnostic approaches for adipose-related disorders, emphasizing the importance of accurately assessing AT distribution and understanding the complex relationships between fat compartments and metabolic health. Furthermore, it discusses various therapeutic strategies, including innovative therapeutics like adipose-derived mesenchymal stem cells (ADMSCs)-based treatments and gene therapy, highlighting the potential of precision medicine in targeting obesity and its associated complications.
Collapse
Affiliation(s)
- Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
| | - Carlos Hörndler
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
- Pathology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Sofia Borlan
- General and Digestive Surgery Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Vanesa Bernal-Monterde
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Gastroenterology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Jose M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
25
|
Tan Z, Jiang H. Molecular and Cellular Mechanisms of Intramuscular Fat Development and Growth in Cattle. Int J Mol Sci 2024; 25:2520. [PMID: 38473768 DOI: 10.3390/ijms25052520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Intramuscular fat, also referred to as marbling fat, is the white fat deposited within skeletal muscle tissue. The content of intramuscular fat in the skeletal muscle, particularly the longissimus dorsi muscle, of cattle is a critical determinant of beef quality and value. In this review, we summarize the process of intramuscular fat development and growth, the factors that affect this process, and the molecular and epigenetic mechanisms that mediate this process in cattle. Compared to other species, cattle have a remarkable ability to accumulate intramuscular fat, partly attributed to the abundance of sources of fatty acids for synthesizing triglycerides. Compared to other adipose depots such as subcutaneous fat, intramuscular fat develops later and grows more slowly. The commitment and differentiation of adipose precursor cells into adipocytes as well as the maturation of adipocytes are crucial steps in intramuscular fat development and growth in cattle. Each of these steps is controlled by various factors, underscoring the complexity of the regulatory network governing adipogenesis in the skeletal muscle. These factors include genetics, epigenetics, nutrition (including maternal nutrition), rumen microbiome, vitamins, hormones, weaning age, slaughter age, slaughter weight, and stress. Many of these factors seem to affect intramuscular fat deposition through the transcriptional or epigenetic regulation of genes directly involved in the development and growth of intramuscular fat. A better understanding of the molecular and cellular mechanisms by which intramuscular fat develops and grows in cattle will help us develop more effective strategies to optimize intramuscular fat deposition in cattle, thereby maximizing the quality and value of beef meat.
Collapse
Affiliation(s)
- Zhendong Tan
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Honglin Jiang
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
26
|
Han Y, He X, Yun Y, Chen L, Huang Y, Wu Q, Qin X, Wu H, Wu J, Sha R, Borjigin G. The Characterization of Subcutaneous Adipose Tissue in Sunit Sheep at Different Growth Stages: A Comprehensive Analysis of the Morphology, Fatty Acid Profile, and Metabolite Profile. Foods 2024; 13:544. [PMID: 38397521 PMCID: PMC10887640 DOI: 10.3390/foods13040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Adipose tissue is a crucial economically significant trait that significantly influences the meat quality and growth performance of domestic animals. To reveal the changes in adipose tissue metabolism during the growth of naturally grazing sheep, we evaluated the thickness, adipocyte morphology, fatty acid profile, and metabolite profile of subcutaneous adipose tissue (SAT) from naturally grazing Sunit sheep at 6, 18, and 30 months of age (referred to as Mth-6, Mth-18, and Mth-30, respectively). The fat thickness and adipocyte number were significantly increased with the growth of the sheep (p < 0.05), and the increase of which from Mth-18 to Mth-30 was less than that from Mth-6 to Mth-18. Additionally, the alpha-linolenic acid metabolism was enhanced and fatty acid (FA) elongation increased with growth. The metabolomic analysis revealed 76 differentially expressed metabolites (DEMs) in the SAT in different growth stages. Interestingly, we observed elongation of FAs in lipids correlated with sheep growth. Furthermore, the expression of acylcarnitines was downregulated, and fatty acid amides, aspartic acid, acetic acid and phosphocholine were upregulated in Mth-18 and Mth-30 compared to Mth-6. Altogether, the study found that the difference in SAT in Mth-6 was great compared to Mth-18 and Mth-30. An increase in fat deposition via adipocyte proliferation with the growth of the sheep in naturally grazing. The DEMs of acylcarnitines, fatty acid amides, aspartic acid, acetic acid, and phosphocholine emerged as potential key regulators of adipose tissue metabolism. These findings illustrate the variation in and metabolic mechanism of sheep adipose tissue development under natural grazing, thus providing valuable insights into improving the edible quality of sheep meat and developing the mutton sheep industry.
Collapse
Affiliation(s)
- Yunfei Han
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China; (Y.H.); (X.H.); (L.C.); (Y.H.); (X.Q.); (H.W.); (J.W.); (R.S.)
| | - Xige He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China; (Y.H.); (X.H.); (L.C.); (Y.H.); (X.Q.); (H.W.); (J.W.); (R.S.)
| | - Yueying Yun
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China;
| | - Lu Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China; (Y.H.); (X.H.); (L.C.); (Y.H.); (X.Q.); (H.W.); (J.W.); (R.S.)
| | - Yajuan Huang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China; (Y.H.); (X.H.); (L.C.); (Y.H.); (X.Q.); (H.W.); (J.W.); (R.S.)
| | - Qiong Wu
- Ke Er Qin You Yi Front Banner Administration for Market Regulation, Xing’an League 137400, China;
| | - Xia Qin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China; (Y.H.); (X.H.); (L.C.); (Y.H.); (X.Q.); (H.W.); (J.W.); (R.S.)
| | - Haiyan Wu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China; (Y.H.); (X.H.); (L.C.); (Y.H.); (X.Q.); (H.W.); (J.W.); (R.S.)
| | - Jindi Wu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China; (Y.H.); (X.H.); (L.C.); (Y.H.); (X.Q.); (H.W.); (J.W.); (R.S.)
| | - Rina Sha
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China; (Y.H.); (X.H.); (L.C.); (Y.H.); (X.Q.); (H.W.); (J.W.); (R.S.)
| | - Gerelt Borjigin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China; (Y.H.); (X.H.); (L.C.); (Y.H.); (X.Q.); (H.W.); (J.W.); (R.S.)
| |
Collapse
|
27
|
Meyer L, Ribot M, Yvinec R. A Lifshitz-Slyozov type model for adipocyte size dynamics: limit from Becker-Döring system and numerical simulation. J Math Biol 2024; 88:16. [PMID: 38231273 DOI: 10.1007/s00285-023-02036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 01/18/2024]
Abstract
Biological data show that the size distribution of adipose cells follows a bimodal distribution. In this work, we introduce a Lifshitz-Slyozov type model, based on a transport partial differential equation, for the dynamics of the size distribution of adipose cells. We prove a new convergence result from the related Becker-Döring model, a system composed of several ordinary differential equations, toward mild solutions of the Lifshitz-Slyozov model using distribution tail techniques. Then, this result allows us to propose a new advective-diffusive model, the second-order diffusive Lifshitz-Slyozov model, which is expected to better fit the experimental data. Numerical simulations of the solutions to the diffusive Lifshitz-Slyozov model are performed using a well-balanced scheme and compared to solutions to the transport model. Those simulations show that both bimodal and unimodal profiles can be reached asymptotically depending on several parameters. We put in evidence that the asymptotic profile for the second-order system does not depend on initial conditions, unlike for the transport Lifshitz-Slyozov model.
Collapse
Affiliation(s)
- Léo Meyer
- Institut Denis Poisson, Université d'Orléans, Orléans, France.
| | - Magali Ribot
- Institut Denis Poisson, Université d'Orléans, Orléans, France
| | - Romain Yvinec
- Inria, Centre Inria de Saclay, Université Paris-Saclay, Palaiseau, France
- PRC, INRAE, CNRS, Université de Tours, Nouzilly, France
| |
Collapse
|
28
|
Mitchelson KAJ, O’Connell F, O’Sullivan J, Roche HM. Obesity, Dietary Fats, and Gastrointestinal Cancer Risk-Potential Mechanisms Relating to Lipid Metabolism and Inflammation. Metabolites 2024; 14:42. [PMID: 38248845 PMCID: PMC10821017 DOI: 10.3390/metabo14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Obesity is a major driving factor in the incidence, progression, and poor treatment response in gastrointestinal cancers. Herein, we conducted a comprehensive analysis of the impact of obesity and its resulting metabolic perturbations across four gastrointestinal cancer types, namely, oesophageal, gastric, liver, and colorectal cancer. Importantly, not all obese phenotypes are equal. Obese adipose tissue heterogeneity depends on the location, structure, cellular profile (including resident immune cell populations), and dietary fatty acid intake. We discuss whether adipose heterogeneity impacts the tumorigenic environment. Dietary fat quality, in particular saturated fatty acids, promotes a hypertrophic, pro-inflammatory adipose profile, in contrast to monounsaturated fatty acids, resulting in a hyperplastic, less inflammatory adipose phenotype. The purpose of this review is to examine the impact of obesity, including dietary fat quality, on adipose tissue biology and oncogenesis, specifically focusing on lipid metabolism and inflammatory mechanisms. This is achieved with a particular focus on gastrointestinal cancers as exemplar models of obesity-associated cancers.
Collapse
Affiliation(s)
- Kathleen A. J. Mitchelson
- Nutrigenomics Research Group, UCD Conway Institute, UCD Institute of Food and Health, and School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 H1W8 Dublin, Ireland
| | - Fiona O’Connell
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Helen M. Roche
- Nutrigenomics Research Group, UCD Conway Institute, UCD Institute of Food and Health, and School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 H1W8 Dublin, Ireland
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5DL, UK
| |
Collapse
|
29
|
Parveen S, Maurya N, Meena A, Luqman S. Cinchonine: A Versatile Pharmacological Agent Derived from Natural Cinchona Alkaloids. Curr Top Med Chem 2024; 24:343-363. [PMID: 38031797 DOI: 10.2174/0115680266270796231109171808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Cinchonine is one of the Cinchona alkaloids that is commercially extracted from the Peruvian bark of Cinchona officinalis L. (Family: Rubiaceae). It is also obtained in much lower quantities from other species of Cinchona, such as Cinchona calisaya, Cinchona succirubra, and Cinchona pubescens, and in some other plants, such as Remijia peruviana. Cinchonine has been historically used as an anti-malarial agent. It also has a wide range of other biological properties, including anti-cancer, anti-obesity, anti-inflammatory, anti-parasitic, antimicrobial, anti-platelet aggregation, and anti-osteoclast differentiation. AIM AND OBJECTIVE This review discusses the pharmacological activity of cinchonine under different experimental conditions, including in silico, in vitro, and in vivo. It also covers the compound's physicochemical properties, toxicological aspects, and pharmacokinetics. METHODOLOGY A comprehensive literature search was conducted on multiple online databases, such as PubMed, Scopus, and Google Scholar. The aim was to retrieve a wide range of review/research papers and bibliographic sources. The process involved applying exclusion and inclusion criteria to ensure the selection of relevant and high-quality papers. RESULTS Cinchonine has numerous pharmacological properties, making it a promising compound for various therapeutic applications. It induces anti-cancer activity by activating caspase-3 and PARP-1, and triggers the endoplasmic reticulum stress response. It up-regulates GRP78 and promotes the phosphorylation of PERK and ETIF-2α. Cinchonine also inhibits osteoclastogenesis, inhibiting TAK1 activation and suppressing NFATc1 expression by regulating AP-1 and NF-κB. Its potential anti-inflammatory effects reduce the impact of high-fat diets, making it suitable for targeting obesity-related diseases. However, research on cinchonine is limited, and further studies are needed to fully understand its therapeutic potential. Further investigation is needed to ensure its safety and efficacy in clinical applications. CONCLUSION Overall, this review article explains the pharmacological activity of cinchonine, its synthesis, and physicochemical properties, toxicological aspects, and pharmacokinetics.
Collapse
Affiliation(s)
- Shahnaz Parveen
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Nidhi Maurya
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
30
|
Prabhakar PK. Combination Therapy: A New Tool for the Management of Obesity. Endocr Metab Immune Disord Drug Targets 2024; 24:402-417. [PMID: 37641995 DOI: 10.2174/1871530323666230825140808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/19/2023] [Accepted: 07/20/2023] [Indexed: 08/31/2023]
Abstract
Obesity is a chronic lifestyle issue with devastating results. Behavioral changes are one of the initial lines of management strategies for obesity, but they are not very efficient management strategies. Many people also use surgical intervention to maintain a healthy weight, now considered to be the most common and effective obesity management. Chemically synthesized medicines fill the gap between lifestyle interventions and minimally invasive surgical management of obesity. The most common issue associated with monotherapy without side effects is its moderate effectiveness and higher dose requirement. Combination therapy is already used for many serious and complicated disease treatments and management and has shown efficacy as well. Generally, we use two or more medicines with different mechanisms of action for a better effect. The commonly used combination therapy for obesity management includes low-dose phentermine and prolonged and slow-releasing mechanism topiramate; naltrexone, and bupropion. Phentermine with inhibitors of Na-glucose cotransporter-2 or glucagon-like peptide-1 (GLP-1) agonists with gastric hormone or Na-glucose cotransporter-2 are two more viable combo therapy. This combination strategy aims to achieve success in bariatric surgery and the scientific community is working in this direction.
Collapse
Affiliation(s)
- Pranav Kumar Prabhakar
- Department of Research Impact and Outcome, Lovely Professional University, Punjab, 144411, India
| |
Collapse
|
31
|
Klein Hazebroek M, Baars A, Mischke M, Oosting A, van Schothorst EM, Schipper L. Early-Life Exposure to Dietary Large Phospholipid-Coated Lipid Droplets Improves Markers of Metabolic and Immune Function in Adipose Tissue Later in Life in a Mouse Model. Mol Nutr Food Res 2024; 68:e2300470. [PMID: 37985953 DOI: 10.1002/mnfr.202300470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Indexed: 11/22/2023]
Abstract
SCOPE Human milk (HM) is considered optimal nutrition for infants, beneficially programming adult health outcomes including reduced obesity risk. Early life exposure to infant formula with lipid droplets closely resembling the structural properties of HM lipid globules (Nuturis) attenuated white adipose tissue (WAT) accumulation in mice upon adult western-style diet (WSD) feeding. Here, the study aims to elucidate underlying mechanisms. METHODS AND RESULTS Mice are raised on control or Nuturis diets between postnatal days 16-42 followed by either standard diet or WSD for 16 weeks. While the adult body composition of mice on a standard diet is not significantly affected, Nuturis reduced adiposity in mice on WSD. Morphologically, mean adipocyte size is reduced in Nuturis-raised mice, independent of adult diet exposure, and WAT macrophage content is reduced, albeit not significantly. Transcriptomics of epididymal WAT indicate potential beneficial effects on energy metabolism and macrophage function by Nuturis. CONCLUSION Reduced adult adiposity by early life exposure to Nuturis appears to be associated with smaller adipocytes and alterations in WAT immune and energy metabolism. These results suggest that early modulation of WAT structure and/or function may contribute to the protective programming effects of the early-life Nuturis diet on later-life adiposity.
Collapse
Affiliation(s)
- Marlou Klein Hazebroek
- Danone Nutricia Research, Utrecht, 3584 CT, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, 6708 WD, The Netherlands
| | | | - Mona Mischke
- Danone Nutricia Research, Utrecht, 3584 CT, The Netherlands
| | | | - Evert M van Schothorst
- Human and Animal Physiology, Wageningen University, Wageningen, 6708 WD, The Netherlands
| | | |
Collapse
|
32
|
Sabikunnahar B, Caldwell S, Varnum S, Hogan T, Lahue KG, Rathkolb B, Gerlini R, Dragano NRV, Aguilar‐Pimentel A, Irmler M, Sanz‐Moreno A, da Silva‐Buttkus P, Beckers J, Wolf E, Gailus‐Durner V, Fuchs H, Hrabe de Angelis M, Ather JL, Poynter ME, Krementsov DN. LncRNA U90926 is dispensable for the development of obesity-associated phenotypes in vivo. Physiol Rep 2024; 12:e15901. [PMID: 38171546 PMCID: PMC10764201 DOI: 10.14814/phy2.15901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Obesity is a global health problem characterized by excessive fat accumulation, driven by adipogenesis and lipid accumulation. Long non-coding RNAs (lncRNAs) have recently been implicated in regulating adipogenesis and adipose tissue function. Mouse lncRNA U90926 was previously identified as a repressor of in vitro adipogenesis in 3T3-L1 preadipocytes. Consequently, we hypothesized that, in vivo, U90926 may repress adipogenesis, and hence its deletion would increase weight gain and adiposity. We tested the hypothesis by applying U90926-deficient (U9-KO) mice to a high-throughput phenotyping pipeline. Compared with WT, U9-KO mice showed no major differences across a wide range of behavioral, neurological, and other physiological parameters. In mice fed a standard diet, we have found no differences in obesity-related phenotypes, including weight gain, fat mass, and plasma concentrations of glucose, insulin, triglycerides, and free fatty acids, in U9-KO mice compared to WT. U90926 deficiency lacked a major effect on white adipose tissue morphology and gene expression profile. Furthermore, in mice fed a high-fat diet, we found increased expression of U90926 in adipose tissue stromal vascular cell fraction, yet observed no effect of U90926 deficiency on weight gain, fat mass, adipogenesis marker expression, and immune cell infiltration into the adipose tissue. These data suggest that the U90926 lacks an essential role in obesity-related phenotypes and adipose tissue biology in vivo.
Collapse
Affiliation(s)
- Bristy Sabikunnahar
- Department of Biomedical and Health SciencesUniversity of VermontBurlingtonVermontUSA
| | - Sydney Caldwell
- Department of Biomedical and Health SciencesUniversity of VermontBurlingtonVermontUSA
| | - Stella Varnum
- Department of Biomedical and Health SciencesUniversity of VermontBurlingtonVermontUSA
| | - Tyler Hogan
- Department of Biomedical and Health SciencesUniversity of VermontBurlingtonVermontUSA
| | - Karolyn G. Lahue
- Department of Biomedical and Health SciencesUniversity of VermontBurlingtonVermontUSA
| | - Birgit Rathkolb
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
- Institute of Molecular Animal Breeding and Biotechnology, Gene CenterLudwig‐Maximilians‐University MünchenMunichGermany
| | - Raffaele Gerlini
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
| | - Nathalia R. V. Dragano
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| | - Antonio Aguilar‐Pimentel
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
| | - Martin Irmler
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
| | - Adrián Sanz‐Moreno
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
| | - Patricia da Silva‐Buttkus
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
| | - Johannes Beckers
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
- TUM School of Life SciencesTechnische Universität MünchenFreisingGermany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene CenterLudwig‐Maximilians‐University MünchenMunichGermany
| | - Valerie Gailus‐Durner
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
| | - Helmut Fuchs
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
- TUM School of Life SciencesTechnische Universität MünchenFreisingGermany
| | | | | | - Dimitry N. Krementsov
- Department of Biomedical and Health SciencesUniversity of VermontBurlingtonVermontUSA
| |
Collapse
|
33
|
Zare F, Ghafouri-Fard S, Shamosi A, Pahlavan S, Mahboudi H, Tavasoli A, Eslami S. Oleoylethanolamide protects mesenchymal stem/stromal cells (MSCs) from oxidative stress and reduces adipogenic related genes expression in adipose-derived MSCs undergoing adipocyte differentiation. Mol Biol Rep 2023; 51:33. [PMID: 38155334 DOI: 10.1007/s11033-023-08929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/24/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Human mesenchymal stem/stromal cells (hMSCs) are known for their pronounced therapeutic potential; however, they are still applied in limited clinical cases for several reasons. ROS-mediated oxidative stress is among the chief causes of post-transplantation apoptosis and death of hMSCs. It has been reported that a strategy to protect hMSCs against ROS is to pretreat them with antioxidants. Oleoylethanolamide (OEA) is a monounsaturated fatty acid derived from oleic acid and it has many protective properties, including anti-obesity, anti-inflammatory, and antioxidant effects. OEA is also used as a weight loss supplement; due to its high affinity for the PPAR-α receptor, OEA increases the fat metabolism rate. METHODS AND RESULTS This study hence assessed the effects of OEA pretreatment on the in vitro survival rate and resistance of hMSCs under oxidative stress as well as the cellular and molecular events in the biology of stem/stromal cells affected by oxidative stress and free radicals. Considering the role of MSCs in adipogenesis and obesity, the expression of the main genes involved in adipogenesis was also addressed in this study. Results revealed that OEA increases the in vitro proliferation of MSCs and inhibits cell apoptosis by reducing the induction of oxidative stress. The results also indicated that OEA exerts its antioxidant properties by both activating the Nrf2/NQO-1/HO-1 signaling pathway and directly combating free radicals. Moreover, OEA can reduce adipogenesis through reducing the expression of PPARγ, leptin and CEBPA genes in hMSCs undergoing adipocyte differentiation. CONCLUSIONS Thus, OEA protects hMSCs from oxidative stress and reduces adipogenic related genes expression and can be regarded as a therapeutic agent for this purpose.
Collapse
Affiliation(s)
- Fereshteh Zare
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Soudeh Ghafouri-Fard
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Shamosi
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Shahrzad Pahlavan
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Hossein Mahboudi
- Department of Biotechnology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Afsaneh Tavasoli
- Department of Biotechnology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Solat Eslami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
34
|
Lan R, Wei L, Yu H, Jiang P, Zhao Z. Age-Related Changes in Hepatic Lipid Metabolism and Abdominal Adipose Deposition in Yellow-Feathered Broilers Aged from 1 to 56 Days. Animals (Basel) 2023; 13:3860. [PMID: 38136897 PMCID: PMC10740587 DOI: 10.3390/ani13243860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The objective of this study was to evaluate the age-related changes in hepatic lipid metabolism, adipocyte hyperplasia, hypertrophy, and lipid metabolism in the abdominal adipose tissue of yellow-feathered broilers. Blood, liver, and abdominal adipose samples were collected on days 1, 7, 14, 21, 28, 35, 42, 49, and 56. Body, liver, and abdominal weight increased (p < 0.05) with age-related changes. The triacylglycerol content peaked on day 14, and total cholesterol content peaked on day 56. The adipocyte diameter and area peaked on day 56, and total DNA content peaked on day 7. The age-related changes in hepatic lipogenesis-related gene (ChREBP, SREBP-1c, ACC, FAS, SCD1) expression mainly occurred during days 1 to 21, hepatic lipolysis-related gene (CPT1, LPL, ApoB) expression mainly occurred during days 1 to 14, and abdominal adipose-deposition-related gene (PPARα, CPT1, LPL, PPARγ, C/EBPβ) expression occurred during days 1 to 14. These results demonstrated a dynamic pattern of hepatic lipid metabolism and abdominal adipose deposition in yellow-feathered broilers, which provides practical strategies to regulate hepatic lipid metabolism and reduce abdominal adipose deposition in yellow-feathered broilers.
Collapse
Affiliation(s)
| | | | | | | | - Zhihui Zhao
- Department of Animal Science and Technology, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.L.); (L.W.); (H.Y.); (P.J.)
| |
Collapse
|
35
|
Mishra T, Gupta S, Rai P, Khandelwal N, Chourasiya M, Kushwaha V, Singh A, Varshney S, Gaikwad AN, Narender T. Anti-adipogenic action of a novel oxazole derivative through activation of AMPK pathway. Eur J Med Chem 2023; 262:115895. [PMID: 37883898 DOI: 10.1016/j.ejmech.2023.115895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Obesity is a chronic disorder with multifactorial etiology, including genetic, medical, dietary and other environmental factors. Both natural and synthetic heterocyclic compounds, especially oxazoles, represent an interesting group of compounds and have gained much attention due to their remarkable biological activities. Therefore, a library of 3,3-DMAH (3,3-dimethylallylhalfordinol) inspired N-alkylated oxazole bromide salts with varied substitutions were prepared and screened using the 3T3-L1 model of adipogenesis and HFD-induced obesity model in Syrian golden hamsters. Several compounds in the synthesized series displayed remarkable anti-adipogenic potential on the differentiation of 3T3-L1 preadipocytes. Compound 19e, displayed the most potent activity of all and selected for further studies. Compound 19e inhibited mitotic clonal expansion of 3T3-L1 cells and enhanced the mitochondrial oxygen consumption rate of the cells during early phase of differentiation via AMPK activation. 19e also improved the dyslipidaemia in high calorie diet fed Syrian Golden Hamsters. Therefore, compound 19e can serve as a potential lead against adipogenesis and dyslipidaemia models and could be further investigated to affirm its significance as a drug candidate.
Collapse
Affiliation(s)
- Tripti Mishra
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, U.P., 226031, India
| | - Sanchita Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prashant Rai
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., 226031, India
| | - Nilesh Khandelwal
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohit Chourasiya
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, U.P., 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinita Kushwaha
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Astha Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anil Nilkanth Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Tadigoppula Narender
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, U.P., 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
36
|
Lecoutre S, Maqdasy S, Lambert M, Breton C. The Impact of Maternal Obesity on Adipose Progenitor Cells. Biomedicines 2023; 11:3252. [PMID: 38137473 PMCID: PMC10741630 DOI: 10.3390/biomedicines11123252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The concept of Developmental Origin of Health and Disease (DOHaD) postulates that adult-onset metabolic disorders may originate from suboptimal conditions during critical embryonic and fetal programming windows. In particular, nutritional disturbance during key developmental stages may program the set point of adiposity and its associated metabolic diseases later in life. Numerous studies in mammals have reported that maternal obesity and the resulting accelerated growth in neonates may affect adipocyte development, resulting in persistent alterations in adipose tissue plasticity (i.e., adipocyte proliferation and storage) and adipocyte function (i.e., insulin resistance, impaired adipokine secretion, reduced thermogenesis, and higher inflammation) in a sex- and depot-specific manner. Over recent years, adipose progenitor cells (APCs) have been shown to play a crucial role in adipose tissue plasticity, essential for its development, maintenance, and expansion. In this review, we aim to provide insights into the developmental timeline of lineage commitment and differentiation of APCs and their role in predisposing individuals to obesity and metabolic diseases. We present data supporting the possible implication of dysregulated APCs and aberrant perinatal adipogenesis through epigenetic mechanisms as a primary mechanism responsible for long-lasting adipose tissue dysfunction in offspring born to obese mothers.
Collapse
Affiliation(s)
- Simon Lecoutre
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, F-75013 Paris, France
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet Hospital, C2-94, 14186 Stockholm, Sweden;
| | - Mélanie Lambert
- U978 Institut National de la Santé et de la Recherche Médicale, F-93022 Bobigny, France;
- Université Sorbonne Paris Nord, Alliance Sorbonne Paris Cité, Labex Inflamex, F-93000 Bobigny, France
| | - Christophe Breton
- Maternal Malnutrition and Programming of Metabolic Diseases, Université de Lille, EA4489, F-59000 Lille, France
- U1283-UMR8199-EGID, Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
37
|
Nevzorova YA, Cubero FJ. Obesity under the moonlight of c-MYC. Front Cell Dev Biol 2023; 11:1293218. [PMID: 38116204 PMCID: PMC10728299 DOI: 10.3389/fcell.2023.1293218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
The moonlighting protein c-Myc is a master regulator of multiple biological processes including cell proliferation, differentiation, angiogenesis, apoptosis and metabolism. It is constitutively and aberrantly expressed in more than 70% of human cancers. Overwhelming evidence suggests that c-Myc dysregulation is involved in several inflammatory, autoimmune, metabolic and other non-cancerous diseases. In this review, we addressed the role of c-Myc in obesity. Obesity is a systemic disease, accompanied by multi-organ dysfunction apart from white adipose tissue (WAT), such as the liver, the pancreas, and the intestine. c-Myc plays a big diversity of functions regulating cellular proliferation, the maturation of progenitor cells, fatty acids (FAs) metabolism, and extracellular matrix (ECM) remodeling. Moreover, c-Myc drives the expression of a wide range of metabolic genes, modulates the inflammatory response, induces insulin resistance (IR), and contributes to the regulation of intestinal dysbiosis. Altogether, c-Myc is an interesting diagnostic tool and/or therapeutic target in order to mitigate obesity and its consequences.
Collapse
Affiliation(s)
- Yulia A. Nevzorova
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
38
|
Tsukamoto S, Suzuki T, Wakui H, Uehara T, Ichikawa J, Okuda H, Haruhara K, Azushima K, Abe E, Tanaka S, Taguchi S, Hirota K, Kinguchi S, Yamashita A, Tamura T, Tamura K. Angiotensin II type 1 receptor-associated protein in immune cells: a possible key factor in the pathogenesis of visceral obesity. Metabolism 2023; 149:155706. [PMID: 37856903 DOI: 10.1016/j.metabol.2023.155706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND AND AIM Dysregulation of angiotensin II type 1 receptor-associated protein (ATRAP) expression in cardiovascular, kidney, and adipose tissues is involved in the pathology of hypertension, cardiac hypertrophy, atherosclerosis, kidney injury, and metabolic disorders. Furthermore, ATRAP is highly expressed in bone marrow-derived immune cells; however, the functional role of immune cell ATRAP in obesity-related pathology remains unclear. Thus, we sought to identify the pathophysiological significance of immune cell ATRAP in the development of visceral obesity and obesity-related metabolic disorders using a mouse model of diet-induced obesity. METHODS Initially, we examined the effect of high-fat diet (HFD)-induced obesity on the expression of immune cell ATRAP in wild-type mice. Subsequently, we conducted bone marrow transplantation to generate two types of chimeric mice: bone marrow wild-type chimeric (BM-WT) and bone marrow ATRAP knockout chimeric (BM-KO) mice. These chimeric mice were provided an HFD to induce visceral obesity, and then the effects of immune cell ATRAP deficiency on physiological parameters and adipose tissue in the chimeric mice were investigated. RESULTS In wild-type mice, body weight increase by HFD was associated with increased expression of immune cell ATRAP. In the bone marrow transplantation experiments, BM-KO mice exhibited amelioration of HFD-induced weight gain and visceral fat expansion with small adipocytes compared BM-WT mice. In addition, BM-KO mice on the HFD showed significant improvements in white adipose tissue metabolism, inflammation, glucose tolerance, and insulin resistance, compared with BM-WT mice on the HFD. Detailed analysis of white adipose tissue revealed significant suppression of HFD-induced activation of transforming growth factor-beta signaling, a key contributor to visceral obesity, via amelioration of CD206+ macrophage accumulation in the adipose tissue of BM-KO mice. This finding suggests a relevant mechanism for the anti-obesity phenotype in BM-KO mice on the HFD. Finally, transcriptome analysis of monocytes indicated the possibility of genetic changes, such as the enhancement of interferon-γ response at the monocyte level, affecting macrophage differentiation in BM-KO mice. CONCLUSION Collectively, our results indicate that ATRAP in bone marrow-derived immune cells plays a role in the pathogenesis of visceral obesity. The regulation of ATRAP expression in immune cells may be a key factor against visceral adipose obesity with metabolic disorders.
Collapse
Affiliation(s)
- Shunichiro Tsukamoto
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toru Suzuki
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Tatsuki Uehara
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Juri Ichikawa
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Hiroshi Okuda
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kotaro Haruhara
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Eriko Abe
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shohei Tanaka
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shinya Taguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keigo Hirota
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akio Yamashita
- Department of Investigative Medicine Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan; Advanced Medical Research Center, Yokohama City University, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
39
|
Palacios-Marin I, Serra D, Jiménez-Chillarón JC, Herrero L, Todorčević M. Childhood obesity: Implications on adipose tissue dynamics and metabolic health. Obes Rev 2023; 24:e13627. [PMID: 37608466 DOI: 10.1111/obr.13627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/24/2023]
Abstract
Obesity is the leading risk factor for the development of type 2 diabetes and cardiovascular diseases. Childhood obesity represents an alarming health challenge because children with obesity are prone to remain with obesity throughout their life and have an increased morbidity and mortality risk. The ability of adipose tissue to store lipids and expand in size during excessive calorie intake is its most remarkable characteristic. Cellular and lipid turnovers determine adipose tissue size and are closely related with metabolic status. The mechanisms through which adipose tissue expands and how this affects systemic metabolic homeostasis are still poorly characterized. Furthermore, the mechanism through which increased adiposity extends from childhood to adulthood and its implications in metabolic health are in most part, still unknown. More studies on adipose tissue development in healthy and children with obesity are urgently needed. In the present review, we summarize the dynamics of white adipose tissue, from developmental origins to the mechanisms that allows it to grow and expand throughout lifetime and during obesity in children and in different mouse models used to address this largely unknown field. Specially, highlighting the role that excessive adiposity during the early life has on future's adipose tissue dynamics and individual's health.
Collapse
Affiliation(s)
- Ivonne Palacios-Marin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep C Jiménez-Chillarón
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Physiological Sciences, School of Medicine, Universitat de Barcelona, L'Hospitalet de Llobregat, Catalonia, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marijana Todorčević
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
40
|
Umbayev B, Saliev T, Safarova (Yantsen) Y, Yermekova A, Olzhayev F, Bulanin D, Tsoy A, Askarova S. The Role of Cdc42 in the Insulin and Leptin Pathways Contributing to the Development of Age-Related Obesity. Nutrients 2023; 15:4964. [PMID: 38068822 PMCID: PMC10707920 DOI: 10.3390/nu15234964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Age-related obesity significantly increases the risk of chronic diseases such as type 2 diabetes, cardiovascular diseases, hypertension, and certain cancers. The insulin-leptin axis is crucial in understanding metabolic disturbances associated with age-related obesity. Rho GTPase Cdc42 is a member of the Rho family of GTPases that participates in many cellular processes including, but not limited to, regulation of actin cytoskeleton, vesicle trafficking, cell polarity, morphology, proliferation, motility, and migration. Cdc42 functions as an integral part of regulating insulin secretion and aging. Some novel roles for Cdc42 have also been recently identified in maintaining glucose metabolism, where Cdc42 is involved in controlling blood glucose levels in metabolically active tissues, including skeletal muscle, adipose tissue, pancreas, etc., which puts this protein in line with other critical regulators of glucose metabolism. Importantly, Cdc42 plays a vital role in cellular processes associated with the insulin and leptin signaling pathways, which are integral elements involved in obesity development if misregulated. Additionally, a change in Cdc42 activity may affect senescence, thus contributing to disorders associated with aging. This review explores the complex relationships among age-associated obesity, the insulin-leptin axis, and the Cdc42 signaling pathway. This article sheds light on the vast molecular web that supports metabolic dysregulation in aging people. In addition, it also discusses the potential therapeutic implications of the Cdc42 pathway to mitigate obesity since some new data suggest that inhibition of Cdc42 using antidiabetic drugs or antioxidants may promote weight loss in overweight or obese patients.
Collapse
Affiliation(s)
- Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Timur Saliev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan;
| | - Yuliya Safarova (Yantsen)
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Aislu Yermekova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Farkhad Olzhayev
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Denis Bulanin
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Andrey Tsoy
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Sholpan Askarova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| |
Collapse
|
41
|
Wan S, Xie J, Liang Y, Yu X. Pathological roles of bone marrow adipocyte-derived monocyte chemotactic protein-1 in type 2 diabetic mice. Cell Death Discov 2023; 9:412. [PMID: 37957155 PMCID: PMC10643445 DOI: 10.1038/s41420-023-01708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) has become a prevalent public health concern, with beta-cell dysfunction involved in its pathogenesis. Bone marrow adipose tissue (BMAT) increases in both the quantity and area in individuals with T2DM along with heightened monocyte chemotactic protein-1 (MCP-1) secretion. This study aims to investigate the influence and underlying mechanisms of MCP-1 originating from bone marrow adipocytes (BMAs) on systemic glucose homeostasis in T2DM. Initially, a substantial decrease in the proliferation and glucose-stimulated insulin secretion (GSIS) of islet cells was observed. Moreover, a comparative analysis between the control (Ctrl) group and db/db mice revealed significant alterations in the gene expression profiles of whole bone marrow cells, with a noteworthy upregulation of Mcp-1. And the primary enriched pathways included chemokine signaling pathway and AGE-RAGE signaling pathway in diabetic complications. In addition, the level of MCP-1 was distinctly elevated in BMA-derived conditional media (CM), leading to a substantial inhibition of proliferation, GSIS and the protein level of phosphorylated Akt (p-Akt) in Min6 cells. After blocking MCP-1 pathway, we observed a restoration of p-Akt and the proliferation of islet cells, resulting in a marked improvement in disordered glucose homeostasis. In summary, there is an accumulation of BMAs in T2DM, which secrete excessive MCP-1, exacerbating the abnormal accumulation of BMAs in the bone marrow cavity through paracrine signaling. The upregulated MCP-1, in turn, worsens glucose metabolism disorder by inhibiting the proliferation and insulin secretion of islet cells through an endocrine pathway. Inhibiting MCP-1 signaling can partially restore the proliferation and insulin secretion of islet cells, ultimately ameliorating glucose metabolism disorder. It's worth noting that to delve deeper into the impact of MCP-1 derived from BMAs on islet cells and its potential mechanisms, it is imperative to develop genetically engineered mice with conditional Mcp-1 knockout from BMAs.
Collapse
Affiliation(s)
- Shan Wan
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinwei Xie
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Liang
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
42
|
Swarna Nantha Y, Vijayasingham S, Adam NL, Vengadasalam P, Ismail M, Ali N, Chang LC, Ling LYL, Tee TT, Cheah YH. Labisia pumila standardized extract (SKF7®) reduces percentage of waist circumference and waist-to-height ratio in individuals with obesity. Diabetes Obes Metab 2023; 25:3298-3306. [PMID: 37551550 DOI: 10.1111/dom.15229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/09/2023]
Abstract
AIM Evidence from the literature points towards a viable choice of utilizing Labisia pumila to improve the metabolic profile in animal studies. To that end, this prospective study was designed to assess the health impact of the consumption of L. pumila standardized extract (SKF7®) on key parameters of obesity in humans such as body weight (BW), body mass index (BMI), waist circumference (WC) and waist-to-height ratio (WHtR). MATERIALS AND METHODS A dose-ranging analysis using SKF7® was conducted through a randomized, double-blind, multicentre, placebo-controlled, phase 2 clinical trial involving individuals with obesity (N = 133) between January 2020 and April 2021. The potential percentage of change was assessed in relation to BW, BMI, WC and WHtR. RESULTS Average treatment effect estimates (treatment group vs. placebo) show a statistically significant reduction in the percentage of change for BW (mean = -2.915; CI: -4.546, -1.285), BMI (-2.921; CI: -4.551, -1.291), WC (mean = -2.187; CI: -3.784, -0.589) and WHtR (mean = -2.294, CI: -3.908, -0.681) in the group with a total of 750 mg of SKF7® (p < .01). An incremental reduction in WC and WHtR was consistent with the gradual increase in the total daily concentration of SKF7® from 375 to 750 mg. WC and WHtR had higher effect size (f 2 = 0.11 and f 2 = 0.13 respectively) in comparison with BW and BMI. CONCLUSIONS SKF7® is potentially a novel therapeutic treatment for obesity, reflected by reductions in BW, BMI, WC and WHtR. The use of SKF7® suggests a dose-dependent reduction in abdominal obesity, exemplified by a decline in WC and WHtR.
Collapse
Affiliation(s)
- Yogarabindranath Swarna Nantha
- Jeffrey Cheah School of Medicine and Health Sciences, Department of General Practice, Monash University, Sunway Campus, Bandar Sunway, Malaysia
| | - Shalini Vijayasingham
- Department of Medicine, Clinical Research Centre, Melaka General Hospital, Melaka, Malaysia
| | - Noor Lita Adam
- Department of Medicine, Tuanku Ja'afar Hospital, Clinical Research Centre, Seremban, Malaysia
| | | | - Mastura Ismail
- Seremban 2 Primary Healthcare Clinic, Seremban, Malaysia
| | - Norsiah Ali
- Masjid Tanah Primary Healthcare Clinic, Melaka, Malaysia
| | | | | | | | | |
Collapse
|
43
|
Das D, Lawrence WR, Diaz-Starokozheva L, Salazar-Puerta A, Ott N, Goebel ER, Damughtala A, Vidal P, Gallentine S, Moore JT, Kayuha D, Mendonca NC, Albert JB, Houser R, Johnson J, Powell H, Higuita-Castro N, Stanford KI, Gallego-Perez D. Injectable pulverized electrospun poly(lactic-co-glycolic acid) fibers improve human adipose tissue engraftment and volume retention. J Biomed Mater Res A 2023; 111:1722-1733. [PMID: 37326365 PMCID: PMC10527741 DOI: 10.1002/jbm.a.37581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Autologous adipose tissue is commonly used for tissue engraftment for the purposes of soft tissue reconstruction due to its relative abundance in the human body and ease of acquisition using liposuction methods. This has led to the adoption of autologous adipose engraftment procedures that allow for the injection of adipose tissues to be used as a "filler" for correcting cosmetic defects and deformities in soft tissues. However, the clinical use of such methods has several limitations, including high resorption rates and poor cell survivability, which lead to low graft volume retention and inconsistent outcomes. Here, we describe a novel application of milled electrospun poly(lactic-co-glycolic acid) (PLGA) fibers, which can be co-injected with adipose tissue to improve engraftment outcomes. These PLGA fibers had no significant negative impact on the viability of adipocytes in vitro and did not elicit long-term proinflammatory responses in vivo. Furthermore, co-delivery of human adipose tissue with pulverized electrospun PLGA fibers led to significant improvements in reperfusion, vascularity, and retention of graft volume compared to injections of adipose tissue alone. Taken together, the use of milled electrospun fibers to enhance autologous adipose engraftment techniques represents a novel approach for improving upon the shortcomings of such methods.
Collapse
Affiliation(s)
- Devleena Das
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - William R. Lawrence
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ludmila Diaz-Starokozheva
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Surgery, The Ohio State University, Columbus, OH, USA
| | - Ana Salazar-Puerta
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Neil Ott
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Erin R. Goebel
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Abhishek Damughtala
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Pablo Vidal
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Summer Gallentine
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Jordan T. Moore
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | | | - Natalia C. Mendonca
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Jared B. Albert
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Robert Houser
- Cosmetic & Plastic Surgery of Columbus, Columbus, OH, USA
| | | | - Heather Powell
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Shriners Hospitals-Ohio, Dayton, OH, USA
| | | | - Kristin I. Stanford
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Surgery, The Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
44
|
Sommer J, Ehnis H, Seitz T, Schneider J, Wild AB, Moceri S, Buechler C, Bozec A, Weber GF, Merkel S, Beckervordersandforth R, Steinkasserer A, Schüle R, Trebicka J, Hartmann A, Bosserhoff A, von Hörsten S, Dietrich P, Hellerbrand C. Four-and-a-Half LIM-Domain Protein 2 (FHL2) Induces Neuropeptide Y (NPY) in Macrophages in Visceral Adipose Tissue and Promotes Diet-Induced Obesity. Int J Mol Sci 2023; 24:14943. [PMID: 37834391 PMCID: PMC10573629 DOI: 10.3390/ijms241914943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Obesity is characterized by the expansion of the adipose tissue, usually accompanied by inflammation, with a prominent role of macrophages infiltrating the visceral adipose tissue (VAT). This chronic inflammation is a major driver of obesity-associated comorbidities. Four-and-a-half LIM-domain protein 2 (FHL2) is a multifunctional adaptor protein that is involved in the regulation of various biological functions and the maintenance of the homeostasis of different tissues. In this study, we aimed to gain new insights into the expression and functional role of FHL2 in VAT in diet-induced obesity. We found enhanced FHL2 expression in the VAT of mice with Western-type diet (WTD)-induced obesity and obese humans and identified macrophages as the cellular source of enhanced FHL2 expression in VAT. In mice with FHL2 deficiency (FHL2KO), WTD feeding resulted in reduced body weight gain paralleled by enhanced energy expenditure and uncoupling protein 1 (UCP1) expression, indicative of activated thermogenesis. In human VAT, FHL2 was inversely correlated with UCP1 expression. Furthermore, macrophage infiltration and the expression of the chemokine MCP-1, a known promotor of macrophage accumulation, was significantly reduced in WTD-fed FHL2KO mice compared with wild-type (wt) littermates. While FHL2 depletion did not affect the differentiation or lipid metabolism of adipocytes in vitro, FHL2 depletion in macrophages resulted in reduced expressions of MCP-1 and the neuropeptide Y (NPY). Furthermore, WTD-fed FHL2KO mice showed reduced NPY expression in VAT compared with wt littermates, and NPY expression was enhanced in VAT resident macrophages of obese individuals. Stimulation with recombinant NPY induced not only UCP1 expression and lipid accumulation but also MCP-1 expression in adipocytes. Collectively, these findings indicate that FHL2 is a positive regulator of NPY and MCP-1 expression in macrophages and herewith closely linked to the mechanism of obesity-associated lipid accumulation and inflammation in VAT. Thus, FHL2 appears as a potential novel target to interfere with the macrophage-adipocyte crosstalk in VAT for treating obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Judith Sommer
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| | - Hanna Ehnis
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| | - Tatjana Seitz
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| | - Julia Schneider
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| | - Andreas B. Wild
- Department of Immune Modulation, University Hospital Erlangen, Hartmannstr. 4, D-91052 Erlangen, Germany; (A.B.W.); (A.S.)
| | - Sandra Moceri
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Palmsanlage 5, D-91054 Erlangen, Germany; (S.M.); (S.v.H.)
| | - Christa Buechler
- Department of Internal Medicine I, University Hospital of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany;
| | - Aline Bozec
- Department of Internal Medicine 3, Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Glückstr. 6, D-91054 Erlangen, Germany;
| | - Georg F. Weber
- Department of Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Krankenhausstr. 12, D-91054 Erlangen, Germany; (G.F.W.)
| | - Susanne Merkel
- Department of Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Krankenhausstr. 12, D-91054 Erlangen, Germany; (G.F.W.)
| | - Ruth Beckervordersandforth
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| | - Alexander Steinkasserer
- Department of Immune Modulation, University Hospital Erlangen, Hartmannstr. 4, D-91052 Erlangen, Germany; (A.B.W.); (A.S.)
| | - Roland Schüle
- Center for Clinical Research, University of Freiburg Medical School, Breisacherstr. 66, D-79106 Freiburg, Germany;
| | - Jonel Trebicka
- Department of Internal Medicine B, University of Münster, Albert-Schweitzer-Campus 1, D-48149 Münster, Germany;
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, Krankenhausstr. 8/10, D-91054 Erlangen, Germany;
| | - Anja Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Palmsanlage 5, D-91054 Erlangen, Germany; (S.M.); (S.v.H.)
| | - Peter Dietrich
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (H.E.); (T.S.); (J.S.); (R.B.); (A.B.); (P.D.)
| |
Collapse
|
45
|
Saha A, Kolonin MG, DiGiovanni J. Obesity and prostate cancer - microenvironmental roles of adipose tissue. Nat Rev Urol 2023; 20:579-596. [PMID: 37198266 DOI: 10.1038/s41585-023-00764-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/19/2023]
Abstract
Obesity is known to have important roles in driving prostate cancer aggressiveness and increased mortality. Multiple mechanisms have been postulated for these clinical observations, including effects of diet and lifestyle, systemic changes in energy balance and hormonal regulation and activation of signalling by growth factors and cytokines and other components of the immune system. Over the past decade, research on obesity has shifted towards investigating the role of peri-prostatic white adipose tissue as an important source of locally produced factors that stimulate prostate cancer progression. Cells that comprise white adipose tissue, the adipocytes and their progenitor adipose stromal cells (ASCs), which proliferate to accommodate white adipose tissue expansion in obesity, have been identified as important drivers of obesity-associated cancer progression. Accumulating evidence suggests that adipocytes are a source of lipids that are used by adjacent prostate cancer cells. However, results of preclinical studies indicate that ASCs promote tumour growth by remodelling extracellular matrix and supporting neovascularization, contributing to the recruitment of immunosuppressive cells, and inducing epithelial-mesenchymal transition through paracrine signalling. Because epithelial-mesenchymal transition is associated with cancer chemotherapy resistance and metastasis, ASCs are considered to be potential targets of therapies that could be developed to suppress cancer aggressiveness in patients with obesity.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA.
| | - John DiGiovanni
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA.
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
46
|
Hatton IA, Galbraith ED, Merleau NSC, Miettinen TP, Smith BM, Shander JA. The human cell count and size distribution. Proc Natl Acad Sci U S A 2023; 120:e2303077120. [PMID: 37722043 PMCID: PMC10523466 DOI: 10.1073/pnas.2303077120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/24/2023] [Indexed: 09/20/2023] Open
Abstract
Cell size and cell count are adaptively regulated and intimately linked to growth and function. Yet, despite their widespread relevance, the relation between cell size and count has never been formally examined over the whole human body. Here, we compile a comprehensive dataset of cell size and count over all major cell types, with data drawn from >1,500 published sources. We consider the body of a representative male (70 kg), which allows further estimates of a female (60 kg) and 10-y-old child (32 kg). We build a hierarchical interface for the cellular organization of the body, giving easy access to data, methods, and sources (https://humancelltreemap.mis.mpg.de/). In total, we estimate total body counts of ≈36 trillion cells in the male, ≈28 trillion in the female, and ≈17 trillion in the child. These data reveal a surprising inverse relation between cell size and count, implying a trade-off between these variables, such that all cells within a given logarithmic size class contribute an equal fraction to the body's total cellular biomass. We also find that the coefficient of variation is approximately independent of mean cell size, implying the existence of cell-size regulation across cell types. Our data serve to establish a holistic quantitative framework for the cells of the human body, and highlight large-scale patterns in cell biology.
Collapse
Affiliation(s)
- Ian A. Hatton
- Max Planck Institute for Mathematics in the Sciences, Leipzig04103, Germany
- Department of Earth and Planetary Sciences, McGill University, Montreal, QuebecH3A 0E8, Canada
| | - Eric D. Galbraith
- Department of Earth and Planetary Sciences, McGill University, Montreal, QuebecH3A 0E8, Canada
- ICREA, Barcelona08010, Spain
| | - Nono S. C. Merleau
- Max Planck Institute for Mathematics in the Sciences, Leipzig04103, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, University of Leipzig, D-04105Leipzig, Germany
| | - Teemu P. Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Benjamin McDonald Smith
- Department of Medicine, McGill University Health Centre Research Institute, Montreal, QuebecH4A 3S5, Canada
- Department of Medicine, Columbia University Medical Center, New York, NY10032
| | | |
Collapse
|
47
|
Palacios-Marin I, Serra D, Jimenez-Chillarón J, Herrero L, Todorčević M. Adipose Tissue Dynamics: Cellular and Lipid Turnover in Health and Disease. Nutrients 2023; 15:3968. [PMID: 37764752 PMCID: PMC10535304 DOI: 10.3390/nu15183968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
The alarming increase in obesity and its related metabolic health complications, such as type 2 diabetes, has evolved into a global pandemic. Obesity is mainly characterized by excessive accumulation of adipose tissue, primarily due to an imbalance between energy intake and expenditure. Prolonged positive energy balance leads to the expansion of existing adipocytes (hypertrophy) and/or an increase in preadipocyte and adipocyte number (hyperplasia) to accommodate excess energy intake. However, obesity is not solely defined by increases in adipocyte size and number. The turnover of adipose tissue cells also plays a crucial role in the development and progression of obesity. Cell turnover encompasses the processes of cell proliferation, differentiation, and apoptosis, which collectively regulate the overall cell population within adipose tissue. Lipid turnover represents another critical factor that influences how adipose tissue stores and releases energy. Our understanding of adipose tissue lipid turnover in humans remains limited due to the slow rate of turnover and methodological constraints. Nonetheless, disturbances in lipid metabolism are strongly associated with altered adipose tissue lipid turnover. In obesity, there is a decreased rate of triglyceride removal (lipolysis followed by oxidation), leading to the accumulation of triglycerides over time. This review provides a comprehensive summary of findings from both in vitro and in vivo methods used to study the turnover of adipose cells and lipids in metabolic health and disease. Understanding the mechanisms underlying cellular and lipid turnover in obesity is essential for developing strategies to mitigate the adverse effects of excess adiposity.
Collapse
Affiliation(s)
- Ivonne Palacios-Marin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, E-08950 Barcelona, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Josep Jimenez-Chillarón
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, E-08950 Barcelona, Spain
- Department of Physiological Sciences, School of Medicine, University of Barcelona, E-08907 L’Hospitalet, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Marijana Todorčević
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
48
|
Cui W, Zhang Q, Wang H, Zhang X, Tian M, Liu D, Yang X. Effects of HOXC8 on the Proliferation and Differentiation of Porcine Preadipocytes. Animals (Basel) 2023; 13:2615. [PMID: 37627406 PMCID: PMC10451666 DOI: 10.3390/ani13162615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Transcription factor Homeobox C8 (HOXC8) is identified as a white adipose gene as revealed by expression profile analysis in fat tissues. However, the specific role of HOXC8 in fat accumulation remains to be identified. This study was designed to reveal the effects of HOXC8 on preadipocyte proliferation and differentiation. We first make clear that the expression of HOXC8 is associated with fat contents in muscles, highlighting a role of HOXC8 in fat accumulation. Next, it is demonstrated that HOXC8 promotes the proliferation and differentiation of preadipocytes through gain- and loss-of-function assays in primary cultured porcine preadipocytes. Then, mechanisms underlying the regulation of HOXC8 on preadipocyte proliferation and differentiation are identified with RNA sequencing, and a number of differentially expressed genes (DEGs) in response to HOXC8 knockdown are identified. The top GO (Gene Ontology) terms enriched by DEGs involved in proliferation and differentiation, respectively, are identical. IL-17 signaling pathway is the common one significantly enriched by DEGs involved in preadipocyte proliferation and differentiation, respectively, indicating its importance in mediating fat accumulation regulated by HOXC8. Additionally, we find that the inhibition of proliferation is one of the main processes during preadipocyte differentiation. The results will contribue to further revealing the mechanisms underlying fat accumulation regulated by HOXC8.
Collapse
Affiliation(s)
- Weiguo Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 166319, China
| | - Qian Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hanqiong Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohan Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Ming Tian
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
49
|
Horwitz A, Birk R. Adipose Tissue Hyperplasia and Hypertrophy in Common and Syndromic Obesity-The Case of BBS Obesity. Nutrients 2023; 15:3445. [PMID: 37571382 PMCID: PMC10421039 DOI: 10.3390/nu15153445] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/16/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Obesity is a metabolic state generated by the expansion of adipose tissue. Adipose tissue expansion depends on the interplay between hyperplasia and hypertrophy, and is mainly regulated by a complex interaction between genetics and excess energy intake. However, the genetic regulation of adipose tissue expansion is yet to be fully understood. Obesity can be divided into common multifactorial/polygenic obesity and monogenic obesity, non-syndromic and syndromic. Several genes related to obesity were found through studies of monogenic non-syndromic obesity models. However, syndromic obesity, characterized by additional features other than obesity, suggesting a more global role of the mutant genes related to the syndrome and, thus, an additional peripheral influence on the development of obesity, were hardly studied to date in this regard. This review summarizes present knowledge regarding the hyperplasia and hypertrophy of adipocytes in common obesity. Additionally, we highlight the scarce research on syndromic obesity as a model for studying adipocyte hyperplasia and hypertrophy, focusing on Bardet-Biedl syndrome (BBS). BBS obesity involves central and peripheral mechanisms, with molecular and mechanistic alternation in adipocyte hyperplasia and hypertrophy. Thus, we argue that using syndromic obesity models, such as BBS, can further advance our knowledge regarding peripheral adipocyte regulation in obesity.
Collapse
Affiliation(s)
| | - Ruth Birk
- Department of Nutrition, Faculty of Health Sciences, Ariel University, Ariel 40700, Israel;
| |
Collapse
|
50
|
Gupta A, Efthymiou V, Kodani SD, Shamsi F, Patti ME, Tseng YH, Streets A. Mapping the transcriptional landscape of human white and brown adipogenesis using single-nuclei RNA-seq. Mol Metab 2023; 74:101746. [PMID: 37286033 PMCID: PMC10338377 DOI: 10.1016/j.molmet.2023.101746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Adipogenesis is key to maintaining organism-wide energy balance and healthy metabolic phenotype, making it critical to thoroughly comprehend its molecular regulation in humans. By single-nuclei RNA-sequencing (snRNA-seq) of over 20,000 differentiating white and brown preadipocytes, we constructed a high-resolution temporal transcriptional landscape of human white and brown adipogenesis. White and brown preadipocytes were isolated from a single individual's neck region, thereby eliminating inter-subject variability across two distinct lineages. These preadipocytes were also immortalized to allow for controlled, in vitro differentiation, allowing sampling of distinct cellular states across the spectrum of adipogenic progression. Pseudotemporal cellular ordering revealed the dynamics of ECM remodeling during early adipogenesis, and lipogenic/thermogenic response during late white/brown adipogenesis. Comparison with adipogenic regulation in murine models Identified several novel transcription factors as potential targets for adipogenic/thermogenic drivers in humans. Among these novel candidates, we explored the role of TRPS1 in adipocyte differentiation and showed that its knockdown impairs white adipogenesis in vitro. Key adipogenic and lipogenic markers revealed in our analysis were applied to analyze publicly available scRNA-seq datasets; these confirmed unique cell maturation features in recently discovered murine preadipocytes, and revealed inhibition of adipogenic expansion in humans with obesity. Overall, our study presents a comprehensive molecular description of both white and brown adipogenesis in humans and provides an important resource for future studies of adipose tissue development and function in both health and metabolic disease state.
Collapse
Affiliation(s)
- Anushka Gupta
- University of California at Berkeley, University of California at San Francisco Graduate Program in Bioengineering, Berkeley, CA 94720, USA
| | - Vissarion Efthymiou
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sean D Kodani
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | - Farnaz Shamsi
- Department of Molecular Pathobiology, New York University, New York, NY 10010, USA
| | - Mary Elizabeth Patti
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yu-Hua Tseng
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Aaron Streets
- University of California at Berkeley, University of California at San Francisco Graduate Program in Bioengineering, Berkeley, CA 94720, USA; Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|