1
|
Juventin M, Zbili M, Fourcaud-Trocmé N, Garcia S, Buonviso N, Amat C. Respiratory rhythm modulates membrane potential and spiking of nonolfactory neurons. J Neurophysiol 2023; 130:1552-1566. [PMID: 37964739 DOI: 10.1152/jn.00487.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
In recent years, several studies have shown a respiratory drive of the local field potential (LFP) in numerous brain areas so that the respiratory rhythm could be considered as a master clock promoting communication between distant brain locations. However, outside of the olfactory system, it remains unknown whether the respiratory rhythm could shape membrane potential (MP) oscillations. To fill this gap, we co-recorded MP and LFP activities in different nonolfactory brain areas, medial prefrontal cortex (mPFC), primary somatosensory cortex (S1), primary visual cortex (V1), and hippocampus (HPC), in urethane-anesthetized rats. Using respiratory cycle-by-cycle analysis, we observed that respiration could modulate both MP and spiking discharges in all recorded areas during episodes that we called respiration-related oscillations (RRo). Further quantifications revealed that RRo episodes were transient in most neurons (5 consecutive respiratory cycles in average). RRo development in MP was largely correlated with the presence of respiratory modulation in the LFP. By showing that the respiratory rhythm influenced brain activities deep to the MP of nonolfactory neurons, our data support the idea that respiratory rhythm could mediate long-range communication between brain areas.NEW & NOTEWORTHY In this study, we evidenced strong respiratory-driven oscillations of neuronal membrane potential and spiking discharge in various nonolfactory areas of the mammal brain. These oscillations were found in the medial prefrontal cortex, primary somatosensory cortex, primary visual cortex, and hippocampus. These findings support the idea that respiratory rhythm could be used as a common clock to set the dynamics of large-scale neuronal networks on the same slow rhythm.
Collapse
Affiliation(s)
- Maxime Juventin
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
| | - Mickael Zbili
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
- Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM, Clermont-Ferrand, France
| | - Nicolas Fourcaud-Trocmé
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
| | - Samuel Garcia
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
| | - Nathalie Buonviso
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
| | - Corine Amat
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
| |
Collapse
|
2
|
Shen J, Li M, Long C, Yang L, Jiang J. Altered Odor-Evoked Electrophysiological Responses in the Anterior Piriform Cortex of Conscious APP/PS1 Mice. J Alzheimers Dis 2022; 90:1277-1289. [DOI: 10.3233/jad-220694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Olfactory decline is an indicator of early-stage Alzheimer’s disease (AD). Although the anterior piriform cortex (aPC) is an important brain area involved in processing olfactory input, little is known about how its neuronal activity is affected in early-stage AD. Objective: To elucidate whether odor-induced electrophysiological responses are altered in the aPC of 3-5-month-old APP/PS1 mice. Methods: Using head-fixed multi-channel recording techniques in APP/PS1 AD mouse model to uncover potential aberrance of the aPC neuronal firing and local field potential (LFP) in response to vanillin. Results: We show that the firing rate of aPC neurons evoked by vanillin is significantly reduced in conscious APP/PS1 mice. LFP analysis demonstrates reduced low- and high-gamma (γ low, γ high) oscillations during both the baseline and odor stimulation periods in APP/PS1 mice. Moreover, according to spike-field coherence (SFC) analysis, APP/PS1 mice show decreased coherence between odor-evoked spikes and γ low rhythms, while the coherence with γ high rhythms and the ΔSFC of the oscillations is unaffected. Furthermore, APP/PS1 mice show reduced phase-locking strength in the baseline period, such that there is no difference between baseline and odor-stimulation conditions. This contrasts markedly with wild type mice, where phase-locking strength decreases on stimulation. Conclusion: The abnormalities in both the neuronal and oscillatory activities of the aPC may serve as electrophysiological indicators of underlying olfactory decline in early AD.
Collapse
Affiliation(s)
- Jialun Shen
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Meng Li
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jinxiang Jiang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
3
|
Burton SD, Urban NN. Cell and circuit origins of fast network oscillations in the mammalian main olfactory bulb. eLife 2021; 10:74213. [PMID: 34658333 PMCID: PMC8553344 DOI: 10.7554/elife.74213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/09/2021] [Indexed: 11/13/2022] Open
Abstract
Neural synchrony generates fast network oscillations throughout the brain, including the main olfactory bulb (MOB), the first processing station of the olfactory system. Identifying the mechanisms synchronizing neurons in the MOB will be key to understanding how network oscillations support the coding of a high-dimensional sensory space. Here, using paired recordings and optogenetic activation of glomerular sensory inputs in MOB slices, we uncovered profound differences in principal mitral cell (MC) vs. tufted cell (TC) spike-time synchrony: TCs robustly synchronized across fast- and slow-gamma frequencies, while MC synchrony was weaker and concentrated in slow-gamma frequencies. Synchrony among both cell types was enhanced by shared glomerular input but was independent of intraglomerular lateral excitation. Cell-type differences in synchrony could also not be traced to any difference in the synchronization of synaptic inhibition. Instead, greater TC than MC synchrony paralleled the more periodic firing among resonant TCs than MCs and emerged in patterns consistent with densely synchronous network oscillations. Collectively, our results thus reveal a mechanism for parallel processing of sensory information in the MOB via differential TC vs. MC synchrony, and further contrast mechanisms driving fast network oscillations in the MOB from those driving the sparse synchronization of irregularly firing principal cells throughout cortex.
Collapse
Affiliation(s)
- Shawn D Burton
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States.,Center for the Neural Basis of Cognition, Pittsburgh, United States
| | - Nathaniel N Urban
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States.,Center for the Neural Basis of Cognition, Pittsburgh, United States
| |
Collapse
|
4
|
Kosenko PO, Smolikov AB, Voynov VB, Shaposhnikov PD, Saevskiy AI, Kiroy VN. Effect of Xylazine-Tiletamine-Zolazepam on the Local Field Potential of the Rat Olfactory Bulb. Comp Med 2020; 70:492-498. [PMID: 33168131 DOI: 10.30802/aalas-cm-20-990015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neural oscillations of the mammalian olfactory system have been studied for decades. This research suggests they are linked to various processes involved in odor information analysis, depending on the vigilance state and presentation of stimuli. In addition, the effects of various anesthetics, including commonly used ones like chloral hydrate, pentobarbital, ketamine, and urethane, on the local field potential (LFP) in the olfactory bulb (OB) have been studied. In particular, the combination of xylazine and tiletamine-zolazepam has been shown to produce steady anesthesia for an extended period and relatively few adverse effects; however, their effects on the LFP in the OB remain unknown. To study those effects, we recorded the LFP in the OB of rats under xylazine-tiletamine-zolazepam anesthesia. During the period of anesthesia, the spectral powers of the 1-4, 9-16, 31-64, 65-90 frequency bands increased significantly, and that of 91-170 Hz frequency band decreased significantly, whereas no significant changes were observed in the 5-8 and 17-30 Hz ranges. These results reveal dynamic changes in the time and frequency characteristics of the LFP in the OB of rats under xylazine-tiletamine- zolazepam anesthesia and suggest that this combination of anesthetics could be used for studying oscillatory processes in the OB of rats.
Collapse
|
5
|
Zhou Y, Yin M, Xia C, Wang X, Wu H, Ji Y. Visual deprivation modifies glutamate receptor expression in visual and auditory centers. Am J Transl Res 2019; 11:7523-7537. [PMID: 31934298 PMCID: PMC6943468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Changes in the electrical activities of visual and auditory thalamic-cortical regions account for the cross-modal enhancement of auditory perception following visual deprivation, but the molecular regulatory factors mediating these changes remain elusive. In this study, we showed that the expression patterns of five glutamate receptor (GluR) subunits which involved in regulating the synaptic plasticity in mouse primary visual (V1) cortex and primary auditory (A1) cortex undergone elaborate modification with layer-specificity after visual deprivation using dark-exposure (DE). The expression levels of NR1 and NR2B were increased, and those of GluR1 and NR2B in the V1 cortex were decreased after DE. In the A1 cortex, the expression levels of NR1, NR2A and NR2B were increased, and the expression levels of GluR1 and GluR2 were decreased after DE. The altered expression levels of GluR subunits selectively happened in the different layers of V1 and A1 cortices. In addition, the expression level of GluR2 in lateral geniculate nucleus (LGN) was decreased. These results provide novel molecular clues for the plastic neural activity in visual and auditory centers in the absence of visual input, and hint the extensive refinement of intracortical circuits and thalamocortical feedback circuits underlying the multisensory cross-modal plasticity.
Collapse
Affiliation(s)
- You Zhou
- Department of Otolaryngology-Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University School of MedicineShanghai 200011, China
- Ear Institute, Shanghai Jiaotong University School of MedicineShanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai 200125, China
| | - Manli Yin
- Institute of Biomembrane and Biopharmaceutics, Shanghai UniversityShanghai 200444, China
| | - Chenchen Xia
- Institute of Biomembrane and Biopharmaceutics, Shanghai UniversityShanghai 200444, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University School of MedicineShanghai 200011, China
- Ear Institute, Shanghai Jiaotong University School of MedicineShanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai 200125, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University School of MedicineShanghai 200011, China
- Ear Institute, Shanghai Jiaotong University School of MedicineShanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai 200125, China
| | - Yonghua Ji
- Institute of Biomembrane and Biopharmaceutics, Shanghai UniversityShanghai 200444, China
- Translational Institute for Cancer Pain, Xinhua Hospital Chongming BranchShanghai 202150, China
| |
Collapse
|
6
|
Xia C, Yin M, Pan P, Fang F, Zhou Y, Ji Y. Long-term exposure to moderate noise induces neural plasticity in the infant rat primary auditory cortex. Anim Cells Syst (Seoul) 2019; 23:260-269. [PMID: 31489247 PMCID: PMC6711034 DOI: 10.1080/19768354.2019.1643782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 11/17/2022] Open
Abstract
Previous studies have reported that rearing infant rat pups in continuous moderate-level noise delayed the formation of topographic representational order and the refinement of response selectivity in the primary auditory (A1) cortex. The present study further verified that exposure to long-term moderate-intensity white noise (70 dB sound pressure level) from postnatal day (P) 12 to P30 elevated the hearing thresholds of infant rats. Compared with age-matched control rats, noise exposure (NE) rats had elevated hearing thresholds ranging from low to high frequencies, accompanied by decreased amplitudes and increased latencies of the two initial auditory brainstem response waves. The power of raw local field potential oscillations and high-frequency β oscillation in the A1 cortex of NE rats were larger, whereas the power of high-frequency γ oscillation was smaller than that of control rats. In addition, the expression levels of five glutamate receptor (GluR) subunits in the A1 cortex of NE rats were decreased with laminar specificity. These results suggest that the altered neural excitability and decreased GluR expression may underlie the delay of functional maturation in the A1 cortex, and may have implications for the treatment of hearing impairment induced by environmental noise.
Collapse
Affiliation(s)
- Chenchen Xia
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, People's Republic of China
| | - Manli Yin
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, People's Republic of China
| | - Ping Pan
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, People's Republic of China
| | - Fanghao Fang
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, People's Republic of China
| | - You Zhou
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, People's Republic of China.,Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, People's Republic of China
| | - Yonghua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Courtiol E, Buonviso N, Litaudon P. Odorant features differentially modulate beta/gamma oscillatory patterns in anterior versus posterior piriform cortex. Neuroscience 2019; 409:26-34. [PMID: 31022464 DOI: 10.1016/j.neuroscience.2019.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/01/2022]
Abstract
Oscillatory activity is a prominent characteristic of the olfactory system. We previously demonstrated that beta and gamma oscillations occurrence in the olfactory bulb (OB) is modulated by the physical properties of the odorant. However, it remains unknown whether such odor-related modulation of oscillatory patterns is maintained in the piriform cortex (PC) and whether those patterns are similar between the anterior PC (aPC) and posterior PC (pPC). The present study was designed to analyze how different odorant molecular features can affect the local field potential (LFP) oscillatory signals in both the aPC and the pPC in anesthetized rats. As reported in the OB, three oscillatory patterns were observed: standard pattern (gamma + beta), gamma-only and beta-only patterns. These patterns occurred with significantly different probabilities in the two PC areas. We observed that odor identity has a strong influence on the probability of occurrence of LFP beta and gamma oscillatory activity in the aPC. Thus, some odor coding mechanisms observed in the OB are retained in the aPC. By contrast, probability of occurrence of different oscillatory patterns is homogeneous in the pPC with beta-only pattern being the most prevalent one for all the different odor families. Overall, our results confirmed the functional heterogeneity of the PC with its anterior part tightly coupled with the OB and mainly encoding odorant features whereas its posterior part activity is not correlated with odorant features but probably more involved in associative and multi-sensory encoding functions.
Collapse
Affiliation(s)
- Emmanuelle Courtiol
- Lyon Neuroscience Research Center, "Olfaction: from coding to memory" Team; CNRS UMR5292 - Inserm U1028 - Université Lyon 1-Université de Lyon, Centre Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus, 95 boulevard Pinel, 69675 Bron Cedex, France
| | - Nathalie Buonviso
- Lyon Neuroscience Research Center, "Olfaction: from coding to memory" Team; CNRS UMR5292 - Inserm U1028 - Université Lyon 1-Université de Lyon, Centre Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus, 95 boulevard Pinel, 69675 Bron Cedex, France
| | - Philippe Litaudon
- Lyon Neuroscience Research Center, "Olfaction: from coding to memory" Team; CNRS UMR5292 - Inserm U1028 - Université Lyon 1-Université de Lyon, Centre Hospitalier Le Vinatier - Bâtiment 462 - Neurocampus, 95 boulevard Pinel, 69675 Bron Cedex, France.
| |
Collapse
|
8
|
Pan P, Zhou Y, Fang F, Zhang G, Ji Y. Visual deprivation modifies oscillatory activity in visual and auditory centers. Anim Cells Syst (Seoul) 2018; 22:149-156. [PMID: 30460092 PMCID: PMC6138323 DOI: 10.1080/19768354.2018.1474801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/13/2018] [Accepted: 04/26/2018] [Indexed: 11/08/2022] Open
Abstract
Loss of vision may enhance the capabilities of auditory perception, but the mechanisms mediating these changes remain elusive. Here, visual deprivation in rats resulted in altered oscillatory activities, which appeared to be the result of a common mechanism underlying neuronal assembly formation in visual and auditory centers. The power of high-frequency β and γ oscillations in V1 (the primary visual cortex) and β oscillations in the LGN (lateral geniculate nucleus) was increased after one week of visual deprivation. Meanwhile, the power of β oscillations in A1 (the primary auditory cortex) and the power of β and γ oscillations in the MGB (medial geniculate body) were also enhanced in the absence of visual input. Furthermore, nerve tracing revealed a bidirectional nerve fiber connection between V1 and A1 cortices, which might be involved in transmitting auditory information to the visual cortex, contributing to enhanced auditory perception after visual deprivation. These results may facilitate the better understanding of multisensory cross-modal plasticity.
Collapse
Affiliation(s)
- Ping Pan
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, People's Republic of China
| | - You Zhou
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, People's Republic of China
| | - Fanghao Fang
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, People's Republic of China
| | - Guannan Zhang
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, People's Republic of China
| | - Yonghua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Fourcaud-Trocmé N, Briffaud V, Thévenet M, Buonviso N, Amat C. In vivo beta and gamma subthreshold oscillations in rat mitral cells: origin and gating by respiratory dynamics. J Neurophysiol 2017; 119:274-289. [PMID: 29021388 DOI: 10.1152/jn.00053.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In mammals, olfactory bulb (OB) dynamics are paced by slow and fast oscillatory rhythms at multiple levels: local field potential, spike discharge, and/or membrane potential oscillations. Interactions between these levels have been well studied for the slow rhythm linked to animal respiration. However, less is known regarding rhythms in the fast beta (10-35 Hz) and gamma (35-100 Hz) frequency ranges, particularly at the membrane potential level. Using a combination of intracellular and extracellular recordings in the OB of freely breathing rats, we show that beta and gamma subthreshold oscillations (STOs) coexist intracellularly and are related to extracellular local field potential (LFP) oscillations in the same frequency range. However, they are differentially affected by changes in cell excitability and by odor stimulation. This leads us to suggest that beta and gamma STOs may rely on distinct mechanisms: gamma STOs would mainly depend on mitral cell intrinsic resonance, while beta STOs could be mainly driven by synaptic activity. In a second study, we find that STO occurrence and timing are constrained by the influence of the slow respiratory rhythm on mitral and tufted cells. First, respiratory-driven excitation seems to favor gamma STOs, while respiratory-driven inhibition favors beta STOs. Second, the respiratory rhythm is needed at the subthreshold level to lock gamma and beta STOs in similar phases as their LFP counterparts and to favor the correlation between STO frequency and spike discharge. Overall, this study helps us to understand how the interaction between slow and fast rhythms at all levels of OB dynamics shapes its functional output. NEW & NOTEWORTHY In the mammalian olfactory bulb of a freely breathing anesthetized rat, we show that both beta and gamma membrane potential fast oscillation ranges exist in the same mitral and tufted (M/T) cell. Importantly, our results suggest they have different origins and that their interaction with the slow subthreshold oscillation (respiratory rhythm) is a key mechanism to organize their dynamics, favoring their functional implication in olfactory bulb information processing.
Collapse
Affiliation(s)
- Nicolas Fourcaud-Trocmé
- INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Equipe CMO, Université Lyon 1, Lyon, France
| | - Virginie Briffaud
- INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Equipe CMO, Université Lyon 1, Lyon, France
| | - Marc Thévenet
- INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Equipe CMO, Université Lyon 1, Lyon, France
| | - Nathalie Buonviso
- INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Equipe CMO, Université Lyon 1, Lyon, France
| | - Corine Amat
- INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Equipe CMO, Université Lyon 1, Lyon, France
| |
Collapse
|
10
|
Zhou Y, Fang FH, Pan P, Liu ZR, Ji YH. Visual deprivation induce cross-modal enhancement of olfactory perception. Biochem Biophys Res Commun 2017; 486:833-838. [DOI: 10.1016/j.bbrc.2017.03.140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 03/26/2017] [Indexed: 10/19/2022]
|
11
|
Chelminski Y, Magnan C, Luquet SH, Everard A, Meunier N, Gurden H, Martin C. Odor-Induced Neuronal Rhythms in the Olfactory Bulb Are Profoundly Modified in ob/ob Obese Mice. Front Physiol 2017; 8:2. [PMID: 28154537 PMCID: PMC5244437 DOI: 10.3389/fphys.2017.00002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/03/2017] [Indexed: 01/03/2023] Open
Abstract
Leptin, the product of the Ob(Lep) gene, is a peptide hormone that plays a major role in maintaining the balance between food intake and energy expenditure. In the brain, leptin receptors are expressed by hypothalamic cells but also in the olfactory bulb, the first central structure coding for odors, suggesting a precise function of this hormone in odor-evoked activities. Although olfaction plays a key role in feeding behavior, the ability of the olfactory bulb to integrate the energy-related signal leptin is still missing. Therefore, we studied the fate of odor-induced activity in the olfactory bulb in the genetic context of leptin deficiency using the obese ob/ob mice. By means of an odor discrimination task with concomitant local field potential recordings, we showed that ob/ob mice perform better than wild-type (WT) mice in the early stage of the task. This behavioral gain of function was associated in parallel with profound changes in neuronal oscillations in the olfactory bulb. The distribution of the peaks in the gamma frequency range was shifted toward higher frequencies in ob/ob mice compared to WT mice before learning. More notably, beta oscillatory activity, which has been shown previously to be correlated with olfactory discrimination learning, was longer and stronger in expert ob/ob mice after learning. Since oscillations in the olfactory bulb emerge from mitral to granule cell interactions, our results suggest that cellular dynamics in the olfactory bulb are deeply modified in ob/ob mice in the context of olfactory learning.
Collapse
Affiliation(s)
- Yan Chelminski
- UMR 8165 Centre National de la Recherche Scientifique, IMNC, Paris Sud University, Paris Diderot University Orsay, France
| | - Christophe Magnan
- UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité University Paris, France
| | - Serge H Luquet
- UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité University Paris, France
| | - Amandine Everard
- UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité University Paris, France
| | - Nicolas Meunier
- INRA, UR1197 NeuroBiologie de l'OlfactionJouy-en-Josas, France; Université de Versailles St-Quentin en YvelinesVersailles, France
| | - Hirac Gurden
- UMR 8165 Centre National de la Recherche Scientifique, IMNC, Paris Sud University, Paris Diderot UniversityOrsay, France; UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité UniversityParis, France
| | - Claire Martin
- UMR 8165 Centre National de la Recherche Scientifique, IMNC, Paris Sud University, Paris Diderot UniversityOrsay, France; UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité UniversityParis, France
| |
Collapse
|
12
|
Competing Mechanisms of Gamma and Beta Oscillations in the Olfactory Bulb Based on Multimodal Inhibition of Mitral Cells Over a Respiratory Cycle. eNeuro 2015; 2:eN-TNC-0018-15. [PMID: 26665163 PMCID: PMC4672204 DOI: 10.1523/eneuro.0018-15.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 11/21/2022] Open
Abstract
Gamma (∼40-90 Hz) and beta (∼15-40 Hz) oscillations and their associated neuronal assemblies are key features of neuronal sensory processing. However, the mechanisms involved in either their interaction and/or the switch between these different regimes in most sensory systems remain misunderstood. Based on in vivo recordings and biophysical modeling of the mammalian olfactory bulb (OB), we propose a general scheme where OB internal dynamics can sustain two distinct dynamic states, each dominated by either a gamma or a beta regime. The occurrence of each regime depends on the excitability level of granule cells, the main OB interneurons. Using this model framework, we demonstrate how the balance between sensory and centrifugal input can control the switch between the two oscillatory dynamic states. In parallel, we experimentally observed that sensory and centrifugal inputs to the rat OB could both be modulated by the respiration of the animal (2-12 Hz) and each one phase shifted with the other. Implementing this phase shift in our model resulted in the appearance of the alternation between gamma and beta rhythms within a single respiratory cycle, as in our experimental results under urethane anesthesia. Our theoretical framework can also account for the oscillatory frequency response, depending on the odor intensity, the odor valence, and the animal sniffing strategy observed under various conditions including animal freely-moving. Importantly, the results of the present model can form a basis to understand how fast rhythms could be controlled by the slower sensory and centrifugal modulations linked to the respiration. Visual Abstract: See Abstract.
Collapse
|
13
|
Control of gamma vs beta competition in olfactory bulb by the balance between sensory input and centrifugal feedback control. BMC Neurosci 2015. [PMCID: PMC4697614 DOI: 10.1186/1471-2202-16-s1-f3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
14
|
Li A, Gire DH, Restrepo D. ϒ spike-field coherence in a population of olfactory bulb neurons differentiates between odors irrespective of associated outcome. J Neurosci 2015; 35:5808-22. [PMID: 25855190 PMCID: PMC4388934 DOI: 10.1523/jneurosci.4003-14.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/30/2015] [Accepted: 02/22/2015] [Indexed: 02/06/2023] Open
Abstract
Studies in different sensory systems indicate that short spike patterns within a spike train that carry items of sensory information can be extracted from the overall train by using field potential oscillations as a reference (Kayser et al., 2012; Panzeri et al., 2014). Here we test the hypothesis that the local field potential (LFP) provides the temporal reference frame needed to differentiate between odors regardless of associated outcome. Experiments were performed in the olfactory system of the mouse (Mus musculus) where the mitral/tufted (M/T) cell spike rate develops differential responses to rewarded and unrewarded odors as the animal learns to associate one of the odors with a reward in a go-no go behavioral task. We found that coherence of spiking in M/T cells with the ϒ LFP (65 to 95 Hz) differentiates between odors regardless of the associated behavioral outcome of odor presentation.
Collapse
Affiliation(s)
- Anan Li
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center and Neuroscience Program, University of Colorado Medical School, Aurora, Colorado 80045, Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Xuzhou, 221004, China
| | - David H Gire
- Department of Psychology, University of Washington, Seattle, Washington 9819, and
| | - Diego Restrepo
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center and Neuroscience Program, University of Colorado Medical School, Aurora, Colorado 80045,
| |
Collapse
|
15
|
Carey RM, Sherwood WE, Shipley MT, Borisyuk A, Wachowiak M. Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb. J Neurophysiol 2015; 113:3112-29. [PMID: 25717156 DOI: 10.1152/jn.00394.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 02/20/2015] [Indexed: 11/22/2022] Open
Abstract
Olfaction in mammals is a dynamic process driven by the inhalation of air through the nasal cavity. Inhalation determines the temporal structure of sensory neuron responses and shapes the neural dynamics underlying central olfactory processing. Inhalation-linked bursts of activity among olfactory bulb (OB) output neurons [mitral/tufted cells (MCs)] are temporally transformed relative to those of sensory neurons. We investigated how OB circuits shape inhalation-driven dynamics in MCs using a modeling approach that was highly constrained by experimental results. First, we constructed models of canonical OB circuits that included mono- and disynaptic feedforward excitation, recurrent inhibition and feedforward inhibition of the MC. We then used experimental data to drive inputs to the models and to tune parameters; inputs were derived from sensory neuron responses during natural odorant sampling (sniffing) in awake rats, and model output was compared with recordings of MC responses to odorants sampled with the same sniff waveforms. This approach allowed us to identify OB circuit features underlying the temporal transformation of sensory inputs into inhalation-linked patterns of MC spike output. We found that realistic input-output transformations can be achieved independently by multiple circuits, including feedforward inhibition with slow onset and decay kinetics and parallel feedforward MC excitation mediated by external tufted cells. We also found that recurrent and feedforward inhibition had differential impacts on MC firing rates and on inhalation-linked response dynamics. These results highlight the importance of investigating neural circuits in a naturalistic context and provide a framework for further explorations of signal processing by OB networks.
Collapse
Affiliation(s)
- Ryan M Carey
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | | | - Michael T Shipley
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Alla Borisyuk
- Department of Mathematics, University of Utah, Salt Lake City, Utah
| | - Matt Wachowiak
- Department of Neurobiology and Anatomy and Brain Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
16
|
Li A, Gire DH, Bozza T, Restrepo D. Precise detection of direct glomerular input duration by the olfactory bulb. J Neurosci 2014; 34:16058-64. [PMID: 25429146 PMCID: PMC4244471 DOI: 10.1523/jneurosci.3382-14.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/07/2014] [Accepted: 10/15/2014] [Indexed: 12/17/2022] Open
Abstract
Sensory neuron input to the olfactory bulb (OB) was activated precisely for different durations with blue light in mice expressing channelrhodopsin-2 in olfactory sensory neurons. Behaviorally the mice discriminated differences of 10 ms in duration of direct glomerular activation. In addition, a subset of mitral/tufted cells in the OB of awake mice responded tonically therefore conveying information on stimulus duration. Our study provides evidence that duration of the input to glomeruli not synchronized to sniffing is detected. This potent cue may be used to obtain information on puffs in odor plumes.
Collapse
Affiliation(s)
- Anan Li
- Department of Cell and Developmental Biology, Neuroscience Program and Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences/State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan, China 430071
| | - David H Gire
- Department of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, and
| | - Thomas Bozza
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Diego Restrepo
- Department of Cell and Developmental Biology, Neuroscience Program and Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045,
| |
Collapse
|
17
|
Wang H, Sun Y, Li Y, Chen Y. Influence of autapse on mode-locking structure of a Hodgkin–Huxley neuron under sinusoidal stimulus. J Theor Biol 2014; 358:25-30. [DOI: 10.1016/j.jtbi.2014.05.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/17/2014] [Accepted: 05/19/2014] [Indexed: 12/01/2022]
|
18
|
Brai E, Marathe S, Zentilin L, Giacca M, Nimpf J, Kretz R, Scotti A, Alberi L. Notch1 activity in the olfactory bulb is odour-dependent and contributes to olfactory behaviour. Eur J Neurosci 2014; 40:3436-49. [PMID: 25234246 DOI: 10.1111/ejn.12719] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 11/28/2022]
Abstract
Notch signalling plays an important role in synaptic plasticity, learning and memory functions in both Drosophila and rodents. In this paper, we report that this feature is not restricted to hippocampal networks but also involves the olfactory bulb (OB). Odour discrimination and olfactory learning in rodents are essential for survival. Notch1 expression is enriched in mitral cells of the mouse OB. These principal neurons are responsive to specific input odorants and relay the signal to the olfactory cortex. Olfactory stimulation activates a subset of mitral cells, which show an increase in Notch activity. In Notch1cKOKln mice, the loss of Notch1 in mitral cells affects the magnitude of the neuronal response to olfactory stimuli. In addition, Notch1cKOKln mice display reduced olfactory aversion to propionic acid as compared to wildtype controls. This indicates, for the first time, that Notch1 is involved in olfactory processing and may contribute to olfactory behaviour.
Collapse
Affiliation(s)
- Emanuele Brai
- Unit of Anatomy, Department of Medicine, University of Fribourg, Route de Gockel, 1, Fribourg, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Martin C, Ravel N. Beta and gamma oscillatory activities associated with olfactory memory tasks: different rhythms for different functional networks? Front Behav Neurosci 2014; 8:218. [PMID: 25002840 PMCID: PMC4066841 DOI: 10.3389/fnbeh.2014.00218] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022] Open
Abstract
Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform, and entorhinal cortices) and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to “bind” distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15–40 Hz) and gamma (60–100 Hz). While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory.
Collapse
Affiliation(s)
- Claire Martin
- Laboratory Imagerie et Modélisation en Neurobiologie et Cancérologie, CNRS UMR 8165, Université Paris Sud, Université Paris Diderot Orsay, France
| | - Nadine Ravel
- Team "Olfaction: Du codage à la mémoire," Centre de Recherche en Neurosciences de Lyon CNRS UMR 5292, INSERM U1028, Université Lyon 1 Lyon, France
| |
Collapse
|
20
|
Abstract
Cholinergic inputs from the basal forebrain regulate multiple olfactory bulb (OB) functions, including odor discrimination, perceptual learning, and short-term memory. Previous studies have shown that nicotinic cholinergic receptor activation sharpens mitral cell chemoreceptive fields, likely via intraglomerular circuitry. Muscarinic cholinergic activation is less well understood, though muscarinic receptors are implicated in olfactory learning and in the regulation of synchronized oscillatory dynamics in hippocampus and cortex. To understand the mechanisms underlying cholinergic neuromodulation in OB, we developed a biophysical model of the OB neuronal network including both glomerular layer and external plexiform layer (EPL) computations and incorporating both nicotinic and muscarinic neuromodulatory effects. Our simulations show how nicotinic activation within glomerular circuits sharpens mitral cell chemoreceptive fields, even in the absence of EPL circuitry, but does not facilitate intrinsic oscillations or spike synchronization. In contrast, muscarinic receptor activation increases mitral cell spike synchronization and field oscillatory power by potentiating granule cell excitability and lateral inhibitory interactions within the EPL, but it has little effect on mitral cell firing rates and hence does not sharpen olfactory representations under a rate metric. These results are consistent with the theory that EPL interactions regulate the timing, rather than the existence, of mitral cell action potentials and perform their computations with respect to a spike timing-based metric. This general model suggests that the roles of nicotinic and muscarinic receptors in olfactory bulb are both distinct and complementary to one another, together regulating the effects of ascending cholinergic inputs on olfactory bulb transformations.
Collapse
|
21
|
Lepousez G, Valley MT, Lledo PM. The impact of adult neurogenesis on olfactory bulb circuits and computations. Annu Rev Physiol 2012. [PMID: 23190074 DOI: 10.1146/annurev-physiol-030212-183731] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modern neuroscience has demonstrated how the adult brain has the ability to profoundly remodel its neurons in response to changes in external stimuli or internal states. However, adult brain plasticity, although possible throughout life, remains restricted mostly to subcellular levels rather than affecting the entire cell. New neurons are continuously generated in only a few areas of the adult brain-the olfactory bulb and the dentate gyrus-where they integrate into already functioning circuitry. In these regions, adult neurogenesis adds another dimension of plasticity that either complements or is redundant to the classical molecular and cellular mechanisms of plasticity. This review extracts clues regarding the contribution of adult-born neurons to the different circuits of the olfactory bulb and specifically how new neurons participate in existing computations and enable new computational functions.
Collapse
Affiliation(s)
- Gabriel Lepousez
- Laboratory of Perception and Memory, Institut Pasteur, F-75015 Paris, France.
| | | | | |
Collapse
|
22
|
Synchronization Across Sensory Cortical Areas by Electrical Microstimulation is Sufficient for Behavioral Discrimination. Cereb Cortex 2012; 23:2976-86. [DOI: 10.1093/cercor/bhs288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Devore S, Manella LC, Linster C. Blocking muscarinic receptors in the olfactory bulb impairs performance on an olfactory short-term memory task. Front Behav Neurosci 2012; 6:59. [PMID: 22973212 PMCID: PMC3434342 DOI: 10.3389/fnbeh.2012.00059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/23/2012] [Indexed: 11/30/2022] Open
Abstract
Cholinergic inputs to cortical processing networks have long been associated with attentional and top-down processing. Experimental and theoretical studies suggest that cholinergic inputs to the main olfactory bulb (OB) can modulate both neural and behavioral odor discrimination. Previous experiments from our laboratory and others demonstrate that blockade of nicotinic receptors directly impairs olfactory discrimination, whereas blockade of muscarinic receptors only measurably impairs olfactory perception when task demands are made more challenging, such as when very low-concentration odors are used or rats are required to maintain sensory memory over long durations. To further investigate the role of muscarinic signaling in the OB, we developed an olfactory delayed match-to-sample task using a digging-based behavioral paradigm. We find that rats are able to maintain robust short-term odor memory for 10–100 s. To investigate the role of muscarinic signaling in task performance, we bilaterally infused scopolamine into the OB. We find that high dosages of scopolamine (38 mM) impair performance on the task across all delays tested, including the baseline condition with no delay, whereas lower dosages (7.6 mM and 22.8 mM) had no measureable effects. These results indicate that general execution of the match-to-sample task, even with no delay, is at least partially dependent on muscarinic signaling in the OB.
Collapse
Affiliation(s)
- Sasha Devore
- Computational Physiology Laboratory, Department of Neurobiology and Behavior, Cornell University Ithaca, NY, USA
| | | | | |
Collapse
|
24
|
Li A, Zhang L, Liu M, Gong L, Liu Q, Xu F. Effects of different anesthetics on oscillations in the rat olfactory bulb. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2012; 51:458-63. [PMID: 23043811 PMCID: PMC3400694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/19/2011] [Accepted: 02/13/2012] [Indexed: 06/01/2023]
Abstract
Different types of oscillations in the olfactory bulb (OB), including θ (1 to 4 and 5 to 12 Hz), β (13 to 30 Hz), and γ oscillations (31 to 64 and 65 to 90 Hz), are important in olfactory information processing and olfactory-related functions and have been investigated extensively in recent decades. The awake and anesthetized states, 2 different brain conditions, are used widely in electrophysiologic studies of OB. Chloral hydrate, pentobarbital, and urethane are commonly used anesthetics in these studies. However, the influence of these anesthetics on the oscillations has not been reported. In the present study, we recorded the local field potential (LFP) in the OB of rats that were freely moving or anesthetized with these agents. Chloral hydrate and pentobarbital had similar effects: they slightly affected the power of θ oscillations; significantly increased the power of β oscillations; significantly decreased the power of γ oscillations, and showed similar recovery of γ oscillations. Urethane had very different effects: it significantly increased oscillations at 1 to 4 Hz but decreased those at 5 to 12 Hz, decreased β and γ oscillations, and showed no overt recovery in γ oscillations. These results provide experimental evidence of different effects of various anesthetics on OB oscillations and suggest that the choice of anesthetic should consider the experimental application.
Collapse
Affiliation(s)
- Anan Li
- Wuhan Magnetic Resonance Center, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, China.
| | | | | | | | | | | |
Collapse
|
25
|
Respiration drives network activity and modulates synaptic and circuit processing of lateral inhibition in the olfactory bulb. J Neurosci 2012; 32:85-98. [PMID: 22219272 DOI: 10.1523/jneurosci.4278-11.2012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Respiration produces rhythmic activity in the entire olfactory system, driving neurons in the olfactory epithelium, olfactory bulb (OB), and cortex. The rhythmic nature of this activity is believed to be a critical component of sensory processing. OB projection neurons, mitral and tufted cells exhibit both spiking and subthreshold membrane potential oscillations rhythmically coupled to respiration. However, the network and synaptic mechanisms that produce respiration-coupled activity, and the effects of respiration on lateral inhibition, a major component of sensory processing in OB circuits, are not known. Is respiration-coupled activity in mitral and tufted cells produced by sensory synaptic inputs from nasal airflow alone, cortico-bulbar feedback, or intrinsic membrane properties of the projection neurons? Does respiration facilitate or modulate the activity of inhibitory lateral circuits in the OB? Here, in vivo intracellular recordings from identified mitral and tufted cells in anesthetized rats demonstrate that nasal airflow provides excitatory synaptic inputs to both cell types and drives respiration-coupled spiking. Lateral inhibition, inhibitory postsynaptic potentials evoked by intrabulbar microstimulation, was modulated by respiration. In individual mitral and tufted cells, inhibition was larger at specific respiratory phases. However, lateral inhibition was not uniformly larger during a particular respiratory phase in either cell type. Removing nasal airflow abolished respiration-coupled spiking in both cell types and nearly eliminated spiking in mitral, but not tufted, cells. In the absence of nasal airflow, lateral inhibition was weaker in mitral cells and less modulated in tufted cells. Thus, respiration drives distinct network activities that functionally modulate sensory processing in the OB.
Collapse
|
26
|
Cleland TA, Linster C. On-Center/Inhibitory-Surround Decorrelation via Intraglomerular Inhibition in the Olfactory Bulb Glomerular Layer. Front Integr Neurosci 2012; 6:5. [PMID: 22363271 PMCID: PMC3277047 DOI: 10.3389/fnint.2012.00005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 01/24/2012] [Indexed: 12/23/2022] Open
Abstract
Classical lateral inhibition, which relies on spatially ordered neural representations of physical stimuli, cannot decorrelate sensory representations in which stimulus properties are represented non-topographically. Recent theoretical and experimental studies indicate that such a non-topographical representation of olfactory stimuli predominates in olfactory bulb, thereby refuting the classical view that olfactory decorrelation is mediated by lateral inhibition comparable to that in the retina. Questions persist, however, regarding how well non-topographical decorrelation models can replicate the inhibitory “surround” that has been observed experimentally (with respect to odor feature-similarity) in olfactory bulb principal neurons, analogous to the spatial inhibitory surround generated by lateral inhibition in retina. Using two contrasting scenarios of stimulus representation – one “retinotopically” organized and one in which receptive fields are unpredictably distributed as they are in olfactory bulb – we here show that intracolumnar inhibitory interactions between local interneurons and principal neurons successfully decorrelate similar sensory representations irrespective of the scenario of representation. In contrast, lateral inhibitory interactions between these same neurons in neighboring columns are only able to effectively decorrelate topographically organized representations. While anatomical substrates superficially consistent with both types of inhibition exist in olfactory bulb, of the two only local intraglomerular inhibition suffices to mediate olfactory decorrelation.
Collapse
Affiliation(s)
- Thomas A Cleland
- Computational Physiology Laboratory, Cornell University Ithaca, NY, USA
| | | |
Collapse
|
27
|
Encoding odorant identity by spiking packets of rate-invariant neurons in awake mice. PLoS One 2012; 7:e30155. [PMID: 22272291 PMCID: PMC3260228 DOI: 10.1371/journal.pone.0030155] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/11/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND How do neural networks encode sensory information? Following sensory stimulation, neural coding is commonly assumed to be based on neurons changing their firing rate. In contrast, both theoretical works and experiments in several sensory systems showed that neurons could encode information as coordinated cell assemblies by adjusting their spike timing and without changing their firing rate. Nevertheless, in the olfactory system, there is little experimental evidence supporting such model. METHODOLOGY/PRINCIPAL FINDINGS To study these issues, we implanted tetrodes in the olfactory bulb of awake mice to record the odorant-evoked activity of mitral/tufted (M/T) cells. We showed that following odorant presentation, most M/T neurons do not significantly change their firing rate over a breathing cycle but rather respond to odorant stimulation by redistributing their firing activity within respiratory cycles. In addition, we showed that sensory information can be encoded by cell assemblies composed of such neurons, thus supporting the idea that coordinated populations of globally rate-invariant neurons could be efficiently used to convey information about the odorant identity. We showed that different coding schemes can convey high amount of odorant information for specific read-out time window. Finally we showed that the optimal readout time window corresponds to the duration of gamma oscillations cycles. CONCLUSION We propose that odorant can be encoded by population of cells that exhibit fine temporal tuning of spiking activity while displaying weak or no firing rate change. These cell assemblies may transfer sensory information in spiking packets sequence using the gamma oscillations as a clock. This would allow the system to reach a tradeoff between rapid and accurate odorant discrimination.
Collapse
|
28
|
Cortical dynamics during naturalistic sensory stimulations: experiments and models. ACTA ACUST UNITED AC 2011; 105:2-15. [PMID: 21907800 DOI: 10.1016/j.jphysparis.2011.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/08/2011] [Accepted: 07/13/2011] [Indexed: 01/08/2023]
Abstract
We report the results of our experimental and theoretical investigations of the neural response dynamics in primary visual cortex (V1) during naturalistic visual stimulation. We recorded Local Field Potentials (LFPs) and spiking activity from V1 of anaesthetized macaques during binocular presentation of Hollywood color movies. We analyzed these recordings with information theoretic methods, and found that visual information was encoded mainly by two bands of LFP responses: the network fluctuations measured by the phase and power of low-frequency (less than 12 Hz) LFPs; and fast gamma-range (50-100 Hz) oscillations. Both the power and phase of low frequency LFPs carried information largely complementary to that carried by spikes, whereas gamma range oscillations carried information largely redundant to that of spikes. To interpret these results within a quantitative theoretical framework, we then simulated a sparsely connected recurrent network of excitatory and inhibitory neurons receiving slowly varying naturalistic inputs, and we determined how the LFPs generated by the network encoded information about the inputs. We found that this simulated recurrent network reproduced well the experimentally observed dependency of LFP information upon frequency. This network encoded the overall strength of the input into the power of gamma-range oscillations generated by inhibitory-excitatory neural interactions, and encoded slow variations in the input by entraining the network LFP at the corresponding frequency. This dynamical behavior accounted quantitatively for the independent information carried by high and low frequency LFPs, and for the experimentally observed cross-frequency coupling between phase of slow LFPs and the power of gamma LFPs. We also present new results showing that the model's dynamics also accounted for the extra visual information that the low-frequency LFP phase of spike firing carries beyond that carried by spike rates. Overall, our results suggest biological mechanisms by which cortex can multiplex information about naturalistic sensory environments.
Collapse
|
29
|
Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 2010; 90:1195-268. [PMID: 20664082 DOI: 10.1152/physrev.00035.2008] [Citation(s) in RCA: 1201] [Impact Index Per Article: 80.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Synchronous rhythms represent a core mechanism for sculpting temporal coordination of neural activity in the brain-wide network. This review focuses on oscillations in the cerebral cortex that occur during cognition, in alert behaving conditions. Over the last two decades, experimental and modeling work has made great strides in elucidating the detailed cellular and circuit basis of these rhythms, particularly gamma and theta rhythms. The underlying physiological mechanisms are diverse (ranging from resonance and pacemaker properties of single cells to multiple scenarios for population synchronization and wave propagation), but also exhibit unifying principles. A major conceptual advance was the realization that synaptic inhibition plays a fundamental role in rhythmogenesis, either in an interneuronal network or in a reciprocal excitatory-inhibitory loop. Computational functions of synchronous oscillations in cognition are still a matter of debate among systems neuroscientists, in part because the notion of regular oscillation seems to contradict the common observation that spiking discharges of individual neurons in the cortex are highly stochastic and far from being clocklike. However, recent findings have led to a framework that goes beyond the conventional theory of coupled oscillators and reconciles the apparent dichotomy between irregular single neuron activity and field potential oscillations. From this perspective, a plethora of studies will be reviewed on the involvement of long-distance neuronal coherence in cognitive functions such as multisensory integration, working memory, and selective attention. Finally, implications of abnormal neural synchronization are discussed as they relate to mental disorders like schizophrenia and autism.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Department of Neurobiology and Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|
30
|
Kay LM, Beshel J. A beta oscillation network in the rat olfactory system during a 2-alternative choice odor discrimination task. J Neurophysiol 2010; 104:829-39. [PMID: 20538778 DOI: 10.1152/jn.00166.2010] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously showed that in a two-alternative choice (2AC) task, olfactory bulb (OB) gamma oscillations (approximately 70 Hz in rats) were enhanced during discrimination of structurally similar odorants (fine discrimination) versus discrimination of dissimilar odorants (coarse discrimination). In other studies (mostly employing go/no-go tasks) in multiple labs, beta oscillations (15-35 Hz) dominate the local field potential (LFP) signal in olfactory areas during odor sampling. Here we analyzed the beta frequency band power and pairwise coherence in the 2AC task. We show that in a task dominated by gamma in the OB, beta oscillations are also present in three interconnected olfactory areas (OB and anterior and posterior pyriform cortex). Only the beta band showed consistently elevated coherence during odor sniffing across all odor pairs, classes (alcohols and ketones), and discrimination types (fine and coarse), with stronger effects in first than in final criterion sessions (>70% correct). In the first sessions for fine discrimination odor pairs, beta power for incorrect trials was the same as that for correct trials for the other odor in the pair. This pattern was not repeated in coarse discrimination, in which beta power was elevated for correct relative to incorrect trials. This difference between fine and coarse odor discriminations may relate to different behavioral strategies for learning to differentiate similar versus dissimilar odors. Phase analysis showed that the OB led both pyriform areas in the beta frequency band during odor sniffing. We conclude that the beta band may be the means by which information is transmitted from the OB to higher order areas, even though task specifics modify dominance of one frequency band over another within the OB.
Collapse
Affiliation(s)
- Leslie M Kay
- Department of Psychology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
31
|
Oscillations, phase-of-firing coding, and spike timing-dependent plasticity: an efficient learning scheme. J Neurosci 2009; 29:13484-93. [PMID: 19864561 DOI: 10.1523/jneurosci.2207-09.2009] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent experiments have established that information can be encoded in the spike times of neurons relative to the phase of a background oscillation in the local field potential-a phenomenon referred to as "phase-of-firing coding" (PoFC). These firing phase preferences could result from combining an oscillation in the input current with a stimulus-dependent static component that would produce the variations in preferred phase, but it remains unclear whether these phases are an epiphenomenon or really affect neuronal interactions-only then could they have a functional role. Here we show that PoFC has a major impact on downstream learning and decoding with the now well established spike timing-dependent plasticity (STDP). To be precise, we demonstrate with simulations how a single neuron equipped with STDP robustly detects a pattern of input currents automatically encoded in the phases of a subset of its afferents, and repeating at random intervals. Remarkably, learning is possible even when only a small fraction of the afferents ( approximately 10%) exhibits PoFC. The ability of STDP to detect repeating patterns had been noted before in continuous activity, but it turns out that oscillations greatly facilitate learning. A benchmark with more conventional rate-based codes demonstrates the superiority of oscillations and PoFC for both STDP-based learning and the speed of decoding: the oscillation partially formats the input spike times, so that they mainly depend on the current input currents, and can be efficiently learned by STDP and then recognized in just one oscillation cycle. This suggests a major functional role for oscillatory brain activity that has been widely reported experimentally.
Collapse
|