1
|
Fink CG, Sanda P, Bayer L, Abeysinghe E, Bazhenov M, Krishnan GP. Python/NEURON code for simulating biophysically realistic thalamocortical dynamics during sleep. SOFTWARE IMPACTS 2024; 21:100667. [PMID: 39345726 PMCID: PMC11434128 DOI: 10.1016/j.simpa.2024.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Understanding the function of sleep and its associated neural rhythms is an important goal in neuroscience. While many theoretical models of neural dynamics during sleep exist, few include the effects of neuromodulators on sleep oscillations and describe transitions between sleep and wake states or different sleep stages. Here, we started with a C++-based thalamocortical network model that describes characteristic thalamic and cortical oscillations specific to sleep. This model, which includes a biophysically realistic description of intrinsic and synaptic channels, allows for testing the effects of different neuromodulators, intrinsic cell properties, and synaptic connectivity on neural dynamics during sleep. We present a complete reimplementation of this previously-published sleep model in the standardized NEURON/Python framework, making it more accessible to the wider scientific community.
Collapse
Affiliation(s)
| | - Pavel Sanda
- Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
2
|
Esfahani MJ, Farboud S, Ngo HVV, Schneider J, Weber FD, Talamini LM, Dresler M. Closed-loop auditory stimulation of sleep slow oscillations: Basic principles and best practices. Neurosci Biobehav Rev 2023; 153:105379. [PMID: 37660843 DOI: 10.1016/j.neubiorev.2023.105379] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Sleep is essential for our physical and mental well-being. During sleep, despite the paucity of overt behavior, our brain remains active and exhibits a wide range of coupled brain oscillations. In particular slow oscillations are characteristic for sleep, however whether they are directly involved in the functions of sleep, or are mere epiphenomena, is not yet fully understood. To disentangle the causality of these relationships, experiments utilizing techniques to detect and manipulate sleep oscillations in real-time are essential. In this review, we first overview the theoretical principles of closed-loop auditory stimulation (CLAS) as a method to study the role of slow oscillations in the functions of sleep. We then describe technical guidelines and best practices to perform CLAS and analyze results from such experiments. We further provide an overview of how CLAS has been used to investigate the causal role of slow oscillations in various sleep functions. We close by discussing important caveats, open questions, and potential topics for future research.
Collapse
Affiliation(s)
| | - Soha Farboud
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, the Netherlands
| | - Hong-Viet V Ngo
- Department of Psychology, University of Essex, United Kingdom; Department of Psychology, University of Lübeck, Germany; Center for Brain, Behaviour and Metabolism, University of Lübeck, Germany
| | - Jules Schneider
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Frederik D Weber
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, the Netherlands; Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Lucia M Talamini
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, the Netherlands.
| |
Collapse
|
3
|
Yazdanbakhsh A, Barbas H, Zikopoulos B. Sleep spindles in primates: Modeling the effects of distinct laminar thalamocortical connectivity in core, matrix, and reticular thalamic circuits. Netw Neurosci 2023; 7:743-768. [PMID: 37397882 PMCID: PMC10312265 DOI: 10.1162/netn_a_00311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 03/01/2023] [Indexed: 10/16/2023] Open
Abstract
Sleep spindles are associated with the beginning of deep sleep and memory consolidation and are disrupted in schizophrenia and autism. In primates, distinct core and matrix thalamocortical (TC) circuits regulate sleep spindle activity through communications that are filtered by the inhibitory thalamic reticular nucleus (TRN); however, little is known about typical TC network interactions and the mechanisms that are disrupted in brain disorders. We developed a primate-specific, circuit-based TC computational model with distinct core and matrix loops that can simulate sleep spindles. We implemented novel multilevel cortical and thalamic mixing, and included local thalamic inhibitory interneurons, and direct layer 5 projections of variable density to TRN and thalamus to investigate the functional consequences of different ratios of core and matrix node connectivity contribution to spindle dynamics. Our simulations showed that spindle power in primates can be modulated based on the level of cortical feedback, thalamic inhibition, and engagement of model core versus matrix, with the latter having a greater role in spindle dynamics. The study of the distinct spatial and temporal dynamics of core-, matrix-, and mix-generated sleep spindles establishes a framework to study disruption of TC circuit balance underlying deficits in sleep and attentional gating seen in autism and schizophrenia.
Collapse
Affiliation(s)
- Arash Yazdanbakhsh
- Computational Neuroscience and Vision Lab, Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston, MA, USA
| | - Helen Barbas
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston, MA, USA
- Neural Systems Laboratory, Program in Human Physiology, Department of Health Sciences, College of Health and Rehabilitation Sciences (Sargent College), Boston University, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Basilis Zikopoulos
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston University, Boston, MA, USA
- Human Systems Neuroscience Laboratory, Program in Human Physiology, Department of Health Sciences, College of Health and Rehabilitation Sciences (Sargent College), Boston University, Boston, MA, USA
| |
Collapse
|
4
|
Rosen BQ, Halgren E. An estimation of the absolute number of axons indicates that human cortical areas are sparsely connected. PLoS Biol 2022; 20:e3001575. [PMID: 35286306 PMCID: PMC8947121 DOI: 10.1371/journal.pbio.3001575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/24/2022] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
The tracts between cortical areas are conceived as playing a central role in cortical information processing, but their actual numbers have never been determined in humans. Here, we estimate the absolute number of axons linking cortical areas from a whole-cortex diffusion MRI (dMRI) connectome, calibrated using the histologically measured callosal fiber density. Median connectivity is estimated as approximately 6,200 axons between cortical areas within hemisphere and approximately 1,300 axons interhemispherically, with axons connecting functionally related areas surprisingly sparse. For example, we estimate that <5% of the axons in the trunk of the arcuate and superior longitudinal fasciculi connect Wernicke's and Broca's areas. These results suggest that detailed information is transmitted between cortical areas either via linkage of the dense local connections or via rare, extraordinarily privileged long-range connections.
Collapse
Affiliation(s)
- Burke Q Rosen
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Eric Halgren
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Departments of Neurosciences & Radiology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
5
|
Krugliakova E, Skorucak J, Sousouri G, Leach S, Snipes S, Ferster ML, Da Poian G, Karlen W, Huber R. Boosting Recovery During Sleep by Means of Auditory Stimulation. Front Neurosci 2022; 16:755958. [PMID: 35185455 PMCID: PMC8847378 DOI: 10.3389/fnins.2022.755958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Sufficient recovery during sleep is the basis of physical and psychological well-being. Understanding the physiological mechanisms underlying this restorative function is essential for developing novel approaches to promote recovery during sleep. Phase-targeted auditory stimulation (PTAS) is an increasingly popular technique for boosting the key electrophysiological marker of recovery during sleep, slow-wave activity (SWA, 1-4 Hz EEG power). However, it is unknown whether PTAS induces physiological sleep. In this study, we demonstrate that, when applied during deep sleep, PTAS accelerates SWA decline across the night which is associated with an overnight improvement in attentional performance. Thus, we provide evidence that PTAS enhances physiological sleep and demonstrate under which conditions this occurs most efficiently. These findings will be important for future translation into clinical populations suffering from insufficient recovery during sleep.
Collapse
Affiliation(s)
- Elena Krugliakova
- Child Development Centre and Children’s Research Centre, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jelena Skorucak
- Child Development Centre and Children’s Research Centre, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Georgia Sousouri
- Child Development Centre and Children’s Research Centre, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Sven Leach
- Child Development Centre and Children’s Research Centre, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sophia Snipes
- Child Development Centre and Children’s Research Centre, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Maria Laura Ferster
- Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Giulia Da Poian
- Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Walter Karlen
- Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Reto Huber
- Child Development Centre and Children’s Research Centre, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Suzuki Y, Kawana F, Satoh M, Abe T. The abrupt shift to slower frequencies after arousal from sleep in healthy young adults. J Clin Sleep Med 2021; 17:2373-2381. [PMID: 34216203 DOI: 10.5664/jcsm.9434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES Post-arousal hypersynchrony (PAH) is an atypical arousal pattern in children's electroencephalography. PAH is an abrupt shift to slower frequencies in arousal-related responses, appearing as slow-wave clusters. In contrast, the prevalence of PAH in healthy young adults is still unknown. Here, we examined the prevalence and characteristics of PAH in healthy young participants. METHODS Thirty healthy young participants underwent one night of polysomnography (thirteen females, 22.8 ± 2.0 years [mean ± standard deviation]). We examined the prevalence of PAH as a function of sleep stage, sleep cycle, and time course (the first or the second half). The correlation between PAH and sleep variables was examined. The %N3 was compared for each sleep cycle and time course. RESULTS Twenty-eight out of 30 participants exhibited PAH (4.6 ± 4.8 times per night). PAH increased significantly during the first sleep cycle and the first half-sleep period. It was observed only in non-rapid eye movement (NREM) and not in REM sleep. The number of PAHs correlated with the number of arousals and arousal indices. The %N3 increased in the first half-sleep and the first sleep cycle. CONCLUSIONS PAH was relatively common in healthy young participants. Since PAH occurred in a state with a high prevalence of %N3, the first sleep cycle, or the first half-sleep, we suggest that PAH may be affected by the sleep homeostasis process. Since PAH occurred only in NREM sleep and correlated with arousal increment, it may have the function of suppressing NREM sleep's cortical arousal.
Collapse
Affiliation(s)
- Yoko Suzuki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Fusae Kawana
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan.,Cardiovascular Respiratory Sleep Medicine, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Makoto Satoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Takashi Abe
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Sanda P, Malerba P, Jiang X, Krishnan GP, Gonzalez-Martinez J, Halgren E, Bazhenov M. Bidirectional Interaction of Hippocampal Ripples and Cortical Slow Waves Leads to Coordinated Spiking Activity During NREM Sleep. Cereb Cortex 2021; 31:324-340. [PMID: 32995860 PMCID: PMC8179633 DOI: 10.1093/cercor/bhaa228] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/19/2020] [Accepted: 07/16/2020] [Indexed: 01/17/2023] Open
Abstract
The dialogue between cortex and hippocampus is known to be crucial for sleep-dependent memory consolidation. During slow wave sleep, memory replay depends on slow oscillation (SO) and spindles in the (neo)cortex and sharp wave-ripples (SWRs) in the hippocampus. The mechanisms underlying interaction of these rhythms are poorly understood. We examined the interaction between cortical SO and hippocampal SWRs in a model of the hippocampo-cortico-thalamic network and compared the results with human intracranial recordings during sleep. We observed that ripple occurrence peaked following the onset of an Up-state of SO and that cortical input to hippocampus was crucial to maintain this relationship. A small fraction of ripples occurred during the Down-state and controlled initiation of the next Up-state. We observed that the effect of ripple depends on its precise timing, which supports the idea that ripples occurring at different phases of SO might serve different functions, particularly in the context of encoding the new and reactivation of the old memories during memory consolidation. The study revealed complex bidirectional interaction of SWRs and SO in which early hippocampal ripples influence transitions to Up-state, while cortical Up-states control occurrence of the later ripples, which in turn influence transition to Down-state.
Collapse
Affiliation(s)
- Pavel Sanda
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Computer Science of the Czech Academy of Sciences, Prague 18207, Czech Republic
| | - Paola Malerba
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Battelle Center for Mathematical Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics and Biophysics Graduate Program, Ohio State University, Columbus, OH 43215, USA
| | - Xi Jiang
- Neurosciences Graduate Program, University of California, San Diego, La Jolla 92093, USA
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K4G9, Canada
| | - Giri P Krishnan
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Eric Halgren
- Neurosciences Graduate Program, University of California, San Diego, La Jolla 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maxim Bazhenov
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla 92093, USA
| |
Collapse
|
8
|
Lechat B, Hansen K, Catcheside P, Zajamsek B. Beyond K-complex binary scoring during sleep: probabilistic classification using deep learning. Sleep 2020; 43:zsaa077. [PMID: 32301485 PMCID: PMC7751135 DOI: 10.1093/sleep/zsaa077] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/18/2020] [Indexed: 12/21/2022] Open
Abstract
STUDY OBJECTIVES K-complexes (KCs) are a recognized electroencephalography marker of sensory processing and a defining feature of sleep stage 2. KC frequency and morphology may also be reflective of sleep quality, aging, and a range of sleep and sensory processing deficits. However, manual scoring of K-complexes is impractical, time-consuming, and thus costly and currently not well-standardized. Although automated KC detection methods have been developed, performance and uptake remain limited. METHODS The proposed algorithm is based on a deep neural network and Gaussian process, which gives the input waveform a probability of being a KC ranging from 0% to 100%. The algorithm was trained on half a million synthetic KCs derived from manually scored sleep stage 2 KCs from the Montreal Archive of Sleep Study containing 19 healthy young participants. Algorithm performance was subsequently assessed on 700 independent recordings from the Cleveland Family Study using sleep stages 2 and 3 data. RESULTS The developed algorithm showed an F1 score (a measure of binary classification accuracy) of 0.78 and thus outperforms currently available KC scoring algorithms with F1 = 0.2-0.6. The probabilistic approach also captured expected variability in KC shape and amplitude within individuals and across age groups. CONCLUSIONS An automated probabilistic KC classification is well suited and effective for systematic KC detection for a more in-depth exploration of potential relationships between KCs during sleep and clinical outcomes such as health impacts and daytime symptomatology.
Collapse
Affiliation(s)
- Bastien Lechat
- Adelaide Institute for Sleep Health, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Kristy Hansen
- Adelaide Institute for Sleep Health, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Peter Catcheside
- Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Branko Zajamsek
- Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
9
|
Deibel SH, Rota R, Steenland HW, Ali K, McNaughton BL, Tatsuno M, McDonald RJ. Assessment of Sleep, K-Complexes, and Sleep Spindles in a T21 Light-Dark Cycle. Front Neurosci 2020; 14:551843. [PMID: 33122986 PMCID: PMC7573124 DOI: 10.3389/fnins.2020.551843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Circadian rhythm misalignment has a deleterious impact on the brain and the body. In rats, exposure to a 21-hour day length impairs hippocampal dependent memory. Sleep, and particularly K-complexes and sleep spindles in the cortex, have been hypothesized to be involved in memory consolidation. Altered K-complexes, sleep spindles, or interaction between the cortex and hippocampus could be a mechanism for the memory consolidation failure but has yet to be assessed in any circadian misalignment paradigm. In the current study, continuous local field potential recordings from five rats were used to assess the changes in aspects of behavior and sleep, including wheel running activity, quiet wakefulness, motionless sleep, slow wave sleep, REM sleep, K-complexes and sleep spindles, in rats exposed to six consecutive days of a T21 light-dark cycle (L9:D12). Except for a temporal redistribution of sleep and activity during the T21, there were no changes in period, or total amount for any aspect of sleep or activity. These data suggest that the memory impairment elicited from 6 days of T21 exposure is likely not due to changes in sleep architecture. It remains possible that hippocampal plasticity is affected by experiencing light when subjective circadian phase is calling for dark. However, if there is a reduction in hippocampal plasticity, changes in sleep appear not to be driving this effect.
Collapse
Affiliation(s)
- Scott H Deibel
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Ryan Rota
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Hendrik W Steenland
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,NeuroTek Innovative Technology Inc., Toronto, ON, Canada
| | - Karim Ali
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Bruce L McNaughton
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Masami Tatsuno
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J McDonald
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
10
|
Re CJ, Batterman AI, Gerstner JR, Buono RJ, Ferraro TN. The Molecular Genetic Interaction Between Circadian Rhythms and Susceptibility to Seizures and Epilepsy. Front Neurol 2020; 11:520. [PMID: 32714261 PMCID: PMC7344275 DOI: 10.3389/fneur.2020.00520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Seizure patterns observed in patients with epilepsy suggest that circadian rhythms and sleep/wake mechanisms play some role in the disease. This review addresses key topics in the relationship between circadian rhythms and seizures in epilepsy. We present basic information on circadian biology, but focus on research studying the influence of both the time of day and the sleep/wake cycle as independent but related factors on the expression of seizures in epilepsy. We review studies investigating how seizures and epilepsy disrupt expression of core clock genes, and how disruption of clock mechanisms impacts seizures and the development of epilepsy. We focus on the overlap between mechanisms of circadian-associated changes in SCN neuronal excitability and mechanisms of epileptogenesis as a means of identifying key pathways and molecules that could represent new targets or strategies for epilepsy therapy. Finally, we review the concept of chronotherapy and provide a perspective regarding its application to patients with epilepsy based on their individual characteristics (i.e., being a “morning person” or a “night owl”). We conclude that better understanding of the relationship between circadian rhythms, neuronal excitability, and seizures will allow both the identification of new therapeutic targets for treating epilepsy as well as more effective treatment regimens using currently available pharmacological and non-pharmacological strategies.
Collapse
Affiliation(s)
- Christopher J Re
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Alexander I Batterman
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Jason R Gerstner
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Russell J Buono
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
11
|
Rosen BQ, Krishnan GP, Sanda P, Komarov M, Sejnowski T, Rulkov N, Ulbert I, Eross L, Madsen J, Devinsky O, Doyle W, Fabo D, Cash S, Bazhenov M, Halgren E. Simulating human sleep spindle MEG and EEG from ion channel and circuit level dynamics. J Neurosci Methods 2019; 316:46-57. [PMID: 30300700 PMCID: PMC6380919 DOI: 10.1016/j.jneumeth.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although they form a unitary phenomenon, the relationship between extracranial M/EEG and transmembrane ion flows is understood only as a general principle rather than as a well-articulated and quantified causal chain. METHOD We present an integrated multiscale model, consisting of a neural simulation of thalamus and cortex during stage N2 sleep and a biophysical model projecting cortical current densities to M/EEG fields. Sleep spindles were generated through the interactions of local and distant network connections and intrinsic currents within thalamocortical circuits. 32,652 cortical neurons were mapped onto the cortical surface reconstructed from subjects' MRI, interconnected based on geodesic distances, and scaled-up to current dipole densities based on laminar recordings in humans. MRIs were used to generate a quasi-static electromagnetic model enabling simulated cortical activity to be projected to the M/EEG sensors. RESULTS The simulated M/EEG spindles were similar in amplitude and topography to empirical examples in the same subjects. Simulated spindles with more core-dominant activity were more MEG weighted. COMPARISON WITH EXISTING METHODS Previous models lacked either spindle-generating thalamic neural dynamics or whole head biophysical modeling; the framework presented here is the first to simultaneously capture these disparate scales. CONCLUSIONS This multiscale model provides a platform for the principled quantitative integration of existing information relevant to the generation of sleep spindles, and allows the implications of future findings to be explored. It provides a proof of principle for a methodological framework allowing large-scale integrative brain oscillations to be understood in terms of their underlying channels and synapses.
Collapse
Affiliation(s)
- B Q Rosen
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, United States.
| | - G P Krishnan
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States.
| | - P Sanda
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States; Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic.
| | - M Komarov
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States.
| | - T Sejnowski
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, United States; The Salk Institute, La Jolla, CA, United States.
| | - N Rulkov
- BioCiruits Institute, University of California, San Diego, La Jolla, CA, United States.
| | - I Ulbert
- Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Science, Budapest, Hungary; Faculty of Information Technology and Bionics, Peter Pazmany Catholic University, Budapest, Hungary.
| | - L Eross
- Faculty of Information Technology and Bionics, Peter Pazmany Catholic University, Budapest, Hungary; Department of Functional Neurosurgery, National Institute of Clinical Neurosciences, Budapest, Hungary.
| | - J Madsen
- Departments of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.
| | - O Devinsky
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, United States.
| | - W Doyle
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, United States.
| | - D Fabo
- Epilepsy Centrum, National Institute of Clinical Neurosciences, Budapest, Hungary.
| | - S Cash
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, United States; Department of Medicine, University of California, San Diego, La Jolla, CA, United States; Departments of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| | - M Bazhenov
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, United States; Department of Medicine, University of California, San Diego, La Jolla, CA, United States.
| | - E Halgren
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, United States; Department of Radiology, University of California, San Diego, La Jolla, CA, United States; Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
12
|
Lewis LD, Piantoni G, Peterfreund RA, Eskandar EN, Harrell PG, Akeju O, Aglio LS, Cash SS, Brown EN, Mukamel EA, Purdon PL. A transient cortical state with sleep-like sensory responses precedes emergence from general anesthesia in humans. eLife 2018; 7:33250. [PMID: 30095069 PMCID: PMC6086660 DOI: 10.7554/elife.33250] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
During awake consciousness, the brain intrinsically maintains a dynamical state in which it can coordinate complex responses to sensory input. How the brain reaches this state spontaneously is not known. General anesthesia provides a unique opportunity to examine how the human brain recovers its functional capabilities after profound unconsciousness. We used intracranial electrocorticography and scalp EEG in humans to track neural dynamics during emergence from propofol general anesthesia. We identify a distinct transient brain state that occurs immediately prior to recovery of behavioral responsiveness. This state is characterized by large, spatially distributed, slow sensory-evoked potentials that resemble the K-complexes that are hallmarks of stage two sleep. However, the ongoing spontaneous dynamics in this transitional state differ from sleep. These results identify an asymmetry in the neurophysiology of induction and emergence, as the emerging brain can enter a state with a sleep-like sensory blockade before regaining responsivity to arousing stimuli. General anesthesia is essential to modern medicine. It allows physicians to temporarily keep people in an unconscious state. When infusions of the anesthetic drug stop, patients gradually recover consciousness and awaken, a process called emergence. Previous studies using recordings of electrical activity in the brain have documented spontaneous changes during anesthesia. In addition, the way the brain responds to sounds or other stimulation is altered. How the brain switches between the anesthetized and awake states is not well understood. Studying the changes that happen during emergence may help scientists learn how the brain awakens after anesthesia. A key question is whether the changes that occur during emergence are the reverse of what happens when someone is anesthetized, or whether it is a completely different process. Knowing this could help clinicians monitoring patients under anesthesia, and help scientists understand more about how the brain transitions into the awake state. Now, Lewis et al. show that people go through a sleep-like state right before awakening from anesthesia-induced unconsciousness. In the experiments, recordings were made of the electrical activity in the brains of people emerging from anesthesia. One set of recordings was taken in people with epilepsy, who had electrodes implanted in their brains as part of their treatment. Similar recordings of brain electrical activity during emergence were also made on healthy volunteers using electrodes placed on their scalps. In both groups of people, Lewis et al. documented large changes in electrical activity in the brain’s response to sound in the minutes before emergence. These patterns of electrical activity during emergence were similar to those seen in patients during a normal stage of sleep (stage 2). Patients who were about to wake up from general anesthesia had suppressed brain activity in response to sounds, such as their name. Moreover, this sleep-like state happened only during emergence, indicating it is a distinct process from going under anesthesia. The experiments also suggest that the brain may use a common process to wake up after sleep or anesthesia. More studies may help scientists understand this process and how to better care for patients who need anesthesia.
Collapse
Affiliation(s)
- Laura D Lewis
- Society of Fellows, Harvard University, Cambridge, United States.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, United States
| | - Giovanni Piantoni
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| | - Robert A Peterfreund
- Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| | - Emad N Eskandar
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| | - Priscilla Grace Harrell
- Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| | - Oluwaseun Akeju
- Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| | - Linda S Aglio
- Harvard Medical School, Boston, United States.,Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, United States
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| | - Emery N Brown
- Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States.,Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Unites States.,Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Eran A Mukamel
- Department of Cognitive Science, University of California, San Diego, San Diego, United States
| | - Patrick L Purdon
- Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| |
Collapse
|
13
|
Affiliation(s)
- Claude Touzet
- Faculté Saint Charles, Aix Marseille Univ, CNRS, LNIA UMR 7260, Lab. de Neurosciences Intégratives et Adaptatives, FR3C, Marseille, France
| |
Collapse
|
14
|
Mak-McCully RA, Rolland M, Sargsyan A, Gonzalez C, Magnin M, Chauvel P, Rey M, Bastuji H, Halgren E. Coordination of cortical and thalamic activity during non-REM sleep in humans. Nat Commun 2017; 8:15499. [PMID: 28541306 PMCID: PMC5458505 DOI: 10.1038/ncomms15499] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 03/29/2017] [Indexed: 11/21/2022] Open
Abstract
Every night, the human brain produces thousands of downstates and spindles during non-REM sleep. Previous studies indicate that spindles originate thalamically and downstates cortically, loosely grouping spindle occurrence. However, the mechanisms whereby the thalamus and cortex interact in generating these sleep phenomena remain poorly understood. Using bipolar depth recordings, we report here a sequence wherein: (1) convergent cortical downstates lead thalamic downstates; (2) thalamic downstates hyperpolarize thalamic cells, thus triggering spindles; and (3) thalamic spindles are focally projected back to cortex, arriving during the down-to-upstate transition when the cortex replays memories. Thalamic intrinsic currents, therefore, may not be continuously available during non-REM sleep, permitting the cortex to control thalamic spindling by inducing downstates. This archetypical cortico-thalamo-cortical sequence could provide the global physiological context for memory consolidation during non-REM sleep. During non-REM sleep, the thalamus produces spindles and the cortex produces downstates, but the interaction between these two areas in these sleep phenomena is not understood. Here, authors describe the dynamic loop between the thalamus and cortex that organizes the production of spindles and downstates in the human brain.
Collapse
Affiliation(s)
- Rachel A Mak-McCully
- Department of Neurosciences, University of California, San Diego, California 92093, USA
| | - Matthieu Rolland
- Department of Radiology, University of California, San Diego, California 92093, USA
| | - Anna Sargsyan
- Department of Radiology, University of California, San Diego, California 92093, USA
| | - Chris Gonzalez
- Department of Neurosciences, University of California, San Diego, California 92093, USA
| | - Michel Magnin
- Central Integration of Pain, Lyon Neuroscience Research Center, INSERM, U1028; CNRS, UMR5292; Université Claude Bernard, Lyon, Bron, France
| | - Patrick Chauvel
- Aix-Marseille Université, 13385 Marseille, France.,INSERM, Institut de Neurosciences des Systèmes UMR 1106, 13005 Marseille, France.,APHM (Assistance Publique-Hôpitaux de Marseille), Timone Hospital, 13005 Marseille, France
| | - Marc Rey
- Aix-Marseille Université, 13385 Marseille, France.,INSERM, Institut de Neurosciences des Systèmes UMR 1106, 13005 Marseille, France.,APHM (Assistance Publique-Hôpitaux de Marseille), Timone Hospital, 13005 Marseille, France
| | - Hélène Bastuji
- Central Integration of Pain, Lyon Neuroscience Research Center, INSERM, U1028; CNRS, UMR5292; Université Claude Bernard, Lyon, Bron, France.,Unité d'Hypnologie, Service de Neurologie Fonctionnelle et d'Épileptologie, Hôpital Neurologique, Hospices Civils de Lyon, Bron 69002, France
| | - Eric Halgren
- Department of Neurosciences, University of California, San Diego, California 92093, USA.,Department of Radiology, University of California, San Diego, California 92093, USA.,Department of Psychiatry, University of California, San Diego, California 92093, USA
| |
Collapse
|
15
|
Sharon O, Nir Y. Attenuated Fast Steady-State Visual Evoked Potentials During Human Sleep. Cereb Cortex 2017; 28:1297-1311. [DOI: 10.1093/cercor/bhx043] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 12/30/2022] Open
Affiliation(s)
- Omer Sharon
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Functional Neurophysiology and Sleep Research Lab, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
16
|
Distribution, Amplitude, Incidence, Co-Occurrence, and Propagation of Human K-Complexes in Focal Transcortical Recordings. eNeuro 2015; 2:eN-NWR-0028-15. [PMID: 26465003 PMCID: PMC4596022 DOI: 10.1523/eneuro.0028-15.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/09/2015] [Accepted: 07/24/2015] [Indexed: 11/21/2022] Open
Abstract
K-complexes (KCs) are thought to play a key role in sleep homeostasis and memory consolidation; however, their generation and propagation remain unclear. The commonly held view from scalp EEG findings is that KCs are primarily generated in medial frontal cortex and propagate parietally, whereas an electrocorticography (ECOG) study suggested dorsolateral prefrontal generators and an absence of KCs in many areas. In order to resolve these differing views, we used unambiguously focal bipolar depth electrode recordings in patients with intractable epilepsy to investigate spatiotemporal relationships of human KCs. KCs were marked manually on each channel, and local generation was confirmed with decreased gamma power. In most cases (76%), KCs occurred in a single location, and rarely (1%) in all locations. However, if automatically detected KC-like phenomena were included, only 15% occurred in a single location, and 27% occurred in all recorded locations. Locally generated KCs were found in all sampled areas, including cingulate, ventral temporal, and occipital cortices. Surprisingly, KCs were smallest and occurred least frequently in anterior prefrontal channels. When KCs occur on two channels, their peak order is consistent in only 13% of cases, usually from prefrontal to lateral temporal. Overall, the anterior-posterior separation of electrode pairs explained only 2% of the variance in their latencies. KCs in stages 2 and 3 had similar characteristics. These results open a novel view where KCs overall are universal cortical phenomena, but each KC may variably involve small or large cortical regions and spread in variable directions, allowing flexible and heterogeneous contributions to sleep homeostasis and memory consolidation.
Collapse
|
17
|
Willoughby AR, de Zambotti M, Baker FC, Colrain IM. Partial K-Complex Recovery Following Short-Term Abstinence in Individuals with Alcohol Use Disorder. Alcohol Clin Exp Res 2015; 39:1417-24. [PMID: 26175209 DOI: 10.1111/acer.12769] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/05/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND The K-complex (KC) is a brain potential characteristic of nonrapid eye movement (NREM) sleep resulting from the synchronous activity of a large population of neurons and hypothesized to reflect brain integrity. KC amplitude is lower in individuals with alcohol use disorder (AUD) compared with age-matched controls, but its recovery with short-term abstinence has not been studied. Therefore, we investigated whether the KC shows significant recovery over the first 4 months of abstinence in individuals with AUD. METHODS A total of 16 recently abstinent AUD individuals (46.6 ± 9.3 years) and 13 gender and age-matched healthy controls (41.6 ± 8.3 years) were studied on 3 occasions: the Initial session was within 1 month of the AUD individuals' last drink, then 1 and 3 months later. Overnight electroencephalogram was recorded while participants were presented with tones during stage 2 NREM sleep to elicit KCs. RESULTS At the Initial session, AUD participants showed significantly lower KC amplitude and incidence compared with controls. In the AUD individuals, KC amplitude increased significantly from the Initial to the 1-month session. KC incidence showed a marginally significant increase. Neither KC amplitude nor incidence changed from the 1-month to the 3-month session. No changes in KC amplitude or incidence across sessions were observed in the control group. CONCLUSIONS Our results demonstrate partial KC recovery during the first 2 months of abstinence. This recovery is consistent with the time course of structural brain recovery in abstinent AUD individuals demonstrated by recent neuroimaging results.
Collapse
Affiliation(s)
| | | | - Fiona C Baker
- Center for Health Sciences , SRI International, Menlo Park, California.,Brain Function Research Group, University of the Witwatersrand, Johannesburg, South Africa
| | - Ian M Colrain
- Melbourne School of Psychological Sciences University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|