1
|
den Hollander LS, Zweemer AJM, Béquignon OJM, Hammerl DM, Bleijs BTM, Veenhuizen M, Lantsheer WJF, Chau B, van Westen GJP, IJzerman AP, Heitman LH. CC chemokine receptor 2 is allosterically modulated by sodium ions and amiloride derivatives through a distinct sodium ion binding site. Biochem Pharmacol 2024; 229:116464. [PMID: 39111604 DOI: 10.1016/j.bcp.2024.116464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024]
Abstract
CC chemokine receptor 2 and CCL2 are highly involved in cancer growth and metastasis, and immune escape. Raised sodium ion concentrations in solid tumours have also been correlated to metastasis and immune modulation. Sodium ions can modulate class A G protein-coupled receptors through the sodium ion binding site characterized by a highly conserved aspartic acid residue (D2.50), also present in CCR2. Hence, we further explored this binding site in CCR2 by radioligand binding studies and mutagenesis. Modulation of three distinctly binding radioligands by sodium ions and amiloride derivates was investigated. Sodium ions were observed to be relatively weak modulators of antagonist binding, but substantially increased 125I-CCL2 dissociation from CCR2. 6-Substituted Hexamethylene Amiloride (HMA) modulated all tested radioligands. Induced-fit docking of HMA in the presumed sodium ion binding site of CCR2 confirmed its binding site. Finally, investigation of (cancer-associated) mutations in the sodium ion binding site showed a markedly decreased expression compared to wild type. Only two mutants, G123A3.35 and G127K3.39, were able to be bound by [3H]INCB3344 and [3H]CCR2-RA-[R]. Thus, mutagenesis showed that the sodium ion binding site residues, which are distinct from other class A GPCRs and related to chemokine receptor evolution, are crucial for receptor integrity. Moreover, the tested mutations appeared to have no effect on modulation observed by HMA or a minor effect on sodium chloride modulation on the tested radioligands. All in all, these results invite further exploration of the CCR2 sodium ion binding site in (cancer) biology, and potentially as a third druggable binding site.
Collapse
Affiliation(s)
- Lisa S den Hollander
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands
| | - Annelien J M Zweemer
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands
| | - Olivier J M Béquignon
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands
| | - Dora M Hammerl
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands
| | - Bente T M Bleijs
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands
| | - Margo Veenhuizen
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands
| | - Wernard J F Lantsheer
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands
| | - Bobby Chau
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands
| | - Gerard J P van Westen
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands
| | - Adriaan P IJzerman
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands
| | - Laura H Heitman
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden, the Netherlands; Oncode Institute, the Netherlands.
| |
Collapse
|
2
|
Tsutsumi N, Kildedal DF, Hansen OK, Kong Q, Schols D, Van Loy T, Rosenkilde MM. Insight into structural properties of viral G protein-coupled receptors and their role in the viral infection: IUPHAR Review 41. Br J Pharmacol 2024. [PMID: 39443818 DOI: 10.1111/bph.17379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/14/2024] [Indexed: 10/25/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are pivotal in cellular signalling and drug targeting. Herpesviruses encode GPCRs (vGPCRs) to manipulate cellular signalling, thereby regulating various aspects of the virus life cycle, such as viral spreading and immune evasion. vGPCRs mimic host chemokine receptors, often with broader signalling and high constitutive activity. This review focuses on the recent advancements in structural knowledge about vGPCRs, with an emphasis on molecular mechanisms of action and ligand binding. The structures of US27 and US28 from human cytomegalovirus (HCMV) are compared to their closest human homologue, CX3CR1. Contrasting US27 and US28, the homotrimeric UL78 structure (HCMV) reveals more distance to chemokine receptors. Open reading frame 74 (ORF74; Kaposi's sarcoma-associated herpesvirus) is compared to CXCRs, whereas BILF1 (Epstein-Barr virus) is discussed as a putative lipid receptor. Furthermore, the roles of vGPCRs in latency and lytic replication, reactivation, dissemination and immune evasion are reviewed, together with their potential as drug targets for virus infections and virus-related diseases.
Collapse
Affiliation(s)
- Naotaka Tsutsumi
- TMDU Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dagmar Fæster Kildedal
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Synklino ApS, Copenhagen, Denmark
| | - Olivia Kramer Hansen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Qianqian Kong
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Tom Van Loy
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
3
|
Inan T, Flinko R, Lewis GK, MacKerell AD, Kurkcuoglu O. Identifying and Assessing Putative Allosteric Sites and Modulators for CXCR4 Predicted through Network Modeling and Site Identification by Ligand Competitive Saturation. J Phys Chem B 2024; 128:5157-5174. [PMID: 38647430 PMCID: PMC11139592 DOI: 10.1021/acs.jpcb.4c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
The chemokine receptor CXCR4 is a critical target for the treatment of several cancer types and HIV-1 infections. While orthosteric and allosteric modulators have been developed targeting its extracellular or transmembrane regions, the intramembrane region of CXCR4 may also include allosteric binding sites suitable for the development of allosteric drugs. To investigate this, we apply the Gaussian Network Model (GNM) to the monomeric and dimeric forms of CXCR4 to identify residues essential for its local and global motions located in the hinge regions of the protein. Residue interaction network (RIN) analysis suggests hub residues that participate in allosteric communication throughout the receptor. Mutual residues from the network models reside in regions with a high capacity to alter receptor dynamics upon ligand binding. We then investigate the druggability of these potential allosteric regions using the site identification by ligand competitive saturation (SILCS) approach, revealing two putative allosteric sites on the monomer and three on the homodimer. Two screening campaigns with Glide and SILCS-Monte Carlo docking using FDA-approved drugs suggest 20 putative hit compounds including antifungal drugs, anticancer agents, HIV protease inhibitors, and antimalarial drugs. In vitro assays considering mAB 12G5 and CXCL12 demonstrate both positive and negative allosteric activities of these compounds, supporting our computational approach. However, in vivo functional assays based on the recruitment of β-arrestin to CXCR4 do not show significant agonism and antagonism at a single compound concentration. The present computational pipeline brings a new perspective to computer-aided drug design by combining conformational dynamics based on network analysis and cosolvent analysis based on the SILCS technology to identify putative allosteric binding sites using CXCR4 as a showcase.
Collapse
Affiliation(s)
- Tugce Inan
- Department
of Chemical Engineering, Istanbul Technical
University, Istanbul 34469, Turkey
| | - Robin Flinko
- Institute
of Human Virology, University of Maryland
School of Medicine, Baltimore, Maryland 21201, United States
| | - George K. Lewis
- Institute
of Human Virology, University of Maryland
School of Medicine, Baltimore, Maryland 21201, United States
| | - Alexander D. MacKerell
- University
of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical
Sciences, School of Pharmacy, University
of Maryland, Baltimore, Maryland 21201, United States
| | - Ozge Kurkcuoglu
- Department
of Chemical Engineering, Istanbul Technical
University, Istanbul 34469, Turkey
| |
Collapse
|
4
|
Duchez AC, Heestermans M, Arthaud CA, Eyraud MA, Portier M, Prier A, Hamzeh-Cognasse H, Cognasse F. In platelet single donor apheresis, platelet factor 4 levels correlated with donor's age and decreased during storage. Sci Rep 2024; 14:6231. [PMID: 38485973 PMCID: PMC10940288 DOI: 10.1038/s41598-024-56826-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
The human population is ageing worldwide. The World Health Organization estimated that the world's population of people aged 60 years and older will increase to at least 30%, coinciding with a growing frequency of cognitive and cardiovascular disease. Recently, in preclinical studies platelet Factor 4 (PF4) was presented as a pro-cognitive factor. This molecule is released by platelets in the circulation and could be present in blood products destined for transfusion. We wondered if PF4 levels are correlated to the age of the blood donor or to the storage time of platelet concentrates (PCs) intended for transfusion? We observed higher levels of PF4 in PCs from elderly donors compared to younger donors, while PC storage time did not determine PF4 levels expression.
Collapse
Affiliation(s)
- Anne Claire Duchez
- INSERM, U 1059 SAINBIOSE, Université Jean Monnet, Mines Saint-Étienne, 42023, Saint-Etienne, France
- Establissement Français du Sang Auvergne-Rhône-Alpes and INSERM U1059, 25 Boulevard Pasteur, 42100, Saint-Etienne, France
| | - Marco Heestermans
- INSERM, U 1059 SAINBIOSE, Université Jean Monnet, Mines Saint-Étienne, 42023, Saint-Etienne, France
- Establissement Français du Sang Auvergne-Rhône-Alpes and INSERM U1059, 25 Boulevard Pasteur, 42100, Saint-Etienne, France
| | - Charles-Antoine Arthaud
- INSERM, U 1059 SAINBIOSE, Université Jean Monnet, Mines Saint-Étienne, 42023, Saint-Etienne, France
- Establissement Français du Sang Auvergne-Rhône-Alpes and INSERM U1059, 25 Boulevard Pasteur, 42100, Saint-Etienne, France
| | - Marie-Ange Eyraud
- INSERM, U 1059 SAINBIOSE, Université Jean Monnet, Mines Saint-Étienne, 42023, Saint-Etienne, France
- Establissement Français du Sang Auvergne-Rhône-Alpes and INSERM U1059, 25 Boulevard Pasteur, 42100, Saint-Etienne, France
| | - Mailys Portier
- INSERM, U 1059 SAINBIOSE, Université Jean Monnet, Mines Saint-Étienne, 42023, Saint-Etienne, France
- Establissement Français du Sang Auvergne-Rhône-Alpes and INSERM U1059, 25 Boulevard Pasteur, 42100, Saint-Etienne, France
| | - Amélie Prier
- INSERM, U 1059 SAINBIOSE, Université Jean Monnet, Mines Saint-Étienne, 42023, Saint-Etienne, France
- Establissement Français du Sang Auvergne-Rhône-Alpes and INSERM U1059, 25 Boulevard Pasteur, 42100, Saint-Etienne, France
| | - Hind Hamzeh-Cognasse
- INSERM, U 1059 SAINBIOSE, Université Jean Monnet, Mines Saint-Étienne, 42023, Saint-Etienne, France
| | - Fabrice Cognasse
- INSERM, U 1059 SAINBIOSE, Université Jean Monnet, Mines Saint-Étienne, 42023, Saint-Etienne, France.
- Establissement Français du Sang Auvergne-Rhône-Alpes and INSERM U1059, 25 Boulevard Pasteur, 42100, Saint-Etienne, France.
| |
Collapse
|
5
|
Ben Boubaker R, Tiss A, Henrion D, Guissouma H, Chabbert M. Evolutionary information helps understand distinctive features of the angiotensin II receptors AT1 and AT2 in amniota. PLoS Comput Biol 2022; 18:e1009732. [PMID: 35202400 PMCID: PMC8870451 DOI: 10.1371/journal.pcbi.1009732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022] Open
Abstract
In vertebrates, the octopeptide angiotensin II (AngII) is an important in vivo regulator of the cardiovascular system. It acts mainly through two G protein-coupled receptors, AT1 and AT2. To better understand distinctive features of these receptors, we carried out a phylogenetic analysis that revealed a mirror evolution of AT1 and AT2, each one split into two clades, separating fish from terrestrial receptors. It also revealed that hallmark mutations occurred at, or near, the sodium binding site in both AT1 and AT2. Electrostatics computations and molecular dynamics simulations support maintained sodium binding to human AT1 with slow ingress from the extracellular side and an electrostatic component of the binding free energy around -3kT, to be compared to around -2kT for human AT2 and the δ opioid receptor. Comparison of the sodium binding modes in wild type and mutated AT1 and AT2 from humans and eels indicates that the allosteric control by sodium in both AT1 and AT2 evolved during the transition from fish to amniota. The unusual S7.46N mutation in AT1 is mirrored by a L3.36M mutation in AT2. In the presence of sodium, the N7.46 pattern in amniota AT1 stabilizes the inward orientation of N3.35 in the apo receptor, which should contribute to efficient N3.35 driven biased signaling. The M3.36 pattern in amniota AT2 favours the outward orientation of N3.35 and the receptor promiscuity. Both mutations have physiological consequences for the regulation of the renin-angiotensin system. The analysis of protein sequences from different species can reveal interesting trends in the structural and functional evolution of a protein family. Here, we analyze the evolution of two G protein-coupled receptors, AT1 and AT2, which bind the angiotensin II peptide and are important regulators of the cardiovascular system. We show that these receptors underwent a mirror evolution. Specific mutations at, or near, the sodium binding pocket occurred in both AT1 and AT2 during the transition to terrestrial life. We carried out electrostatics computations and molecular dynamics simulations to decipher the details of the sodium binding mode in eel and human receptors, as prototypes of fish and amniota receptors. Our results indicate that sodium binding is kinetically slow but thermodynamically stable. Comparison of the sodium binding modes in eel and human receptors reveals that an unusual mutation in the sodium binding pocket of AT1 is critical for biased signaling of amniota AT1 whereas a mutation in AT2 promotes promiscuity of amniota AT2. In turn, these data indicate that a few mutations at a strategic position (here the sodium binding pocket) are an efficient way to gain functional evolution.
Collapse
Affiliation(s)
- Rym Ben Boubaker
- CNRS UMR 6015 – INSERM U1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
| | - Asma Tiss
- CNRS UMR 6015 – INSERM U1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
- INSAT de Tunis, Université de Carthage, Carthage, Tunisie
| | - Daniel Henrion
- CNRS UMR 6015 – INSERM U1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
| | | | - Marie Chabbert
- CNRS UMR 6015 – INSERM U1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
- * E-mail:
| |
Collapse
|
6
|
van Aalst E, Koneri J, Wylie BJ. In Silico Identification of Cholesterol Binding Motifs in the Chemokine Receptor CCR3. MEMBRANES 2021; 11:570. [PMID: 34436333 PMCID: PMC8401243 DOI: 10.3390/membranes11080570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/14/2023]
Abstract
CC motif chemokine receptor 3 (CCR3) is a Class A G protein-coupled receptor (GPCR) mainly responsible for the cellular trafficking of eosinophils. As such, it plays key roles in inflammatory conditions, such as asthma and arthritis, and the metastasis of many deadly forms of cancer. However, little is known about how CCR3 functionally interacts with its bilayer environment. Here, we investigate cholesterol binding sites in silico through Coarse-Grained Molecular Dynamics (MD) and Pylipid analysis using an extensively validated homology model based on the crystal structure of CCR5. These simulations identified several cholesterol binding sites containing Cholesterol Recognition/Interaction Amino Acid Consensus motif (CRAC) and its inversion CARC motifs in CCR3. One such site, a CARC site in TM1, in conjunction with aliphatic residues in TM7, emerged as a candidate for future investigation based on the cholesterol residency time within the binding pocket. This site forms the core of a cholesterol binding site previously observed in computational studies of CCR2 and CCR5. Most importantly, these cholesterol binding sites are conserved in other chemokine receptors and may provide clues to cholesterol regulation mechanisms in this subfamily of Class A GPCRs.
Collapse
Affiliation(s)
| | | | - Benjamin J. Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79423, USA; (E.v.A.); (J.K.)
| |
Collapse
|
7
|
Taddese B, Garnier A, Deniaud M, Henrion D, Chabbert M. Bios2cor: an R package integrating dynamic and evolutionary correlations to identify functionally important residues in proteins. Bioinformatics 2021; 37:2483-2484. [PMID: 33471079 DOI: 10.1093/bioinformatics/btab002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 11/14/2022] Open
Abstract
SUMMARY Both dynamic correlations in protein sidechain motions during molecular dynamics (MD) simulations and evolutionary correlations in multiple sequence alignments (MSA) of homologous proteins may reveal functionally important residues. We developed the R package Bios2cor that provides a unique framework to investigate and, possibly, integrate both analyses. Bios2cor starts with an MSA or a MD trajectory and computes correlation/covariation scores between positions in the MSA or between sidechain dihedral angles or rotamers in the MD trajectory. In addition, Bios2cor provides a variety of tools for the analysis, the visualization and the interpretation of the data. AVAILABILITY The R package Bios2cor is available from the Comprehensive R Archive Network, at http://cran.r-project.org/ web/packages/Bios2cor/index.html.
Collapse
Affiliation(s)
- Bruck Taddese
- CNRS UMR 6015-INSERM 1083, MITOVASC Laboratory, FRANCE, 3 rue Roger Amsler 49100 ANGERS
| | - Antoine Garnier
- CNRS UMR 6015-INSERM 1083, MITOVASC Laboratory, FRANCE, 3 rue Roger Amsler 49100 ANGERS
| | - Madeline Deniaud
- CNRS UMR 6015-INSERM 1083, MITOVASC Laboratory, FRANCE, 3 rue Roger Amsler 49100 ANGERS
| | - Daniel Henrion
- CNRS UMR 6015-INSERM 1083, MITOVASC Laboratory, FRANCE, 3 rue Roger Amsler 49100 ANGERS
| | - Marie Chabbert
- CNRS UMR 6015-INSERM 1083, MITOVASC Laboratory, FRANCE, 3 rue Roger Amsler 49100 ANGERS
| |
Collapse
|
8
|
Garg S, Sagar A, Singaraju GS, Dani R, Bari NK, Naganathan AN, Rakshit S. Weakening of interaction networks with aging in tip-link protein induces hearing loss. Biochem J 2021; 478:121-134. [PMID: 33270084 PMCID: PMC7813477 DOI: 10.1042/bcj20200799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Age-related hearing loss (ARHL) is a common condition in humans marking the gradual decrease in hearing with age. Perturbations in the tip-link protein cadherin-23 that absorbs the mechanical tension from sound and maintains the integrity of hearing is associated with ARHL. Here, in search of molecular origins for ARHL, we dissect the conformational behavior of cadherin-23 along with the mutant S47P that progresses the hearing loss drastically. Using an array of experimental and computational approaches, we highlight a lower thermodynamic stability, significant weakening in the hydrogen-bond network and inter-residue correlations among β-strands, due to the S47P mutation. The loss in correlated motions translates to not only a remarkable two orders of magnitude slower folding in the mutant but also to a proportionately complex unfolding mechanism. We thus propose that loss in correlated motions within cadherin-23 with aging may trigger ARHL, a molecular feature that likely holds true for other disease-mutations in β-strand-rich proteins.
Collapse
Affiliation(s)
- Surbhi Garg
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Amin Sagar
- Centre de Biochimie Structurale INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Gayathri S. Singaraju
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Rahul Dani
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Naimat K. Bari
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab 160062, India
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
- Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research Mohali, Punjab, India
| |
Collapse
|
9
|
Tiss A, Ben Boubaker R, Henrion D, Guissouma H, Chabbert M. Homology Modeling of Class A G-Protein-Coupled Receptors in the Age of the Structure Boom. Methods Mol Biol 2021; 2315:73-97. [PMID: 34302671 DOI: 10.1007/978-1-0716-1468-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With 700 members, G protein-coupled receptors (GPCRs) of the rhodopsin family (class A) form the largest membrane receptor family in humans and are the target of about 30% of presently available pharmaceutical drugs. The recent boom in GPCR structures led to the structural resolution of 57 unique receptors in different states (39 receptors in inactive state only, 2 receptors in active state only and 16 receptors in different activation states). In spite of these tremendous advances, most computational studies on GPCRs, including molecular dynamics simulations, virtual screening and drug design, rely on GPCR models obtained by homology modeling. In this protocol, we detail the different steps of homology modeling with the MODELLER software, from template selection to model evaluation. The present structure boom provides closely related templates for most receptors. If, in these templates, some of the loops are not resolved, in most cases, the numerous available structures enable to find loop templates with similar length for equivalent loops. However, simultaneously, the large number of putative templates leads to model ambiguities that may require additional information based on multiple sequence alignments or molecular dynamics simulations to be resolved. Using the modeling of the human bradykinin receptor B1 as a case study, we show how several templates are managed by MODELLER, and how the choice of template(s) and of template fragments can improve the quality of the models. We also give examples of how additional information and tools help the user to resolve ambiguities in GPCR modeling.
Collapse
Affiliation(s)
- Asma Tiss
- UMR CNRS 6015 - INSERM 1083, Laboratoire MITOVASC, Université d'Angers, Angers, France.,Laboratoire de Génétique, Immunologie et Pathologies Humaines, Département de Biologie, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Rym Ben Boubaker
- UMR CNRS 6015 - INSERM 1083, Laboratoire MITOVASC, Université d'Angers, Angers, France
| | - Daniel Henrion
- UMR CNRS 6015 - INSERM 1083, Laboratoire MITOVASC, Université d'Angers, Angers, France
| | - Hajer Guissouma
- Laboratoire de Génétique, Immunologie et Pathologies Humaines, Département de Biologie, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Marie Chabbert
- UMR CNRS 6015 - INSERM 1083, Laboratoire MITOVASC, Université d'Angers, Angers, France.
| |
Collapse
|
10
|
Deciphering collaborative sidechain motions in proteins during molecular dynamics simulations. Sci Rep 2020; 10:15901. [PMID: 32985550 PMCID: PMC7522237 DOI: 10.1038/s41598-020-72766-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
The dynamic structure of proteins is essential for their functions and may include large conformational transitions which can be studied by molecular dynamics (MD) simulations. However, details of these transitions are difficult to automatically track. To facilitate their analysis, we developed two scores of correlation between sidechain dihedral angles. The CIRCULAR and OMES scores are computed from, respectively, dihedral angle values and rotamer distributions. As a case study, we applied our methods to an activation-like transition of the chemokine receptor CXCR4, observed during accelerated MD simulations. The principal component analysis of the correlation matrices was consistent with the networking structure of the top ranking pairs. Both scores identify a set of residues whose “collaborative” sidechain rotamerization immediately preceded or accompanied the conformational transition of CXCR4. Detailed analysis of the sequential order of these rotamerizations suggests that an allosteric mechanism, involving the outward motion of an asparagine residue in transmembrane helix 3, might be a prerequisite to the large scale conformational transition of CXCR4. This case study provides the proof-of-concept that the correlation methods developed here are valuable exploratory techniques to help decipher complex reactional pathways.
Collapse
|
11
|
Wingler LM, Skiba MA, McMahon C, Staus DP, Kleinhenz ALW, Suomivuori CM, Latorraca NR, Dror RO, Lefkowitz RJ, Kruse AC. Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR. Science 2020; 367:888-892. [PMID: 32079768 DOI: 10.1126/science.aay9813] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
Biased agonists of G protein-coupled receptors (GPCRs) preferentially activate a subset of downstream signaling pathways. In this work, we present crystal structures of angiotensin II type 1 receptor (AT1R) (2.7 to 2.9 angstroms) bound to three ligands with divergent bias profiles: the balanced endogenous agonist angiotensin II (AngII) and two strongly β-arrestin-biased analogs. Compared with other ligands, AngII promotes more-substantial rearrangements not only at the bottom of the ligand-binding pocket but also in a key polar network in the receptor core, which forms a sodium-binding site in most GPCRs. Divergences from the family consensus in this region, which appears to act as a biased signaling switch, may predispose the AT1R and certain other GPCRs (such as chemokine receptors) to adopt conformations that are capable of activating β-arrestin but not heterotrimeric Gq protein signaling.
Collapse
Affiliation(s)
- Laura M Wingler
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Meredith A Skiba
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Conor McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Dean P Staus
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Alissa L W Kleinhenz
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carl-Mikael Suomivuori
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA.,Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Naomi R Latorraca
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA.,Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.,Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA.,Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.,Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Robert J Lefkowitz
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA. .,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Zarzycka B, Zaidi SA, Roth BL, Katritch V. Harnessing Ion-Binding Sites for GPCR Pharmacology. Pharmacol Rev 2019; 71:571-595. [PMID: 31551350 PMCID: PMC6782022 DOI: 10.1124/pr.119.017863] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Endogenous ions play important roles in the function and pharmacology of G-protein coupled receptors (GPCRs). Historically the evidence for ionic modulation of GPCR function dates to 1973 with studies of opioid receptors, where it was demonstrated that physiologic concentrations of sodium allosterically attenuated agonist binding. This Na+-selective effect was distinct from effects of other monovalent and divalent cations, with the latter usually counteracting sodium's negative allosteric modulation of binding. Since then, numerous studies documenting the effects of mono- and divalent ions on GPCR function have been published. While ions can act selectively and nonselectively at many sites in different receptors, the discovery of the conserved sodium ion site in class A GPCR structures in 2012 revealed the unique nature of Na+ site, which has emerged as a near-universal site for allosteric modulation of class A GPCR structure and function. In this review, we synthesize and highlight recent advances in the functional, biophysical, and structural characterization of ions bound to GPCRs. Taken together, these findings provide a molecular understanding of the unique roles of Na+ and other ions as GPCR allosteric modulators. We will also discuss how this knowledge can be applied to the redesign of receptors and ligand probes for desired functional and pharmacological profiles. SIGNIFICANCE STATEMENT: The function and pharmacology of GPCRs strongly depend on the presence of mono and divalent ions in experimental assays and in living organisms. Recent insights into the molecular mechanism of this ion-dependent allosterism from structural, biophysical, biochemical, and computational studies provide quantitative understandings of the pharmacological effects of drugs in vitro and in vivo and open new avenues for the rational design of chemical probes and drug candidates with improved properties.
Collapse
Affiliation(s)
- Barbara Zarzycka
- Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Saheem A Zaidi
- Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Bryan L Roth
- Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Vsevolod Katritch
- Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
13
|
He P, Zhou W, Liu M, Chen Y. Recent Advances of Small Molecular Regulators Targeting G Protein- Coupled Receptors Family for Oncology Immunotherapy. Curr Top Med Chem 2019; 19:1464-1483. [PMID: 31264549 DOI: 10.2174/1568026619666190628115644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022]
Abstract
The great clinical success of chimeric antigen receptor T cell (CAR-T) and PD-1/PDL-1 inhibitor therapies suggests the drawing of a cancer immunotherapy age. However, a considerable proportion of cancer patients currently receive little benefit from these treatment modalities, indicating that multiple immunosuppressive mechanisms exist in the tumor microenvironment. In this review, we mainly discuss recent advances in small molecular regulators targeting G Protein-Coupled Receptors (GPCRs) that are associated with oncology immunomodulation, including chemokine receptors, purinergic receptors, prostaglandin E receptor EP4 and opioid receptors. Moreover, we outline how they affect tumor immunity and neoplasia by regulating immune cell recruitment and modulating tumor stromal cell biology. We also summarize the data from recent clinical advances in small molecular regulators targeting these GPCRs, in combination with immune checkpoints blockers, such as PD-1/PDL-1 and CTLA4 inhibitors, for cancer treatments.
Collapse
Affiliation(s)
- Peng He
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wenbo Zhou
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
14
|
Rosenberg EM, Harrison RES, Tsou LK, Drucker N, Humphries B, Rajasekaran D, Luker KE, Wu CH, Song JS, Wang CJ, Murphy JW, Cheng YC, Shia KS, Luker GD, Morikis D, Lolis EJ. Characterization, Dynamics, and Mechanism of CXCR4 Antagonists on a Constitutively Active Mutant. Cell Chem Biol 2019; 26:662-673.e7. [PMID: 30827936 PMCID: PMC6736600 DOI: 10.1016/j.chembiol.2019.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/21/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
Abstract
The G protein-coupled receptor (GPCR) CXCR4 is a co-receptor for HIV and is involved in cancers and autoimmune diseases. We characterized five purine or quinazoline core polyamine pharmacophores used for targeting CXCR4 dysregulation in diseases. All were neutral antagonists for wild-type CXCR4 and two were biased antagonists with effects on β-arrestin-2 only at high concentrations. These compounds displayed various activities for a constitutively active mutant (CAM). We use the IT1t-CXCR4 crystal structure and molecular dynamics (MD) simulations to develop two hypotheses for the activation of the N1193.35A CAM. The N1193.35A mutation facilitates increased coupling of TM helices III and VI. IT1t deactivates the CAM by disrupting the coupling between TM helices III and VI, mediated primarily by residue F872.53. Mutants of F872.53 in N1193.35A CXCR4 precluded constitutive signaling and prevented inverse agonism. This work characterizes CXCR4 ligands and provides a mechanism for N1193.35A constitutive activation.
Collapse
Affiliation(s)
- Eric M Rosenberg
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Reed E S Harrison
- Department of Bioengineering, Bourns College of Engineering, University of California, Riverside, CA 92507, USA
| | - Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, R.O.C
| | - Natalie Drucker
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Brock Humphries
- University of Michigan Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI 48109, USA
| | - Deepa Rajasekaran
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kathryn E Luker
- University of Michigan Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI 48109, USA
| | - Chien-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, R.O.C
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, R.O.C
| | - Chuan-Jen Wang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - James W Murphy
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, R.O.C
| | - Gary D Luker
- University of Michigan Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI 48109, USA
| | - Dimitrios Morikis
- Department of Bioengineering, Bourns College of Engineering, University of California, Riverside, CA 92507, USA
| | - Elias J Lolis
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
15
|
Sotudeh N, Morales P, Hurst DP, Lynch DL, Reggio PH. Towards A Molecular Understanding of The Cannabinoid Related Orphan Receptor GPR18: A Focus on Its Constitutive Activity. Int J Mol Sci 2019; 20:E2300. [PMID: 31075933 PMCID: PMC6539512 DOI: 10.3390/ijms20092300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022] Open
Abstract
The orphan G-protein coupled receptor (GPCR), GPR18, has been recently proposed as a potential member of the cannabinoid family as it recognizes several endogenous, phytogenic, and synthetic cannabinoids. Potential therapeutic applications for GPR18 include intraocular pressure, metabolic disorders, and cancer. GPR18 has been reported to have high constitutive activity, i.e., activation/signaling occurs in the absence of an agonist. This activity can be reduced significantly by the A3.39N mutation. At the intracellular (IC) ends of (transmembrane helices) TMH3 and TMH6 in GPCRs, typically, a pair of oppositely charged amino acids form a salt bridge called the "ionic lock". Breaking of this salt bridge creates an IC opening for coupling with G protein. The GPR18 "ionic lock" residues (R3.50/S6.33) can form only a hydrogen bond. In this paper, we test the hypothesis that the high constitutive activity of GPR18 is due to the weakness of its "ionic lock" and that the A3.39N mutation strengthens this lock. To this end, we report molecular dynamics simulations of wild-type (WT) GPR18 and the A3.39N mutant in fully hydrated (POPC) phophatidylcholine lipid bilayers. Results suggest that in the A3.39N mutant, TMH6 rotates and brings R3.50 and S6.33 closer together, thus strengthening the GPR18 "ionic lock".
Collapse
Affiliation(s)
- Noori Sotudeh
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA.
| | - Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain.
| | - Dow P Hurst
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA.
| | - Diane L Lynch
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA.
| | - Patricia H Reggio
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA.
| |
Collapse
|
16
|
Cong X, Golebiowski J. Allosteric Na +-binding site modulates CXCR4 activation. Phys Chem Chem Phys 2018; 20:24915-24920. [PMID: 30238101 DOI: 10.1039/c8cp04134b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) control most cellular communications with the environment and are the largest protein family of drug targets. As strictly regulated molecular machines, profound comprehension of their activation mechanism is expected to significantly facilitate structure-based drug design. This study provides atomistic-level description of the activation dynamics of the C-X-C chemokine receptor type 4 (CXCR4), a class A GPCR and important drug target. Using molecular dynamics and enhanced sampling, we demonstrate how mutations and protonation of conserved residues trigger activation through microswitches at the receptor core, while sodium ion - a known allosteric modulator - inhibits it. The findings point to a conserved mechanism of activation and the allosteric modulation by sodium in the chemokine receptor family. From the technical aspect, the enhanced sampling protocol effectively samples receptor conformational changes toward activation, and differentiates three variants of the receptor by their basal activity. This work provides structural basis and a powerful in silico tool for CXCR4 agonist design.
Collapse
Affiliation(s)
- Xiaojing Cong
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, 06108 Nice, France.
| | | |
Collapse
|