1
|
Parino F, Gustani-Buss E, Bedford T, Suchard MA, Trovão NS, Rambaut A, Colizza V, Poletto C, Lemey P. Integrating dynamical modeling and phylogeographic inference to characterize global influenza circulation. PNAS NEXUS 2025; 4:pgae561. [PMID: 39737444 PMCID: PMC11683419 DOI: 10.1093/pnasnexus/pgae561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/21/2024] [Indexed: 01/01/2025]
Abstract
Global seasonal influenza circulation involves a complex interplay between local (seasonality, demography, host immunity) and global factors (international mobility) shaping recurrent epidemic patterns. No studies so far have reconciled the two spatial levels, evaluating the coupling between national epidemics, considering heterogeneous coverage of epidemiological, and virological data, integrating different data sources. We propose a novel-combined approach based on a dynamical model of global influenza spread (GLEAM), integrating high-resolution demographic, and mobility data, and a generalized linear model of phylogeographic diffusion that accounts for time-varying migration rates. Seasonal migration fluxes across countries simulated with GLEAM are tested as phylogeographic predictors to provide model validation and calibration based on genetic data. Seasonal fluxes obtained with a specific transmissibility peak time and recurrent travel outperformed the raw air-transportation predictor, previously considered as optimal indicator of global influenza migration. Influenza A subtypes supported autumn-winter reproductive number as high as 2.25 and an average immunity duration of 2 years. Similar dynamics were preferred by influenza B lineages, with a lower autumn-winter reproductive number. Comparing simulated epidemic profiles against FluNet data offered comparatively limited resolution power. The multiscale approach enables model selection yielding a novel computational framework for describing global influenza dynamics at different scales-local transmission and national epidemics vs. international coupling through mobility and imported cases. Our findings have important implications to improve preparedness against seasonal influenza epidemics. The approach can be generalized to other epidemic contexts, such as emerging disease outbreaks to improve the flexibility and predictive power of modeling.
Collapse
Affiliation(s)
- Francesco Parino
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidemiologie et de Santé Publique (IPLESP), Paris, France
| | - Emanuele Gustani-Buss
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven – University of Leuven, Leuven 3000, Belgium
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Marc A Suchard
- Departments of Biomathematics and Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA
| | - Nídia S Trovão
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Rambaut
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Vittoria Colizza
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidemiologie et de Santé Publique (IPLESP), Paris, France
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Chiara Poletto
- Department of Molecular Medicine, University of Padova, Padova 35121, Italy
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven – University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
2
|
Yuan H, Lau EHY, Cowling BJ, Yang W. Improving influenza forecast in the tropics and subtropics: a case study of Hong Kong. J R Soc Interface 2025; 22:20240649. [PMID: 39809330 PMCID: PMC11732400 DOI: 10.1098/rsif.2024.0649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Influenza forecasts could aid public health response as shown for temperate regions, but such efforts are more challenging in the tropics and subtropics due to more irregular influenza activities. Here, we built six forecast approaches for influenza in the (sub)tropics, with six model forms designed to model seasonal infection risk (i.e. seasonality) based on the dependence of virus survival on climate conditions and to flexibly account for immunity waning. We ran the models jointly with the ensemble adjustment Kalman filter to generate retrospective forecasts of influenza incidence in subtropical Hong Kong from January 1999 to December 2019 including the 2009 A(H1N1)pdm09 pandemic. In addition to short-term targets (one to four weeks ahead predictions), we also tested mid-range (one to three months) and long-range (four to six months) forecasts, which could be valuable for long-term planning. The largest improvement came from the inclusion of climate-modulated seasonality modelling, particularly for the mid- and long-range forecasts. The best-performing approach included a seasonal-trend-based climate modulation and assumed mixed immunity waning; the forecast accuracies, including peak week and intensity, were comparable to that reported for temperate regions including the USA. These findings demonstrate that incorporating mechanisms of climate modulation on influenza transmission can substantially improve forecast performance in the (sub)tropics.
Collapse
Affiliation(s)
- Haokun Yuan
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Eric H. Y. Lau
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science Park, New Territories, Hong Kong Special Administrative Region, People’s Republic of China
- School of Health & Social Development, Deakin University, Melbourne, Victoria, Australia
| | - Benjamin J. Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science Park, New Territories, Hong Kong Special Administrative Region, People’s Republic of China
| | - Wan Yang
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Park SW, Cobey S, Metcalf CJE, Levine JM, Grenfell BT. Predicting pathogen mutual invasibility and co-circulation. Science 2024; 386:175-179. [PMID: 39388572 DOI: 10.1126/science.adq0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Observations of pathogen community structure provide evidence for both the coexistence and replacement of related strains. Despite many studies of specific host-pathogen systems, a unifying framework for predicting the outcomes of interactions among pathogens has remained elusive. We address this gap by developing a pathogen invasion theory (PIT) based on modern ecological coexistence theory and testing the resulting framework against empirical systems. Across major human pathogens, PIT predicts near-universal mutual susceptibility of one strain to invasion by another strain. However, predicting co-circulation from mutual invasion also depends on the degree to which susceptible abundance is reduced below the invasion threshold by overcompensatory epidemic dynamics, and the time it takes for susceptibles to replenish. The transmission advantage of an invading strain and the strength and duration of immunity are key determinants of susceptible dynamics. PIT unifies existing ideas about pathogen co-circulation, offering a quantitative framework for predicting the emergence of novel pathogen strains.
Collapse
Affiliation(s)
- Sang Woo Park
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA
| | - Jonathan M Levine
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
4
|
Tsang TK, Du Q, Cowling BJ, Viboud C. An adaptive weight ensemble approach to forecast influenza activity in an irregular seasonality context. Nat Commun 2024; 15:8625. [PMID: 39366942 PMCID: PMC11452387 DOI: 10.1038/s41467-024-52504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024] Open
Abstract
Forecasting influenza activity in tropical and subtropical regions, such as Hong Kong, is challenging due to irregular seasonality and high variability. We develop a diverse set of statistical, machine learning, and deep learning approaches to forecast influenza activity in Hong Kong 0 to 8 weeks ahead, leveraging a unique multi-year surveillance record spanning 32 epidemics from 1998 to 2019. We consider a simple average ensemble (SAE) of the top two individual models, and develop an adaptive weight blending ensemble (AWBE) that dynamically updates model contribution. All models outperform the baseline constant incidence model, reducing the root mean square error (RMSE) by 23%-29% and weighted interval score (WIS) by 25%-31% for 8-week ahead forecasts. The SAE model performed similarly to individual models, while the AWBE model reduces RMSE by 52% and WIS by 53%, outperforming individual models for forecasts in different epidemic trends (growth, plateau, decline) and during both winter and summer seasons. Using the post-COVID data (2023-2024) as another test period, the AWBE model still reduces RMSE by 39% and WIS by 45%. Our framework contributes to comparing and benchmarking models in ensemble forecasts, enhancing evidence for synthesizing multiple models in disease forecasting for geographies with irregular influenza seasonality.
Collapse
Affiliation(s)
- Tim K Tsang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong.
| | - Qiurui Du
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong
| | - Cécile Viboud
- Fogarty International Center National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Servadio JL, Choisy M, Thai PQ, Boni MF. Influenza vaccine allocation in tropical settings under constrained resources. PNAS NEXUS 2024; 3:pgae379. [PMID: 39359394 PMCID: PMC11443550 DOI: 10.1093/pnasnexus/pgae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024]
Abstract
Influenza virus seasonality, synchronicity, and vaccine supply differ substantially between temperate and tropical settings, and optimal vaccination strategy may differ on this basis. Many national vaccine recommendations focus on high-risk groups, elderly populations, and healthcare workers despite previous analyses demonstrating broad benefits to vaccinating younger high-contact age groups. In this study, we parameterized an age-structured nonseasonal asynchronous epidemiological model of influenza virus transmission for a tropical low-income setting. We evaluated timing and age allocation of vaccines across vaccine supplies ranging from 10 to 90% using decade-based age groups. Year-round vaccination was beneficial when compared with more concentrated annual vaccine distribution. When targeting a single age group for vaccine prioritization, maximum vaccine allocation to the 10-19 high-contact age group minimized annual influenza mortality for all but one vaccine supply. When evaluating across all possible age allocations, optimal strategies always allocated a plurality of vaccines to school-age children (10-19). The converse, however, was not true as not all strategies allocating a plurality to children aged 10-19 minimized mortality. Allocating a high proportion of vaccine supply to the 10-19 age group is necessary but not sufficient to minimize annual mortality as distribution of remaining vaccine doses to other age groups also needs to be optimized. Strategies focusing on indirect benefits (vaccinating children) showed higher variance in mortality outcomes than strategies focusing on direct benefits (vaccinating the elderly). However, the indirect benefit approaches showed a lower mean mortality and a lower minimum mortality than vaccination focused on the elderly.
Collapse
Affiliation(s)
- Joseph L Servadio
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Marc Choisy
- Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Pham Quang Thai
- Communicable Diseases Control and Prevention Department, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
- School of Preventative Medicine and Public Health, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Maciej F Boni
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
6
|
Perofsky AC, Huddleston J, Hansen CL, Barnes JR, Rowe T, Xu X, Kondor R, Wentworth DE, Lewis N, Whittaker L, Ermetal B, Harvey R, Galiano M, Daniels RS, McCauley JW, Fujisaki S, Nakamura K, Kishida N, Watanabe S, Hasegawa H, Sullivan SG, Barr IG, Subbarao K, Krammer F, Bedford T, Viboud C. Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States. eLife 2024; 13:RP91849. [PMID: 39319780 PMCID: PMC11424097 DOI: 10.7554/elife.91849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997-2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity.
Collapse
MESH Headings
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- United States/epidemiology
- Influenza, Human/epidemiology
- Influenza, Human/virology
- Influenza, Human/immunology
- Humans
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Epidemics
- Antigenic Drift and Shift/genetics
- Child
- Adult
- Neuraminidase/genetics
- Neuraminidase/immunology
- Adolescent
- Child, Preschool
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- Young Adult
- Evolution, Molecular
- Seasons
- Middle Aged
Collapse
Affiliation(s)
- Amanda C Perofsky
- Fogarty International Center, National Institutes of Health, Bethesda, United States
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, United States
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, United States
| | - Chelsea L Hansen
- Fogarty International Center, National Institutes of Health, Bethesda, United States
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, United States
| | - John R Barnes
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, United States
| | - Thomas Rowe
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, United States
| | - Xiyan Xu
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, United States
| | - Rebecca Kondor
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, United States
| | - David E Wentworth
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, United States
| | - Nicola Lewis
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Lynne Whittaker
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Burcu Ermetal
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Ruth Harvey
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Monica Galiano
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Rodney Stuart Daniels
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - John W McCauley
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Seiichiro Fujisaki
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuya Nakamura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriko Kishida
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinji Watanabe
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sheena G Sullivan
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Florian Krammer
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Trevor Bedford
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, United States
- Department of Genome Sciences, University of Washington, Seattle, United States
- Howard Hughes Medical Institute, Seattle, United States
| | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, United States
| |
Collapse
|
7
|
Andreu-Vilarroig C, Villanueva RJ, González-Parra G. Mathematical modeling for estimating influenza vaccine efficacy: A case study of the Valencian Community, Spain. Infect Dis Model 2024; 9:744-762. [PMID: 38689854 PMCID: PMC11058883 DOI: 10.1016/j.idm.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Vaccine efficacy and its quantification is a crucial concept for the proper design of public health vaccination policies. In this work we proposed a mathematical model to estimate the efficacy of the influenza vaccine in a real-word scenario. In particular, our model is a SEIR-type epidemiological model, which distinguishes vaccinated and unvaccinated populations. Mathematically, its dynamics is governed by a nonlinear system of ordinary differential equations, where the non-linearity arises from the effective contacts between susceptible and infected individuals. Two key aspects of this study is that we use a vaccine distribution over time that is based on real data specific to the elderly people in the Valencian Community and the calibration process takes into account that over one influenza season a specific proportion of the population becomes infected with influenza. To consider the effectiveness of the vaccine, the model incorporates a parameter, the vaccine attenuation factor, which is related with the vaccine efficacy against the influenza virus. With this framework, in order to calibrate the model parameters and to obtain an influenza vaccine efficacy estimation, we considered the 2016-2017 influenza season in the Valencian Community, Spain, using the influenza reported cases of vaccinated and unvaccinated. In order to ensure the model identifiability, we choose to deterministically calibrate the parameters for different scenarios and we find the one with the minimum error in order to determine the vaccine efficacy. The calibration results suggest that the influenza vaccine developed for 2016-2017 influenza season has an efficacy of approximately 76.7%, and that the risk of becoming infected is five times higher for an unvaccinated individual in comparison with a vaccinated one. This estimation partially agrees with some previous studies related to the influenza vaccine. This study presents a new integrated mathematical approach to study the influenza vaccine efficacy and gives further insight into this important public health topic.
Collapse
Affiliation(s)
- Carlos Andreu-Vilarroig
- Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Valencia, Spain
| | - Rafael J. Villanueva
- Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Valencia, Spain
| | - Gilberto González-Parra
- Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Valencia, Spain
- Department of Mathematics, New Mexico Tech, Socorro, NM, USA
| |
Collapse
|
8
|
Yang Q, Park SW, Saad-Roy CM, Ahmad I, Viboud C, Arinaminpathy N, Grenfell BT. Assessing population-level target product profiles of universal human influenza A vaccines. Epidemics 2024; 48:100776. [PMID: 38944025 DOI: 10.1016/j.epidem.2024.100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024] Open
Abstract
Influenza A has two hemagglutinin groups, with stronger cross-immunity to reinfection within than between groups. Here, we explore the implications of this heterogeneity for proposed cross-protective influenza vaccines that may offer broad, but not universal, protection. While the development goal for the breadth of human influenza A vaccine is to provide cross-group protection, vaccines in current development stages may provide better protection against target groups than non-target groups. To evaluate vaccine formulation and strategies, we propose a novel perspective: a vaccine population-level target product profile (PTPP). Under this perspective, we use dynamical models to quantify the epidemiological impacts of future influenza A vaccines as a function of their properties. Our results show that the interplay of natural and vaccine-induced immunity could strongly affect seasonal subtype dynamics. A broadly protective bivalent vaccine could lower the incidence of both groups and achieve elimination with sufficient vaccination coverage. However, a univalent vaccine at low vaccination rates could permit a resurgence of the non-target group when the vaccine provides weaker immunity than natural infection. Moreover, as a proxy for pandemic simulation, we analyze the invasion of a variant that evades natural immunity. We find that a future vaccine providing sufficiently broad and long-lived cross-group protection at a sufficiently high vaccination rate, could prevent pandemic emergence and lower the pandemic burden. This study highlights that as well as effectiveness, breadth and duration should be considered in epidemiologically informed TPPs for future human influenza A vaccines.
Collapse
Affiliation(s)
- Qiqi Yang
- Department of Ecology and Evolutionary Biology, Princeton University, NJ, USA.
| | - Sang Woo Park
- Department of Ecology and Evolutionary Biology, Princeton University, NJ, USA
| | - Chadi M Saad-Roy
- Miller Institute for Basic Research in Science, University of California, Berkeley, CA, USA; Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Isa Ahmad
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK
| | - Cécile Viboud
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Nimalan Arinaminpathy
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, NJ, USA; School of Public and International Affairs, Princeton University, NJ, USA
| |
Collapse
|
9
|
Lau YC, Shan S, Wang D, Chen D, Du Z, Lau EHY, He D, Tian L, Wu P, Cowling BJ, Ali ST. Forecasting of influenza activity and associated hospital admission burden and estimating the impact of COVID-19 pandemic on 2019/20 winter season in Hong Kong. PLoS Comput Biol 2024; 20:e1012311. [PMID: 39083536 PMCID: PMC11318919 DOI: 10.1371/journal.pcbi.1012311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/12/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Like other tropical and subtropical regions, influenza viruses can circulate year-round in Hong Kong. However, during the COVID-19 pandemic, there was a significant decrease in influenza activity. The objective of this study was to retrospectively forecast influenza activity during the year 2020 and assess the impact of COVID-19 public health social measures (PHSMs) on influenza activity and hospital admissions in Hong Kong. Using weekly surveillance data on influenza virus activity in Hong Kong from 2010 to 2019, we developed a statistical modeling framework to forecast influenza virus activity and associated hospital admissions. We conducted short-term forecasts (1-4 weeks ahead) and medium-term forecasts (1-13 weeks ahead) for the year 2020, assuming no PHSMs were implemented against COVID-19. We estimated the reduction in transmissibility, peak magnitude, attack rates, and influenza-associated hospitalization rate resulting from these PHSMs. For short-term forecasts, mean ambient ozone concentration and school holidays were found to contribute to better prediction performance, while absolute humidity and ozone concentration improved the accuracy of medium-term forecasts. We observed a maximum reduction of 44.6% (95% CI: 38.6% - 51.9%) in transmissibility, 75.5% (95% CI: 73.0% - 77.6%) in attack rate, 41.5% (95% CI: 13.9% - 55.7%) in peak magnitude, and 63.1% (95% CI: 59.3% - 66.3%) in cumulative influenza-associated hospitalizations during the winter-spring period of the 2019/2020 season in Hong Kong. The implementation of PHSMs to control COVID-19 had a substantial impact on influenza transmission and associated burden in Hong Kong. Incorporating information on factors influencing influenza transmission improved the accuracy of our predictions.
Collapse
Affiliation(s)
- Yiu-Chung Lau
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Songwei Shan
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Dong Wang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Dongxuan Chen
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Zhanwei Du
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Eric H. Y. Lau
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
- Institute for Health Transformation, School of Health and Social Development, Deakin University, Burwood, Australia
| | - Daihai He
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Linwei Tian
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Peng Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Benjamin J. Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Sheikh Taslim Ali
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| |
Collapse
|
10
|
Fung T, Goh J, Chisholm RA. Long-term effects of non-pharmaceutical interventions on total disease burden in parsimonious epidemiological models. J Theor Biol 2024; 587:111817. [PMID: 38599566 DOI: 10.1016/j.jtbi.2024.111817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
The recent global COVID-19 pandemic resulted in governments enacting non-pharmaceutical interventions (NPIs) targeted at reducing transmission of SARS-CoV-2. But the NPIs also affected the transmission of viruses causing non-target seasonal respiratory diseases, including influenza and respiratory syncytial virus (RSV). In many countries, the NPIs were found to reduce cases of such seasonal respiratory diseases, but there is also evidence that subsequent relaxation of NPIs led to outbreaks of these diseases that were larger than pre-pandemic ones, due to the accumulation of susceptible individuals prior to relaxation. Therefore, the net long-term effects of NPIs on the total disease burden of non-target diseases remain unclear. Knowledge of this is important for infectious disease management and maintenance of public health. In this study, we shed light on this issue for the simplified scenario of a set of NPIs that prevent or reduce transmission of a seasonal respiratory disease for about a year and are then removed, using mathematical analyses and numerical simulations of a suite of four epidemiological models with varying complexity and generality. The model parameters were estimated using empirical data pertaining to seasonal respiratory diseases and covered a wide range. Our results showed that NPIs reduced the total disease burden of a non-target seasonal respiratory disease in the long-term. Expressed as a percentage of population size, the reduction was greater for larger values of the basic reproduction number and the immunity loss rate, reflecting larger outbreaks and hence more infections averted by imposition of NPIs. Our study provides a foundation for exploring the effects of NPIs on total disease burden in more-complex scenarios.
Collapse
Affiliation(s)
- Tak Fung
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117558, Singapore.
| | - Jonah Goh
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117558, Singapore.
| | - Ryan A Chisholm
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117558, Singapore.
| |
Collapse
|
11
|
Chen Y, Tang F, Cao Z, Zeng J, Qiu Z, Zhang C, Long H, Cheng P, Sun Q, Han W, Tang K, Tang J, Zhao Y, Tian D, Du X. Global pattern and determinant for interaction of seasonal influenza viruses. J Infect Public Health 2024; 17:1086-1094. [PMID: 38705061 DOI: 10.1016/j.jiph.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND The prevalence of different types/subtypes varies across seasons and countries for seasonal influenza viruses, indicating underlying interactions between types/subtypes. The global interaction patterns and determinants for seasonal influenza types/subtypes need to be explored. METHODS Influenza epidemiological surveillance data, as well as multidimensional data that include population-related, environment-related, and virus-related factors from 55 countries worldwide were used to explore type/subtype interactions based on Spearman correlation coefficient. The machine learning method Extreme Gradient Boosting (XGBoost) and interpretable framework SHapley Additive exPlanation (SHAP) were utilized to quantify contributing factors and their effects on interactions among influenza types/subtypes. Additionally, causal relationships between types/subtypes were also explored based on Convergent Cross-mapping (CCM). RESULTS A consistent globally negative correlation exists between influenza A/H3N2 and A/H1N1. Meanwhile, interactions between influenza A (A/H3N2, A/H1N1) and B show significant differences across countries, primarily influenced by population-related factors. Influenza A has a stronger driving force than influenza B, and A/H3N2 has a stronger driving force than A/H1N1. CONCLUSION The research elucidated the globally complex and heterogeneous interaction patterns among influenza type/subtypes, identifying key factors shaping their interactions. This sheds light on better seasonal influenza prediction and model construction, informing targeted prevention strategies and ultimately reducing the global burden of seasonal influenza.
Collapse
Affiliation(s)
- Yilin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Feng Tang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Foshan Center for Disease Control and Prevention, Foshan 528000, PR China
| | - Zicheng Cao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health, Shantou University, Shantou 515000, PR China
| | - Jinfeng Zeng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Zekai Qiu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Chi Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Haoyu Long
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Peiwen Cheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Qianru Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Wenjie Han
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Kang Tang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Jing Tang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Yang Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Shenzhen Key Laboratory of Pathogenic Microbes & Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Dechao Tian
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Shenzhen Key Laboratory of Pathogenic Microbes & Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Shenzhen Key Laboratory of Pathogenic Microbes & Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510030, PR China.
| |
Collapse
|
12
|
Perofsky AC, Huddleston J, Hansen C, Barnes JR, Rowe T, Xu X, Kondor R, Wentworth DE, Lewis N, Whittaker L, Ermetal B, Harvey R, Galiano M, Daniels RS, McCauley JW, Fujisaki S, Nakamura K, Kishida N, Watanabe S, Hasegawa H, Sullivan SG, Barr IG, Subbarao K, Krammer F, Bedford T, Viboud C. Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.10.02.23296453. [PMID: 37873362 PMCID: PMC10593063 DOI: 10.1101/2023.10.02.23296453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997-2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection dynamics, presumably via heterosubtypic cross-immunity.
Collapse
Affiliation(s)
- Amanda C Perofsky
- Fogarty International Center, National Institutes of Health, United States
- Brotman Baty Institute for Precision Medicine, University of Washington, United States
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, United States
| | - Chelsea Hansen
- Fogarty International Center, National Institutes of Health, United States
- Brotman Baty Institute for Precision Medicine, University of Washington, United States
| | - John R Barnes
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), United States
| | - Thomas Rowe
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), United States
| | - Xiyan Xu
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), United States
| | - Rebecca Kondor
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), United States
| | - David E Wentworth
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), United States
| | - Nicola Lewis
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, United Kingdom
| | - Lynne Whittaker
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, United Kingdom
| | - Burcu Ermetal
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, United Kingdom
| | - Ruth Harvey
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, United Kingdom
| | - Monica Galiano
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, United Kingdom
| | - Rodney Stuart Daniels
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, United Kingdom
| | - John W McCauley
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, United Kingdom
| | - Seiichiro Fujisaki
- Influenza Virus Research Center, National Institute of Infectious Diseases, Japan
| | - Kazuya Nakamura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Japan
| | - Noriko Kishida
- Influenza Virus Research Center, National Institute of Infectious Diseases, Japan
| | - Shinji Watanabe
- Influenza Virus Research Center, National Institute of Infectious Diseases, Japan
| | - Hideki Hasegawa
- Influenza Virus Research Center, National Institute of Infectious Diseases, Japan
| | - Sheena G Sullivan
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Australia
| | - Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Australia
| | - Florian Krammer
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, United States
| | - Trevor Bedford
- Brotman Baty Institute for Precision Medicine, University of Washington, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, United States
- Department of Genome Sciences, University of Washington, United States
- Howard Hughes Medical Institute, Seattle, United States
| | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, United States
| |
Collapse
|
13
|
Parino F, Gustani-Buss E, Bedford T, Suchard MA, Trovão NS, Rambaut A, Colizza V, Poletto C, Lemey P. Integrating dynamical modeling and phylogeographic inference to characterize global influenza circulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.14.24303719. [PMID: 38559244 PMCID: PMC10980132 DOI: 10.1101/2024.03.14.24303719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Global seasonal influenza circulation involves a complex interplay between local (seasonality, demography, host immunity) and global factors (international mobility) shaping recurrent epidemic patterns. No studies so far have reconciled the two spatial levels, evaluating the coupling between national epidemics, considering heterogeneous coverage of epidemiological and virological data, integrating different data sources. We propose a novel combined approach based on a dynamical model of global influenza spread (GLEAM), integrating high-resolution demographic and mobility data, and a generalized linear model of phylogeographic diffusion that accounts for time-varying migration rates. Seasonal migration fluxes across global macro-regions simulated with GLEAM are tested as phylogeographic predictors to provide model validation and calibration based on genetic data. Seasonal fluxes obtained with a specific transmissibility peak time and recurrent travel outperformed the raw air-transportation predictor, previously considered as optimal indicator of global influenza migration. Influenza A subtypes supported autumn-winter reproductive number as high as 2.25 and an average immunity duration of 2 years. Similar dynamics were preferred by influenza B lineages, with a lower autumn-winter reproductive number. Comparing simulated epidemic profiles against FluNet data offered comparatively limited resolution power. The multiscale approach enables model selection yielding a novel computational framework for describing global influenza dynamics at different scales - local transmission and national epidemics vs. international coupling through mobility and imported cases. Our findings have important implications to improve preparedness against seasonal influenza epidemics. The approach can be generalized to other epidemic contexts, such as emerging disease outbreaks to improve the flexibility and predictive power of modeling.
Collapse
Affiliation(s)
- Francesco Parino
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidemiologie et de Santé Publique (IPLESP), Paris, France
| | - Emanuele Gustani-Buss
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven – University of Leuven, 3000 Leuven, Belgium
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Howard Hughes Medical Institute, Seattle, Washington 98109, USA
| | - Marc A. Suchard
- Departments of Biomathematics and Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, 90095, USA
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA
| | | | - Andrew Rambaut
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Vittoria Colizza
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidemiologie et de Santé Publique (IPLESP), Paris, France
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Chiara Poletto
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven – University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
14
|
Chen C, Yang M, Wang Y, Jiang D, Du Y, Cao K, Zhang X, Wu X, Chen M, You Y, Zhou W, Qi J, Yan R, Zhu C, Yang S. Intensity and drivers of subtypes interference between seasonal influenza viruses in mainland China: A modeling study. iScience 2024; 27:109323. [PMID: 38487011 PMCID: PMC10937832 DOI: 10.1016/j.isci.2024.109323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/18/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
Subtype interference has a significant impact on the epidemiological patterns of seasonal influenza viruses (SIVs). We used attributable risk percent [the absolute value of the ratio of the effective reproduction number (Rₑ) of different subtypes minus one] to quantify interference intensity between A/H1N1 and A/H3N2, as well as B/Victoria and B/Yamagata. The interference intensity between A/H1N1 and A/H3N2 was higher in southern China 0.26 (IQR: 0.11-0.46) than in northern China 0.17 (IQR: 0.07-0.24). Similarly, interference intensity between B/Victoria and B/Yamagata was also higher in southern China 0.14 (IQR: 0.07-0.24) than in norther China 0.10 (IQR: 0.04-0.18). High relative humidity significantly increased subtype interference, with the highest relative risk reaching 20.59 (95% CI: 6.12-69.33) in southern China. Southern China exhibited higher levels of subtype interference, particularly between A/H1N1 and A/H3N2. Higher relative humidity has a more pronounced promoting effect on subtype interference.
Collapse
Affiliation(s)
- Can Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mengya Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yu Wang
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China
| | - Daixi Jiang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuxia Du
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kexin Cao
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaobao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoyue Wu
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mengsha Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yue You
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenkai Zhou
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiaxing Qi
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rui Yan
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Changtai Zhu
- Department of Transfusion Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Shigui Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
15
|
Yan ZL, Liu WH, Long YX, Ming BW, Yang Z, Qin PZ, Ou CQ, Li L. Effects of meteorological factors on influenza transmissibility by virus type/subtype. BMC Public Health 2024; 24:494. [PMID: 38365650 PMCID: PMC10870479 DOI: 10.1186/s12889-024-17961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Quantitative evidence on the impact of meteorological factors on influenza transmissibility across different virus types/subtypes is scarce, and no previous studies have reported the effect of hourly temperature variability (HTV) on influenza transmissibility. Herein, we explored the associations between meteorological factors and influenza transmissibility according to the influenza type and subtype in Guangzhou, a subtropical city in China. METHODS We collected influenza surveillance and meteorological data of Guangzhou between October 2010 and December 2019. Influenza transmissibility was measured using the instantaneous effective reproductive number (Rt). A gamma regression with a log link combined with a distributed lag non-linear model was used to assess the associations of daily meteorological factors with Rt by influenza types/subtypes. RESULTS The exposure-response relationship between ambient temperature and Rt was non-linear, with elevated transmissibility at low and high temperatures. Influenza transmissibility increased as HTV increased when HTV < around 4.5 °C. A non-linear association was observed between absolute humidity and Rt, with increased transmissibility at low absolute humidity and at around 19 g/m3. Relative humidity had a U-shaped association with influenza transmissibility. The associations between meteorological factors and influenza transmissibility varied according to the influenza type and subtype: elevated transmissibility was observed at high ambient temperatures for influenza A(H3N2), but not for influenza A(H1N1)pdm09; transmissibility of influenza A(H1N1)pdm09 increased as HTV increased when HTV < around 4.5 °C, but the transmissibility decreased with HTV when HTV < 2.5 °C and 3.0 °C for influenza A(H3N2) and B, respectively; positive association of Rt with absolute humidity was witnessed for influenza A(H3N2) even when absolute humidity was larger than 19 g/m3, which was different from that for influenza A(H1N1)pdm09 and influenza B. CONCLUSIONS Temperature variability has an impact on influenza transmissibility. Ambient temperature, temperature variability, and humidity influence the transmissibility of different influenza types/subtypes discrepantly. Our findings have important implications for improving preparedness for influenza epidemics, especially under climate change conditions.
Collapse
Affiliation(s)
- Ze-Lin Yan
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen-Hui Liu
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Yu-Xiang Long
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo-Wen Ming
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhou Yang
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng-Zhe Qin
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China.
| | - Chun-Quan Ou
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Li Li
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Servadio JL, Choisy M, Thai PQ, Boni MF. Influenza vaccination allocation in tropical settings under constrained resources. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.08.24302551. [PMID: 38370625 PMCID: PMC10871372 DOI: 10.1101/2024.02.08.24302551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Influenza virus seasonality, synchronicity, and vaccine supply differ substantially between temperate and tropical settings, and optimal vaccination strategy may differ on this basis. Most national vaccine recommendations focus on high-risk groups, elderly populations, and healthcare workers despite previous analyses demonstrating broad benefits to vaccinating younger high-contact age groups. Here, we parameterized an age-structured non-seasonal asynchronous epidemiological model of influenza virus transmission for a tropical low-income setting. We evaluated timing and age allocation of vaccines across vaccine supplies ranging from 10% to 90% using decade-based age groups. Year-round vaccination was beneficial when comparing to vaccination strategies focused on a particular time of year. When targeting a single age-group for vaccine prioritization, maximum vaccine allocation to the 10-19 high-contact age group minimized annual influenza mortality for all but one vaccine supply. When evaluating across all possible age allocations, optimal strategies always allocated a plurality of vaccines to school-age children (10-19). The converse however was not true as not all strategies allocating a plurality to children aged 10-19 minimized mortality. Allocating a high proportion of vaccine supply to the 10-19 age group is necessary but not sufficient to minimize annual mortality as distribution of remaining vaccine doses to other age groups also needs to be optimized. Strategies focusing on indirect benefits (vaccinating children) showed higher variance in mortality outcomes than strategies focusing on direct benefits (vaccinating the elderly). However, the indirect benefit approaches showed lower mean mortality and lower minimum mortality than vaccination focused on the elderly.
Collapse
Affiliation(s)
- Joseph L Servadio
- Center for Infectious Disease Dynamics and Department of Biology, Pennsylvania State University, University Park, PA, United States
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Marc Choisy
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Pham Quang Thai
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
- School of Preventative Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Maciej F Boni
- Center for Infectious Disease Dynamics and Department of Biology, Pennsylvania State University, University Park, PA, United States
- Department of Biology, Temple University, Philadelphia, PA, United States
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Waterlow NR, Procter SR, van Leeuwen E, Radhakrishnan S, Jit M, Eggo RM. The potential cost-effectiveness of next generation influenza vaccines in England and Wales: A modelling analysis. Vaccine 2023; 41:6017-6024. [PMID: 37633749 DOI: 10.1016/j.vaccine.2023.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
Next generation influenza vaccines are in development and have the potential for widespread health and economic benefits. Determining the potential health and economic impact for these vaccines is needed to drive investment in bringing these vaccines to the market, and to inform which groups public health policies on influenza vaccination should target. We used a mathematical modelling approach to estimate the epidemiological impact and cost-effectiveness of next generation influenza vaccines in England and Wales. We used data from an existing fitted model, and evaluated new vaccines with different characteristics ranging from improved vaccines with increased efficacy duration and breadth of protection, to universal vaccines, defined in line with the World Health Organisation (WHO) Preferred Product Characteristics (PPC). We calculated the cost effectiveness of new vaccines in comparison to the current seasonal vaccination programme. We calculated and compared the Incremental Cost-Effectiveness Ratio and Incremental Net Monetary Benefit for each new vaccine type. All analysis was conducted in R. We show that next generation influenza vaccines may result in a 21% to 77% reduction in influenza infections, dependent on vaccine characteristics. Our economic modelling shows that using any of these next generation vaccines at 2019 coverage levels would be highly cost-effective at a willingness to pay threshold of £20,000 for a range of vaccine prices. The vaccine threshold price for the best next generation vaccines in £-2019 is £230 (95%CrI £192 - £269) per dose, but even minimally-improved influenza vaccines could be priced at £18 (95%CrI £16 - £21) per dose and still remain cost-effective. This evaluation demonstrates the promise of next generation influenza vaccines for impact on influenza epidemics, and likely cost-effectiveness profiles. We have provided evidence towards a full value of vaccines assessment which bolsters the investment case for development and roll-out of next-generation influenza vaccines.
Collapse
Affiliation(s)
- Naomi R Waterlow
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London WC14 7HT, United Kingdom.
| | - Simon R Procter
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London WC14 7HT, United Kingdom
| | - Edwin van Leeuwen
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London WC14 7HT, United Kingdom; Modelling and Economics Unit and NIHR Health Protection Research Unit, UK Health Security Agency, London NW9 5EQ, United Kingdom
| | - Sreejith Radhakrishnan
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London WC14 7HT, United Kingdom; School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Mark Jit
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London WC14 7HT, United Kingdom
| | - Rosalind M Eggo
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London WC14 7HT, United Kingdom
| |
Collapse
|
18
|
Lei H, Yang L, Yang M, Tang J, Yang J, Tan M, Yang S, Wang D, Shu Y. Quantifying the rebound of influenza epidemics after the adjustment of zero-COVID policy in China. PNAS NEXUS 2023; 2:pgad152. [PMID: 37215632 PMCID: PMC10194088 DOI: 10.1093/pnasnexus/pgad152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023]
Abstract
The coexistence of coronavirus disease 2019 (COVID-19) and seasonal influenza epidemics has become a potential threat to human health, particularly in China in the oncoming season. However, with the relaxation of nonpharmaceutical interventions (NPIs) during the COVID-19 pandemic, the rebound extent of the influenza activities is still poorly understood. In this study, we constructed a susceptible-vaccinated-infectious-recovered-susceptible (SVIRS) model to simulate influenza transmission and calibrated it using influenza surveillance data from 2018 to 2022. We projected the influenza transmission over the next 3 years using the SVIRS model. We observed that, in epidemiological year 2021-2022, the reproduction numbers of influenza in southern and northern China were reduced by 64.0 and 34.5%, respectively, compared with those before the pandemic. The percentage of people susceptible to influenza virus increased by 138.6 and 57.3% in southern and northern China by October 1, 2022, respectively. After relaxing NPIs, the potential accumulation of susceptibility to influenza infection may lead to a large-scale influenza outbreak in the year 2022-2023, the scale of which may be affected by the intensity of the NPIs. And later relaxation of NPIs in the year 2023 would not lead to much larger rebound of influenza activities in the year 2023-2024. To control the influenza epidemic to the prepandemic level after relaxing NPIs, the influenza vaccination rates in southern and northern China should increase to 53.8 and 33.8%, respectively. Vaccination for influenza should be advocated to reduce the potential reemergence of the influenza epidemic in the next few years.
Collapse
Affiliation(s)
- Hao Lei
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, P.R. China
| | - Mengya Yang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Jing Tang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, P.R. China
| | - Jiaying Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
| | - Minju Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, P.R. China
| | - Shigui Yang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, P.R. China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- Institute of Pathogen Biology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
19
|
Waterlow NR, Radhakrishnan S, Dawa J, van Leeuwen E, Procter SR, Lambach P, Bresee J, Mazur M, Eggo RM, Jit M. Potential health and economic impact of paediatric vaccination using next-generation influenza vaccines in Kenya: a modelling study. BMC Med 2023; 21:106. [PMID: 36949456 PMCID: PMC10032252 DOI: 10.1186/s12916-023-02830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/30/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Influenza is a major year-round cause of respiratory illness in Kenya, particularly in children under 5. Current influenza vaccines result in short-term, strain-specific immunity and were found in a previous study not to be cost-effective in Kenya. However, next-generation vaccines are in development that may have a greater impact and cost-effectiveness profile. METHODS We expanded a model previously used to evaluate the cost-effectiveness of seasonal influenza vaccines in Kenya to include next-generation vaccines by allowing for enhanced vaccine characteristics and multi-annual immunity. We specifically examined vaccinating children under 5 years of age with improved vaccines, evaluating vaccines with combinations of increased vaccine effectiveness, cross-protection between strains (breadth) and duration of immunity. We evaluated cost-effectiveness using incremental cost-effectiveness ratios (ICERs) and incremental net monetary benefits (INMBs) for a range of values for the willingness-to-pay (WTP) per DALY averted. Finally, we estimated threshold per-dose vaccine prices at which vaccination becomes cost-effective. RESULTS Next-generation vaccines can be cost-effective, dependent on the vaccine characteristics and assumed WTP thresholds. Universal vaccines (assumed to provide long-term and broad immunity) are most cost-effective in Kenya across three of four WTP thresholds evaluated, with the lowest median value of ICER per DALY averted ($263, 95% Credible Interval (CrI): $ - 1698, $1061) and the highest median INMBs. At a WTP of $623, universal vaccines are cost-effective at or below a median price of $5.16 per dose (95% CrI: $0.94, $18.57). We also show that the assumed mechanism underlying infection-derived immunity strongly impacts vaccine outcomes. CONCLUSIONS This evaluation provides evidence for country-level decision makers about future next-generation vaccine introduction, as well as global research funders about the potential market for these vaccines. Next-generation vaccines may offer a cost-effective intervention to reduce influenza burden in low-income countries with year-round seasonality like Kenya.
Collapse
Affiliation(s)
- Naomi R Waterlow
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London, WC14 7HT, UK.
| | - Sreejith Radhakrishnan
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London, WC14 7HT, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Jeanette Dawa
- Center for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
- Washington State University - Global Health Kenya, Nairobi, Kenya
| | - Edwin van Leeuwen
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London, WC14 7HT, UK
- Statistics, Modelling and Economics Department, UK Health Security Agency, London, NW9 5EQ, UK
| | - Simon R Procter
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London, WC14 7HT, UK
| | - Philipp Lambach
- Immunization Vaccines and Biologicals Department, World Health Organization, Geneva, Switzerland
| | | | | | - Rosalind M Eggo
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London, WC14 7HT, UK
| | - Mark Jit
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London, WC14 7HT, UK
| |
Collapse
|
20
|
Xiong X, Wei Y, Lam HCY, Wong CKH, Lau SYF, Zhao S, Ran J, Li C, Jiang X, Yue Q, Cheng W, Wang H, Wang Y, Chong KC. Association between cold weather, influenza infection, and asthma exacerbation in adults in Hong Kong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159362. [PMID: 36240934 DOI: 10.1016/j.scitotenv.2022.159362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/13/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Despite a conspicuous exacerbation of asthma among patients hospitalized due to influenza infection, no study has attempted previously to elucidate the relationship between environmental factors, influenza activity, and asthma simultaneously in adults. In this study, we examined this relationship using population-based hospitalization records over 22 years. Daily numbers of hospitalizations due to asthma in adults of 41 public hospitals in Hong Kong during 1998-2019 were obtained. The data were matched with meteorological records and air pollutant concentrations. We used type-specific and all-type influenza-like illness plus (ILI+) rates as proxies for seasonal influenza activity. Quasi-Poisson generalized additive models together with distributed-lag non-linear models were used to examine the association. A total of 212,075 hospitalization episodes due to asthma were reported over 22 years. The cumulative adjusted relative risk (ARR) of asthma hospitalizations reached 1.15 (95 % confidence interval [CI], 1.12-1.18) when the ILI+ total rate increased from zero to 20.01 per 1000 consultations. Compared with the median temperature, a significantly increased risk of asthma hospitalization (cumulative ARR = 1.10, 95 % CI, 1.05-1.15) was observed at the 5th percentile of temperature (i.e., 14.6 °C). Of the air pollutants, oxidant gas was significantly associated with asthma, but only at its extreme level of concentrations. In conclusion, cold conditions and influenza activities are risk factors to asthma exacerbation in adult population. Influenza-related asthma exacerbation that appeared to be more common in the warm and hot season, is likely to be attributable to influenza A/H3N2. The heavy influence of both determinants on asthma activity implies that climate change may complicate the asthma burden.
Collapse
Affiliation(s)
- Xi Xiong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong
| | - Yuchen Wei
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong
| | - Holly Ching Yu Lam
- National Heart & Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Carlos King Ho Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong; Department of Family Medicine and Primary Care, The University of Hong Kong, Hong Kong
| | - Steven Yuk Fai Lau
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Shi Zhao
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Conglu Li
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Xiaoting Jiang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Qianying Yue
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Wei Cheng
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang province, China
| | - Huwen Wang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Yawen Wang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Ka Chun Chong
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong; Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
21
|
Wilasang C, Suttirat P, Chadsuthi S, Wiratsudakul A, Modchang C. Competitive evolution of H1N1 and H3N2 influenza viruses in the United States: A mathematical modeling study. J Theor Biol 2022; 555:111292. [PMID: 36179800 DOI: 10.1016/j.jtbi.2022.111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 01/14/2023]
Abstract
Seasonal influenza causes vast public health and economic impact globally. The prevention and control of the annual epidemics remain a challenge due to the antigenic evolution of the viruses. Here, we presented a novel modeling framework based on changes in amino acid sequences and relevant epidemiological data to retrospectively investigate the competitive evolution and transmission of H1N1 and H3N2 influenza viruses in the United States during October 2002 and April 2019. To do so, we estimated the time-varying disease transmission rate from the reported influenza cases and the time-varying antigenic change rate of the viruses from the changes in amino acid sequences. By incorporating the time-varying antigenic change rate into the transmission models, we found that the models could capture the evolutionary transmission dynamics of influenza viruses in the United States. Our modeling results also showed that the antigenic change of the virus plays an essential role in seasonal influenza dynamics.
Collapse
Affiliation(s)
- Chaiwat Wilasang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pikkanet Suttirat
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sudarat Chadsuthi
- Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Anuwat Wiratsudakul
- Department of Clinical Sciences and Public Health, and the Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Centre of Excellence in Mathematics, MHESI, Bangkok 10400, Thailand; Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand.
| |
Collapse
|
22
|
Zhang B, Huang W, Pei S, Zeng J, Shen W, Wang D, Wang G, Chen T, Yang L, Cheng P, Wang D, Shu Y, Du X. Mechanisms for the circulation of influenza A(H3N2) in China: A spatiotemporal modelling study. PLoS Pathog 2022; 18:e1011046. [PMID: 36525468 PMCID: PMC9803318 DOI: 10.1371/journal.ppat.1011046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 12/30/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Circulation of seasonal influenza is the product of complex interplay among multiple drivers, yet characterizing the underlying mechanism remains challenging. Leveraging the diverse seasonality of A(H3N2) virus and abundant climatic space across regions in China, we quantitatively investigated the relative importance of population susceptibility, climatic factors, and antigenic change on the dynamics of influenza A(H3N2) through an integrative modelling framework. Specifically, an absolute humidity driven multiscale transmission model was constructed for the 2013/2014, 2014/2015 and 2016/2017 influenza seasons that were dominated by influenza A(H3N2). We revealed the variable impact of absolute humidity on influenza transmission and differences in the occurring timing and magnitude of antigenic change for those three seasons. Overall, the initial population susceptibility, climatic factors, and antigenic change explained nearly 55% of variations in the dynamics of influenza A(H3N2). Specifically, the additional variation explained by the initial population susceptibility, climatic factors, and antigenic change were at 33%, 26%, and 48%, respectively. The vaccination program alone failed to fully eliminate the summer epidemics of influenza A(H3N2) and non-pharmacological interventions were needed to suppress the summer circulation. The quantitative understanding of the interplay among driving factors on the circulation of influenza A(H3N2) highlights the importance of simultaneous monitoring of fluctuations for related factors, which is crucial for precise and targeted prevention and control of seasonal influenza.
Collapse
Affiliation(s)
- Bing Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
- Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Weijuan Huang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Sen Pei
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, United States of America
| | - Jinfeng Zeng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Wei Shen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
- Department of Rheumatology and Immunology, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Daoze Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Gang Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Tao Chen
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Peiwen Cheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- * E-mail: (DW); (YS); (XD)
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Pathogen Biology of Chinese Academy of Medical Science (CAMS)/ Peking Union Medical College (PUMC), Beijing, People’s Republic of China
- * E-mail: (DW); (YS); (XD)
| | - Xiangjun Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, People’s Republic of China
- * E-mail: (DW); (YS); (XD)
| |
Collapse
|
23
|
Zhang B, Chen T, Liang S, Shen W, Sun Q, Wang D, Wang G, Yang J, Yang L, Wang D, Shu Y, Du X. Subtypes specified environmental dependence of seasonal influenza virus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158525. [PMID: 36075410 DOI: 10.1016/j.scitotenv.2022.158525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Understanding the role of meteorological factors in the transmission dynamics of respiratory infectious diseases remains challenging. Our study was to comprehensively investigate the nonlinear effects of environmental factors on influenza transmission, based on multi-region surveillance data from mainland China. An approach related to time-varying reproduction number (Rt) was proposed, which extracts the environment-related components from Rt to estimate the relationship between environmental factors and influenza transmission based on a mixed-effects regression model. Nonlinear relationships for absolute humidity (the lowest transmission was observed at absolute humidity of 12 g/m3) and mean temperature (the lowest transmission was observed at the mean temperature of 18 °C) with influenza transmission were observed. Influenza transmission holds almost constant with the average precipitation below 1 mm or sunshine hour below 9 h/day, but increases for the precipitation and decreases for the sunshine hour afterward. The environmental dependence varies across subtypes: A(H3N2) maintains relatively higher transmission in high temperature and humidity conditions, compared with other influenza subtypes. Overall, the subtypes specified environmental dependence of influenza transmission could explain 23.1 %, 29.2 % and 27.1 % of the variations for A(H1N1)pdm09, A(H3N2) and B-lineage in China. The projected seasonal transmission rates based on our approach could be used as a valuable seasonal proxy to model the influenza dynamics under various meteorological spaces. Finally, our approach is also applicable to obtain novel insights into the impact of environmental factors on other respiratory infectious diseases.
Collapse
Affiliation(s)
- Bing Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, PR China
| | - Tao Chen
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Shiwen Liang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Tongan District Center for Disease Control and Prevention, Xiamen 361100, PR China
| | - Wei Shen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, PR China
| | - Qianru Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Daoze Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Gang Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Jing Yang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510030, PR China; Institute of Pathogen Biology of Chinese Academy of Medical Science (CAMS)/ Peking Union Medical College (PUMC), Beijing 100730, PR China.
| | - Xiangjun Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510030, PR China.
| |
Collapse
|
24
|
Wang ZX, Ntambara J, Lu Y, Dai W, Meng RJ, Qian DM. Construction of Influenza Early Warning Model Based on Combinatorial Judgment Classifier: A Case Study of Seasonal Influenza in Hong Kong. Curr Med Sci 2022; 42:226-236. [PMID: 34985610 PMCID: PMC8727490 DOI: 10.1007/s11596-021-2493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/26/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The annual influenza epidemic is a heavy burden on the health care system, and has increasingly become a major public health problem in some areas, such as Hong Kong (China). Therefore, based on a variety of machine learning methods, and considering the seasonal influenza in Hong Kong, the study aims to establish a Combinatorial Judgment Classifier (CJC) model to classify the epidemic trend and improve the accuracy of influenza epidemic early warning. METHODS The characteristic variables were selected using the single-factor statistical method to establish the influencing factor system of an influenza outbreak. On this basis, the CJC model was proposed to provide an early warning for an influenza outbreak. The characteristic variables in the final model included atmospheric pressure, absolute maximum temperature, mean temperature, absolute minimum temperature, mean dew point temperature, the number of positive detections of seasonal influenza viruses, the positive percentage among all respiratory specimens, and the admission rates in public hospitals with a principal diagnosis of influenza. RESULTS The accuracy of the CJC model for the influenza outbreak trend reached 96.47%, the sensitivity and specificity change rates of this model were lower than those of other models. Hence, the CJC model has a more stable prediction performance. In the present study, the epidemic situation and meteorological data of Hong Kong in recent years were used as the research objects for the construction of the model index system, and a lag correlation was found between the influencing factors and influenza outbreak. However, some potential risk factors, such as geographical nature and human factors, were not incorporated, which ideally affected the prediction performance to some extent. CONCLUSION In general, the CJC model exhibits a statistically better performance, when compared to some classical early warning algorithms, such as Support Vector Machine, Discriminant Analysis, and Ensemble Classfiers, which improves the performance of the early warning of seasonal influenza.
Collapse
Affiliation(s)
- Zi-xiao Wang
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong, 226001 China
- Department of Computer Science, College of Engineering and Computing Sciences, New York Institute of Technology, New York, 10023 USA
- Department of Computer Science, College of Overseas Education, Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
| | - James Ntambara
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, 226019 China
| | - Yan Lu
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong, 226001 China
| | - Wei Dai
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong, 226001 China
| | - Rui-jun Meng
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong, 226001 China
| | - Dan-min Qian
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong, 226001 China
- Artificial Intelligence Laboratory Center, De Montfort University of Leicester, Leicester, LE1 9BH UK
| |
Collapse
|
25
|
Yang W, Greene SK, Peterson ER, Li W, Mathes R, Graf L, Lall R, Hughes S, Wang J, Fine A. Epidemiological characteristics of the B.1.526 SARS-CoV-2 variant. SCIENCE ADVANCES 2022; 8:eabm0300. [PMID: 35089794 PMCID: PMC8797779 DOI: 10.1126/sciadv.abm0300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/07/2021] [Indexed: 05/28/2023]
Abstract
To characterize the epidemiological properties of the B.1.526 SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) variant of interest, here we used nine epidemiological and population datasets and model-inference methods to reconstruct SARS-CoV-2 transmission dynamics in New York City, where B.1.526 emerged. We estimated that B.1.526 had a moderate increase (15 to 25%) in transmissibility, could escape immunity in 0 to 10% of previously infected individuals, and substantially increased the infection fatality risk (IFR) among adults 65 or older by >60% during November 2020 to April 2021, compared to estimates for preexisting variants. Overall, findings suggest that new variants like B.1.526 likely spread in the population weeks before detection and that partial immune escape (e.g., resistance to therapeutic antibodies) could offset prior medical advances and increase IFR. Early preparedness for and close monitoring of SARS-CoV-2 variants, their epidemiological characteristics, and disease severity are thus crucial to COVID-19 (coronavirus disease 2019) response.
Collapse
Affiliation(s)
- Wan Yang
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sharon K. Greene
- Bureau of Communicable Disease, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Eric R. Peterson
- Bureau of Communicable Disease, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Wenhui Li
- Bureau of Vital Statistics, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Robert Mathes
- Bureau of Communicable Disease, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Laura Graf
- Bureau of Communicable Disease, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Ramona Lall
- Bureau of Communicable Disease, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Scott Hughes
- Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Jade Wang
- Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Anne Fine
- Bureau of Communicable Disease, New York City Department of Health and Mental Hygiene, New York, NY, USA
| |
Collapse
|
26
|
Yang W, Shaman J. Development of a model-inference system for estimating epidemiological characteristics of SARS-CoV-2 variants of concern. Nat Commun 2021; 12:5573. [PMID: 34552095 PMCID: PMC8458278 DOI: 10.1038/s41467-021-25913-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
To support COVID-19 pandemic planning, we develop a model-inference system to estimate epidemiological properties of new SARS-CoV-2 variants of concern using case and mortality data while accounting for under-ascertainment, disease seasonality, non-pharmaceutical interventions, and mass-vaccination. Applying this system to study three variants of concern, we estimate that B.1.1.7 has a 46.6% (95% CI: 32.3-54.6%) transmissibility increase but nominal immune escape from protection induced by prior wild-type infection; B.1.351 has a 32.4% (95% CI: 14.6-48.0%) transmissibility increase and 61.3% (95% CI: 42.6-85.8%) immune escape; and P.1 has a 43.3% (95% CI: 30.3-65.3%) transmissibility increase and 52.5% (95% CI: 0-75.8%) immune escape. Model simulations indicate that B.1.351 and P.1 could outcompete B.1.1.7 and lead to increased infections. Our findings highlight the importance of preventing the spread of variants of concern, via continued preventive measures, prompt mass-vaccination, continued vaccine efficacy monitoring, and possible updating of vaccine formulations to ensure high efficacy.
Collapse
Affiliation(s)
- Wan Yang
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Jeffrey Shaman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
27
|
Li Q, Wang J, Lv H, Lu H. Impact of China's COVID-19 prevention and control efforts on outbreaks of influenza. Biosci Trends 2021; 15:192-195. [PMID: 34176827 DOI: 10.5582/bst.2021.01242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a serious public health burden. As the COVID-19 epidemic in China would coincide with a seasonal outbreak of influenza, there were serious concerns about whether influenza would be aggravated by the SARS-CoV-2 infection and COVID-19 pandemic. This article provides a brief overview of the impacts of the COVID-19 epidemic on influenza activity in China. The percentage of positive influenza tests decreased during the COVID-19 pandemic. During the first stage of the COVID-19 outbreak, the percentage of positive influenza tests reached to a peak of 47.7%. At the second stage, the percentage of positive influenza tests was dramatically decreased from 40.4% to 14.0%. Thereafter, it remains at a low level of less than 6.2%. In addition, the possible causes of this phenomenon have been summarized, including prevention and control measures and ecological competition. Lastly, this article suggests that the public health approach to preventing COVID-19 may also help to control other respiratory infectious diseases. Public health measures need to be maintained even in the later stages of the COVID-19 epidemic.
Collapse
Affiliation(s)
- Qian Li
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, China
| | - Jun Wang
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, China
| | - Haiwei Lv
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, China
| |
Collapse
|
28
|
Yuan H, Kramer SC, Lau EHY, Cowling BJ, Yang W. Modeling influenza seasonality in the tropics and subtropics. PLoS Comput Biol 2021; 17:e1009050. [PMID: 34106917 PMCID: PMC8216520 DOI: 10.1371/journal.pcbi.1009050] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/21/2021] [Accepted: 05/07/2021] [Indexed: 01/19/2023] Open
Abstract
Climate drivers such as humidity and temperature may play a key role in influenza seasonal transmission dynamics. Such a relationship has been well defined for temperate regions. However, to date no models capable of capturing the diverse seasonal pattern in tropical and subtropical climates exist. In addition, multiple influenza viruses could cocirculate and shape epidemic dynamics. Here we construct seven mechanistic epidemic models to test the effect of two major climate drivers (humidity and temperature) and multi-strain co-circulation on influenza transmission in Hong Kong, an influenza epidemic center located in the subtropics. Based on model fit to long-term influenza surveillance data from 1998 to 2018, we found that a simple model incorporating the effect of both humidity and temperature best recreated the influenza epidemic patterns observed in Hong Kong. The model quantifies a bimodal effect of absolute humidity on influenza transmission where both low and very high humidity levels facilitate transmission quadratically; the model also quantifies the monotonic but nonlinear relationship with temperature. In addition, model results suggest that, at the population level, a shorter immunity period can approximate the co-circulation of influenza virus (sub)types. The basic reproductive number R0 estimated by the best-fit model is also consistent with laboratory influenza survival and transmission studies under various combinations of humidity and temperature levels. Overall, our study has developed a simple mechanistic model capable of quantifying the impact of climate drivers on influenza transmission in (sub)tropical regions. This model can be applied to improve influenza forecasting in the (sub)tropics in the future.
Collapse
Affiliation(s)
- Haokun Yuan
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Sarah C. Kramer
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Eric H. Y. Lau
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science Park, New Territories, Hong Kong Special Administrative Region, People’s Republic of China
| | - Benjamin J. Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science Park, New Territories, Hong Kong Special Administrative Region, People’s Republic of China
| | - Wan Yang
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| |
Collapse
|